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Abstract— Traffic sign detection and recognition is an im-
portant part of advanced driver assistance systems. Many
prototype solutions for this task have been developed, and
first commercial systems have just become available. Their
image processing chain can be devided into three steps, pre-
processing, detection, and recognition. Albeit several reliable
sign recognition algorithms exist by now sign detection under
real-world conditions is still unstable. Therefore, we address the
first two steps of the processing chain presenting an analysis
of widely used detectors, namely Hough-like methods. We
evaluate several preprocessing steps and tweaks to increase
their performance. Hence, the detectors are applied to a large,
publicly available set of images from real-life traffic scenes. As
main result we establish a new probabilistic measure for traffic
sign colour detection and, based on the findings in our analysis,
propose a novel Hough-like algorithm for detecting circular and
triangular shapes. These improvements significantly increased
detection performance in our experiments.

I. INTRODUCTION

Traffic signs are important to warn the driver of possibly
unexpected road conditions, to control traffic flow and to
prevent dangerous situations for him and other road users.
However, they draw attention from the driver and, if used too
extensively, are likely to be overlooked. Therefore, an auto-
mated traffic sign recognition system is desirable to assist
the driver. It improves road safety and seems indispensable
for the future development of autonomous driving systems.

A vast amount of research covering the development and
evaluation of complete traffic sign recognition systems has
been published. Although first commercial systems have
reached the market all of them are restricted to particular
sign classes, e.g. speed limit signs, and only work under
limited weather and lighting conditions.

Normally these systems perform three steps: image prepro-
cessing, sign detection and sign recognition. Great progress
has been made in the field of sign recognition [1], [2],
[3], the detection stage, however, is less reliable. Common
assumptions are that the first appearance of a traffic sign in
an image sequence is fixed to a certain size, that it follows
a straight movement towards the camera over time, that it
does not undergo affine transformation, and that its pixels
lie in a well-defined colour interval. These preconditions are
reasonable but not fully generalizable. Any violation usually
results in missed detections.

In this study, we take several well-known sign detection
algorithms and apply them to a set of single images from
a public available dataset with challenging cluttered urban
street scenes (c.f. Section IV). Different preprocessing steps
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are proposed to gradually contribute more and more a priori
knowledge to the detection stage (c.f. Section III).

Furthermore, we propose a novel fuzzy colour evaluation
step that enhances detection results with a learned set of
traffic signs. Finally, we discuss disadvantages of the current
voting schemes (c.f. Section II) and propose a new approach
that proves more reliable than the established ones.

II. TRAFFIC SIGN DETECTORS

The great amount of literature on traffic sign detection
focusses on two main branches: Viola-Jones detectors [4], [5]
(often based on the originally proposed Haar wavelet features
[6]) and model-based Hough-like approaches. Viola-Jones
methods are fast and have high detection rates. However their
reliability depends crucially on the training set and untrained
signs will therefore not be detected. Which of the two
approaches is more promising is still undecided. Nevertheless
in this paper we will restrict ourselves to Hough-like methods
[7], [8].

For our study these can be generalized best by defining
a set Vp of features that contribute to the vote of point
p in the vote space. The vote space is a parameter space
that describes the shape one wants to detect, in our case
{(x, r) | x midpoint of shape and r radius}. We define the
radius of a regular polygon as the shortest distance from
the midpoint to an outline point. Every parameter n-tuple
is mapped to a real number that measures its likelihood to
represent a detected shape. By extracting the local maxima
of this mapping one obtains the most likely detections. The
advantages of Hough-like procedures are that they are fast
and can work on sparse data. By adjusting the vote mapping
they can easily be adapted to a priori knowledge.

In the upcoming section we will cover several proposals of
voting schemes that have been developed and used for real-
time traffic sign detection. The features are obtained from
a gradient image and consist of one to three pixel positions
z1, z2, z3 and their orientations θ1, θ2, θ3.

A. Regular Polygon Detector (RPD)

In 2004 Loy and Barnes [9], [10] published a detector
for regular polygons with n corners that has since been
applied very successfully to traffic sign detection. For every
pixel one determines the lines l(r), l′(r) orthogonal to the
pixel’s orientation. Its midpoints lie on the line through z
with orientation θ and have distance r from z (c.f. Figure
1). The length of the line is twice the length of a n-sided
polygon’s edge, i.e. 2r tan π

n . We therefore define

V(x,r) = {(z, θ) | x lies on l(r) or l′(r)}
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Fig. 1. Schemes for the voting methods. RPD and RSD will also vote for positions and radii converse to the considered pixel’s orientation since it is
unknown if the orientation is directed into the interior or exterior of the shape. Please note that for clarity reasons these vote positions were omitted.

(c.f. Figure 1). Each pixel therefor votes for every possible
center and radius of every n-sided polygon it could be edge
of.

B. Radial Symmetry Detector (RSD)

The Radial Symmetry Detector [11] may be regarded as
the Regular Polygon Detector for n→∞ and is considered
the classical voting scheme for circle detection. Every pixel
votes for the midpoint in the direction of the gradient:

V(x,r) = {(z, θ) | x has distance r from z

in direction θ or − θ}

C. Vertex Bisector Transform (VBT)

Belaroussi and Tarel have recently proposed two voting
schemes based on two pixel positions and orientations:

To detect triangles and other regular polygons the Vertex
Bisector Transform [12] considers every pair of pixel posi-
tions z1, z2 and non-parallel orientations θ1 6= θ2 to calculate
the intersection point c of the two lines through z1 and z2
orthogonal to θ1 and θ2 respectively. It then votes for every
point on the bisector b of the two lines’ intersection angle
(c.f. Figure 1):

V(x,r) =
{
(z1, θ1, z2, θ2) | x is on b and r = ||x− c||cosπ

n

}
This method was proposed for triangle detection but can
easily be extended to detection of regular polygons.

D. Bilateral Chinese Transform (BCT)

The Bilateral Chinese Transform [13] considers every pair
of pixels with parallel or converse orientations directed to
each other and votes for their center. Let α be the orientation
of the line z1z2:

V(x,r) =

{
(z1, θ1, z2, θ2) | x =

1

2
(z1 + z2),

|θ1 − θ2| = 0 mod π, |α− θ1| = 0 mod π,

|α− θ2| = 0 mod π, r =
1

2
||z1 − z2||

}
The BCT is able to detect e.g. circles, squares, rectangles
and octagons.

With the schemes introduced so far one often perceives
the problem that the voting maxima are ambiguous and the
results suffer from noisy or cluttered images (c.f. Figure 2).
This is caused by the schemes’ property that every pixel votes
for a large number of points in the parameter space which
therefore contains too many potentially worthless votes. To
circumvent this problem we propose to use exactly as many
pixel positions and orientations as are needed to cast a single
vote to the parameter space.

E. Single Target Vote for Upright Triangles (STVUT)

Three pixel positions with pairwise non-parallel orien-
tations will suffice to define a triangle. Having these one
can easily calculate the corners c1, c2, c3 as the pairwise
intersections of the lines through z1, z2, z3 orthogonal to
θ1, θ2, θ3 respectively. We therefor set

V(x,r) =

{
(z1, θ1, z2, θ2, z3, θ3) | x =

1

3
(c1 + c2 + c3),

r = ||x− c1||cos
π

3

}
Since taking every triple of gradient pixels into account is

infeasible for real-time applications we used the following
heuristic to choose appropriate vote features: For every pixel
z1 oriented in the vicinity of −π6 (with respect to the x-
axis) a pixel z2 with mirrored orientation is searched in
the same image row. To obtain the third pixel position z3
one chooses a column between z1 and z2 and looks for
orientations in a vicinity of π

2 . This column is selected by
calculating the y-coordinate of z1 modulo the distance of
z1 and z2. This would guarantee to consider every column
with same probability if the distance between z1 and z2 was
constant.

F. Single Target Vote for Upright Ellipses (STVUE)

To define midpoint and radius of a circle one needs two
pixel positions including orientations. Similar to the BCT we
define

V(x,r) = {(z1, θ1, z2, θ2) | x = c and r = ||z1 − c||}

where c is the intersection of the lines through z1 and z2
with orientation θ1 and θ2 respectively.
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Fig. 2. Comparing the vote images by RSD (middle) and STVUE (right) of a common urban traffic scene (left) one realizes that pixel-wise schemes
voting for a multitude of parameters suffer from noise and clutter. The vote images shown are taken for a fixed radius of 15 pixels which is also the
radius of the sign to detect. For this image RSD casts 878,601 votes while STVUE only casts 4,449.

Again we propose a helpful heuristic by considering only
those points that lie on the same x-coordinate and should
hence have a mirrored orientation.

Please note that STVUT and STVUE are not restricted to
detect regular shapes (regular upright triangles and circles)
but also stretched forms of them (isosceles upright triangles
and upright ellipses). However the votes these schemes cast
lie in the common parameter space considerung position and
radius. Thus, the detected radius can be considered as a
measure of size of the detection rather than the radius in
the geometric sense.

III. PREPROCESSING STEPS

In the following section we propose seven preprocessing
steps that transform the acquired colour image into a gradient
image that assigns magnitude and orientation to every pixel.
We will later limit the number of pixel positions considered
in the voting schemes to the ones with the greatest magni-
tude. The gradient magnitude also affects the amount a tuple
contributes to a parameter vote. We set the vote of a pixel
or n-tuple of pixels to be

ln(1+||grad(z1)||)·ln(1+||grad(z2)||)·ln(1+||grad(z3)||)

where grad(zk) denotes the gradient at the position zk, k =
1, 2, 3 (the single and double voting schemes consider only
the first and first two factors respectively).

A. Gradient Magnitude Threshold (GMT)

A first step is to consider every edge regardless of any
colour or orientation information. We therefor calculate the
gradient of the gray image via a Sobel filter, apply Non-
Maxima-Suppression and threshold the result to limit the
number of pixels the voting scheme operates on.

B. Colour Gradient (CG)

To strengthen edges of objects with distinctively different
colours we take the gradient of the gray image and weight
the magnitude of each gradient vector with the difference

Fig. 4. Some training examples for the traffic sign colours blue (total 54)
and red (total 50)

of the neighbouring pixels in colour space. We found the
YUV colour space to be adequate. The colour information
is stored in the U- and V-components, the intensity is given
by the Y-component. We take the distance of two points in
the UV-plane as a measure for colour disparity.

C. Learned Colour Gradient (LCG)

In the next step we want to go more specificly for traffic
sign colours. We therefor took a dataset of red and blue traffic
signs, semi-automatically segmented the colour of interest
and took the average colour of every sign (c.f. Figure 4
for some examples). To obtain a likelihood for every pixel
to be of a traffic sign colour we assumed its distribution
to be a mixture of Gaussians with the averaged colours as
means and standard deviation 0.1 . This way we received a
likelihood image we determined the gradient image of (c.f.
Section III-A). The edges of traffic signs will hence likely be
gradients with strong magnitude increasing the vote in the
several schemes.

D. Learned Colour Threshold (CT)

Currently many sign detection approaches start with a
threshold of the given image. To compare the probabilistic
LCG to this method we threshold the likelihood image and
take the gradient.
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Fig. 3. The gradient images by the proposed preprocessing steps. The relative magnitude is given in false colours.

Fig. 5. Distribution of average traffic sign colours in YUV colour space
for the red (blue asterisks) and blue signs (red asterisks). The Y-component
was fixed to the average sign intensity Y = 0.33 that ranged from 0.07 to
0.54

E. Learned Colourwise Segmentation Gradient (LCSG)

Figure 5 shows that the range of possible traffic sign
colours is wide. This might cause edge detection problems
when the sign is placed in front of a background consisting of
a traffic sign colour as well. We therefor assign the index of
the sign colour a pixel resembles most to its position. Since
artificial differences between two traffic sign colour shades
are now included into the image applying the gradient should
also detect edges between them. To endow similar shades
with similar indexes we projected the learned data on its
principal component and numbered the points consecutively
according to their projected position.

F. Expected Orientations (EO)

We perform a LCG preprocessing step and ignore those
gradient pixels that are significantly off to the orientations
one would expect for an upright triangle. Please note that
due to the limited number of gradient pixels the exclusion
will bring correctly oriented points with less magnitude into
consideration. This preprocessing step does not affect the
circle detection.

G. Learned Colour Gradient with Constant Vote (LCGCV)

To test the meaning of the weighted vote we also tried the
LCG preprocessing step for voting schemes with constant
vote. This way the gradient magnitude will only influence
the choice of considered gradient pixels but not the amount
a pixel or n-tuple of pixels contribute to the vote.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed voting
schemes and preprocessing options we applied them to the
public available Stereopolis database [14] that provides a set
of 847 images with 251 road signs from a crowded city
traffic scene in Paris, France. We restrained the test to circular
(RSD, BCT, STVUE, 176 signs) and triangular (RPD, VBT,
STVUT, 27 signs) signs .

As a show of generality we trained the LCG, LCSG, EO
and LCGCV preprocessing on a seperate set of 50 red and 54
blue traffic signs we acquired in Bochum, Germany. Figure
4 contains a choice of them.

To provide a realistic scenario with real time limitations
we choose the 10,000 pixels with largest gradient magnitude
after preprocessing to be passed to the voting schemes.
Furthermore, we took into account the 10 strongest votes
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Fig. 6. Example of a traffic scene (left) where the sign colour likelihood image (middle left) did not perfectly detect the whole sign border. Taking the
gradient of the likelihood image (middle right) can account for this lack while a common threshold (right) will result in a incomplete segmentation and
false edges.

TABLE I
DETECTION RATE

RPD RSD VBT BCT STVUT STVUE
GMT 11% 65% 15% 44% 26% 62%
CG 19% 91% 15% 47% 52% 68%

LCG 52% 90% 74% 86% 78% 91%
CT 63% 56% 63% 45% 70% 72%

LCSG 11% 47% 7% 17% 52% 43%
EO 48% - 81% - 81% -

LCGCV 41% 90% 70% 83% 74% 84%

TABLE II
HIT RANKING

RPD RSD VBT
GMT 1.3 ± 0.6 2.2 ± 2.1 3.0 ± 2.7
CG 2.8 ± 3.5 1.6 ± 1.7 2.8 ± 2.4

LCG 2.1 ± 1.5 1.5 ± 1.4 2.5 ± 2.5
CT 1.9 ± 2.2 2.7 ± 2.5 2.6 ± 2.5

LCSG 2.3 ± 2.3 2.2 ± 2.2 2.0 ± 0.0
EO 1.3 ± 0.9 - 1.5 ± 1.1

LCGCV 3.2 ± 2.2 1.5 ± 1.4 2.2 ± 2.3
BCT STVUT STVUE

GMT 2.2 ± 2.4 1.6 ± 1.5 2.8 ± 2.4
CG 2.2 ± 2.1 2.1 ± 2.0 2.6 ± 2.0

LCG 1.4 ± 1.4 1.7 ± 2.1 1.8 ± 1.7
CT 2.7 ± 2.6 1.9 ± 2.5 2.0 ± 1.9

LCSG 2.9 ± 2.5 2.1 ± 1.5 3.1 ± 2.4
EO - 2.1 ± 2.5 -

LCGCV 1.6 ± 1.6 1.9 ± 1.7 2.0 ± 1.8

which were local maxima in the parameter space. Both
limitations seem reasonable if one wanted to guarantee a
limited runtime. A sign is assumed to be detected if the
estimated position’s error is less then 20% of the true sign
size and the estimated radius’ relative error is below 45%.
This is the exact criterion used in [14]. For this benchmark
all schemes were implemented in Matlab and were executed
with the exact same set of parameters (i.e. gradient image,
discretization of parameter space, allowed discrepancy of
measured orientations). For sake of comparability no further
optimizations were applied.

Table I shows the detection rate of all presented voting
schemes with each proposed preprocessing stage (Figure
7 covers a choice of them in more detail). Please note
that the algorithms operated on single images. In real-life

applications one would achieve significant improvement by
combining the detection results of several time steps. The
table clearly shows the importance of including specific
colour information into the preprocessing steps. The LCG
provides best results with all voting schemes and outperforms
the very commonly used colour threshold excepting the RPD
that strongly benefits from a small number of pixels after
a presegmentation. The LCSG could not compare to LCG
because of too many artificial edges. For the importance
of the weight a vote contains one can look at the LCGCV
preprocessing. Comparing this to LCG obviously all schemes
benefit strongly from the weighted votes. Thus, we see
that both the choice of pixels and the voting weight the
LCG provides are valuable properties that clearly increase
detection performance. Although we neglected runtime in
our experiments, an implementation on a modern desktop
system (Intel Core2 Quad 2.4Ghz, 4 GB RAM) could process
a single image (1355 × 781 pixels) in less than 400 ms
providing real-time capability for our algorithms.

Regarding the voting schemes one can state that for
detection of circles the three presented methods (RSD, BCT,
STVUE) perform comparably well. Among the triangle
detectors VBT and STVUT have similar maximum detection
rates although STVUT seems to be more reliable on sparse
data, e.g. after common gradient threshold (c.f. GMT or CG).
In our benchmark RPD had the significantly lowest detection
rate but on the other hand is the least specialized method.

Table II contains the average rank a vote maximum was
counted as detection if sorted by vote weight. This hit
ranking goes along with the detection rates of the respective
schemes. One can see that for the salient detection methods
the correct hit can usually be found among the first five
hypothesis.

V. CONCLUSION AND FUTURE WORK

We were able to show that probabilistic preprocessing is
well suited for providing pixel-wise colour information to
following stages. Especially Hough-like methods are easy
to adjust to this kind of initial estimations. However, they
sometimes suffer from overvoting cluttered or noisy struc-
tures. Our proposal to extend current voting schemes to a
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Fig. 7. The behaviour of detection rate against number of considered vote
maxima for some proposed procedures (top = triangle detection, bottom =
circle detection).

single target vote in order to minimize this turned out to be
a promising approach.

Nevertheless, our algorithms were based on heuristic de-
liberations and not on statistical findings. In a next step we
want to examine a larger dataset of traffic signs to extract
valuable features and estimate the necessary parameters (e.g.
the usual orientation of a triangular sign’s edges) more
accurately. We hope this will enable us to refine the initial
likelihood estimation and the voting weight in the parameter
space. Furthermore, we want to take advantage of the single
target voting schemes’ property of having significantly less
votes in parameter space. Therefore, the common technique
of accumulating the votes for every block in the discretized
vote space does not fit. By simply storing every vote point
in an array we can reduce memory costs and gain significant
accuracy.

We will work on extending the idea of single target voting
to rectangles and regular octagons to start the development
of a real-time multi-purpose traffic sign detector.
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