
Real-time Stereo Vision:

Optimizing Semi-Global Matching

Matthias Michael∗, Jan Salmen∗, Johannes Stallkamp∗, and Marc Schlipsing∗

Abstract— Semi-Global Matching (SGM) is arguably one of
the most popular algorithms for real-time stereo vision. It is
already employed in mass production vehicles today. Thinking
of applications in intelligent vehicles (and fully autonomous
vehicles in the long term), we aim at further improving
SGM regarding its accuracy. In this study, we propose a
straight-forward extension of the algorithm’s parametrization.
We consider individual penalties for different path orienta-
tions, weighted integration of paths, and penalties depending
on intensity gradients. In order to tune all parameters, we
applied evolutionary optimization. For a more efficient offline
optimization and evaluation, we implemented SGM on graphics
hardware. We describe the implementation using CUDA in
detail. For our experiments, we consider two publicly available
datasets: the popular Middlebury benchmark as well as a
synthetic sequence from the .enpeda. project. The proposed
extensions significantly improve the performance of SGM. The
number of incorrect disparities was reduced by up to 27.5 %
compared to the original approach, while the runtime was not
increased.

I. INTRODUCTION

A stereo camera system allows to estimate the depth

of the scene by calculating disparities for the two input

images. While stereo vision is among the most vivid topics

in computer vision for decades still many research is done,

driven by a wide range of possible fields of application

like robotics, surveillance, and automotive systems. Stereo

vision has recently reached mass production vehicles where

it is employed for object detection and collision avoidance,

among others. We give an overview of related work in Sec. II.

A popular approach for real-time systems given limited

hardware resources is Semi-Global Matching (SGM) pro-

posed by Hirschmüller [1]. The original approach makes

use of intensity differences, mutual information, and an

optimization method integrating different paths through the

image. We explain SGM in more detail in Sec. III.

In this study, we investigate different ways to improve

the algorithm’s performance. We propose to extend the

parametrization of the algorithm. Originally, SGM relies on

two penalty parameters. We extend this in a straight-forward

manner to up to 20. The extended parametrization allows for

more flexibility, as described in Sec. IV.

While parameters for a task at hand are typically tweaked

by hand, we propose to tune parameters using automatic

optimization. This has several advantages compared to man-

ual tuning. We employ a state-of-the-art evolutionary opti-

∗M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing are with the

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum,

Germany firstName.lastName@ini.rub.de

mization algorithm. The applied optimization procedure is

explained in Sec. V.

Optimization and evaluation of the SGM algorithm is done

offline. We propose to make use of an implementation using

graphics hardware for that purpose. We describe how to

implement SGM using CUDA1 in Sec. VI.

For our experiments, we consider the well-known Middle-

bury benchmark [2] and a long synthetic sequence provided

by Vaudrey et al. [3]. We systematically compare the perfor-

mance of differently extended SGM variants and evaluate the

achieved improvements. The experiments and their results

are described in Sec. VII followed by a conclusion in

Sec. VIII.

II. RELATED WORK

Many different stereo vision algorithms have been pro-

posed. The Middlebury Stereo site2 established by Scharstein

and Szeliski [2][4] gives an overview of state-of-the-art

methods. We focus on approaches that are suitable for real-

time applications.

The simplest algorithm, Winner-Takes-All (WTA), selects

an optimal disparity for each pixel independently – disregard-

ing its neighborhood. Using pixel-wise intensity differences

as matching cost, results are not sufficient for real-world

applications. Van der Mark and Gavrila [5] proposed new

variants of WTA, considering more complex matching cost

calculation and post-processing. They evaluated the perfor-

mance on synthetic sequences and conclude that “simple

WTA techniques for dense stereo, combined with robust

error rejection schemes such as the left-right check, are

more suitable for intelligent vehicle applications” than other

algorithms considered in this study.

Scanline optimization (SO) considers horizontal image

rows instead of computing results for single pixels inde-

pendently [2]. It is related to another very popular real-

time approach, dynamic programming (DP). DP was initially

used for edge-based approaches [6], later based on pixel-

wise intensity differences [7][8]. Many extensions of the

basic DP algorithm have been proposed. Morales et al. study

the influence of different types of noise to stereo vision

algorithms [9]. They compare popular algorithms in terms

of robustness, also considering temporal integration which

is seldom used in stereo vision. They conclude that DP

employing temporal integration “produces images that are

visually better quality, for a wider range of noise types”.

1Compute Unified Device Architecture by Nvidia, for further information
see www.nvidia.com/cuda

2http://vision.middlebury.edu/stereo

In addition to algorithms considering single pixels or

scanlines, approaches that perform global optimization have

been proposed. They consider measures across the whole

image. Such algorithms, e. g., belief propagation (BP), allow

for high accuracy on the one hand. On the other hand, they

are computationally more demanding than local methods.

Semi-global matching (SGM) approximates a global op-

timization by combining several local optimization steps.

We describe SGM in detail in the next section. Klette

et al. [10] recently published an extensive comparison of

different stereo algorithms including variants of DP, BP, and

SGM. In their summary, they state that “SGM can potentially

deal with scenes of high-depth complexities”. The algorithm

performed en par with DP and BP in their overall results.

A few extensions and modifications to the original SGM

algorithm have already been proposed: In [11] improvements

for structured environments are achieved by employing an

additional segmentation step. Hermann et al. [12] show that

the runtime of SGM can be significantly reduced while the

accuracy is only slightly affected. Implementing SGM on

graphics hardware has been discussed, we refer to related

work in Sec. VI where we describe our CUDA implementa-

tion.

III. SEMI-GLOBAL MATCHING

As already introduced in the last section, current stereo

algorithms can be divided into two major groups: local and

global methods. Local methods try to find optimal disparities

for small image regions – e. g., a single row – which can lead

to discontinuities between different regions (for instance,

the well-known streaking effects in DP). Global approaches

optimize all disparities at once and, thus, achieve an overall

better performance. However, the required computation time

is considerably higher.

The SGM – as a semi-global method – incorporates the

advantages of both groups, achieving relatively low complex-

ity and relatively high quality. It can be broken down into

three distinct phases which will be briefly explained below.

Given the maximum disparity dmax and rectified image

pairs, for each pixel at position (x, y) in the base image,

the corresponding pixel in the match image is bound to lie

between (x, y) and (x−dmax, y) (assuming that the left image

is chosen as base image). The chosen disparities d are rated

by a cost function like

C(d) = |Ib(x, y)− Im(x − d, y)|, (1)

which just computes the absolute difference of gray levels

given a certain pixel at position (x, y) in the base image Ib
and pixel (x−d, y) in the match image Im. There are several

reasonable cost functions for the matching. Beside taking the

absolute difference of gray levels, Hirschmüller proposes a

method based on mutual information to incorporate illumi-

nation changes between both input images [1].

The objective function E(D) from Eq. (2), which assigns

costs to a disparity image D, has to be minimized in order

to achieve optimal disparities.

E(D) =
∑

d∈D



C(d) +
∑

d′∈N(d)

P1T [|d− d′| = 1]

+
∑

d′′∈N(d)

P2T [|d− d′′| > 1]



 , (2)

where T [·] = 1 if its argument is true and 0 otherwise, and

N(d) denotes d’s neighborhood. The function sums the ini-

tial costs C(d) for the chosen disparities and two additional

penalties which depend on the difference to the neighborhood

disparities. If they differ by 1, a small penalty P1 is applied.

For larger differences, P2 is added. The choice of a smaller

P1 allows to adapt to slanted or tilted surfaces. Bigger jumps

in disparity are only possible if C(d′′)− C(d) > P2.

Minimizing E(D) in a two-dimensional manner would

be very costly. Therefore, SGM simplifies the optimiza-

tion by traversing one-dimensional paths and ensures the

constraints with respect to these explicit directions. This

approach requires a second phase known as cost aggregation.

Equation (3) describes this procedure for a horizontal path

from the left to the right in an arbitrary image row y.

E(x, y, d) =C(x, y, d) + min [

E(x− 1, y, d),

E(x− 1, y, d− 1) + P1, (3)

E(x− 1, y, d+ 1) + P1,

min
i

(E(x− 1, y, i) + P2)]

E(x, y, d), which is recursive, defines a second cost measure

assigned to each pixel at a certain position (x, y) with

disparity value d. Therefore, the cost for a single pixel

requires all cost values of preceding pixels. This allows to

compute the costs via path traversal from the left to the right.

This traversal effectively emulates the constraints intro-

duced by the original objective function E(D). A pixel may

be assigned a lower cost if it adapts its disparity to its

neighbors. However, this only holds for one direction and,

thus, several differently oriented paths have to be executed.

According to [1], the minimum number of paths should be at

least 8 (i. e., two paths for the horizontal, vertical and both

diagonal orientations respectively).

The final (smoothed) costs for each pixel and each dispar-

ity S(x, y, d) are obtained by summing the costs Er(x, y, d)
of paths in all directions r:

S(x, y, d) =
∑

r

Er(x, y, d) (4)

The final step finds the disparity that minimizes the cost

for each pixel given S. With the described method, a dispar-

ity is assigned to every pixel of the base image – regardless

of occlusions. However, there exist certain methods to refine

the disparity values.

Occlusion detection is achieved by additionally computing

disparities for the match image followed by pixel-wise con-

sistency check. If disparities differ, the corresponding value

in the original image is regarded invalid.

A rather simple refinement of the disparities can be

obtained by filtering the disparity image with a small median

filter. Thereby single outliers are removed and the edges in

the image may be enhanced. Lastly, a sub-pixel estimation

can be realized by fitting a quadratic curve through the lowest

cost value and its two neighboring disparities. This may shift

the actual minimum by a value smaller 1 and, therefore,

increase disparity resolution.

IV. EXTENDED PARAMETRIZATION

As stated in Sec. III, SGM originally requires only two

parameters – the matching penalties that are used for every

path. It is possible to calculate a disparity image based on

a single path. Comparing the results of different paths, one

is able to observe major differences in quality, depending on

the global structure of the input images.

Fig. 1. Disparity images based on the horizontally and vertically oriented
paths with P1 = 15 and P2 = 35.

One example of this behavior are images containing street

surfaces as shown in Fig. 1. The horizontally oriented paths

allow to compute a good disparity image. The vertical orien-

tations, however, show a large amount of streaking. This is

mainly caused by the ground plane featuring disparities that

monotonously change in vertical directions. The algorithm

favors regions of constant disparities (due to the penalties in

Eq. (2)) and, therefore, causes a large amount of errors.

In the scenario shown in Fig. 1, the penalties are well

chosen for the horizontal paths, whereas the vertical paths

would benefit from smaller penalties supporting a larger

deviation in neighboring disparities. Therefore, we allow for

individual P1(r) and P2(r) for each path depending on its

direction r.

Regardless of the choice of penalties, the results obtained

from a certain path orientation may still lead to better

estimates than the results from other orientations. Hence,

it should be possible to alter its contribution to the final

disparity image, which is achieved by introducing weights

for each path orientation. We extend Eq. (4) in the following

way, introducing wr:

S(x, y, d) =
∑

r

wr · Er(x, y, d). (5)

Note that for both extensions proposed above, only the

path orientation (e. g., horizontal, vertical, etc.) should have

impact on the parameters. We disregard the particular se-

quence (e. g., left to right or right to left) and assign the same

penalties and weights to paths sharing the same orientation.

For instance, all parameters for horizontal paths from left to

right and right to left are set identically although the paths

have different directions r given the notation above.

Finally, it is well-known that stereo vision can benefit from

adapting penalties for disparity discontinuities depending

on the actual image content. For this reason, Hirschmüller

proposes to adapt P2 depending on the intensity gradient

I∆(x, y) for each pixel considered at position (x, y). We

follow this suggestion in a more general way by introduc-

ing additional penalties P̂1(r) and P̂2(r) that are used at

(x, y) if I∆(x, y) exceeds a fixed threshold instead of P1(r)
and P2(r), respectively.

The presented SGM extensions incorporate a number of

up to five parameters for each considered orientation: four

penalties and one weight. Given that the minimum number

of orientations is four, this yields 20 parameters for our

fully extended SGM. Tuning such an amount of parameters

should not be done manually. An automated optimization is

favorable and is explained in the following section.

V. AUTOMATIC OPTIMIZATION

The SGM variants proposed here rely on up to 20 param-

eters. For tuning such high numbers of parameters, a large

amount of data has to be considered. These are common

circumstances in computer vision and optimizing parameters

is often done manually in a more or less systematic way.

We argue that the task of finding optimal parameters

for given training data should be automated. There are

powerful and well established methods available, for instance

evolutionary algorithms. Automatic optimization, compared

to manual tuning, has several benefits: It can consider a large

amount of data, handle many parameters and in particular

their complex interplay. It is time-saving, is unbiased and

impartial, and it assures to find (near-)optimal solutions.

For the problem at hand, we can interpret all parameters

as real-valued. This allows to use the covariance matrix

adaptation evolution strategy (CMA-ES), which represents

“the state-of-the-art in evolutionary optimization in real-

valued R
n search spaces” [13]. Like other evolutionary

algorithms, CMA-ES performs optimization by iteratively

adapting solutions. However, in contrast to other approaches,

it also adapts its search distribution during the evolution,

allowing for faster convergence. For more details, see [14].

In order to apply CMA-ES, one has to assign a quality

measure (fitness) to each generated parameter combination

(individual). For the given problem, this can be done by

computing disparity images for the proposed parameters and

evaluating their correctness with respect to ground-truth.

VI. CUDA IMPLEMENTATION

Implementing SGM using graphics hardware has already

been discussed. Rosenberg et al. [15] make use of Cg

shaders. Ernst and Hirschmüller [16] describe an implemen-

tation using OpenCL, but they state that “since CUDA offers

more flexibility and higher abstraction from the graphics

hardware, we are going to implement SGM in CUDA”.

In [17] Zhu et al. described their CUDA implementation

resulting in a reasonable speed-up. Here, we present our

approach.

Since the required operations are very time-consuming,

classical CPU implementations are not real-time capable.

Moreover, in order to optimize parameters with an evolution-

ary algorithm several thousand iterations are necessary. Thus,

a highly efficient implementation of SGM would speed-up

optimization and support real-time execution.

Many of the involved tasks are completely independent of

each other, e. g., the intensity-based calculation of the initial

costs of the original SGM. Also, the path traversal – in which

each step depends on the previous one – can be parallelized

to a certain degree, by executing several paths at the same

time. Therefore, the overall performance of the algorithm

can profit from parallel execution. Due to a recent popular-

ity of programmable GPGPUs (General Purpose Graphics

Processing Units) in off-the-shelf consumer hardware, we

chose CUDA technology for our implementation, which

allows programming graphics hardware in C with extensions

for parallel functions, data transfer, and explicit caching

(cf.[18]).

CUDA follows a SIMD (Single Instruction Multiple Data)

execution model enabling the programmer to frame a compu-

tational task (kernel) that is performed in the same manner on

small chunks of data. These tasks are assigned to lightweight

threads executed on the graphics hardware in parallel. The

threads of a kernel function are organized in a two-level

hierarchical structure with up to three dimensions. The grid

is divided into several blocks holding the threads. Generally,

each thread is assigned data (e. g., a single pixel of an image)

depending on its location within the grid / block.

Another important aspect of CUDA is the memory man-

agement. The use of different kinds of memory is mostly

necessary to achieve high performance. In the following, the

structural design of our implementation is described.

To manage access to the CUDA part of the code the

host functions are encapsulated in traditional C++ classes

that execute calls to the CUDA-API. Since SGM can be

divided into three distinct phases, initial cost calculation, cost

accumulation, and disparity estimation, one kernel function

implements the main work of the particular task.

Initial cost calculation: The calculation of pixel-wise

initial matching costs can be parallelized in the most straight

forward manner. The rectified left and right image are copied

to GPU memory and serve as input to this stage. The

designated output is a w × h × dmax cost matrix C, where

w and h denote width and height of the input images, and

dmax is the chosen maximal disparity. Each matrix entry can

be computed independently according to Eq. 1.

Thus, for each entry of C, a single thread is launched.

Those perform the lookup in both input images and calculate

the absolute difference of grey levels and thereby eliminate

the need for synchronization between different threads men-

tioned in [17]. As mentioned above the created kernel grid

has the same dimensionality as C. Both images are bound

to texture memory, which offers implicit two-dimensional

caching for read accesses and, thus, increases performance.

Moreover, textures offer very efficient border handling for

accesses outside the defined coordinates.

Path traversal: Based on C, Eq. (3) is implemented

by traversing paths in eight directions across the disparity

image and accumulating the results in a path matrix E of the

same size. Since one path step depends on its predecessors,

parallelization is constrained. However, different paths of

the same direction can be executed at the same time. The

straightforward implementation would invoke a single thread

to calculate an entire path considering all possible disparities.

This is improved by separating a path into dmax threads,

each of them responsible for a single disparity value. Since

the minimum of all preceding disparities is determined, all

calculations of the previous path step have to be completed.

This is assured by CUDAs kernel synchronization mecha-

nism (syncthreads()), which stops further execution

until all threads of a block have reached this statement. Thus

– and in contrast to [17] – all threads responsible for the same

path are grouped in a block. At the same time, this allows

for using shared memory, which is shared across a block, for

handing over intermediate results of the previous path step.

Thereby no information has to be transmitted between dif-

ferent blocks. The minimum is calculated using a reduction

technique which is popular in parallel computing [18].

Is is noteworthy that the calculation of differently ori-

ented paths is achieved by modifying starting point and

step direction, i. e., coordinate in- or decrement which is

done by utilizing device function pointers. To increase code

maintainability, a single kernel function was implemented for

that purpose. Depending on the parameters this kernel can

efficiently traverse arbitrary paths across the image.

Disparity Estimation: The final step is to determine

the optimal disparity d of from E for each pixel (x, y).
Again this can be done separately for each pixel by applying

an extension of the before-mentioned reduction technique.

Naturally reduction is used to calculate the overall minimal

value. Here it is necessary to determine the disparity that

corresponds to this minimum. Therefore, instead of one,

two arrays in the shared memory are required from which

one holds the computed minima while the other contains

the original disparity of the value. Both arrays are updated

simultaneously.

This implementation only requires log2(dmax) steps to

compute the optimal disparity for each pixel. It is noteworthy,

that at this point some mismatch can arise between our

implementation and an otherwise equivalent single-threaded

one. If several potential minima with the same cost value

exist, the reduction is prone to select one in the middle of the

array, while a typical iterative approach most likely selects

the first or the last minimum it encounters.

Extensions: Since most of the here proposed extensions

consist of additional parameters the general implementation

described above does not need to be changed. The additional

penalties as well as the weights can be simply transferred to

the GPU and used as input to the path kernel. The gradient

image was calculated beforehand and copied to the GPU as

TABLE I

SGM ALGORITHM VARIANTS CONSIDERED FOR OUR EXPERIMENTS.

Algorithm orientation-

dependent

penalties

paths

weights

gradient-

dependent

penalties

#param

1. SGM – – – 2

2. SGM∆ – – + 4

3. SGM~w – + – 6

4. SGM∠ + – – 8

5. SGM∆,~w – + + 8

6. SGM~w,∠ + + – 12

7. SGM∆,∠ + – + 16

8. SGM∆,~w,∠ + + + 20

well. During each step of the path traversal a lookup to this

image is necessary to determine which penalty (e. g., P1 or

P̂1) has to be applied. However, all threads in a block will

branch the same way in a certain path step and, therefore,

do not suffer from a slow down.

VII. EXPERIMENTS

In order to evaluate the accuracy improvements provided

by the proposed modifications of SGM, we compare different

variants on two datasets. The experimental setup (Sec. VII-

A) and results (Sec. VII-B) are documented in this section.

A. Setup

We evaluated SGM variants using eight paths (i. e.,

four orientations) which is the minimum according to [1].

Individual penalties can be applied for each path orientation,

denoted with an additional symbol ~w. We considered variants

using weights for integration of path results, denoted as ∠.

Finally, we investigated the influence of penalties depending

on image gradients, denoted as ∆. See Tab. I for an overview

of the eight different algorithm variants considered. The total

number of parameters differs from 2 (baseline algorithm) to

20 (applying all extensions proposed here).

All SGM variants were implemented using CUDA (see

Sec. VI). Experiments were conducted on a four-core Intel

Xeon W3520 PC equipped with a Nvidia Geforce GTX 480.

Fig. 2. Images from the datasets considered: Middlebury benchmark (left)
and synthetic sequence (right).

We performed parameter optimization for all approaches

independently. The popular Middlebury benchmark dataset

as well as a synthetic sequence made publicly available by

Vaudrey et al. [3] were used. Figure 2 shows examples from

both data sources. For the Middlebury benchmark, training

and evaluation was performed on all four image pairs. From

the simulated sequence, the first 100 frames were used for

training and the remaining 296 frames for evaluation. Since

consecutive images show little variance we only considered

every tenth frame.

As cost function, we employed pixel-wise intensity differ-

ences, see Eq. (1). Mutual information was not considered,

as the used images do not have any brightness differences.

We did not apply post-processing in order to evaluate the

performance of the raw algorithms.

In order to evaluate the quality of disparity images com-

pared to ground-truth, we considered the root mean squared

error (RMSE) as well as the number of bad pixels. The

latter (using a threshold of 1) was used for fitness assignment

to solutions during evolutionary optimization (see Sec. V).

However, depending on the target application, one might

choose another fitness to ensure correct results especially

for objects close to the viewer or for object borders.

Five optimization trials were conducted for each algorithm

variant. Parameters were initialized randomly for each run.

We assured P1 < P2 for all starting points. Nevertheless, we

did not enforce this constraint during optimization. We used

the CMA-ES implementation from the Shark3 open-source

machine learning library [19].

B. Results

Table II shows the results of different SGM variants on

the Middlebury dataset. The best performance was achieved

with the SGM∆, ~w,∠ resulting in 4.1 % bad pixels, which is

27.5 % less than for the original SGM.

Table III shows results for the synthetic sequence. Note

that testing was performed on a different part than training

here, so the results allow to evaluate the generalization error.

Our fully extended SGM performed best on the training set

again. However, for the test set, the best result was achieved

by an other new variant which applied individual weights

and penalties for each orientation. Here an improvement of

15.1 % was obtained compared to the original approach.

VIII. CONCLUSION

Semi-global matching (SGM) is a popular algorithm for

real-time stereo vision, for instance, in the context of intelli-

gent vehicles. In this study, we investigated three approaches

to extend the algorithm’s parameter set in order to improve

the accuracy of SGM.

Firstly, SGM can benefit from discriminating the consid-

ered paths by introducing individual penalties. Secondly, we

proposed to introduce weights for the integration of paths.

Thirdly, we investigated penalties that adapt to discontinuities

detected in the input images.

In order to tune the algorithm’s parameters, evolutionary

optimization was employed. Among other advantages, this

assures an unbiased evaluation. We provided results for the

popular Middlebury benchmark dataset as well as for a

synthetic sequence.

3http://shark-project.sourceforge.net

TABLE II

RESULTS ON THE MIDDLEBURY BENCHMARK.

Algorithm P 1

1
P 1

2
P̂ 1

1
P̂ 1

2
P 2

1
P 2

2
P̂ 2

1
P̂ 2

2
P 3

1
P 3

2
P̂ 3

1
P̂ 3

2
P 4

1
P 4

2
P̂ 4

1
P̂ 4

2
~w1 ~w2 ~w3 ~w4 Error

1. SGM 17.41 54.13 5.63%

2. SGM∆ 21.99 129.4 14.86 34.57 4.71%

3. SGM~w 17.98 62.47 0.68 0.57 0.22 0.12 5.05%

4. SGM∠ 22.02 82.79 17.75 80.87 14.93 23.30 10.67 28.87 4.99%

5. SGM∆,~w 23.15 167.01 14.35 36.84 2.65 1.45 0.80 0.58 4.16%

6. SGM~w,∠ 21.19 84.10 14.99 44.79 44.22 73.94 27.22 48.58 0.96 0.98 0.06 0.27 4.65%

7. SGM∆,∠ 36.68 122.47 27.38 78.51 34.64 125.2 27.62 98.03 79.19 159.4 1.12 81.16 26.8 172.1 25.54 29.31 5.28%

8. SGM∆,~w,∠ 20.25 111.8 14.13 40.14 23.39 182.1 22.25 42.76 31.49 163.5 7.92 15.38 53.24 110.0 2.07 113.22 0.91 0.48 0.4 0.08 4.08%

TABLE III

RESULTS ON THE .ENPEDA. BENCHMARK.

Algorithm P 1

1
P 1

2
P̂ 1

1
P̂ 1

2
P 2

1
P 2

2
P̂ 2

1
P̂ 2

2
P 3

1
P 3

2
P̂ 3

1
P̂ 3

2
P 4

1
P 4

2
P̂ 4

1
P̂ 4

2
~w1 ~w2 ~w3 ~w4 Training Test

1. SGM 7.98 73.69 3.99% 3.51%

2. SGM∆ 19.88 99.36 10.88 33.10 3.83% 3.95%

3. SGM~w 3.56 108.9 4.31 2.37 1.18 0.13 3.77% 3.67%

4. SGM∠ 23.41 84.57 6.63 142.3 18.83 38.93 5.79 169.1 3.68% 3.79%

5. SGM∆,~w 31.67 109.8 10.73 39.37 4.76 3.06 1.75 1.24 3.69% 4.07%

6. SGM~w,∠ 86.07 100.2 8.53 131.8 10.79 42.14 14.76 206.4 1.41 0.66 1.70 0.09 3.29% 2.98%

7. SGM∆,∠ 42.07 105.95 1166 14.77 55.00 44.03 2953 19.05 3.86 132.61 871.9 38.48 5.44 84.90 1.43 188.3 3.39% 3.73%

8. SGM∆,~w,∠ 21.52 108.5 20.04 11.66 10.73 127.4 7.13 245.8 104.3 90.06 179.85 107.6 20.99 41.39 19.08 7.74 6.23 6.12 0.73 3.22 3.25% 3.66%

In order to allow for a more efficient optimization, we

implemented SGM using CUDA. Our implementation runs

at 11.7 fps (using VGA resolution and 64 disparities) and,

therefore, can also be employed in real-time applications. It

is noteworthy that the runtime is not affected by the extended

parametrization.

Applying each of the modifications proposed here indi-

vidually allowed to reduce the amount of erroneous pixels

for both data sets. If the modifications are combined, these

results can significantly be improved. The number of bad

pixels was reduced by up to 27.5 %.

For the .enpeda. benchmark, results differ slightly on both

parts of the sequence (training and test). This might have

various reasons, one of them is overfitting in the evolutionary

optimization and should be further investigated. Future work

could also incorporate optimization on real sequences.

Nevertheless, applying separate penalties and weights for

each orientation a significant enhancement could be achieved

even for the test data.

REFERENCES

[1] H. Hirschmüller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2005, pp.
807–814.

[2] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of

Computer Vision, vol. 47, pp. 7–42, 2002.

[3] T. Vaudrey, C. Rabe, R. Klette, and J. Milburn, “Differences between
stereo and motion behaviour on synthetic and real-world stereo se-
quences,” in Proceedings of the Conference on Image and Vision

Computing New Zealand. IEEE Press, 2008, pp. 1–6.

[4] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using
structured light,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, vol. 1, 2003, pp. 195–202.

[5] W. van der Mark and D. M. Gavrila, “Real-time dense stereo for
intelligent vehicles,” IEEE Transactions on Intelligent Transportation

Systems, vol. 7, no. 1, pp. 38–50, 2006.

[6] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search
using dynamic programming,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 7, pp. 139–154, 1985.

[7] D. Geiger, B. Ladendorf, and A. L. Yuille, “Occlusions and binocular
stereo,” in Proceedings of the European Conference on Computer

Vision, 1992, pp. 425–433.

[8] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel
stereo,” International Journal of Computer Vision, vol. 35, pp. 1073–
1080, 1999.

[9] S. Morales, T. Vaudrey, and R. Klette, “Robustness evaluation of stereo
algorithms on long stereo sequences,” in Proceedings of the IEEE

Intelligent Vehicles Symposium, 2009, pp. 347–352.

[10] R. Klette, N. Kruger, T. Vaudrey, K. Pauwels, M. van Hulle,
S. Morales, F. Kandil, R. Haeusler, N. Pugeault, C. Rabe, and
M. Lappe, “Performance of correspondence algorithms in vision-based
driver assistance using an online image sequence database,” IEEE

Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2012–2026,
2011.

[11] H. Hirschmüller, “Stereo vision in structured environments by consis-
tent semi-global matching,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2006, pp. 2386–2393.

[12] S. Hermann, S. Morales, and R. Klette, “Half-resolution semi-global
stereo matching,” in Proceedings of the IEEE Intelligent Vehicles

Symposium, 2011, pp. 201–206.

[13] H.-G. Beyer, “Evolution strategies,” Scholarpedia, vol. 2, no. 8, p.
1965, 2007.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[15] I. D. Rosenberg, P. L. Davidson, C. Muller, and J. Han, “Real-time
stereo vision using semi-global matching on programmable graphics
hardware,” in Proceedings of the ACM SIGGRAPH Sketches, 2006,
pp. 89–89.

[16] I. Ernst and H. Hirschmüller, “Mutual information based semi-global
stereo matching on the gpu,” in Proceedings of the International

Symposium on Advances in Visual Computing, 2008, pp. 228–239.

[17] K. Zhu, M. Butenuth, and P. d’Angelo, “Comparison of dense stereo
using CUDA,” in Proceedings of the European Conference on Com-

puter Vision, Workshop, Computer Vision on GPUs, 2010.

[18] R. Farber, CUDA Application Design and Development. Morgan
Kaufmann, 2011.

[19] C. Igel, T. Glasmachers, and V. Heidrich-Meisner, “Shark,” Journal of

Machine Learning Research, vol. 9, pp. 993–996, 2008.

