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a b s t r a c t

Autonomous learning is demonstrated by living beings that learn visual invariances during their visual
experience. Standard neural network models do not show this sort of learning. On the example of face
recognition in different situations we propose a learning process that separates learning of the invariance
proper from learning new instances of individuals. The invariance is learned by a set of examples called
model, which contains instances of all situations. New instances are compared with these on the basis
of rank lists, which allow generalization across situations. The result is also implemented as a spike-
time-based neural network, which is shown to be robust against disturbances. The learning capability
is demonstrated by recognition experiments on a set of standard face databases.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have brought significant improvements in com-
puter vision in real-world settings. Nevertheless, the performance
is still plagued by the fact that the same object produces very dif-
ferent images in different situations. We use the term here in a very
wide and abstract sense, such that it covers different poses, illumi-
nations, types of camera, distance to the camera, position within
the camera view, background, hairstyle, accessories worn, facial
expression, and aging.

Invariant face recognition then refers to estimating the identity
of a person irrespective of the situation. Human perception is
excellent at both finding the identity of a known person and
estimating the situation of both known and unknown persons on
the basis of a facial image. (‘‘This is John in his twenties in the
disco’’ or ‘‘Jenny is sunbathing on the beach and seems to enjoy
it’’.) Certainly, the human visual system is good at the separation of
personal identity and situation. This is possible by using the vast
visual experience acquired with many persons in many situations.

From a machine learning point of view, the requirement
to recognize identity independent of situation is a case of
generalization and should be learned autonomously like humans
do in their early childhood.

However, invariance under even a simple visual transformation
such as translation in the image plane is not a generalization
performed naturally by known learning mechanisms in neural
networks. Therefore, methods to control the generalization on the
basis of examples are required.
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This may seem like a contradiction. On the one hand, learning
is supposed to be autonomous, but on the other hand it should
be controlled. But clearly, autonomy without any control is not
desirable in technical systems. Therefore, ways must be found to
exert this control with minimal effort.

From the viewpoint of Autonomous Learning the challenge is to
split up the learning of recognition of faces into two subsystems.
One that learns the invariance on the basis of a set of examples,
and another one that can learn new identities from just a single
example.

Invariances can, to a limited degree, be learned from real-world
data based on the assumption that temporally continuous se-
quences leave the object identity unchanged (Bartlett & Sejnowski,
1998; Földiák, 1991; Hinton, 1987; Wiskott & Sejnowski, 2002).
Slow feature analysis has recently been successfully applied to 3D
rotation by Franzius, Wilbert, and Wiskott (2011).

Nevertheless, all successful recognition systems have the
required invariances built in by hand. This includes elastic graph
matching (Lades et al., 1993) and elastic bunch graph matching
(EBGM) (Wiskott, Fellous, Krüger, & von der Malsburg, 1997),
where the graph dynamics explicitly have to probe all possible
variations in order to compare an input image with the stored
gallery. Neural architectures that perform this matching include
(Jitsev & von der Malsburg, 2009; Lücke, Keck, & von der Malsburg,
2008; Wiskott & von der Malsburg, 1996; Wolfrum, Wolff, Lücke,
& von der Malsburg, 2008), with the more recent ones being
massively parallel and able to account for invariant recognition
with processing times comparable to that of the visual system.
These methods work fine for the recognition of identity under
changes in translation, scale, and small deformations, including
small changes in three-dimensional pose.

Invariances for which explicit modeling is difficult, like large
pose differences or illumination changes, can be handled by elastic
bunch graph matching if bunch graphs are supplied for a coarsely
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Fig. 1. Bunch graphs for different poses in the CAS–PEAL database. Images in
different poses are not directly comparable because of different node numbers and
strongly distorted features.

sampled set of situations, e.g., 10 different head poses (see Fig. 1).
This is problematic from a technical point of view (Murphy-
Chutorian & Trivedi, 2009), because for a recognition system for
many persons it is infeasible to store and match all persons in
all possible poses or illuminations. It is also improbable that the
brain would employ such a strategy because of the same waste of
memory resources.

We here present a system that can learn invariances in a
moderately supervised way from a set of examples of individual
faces in several situations. Person identification generalizes to
other individuals that are known only in one situation.

The similarity we will introduce in this paper is a special case
of rank correlation, one example being Spearman’s rank order
correlation coefficient (Press, Flannery, Teukolsky, & Vetterling,
1988). This sort of statistics has been used for the evaluation
of biometric systems (Rukhin & Osmoukhina, 2005) and for face
matching by Ayinde and Yang (2002). Here, we apply it to guide
generalization into a desired direction by the presentation of
examples.

2. Invariance by rank list comparison

2.1. Elastic bunch graph matching

Recognition by graph matching (Lades et al., 1993; Wiskott
et al., 1997) compares a given probe image with gallery graphs Gg
of all known persons. The gallery graphs consist of N nodes, which
are labeledwith local feature vectors Gg,n, for the probe image. The
same feature types are known at all image locations and denoted
with Pfull(x⃗). Correspondences between image points are estimated
in a process called landmark finding by finding the positions x⃗optn
which maximize the similarity

1
N

N
n=1

max
g

SJ(P(x⃗n),Gg,n)

with SJ(J1, J2) being a similarity function between two local feature
vectors.

Once nodes are positioned correctly, the graph P representing
the probe image contains N nodes with jets P(x⃗optn ). For recogni-
tion, a similarity between persons is calculated by averaging local
similarities SJ(P,Gg , n) of corresponding features. The local simi-
larity function need not be identical to the one used for landmark
finding. The topology of all graphs is the same and only relevant for
landmark finding. Finally, the recognized identity is Gg with

g = argmax
g

1
N

N
n=1

Sloc(P,Gg , n). (1)

Collections of graphswith the same topology andwithmutually
corresponding features are referred to as bunch graphs, because
they can be interpreted as a single graph containing the bunches
of features from different images. The whole gallery can thus be
seen as one bunch graph G.
2.2. Local features and similarity functions

This general algorithm can be run with different types of local
feature vectors and similarity functions.Wehave shownelsewhere
(Günther & Würtz, 2009) that this choice significantly influences
the recognition rate. Themethod introduced here can be usedwith
arbitrary feature types and similarities. In this paper we use two
different types of local features, namely Gabor jets (following Lades
et al., 1993; Wiskott et al., 1997) and Local Gabor Binary Pattern
Histogram Sequences (LGBPHS), which showvery good performance
in face recognition (Zhang, Shan, Gao, Chen, & Zhang, 2005).

2.2.1. Gabor jets
Mean-free Gabor wavelets are widely used in face recognition

(Lades et al., 1993;Wiskott et al., 1997). With the center frequency
k⃗ as the parameter, they take the form:

ψk⃗(x⃗) =
k⃗2

σ 2
e−

k⃗2 x⃗2

2σ2


eik⃗x⃗ − e−

σ2
2


. (2)

A typical parameterization for face recognition employs a family of
K = 40 Gabor wavelets ψk⃗j

(j = 1, . . . , K) at 5 scale levels and 8
directions. The convolution of an imagewith aGaborwaveletψk⃗j

at
image position x⃗ results in a complex-valued response, which can
be split into amplitudes aj and phases φj as aj · eiφj . The responses
from all Gabor wavelets taken at the same position x⃗ in the image
are called a Gabor jet J, which codes the texture information
around the offset point.

For Gabor jets with amplitudes aj, the following similarities are
employed following Gonzáles et al. (2007), Günther and Würtz
(2009) and Wiskott et al. (1997), respectively:

SAbs(⃗J1, J⃗2) =

K
j=1

a1,j · a2,j K
j=1

a21,j


K

j=1
a22,j

 . (3)

SCanb(⃗J1, J⃗2) = K −

K
j=1

|a1,j − a2,j|
max(|a1,j| + |a2,j|, 10−6)

. (4)

SManh(⃗J1, J⃗2) = −

K
j=1

|a1,j − a2,j|

K
j=1

|a1,j|
K

j=1
|a2,j|

. (5)

2.2.2. LGBPHS
The features of Local Gabor Binary Pattern Histogram Sequences

(LGBPHS) are built from Gabor amplitudes with the same parame-
ters as above. At point x⃗ and for center frequency k⃗j, the Local Binary
Pattern (LBP) is a binary number calculated from the amplitudes at
the 8 neighboring pixels x⃗p:

LBPj =

7
p=0

Bool

aj(x⃗p) ≥ aj(x⃗)


· 2p (6)

where Bool(·) yields the binary truth value of its argument.
These LBPs are histogrammed into 16 bins over a 10 × 10 pixel

region around x⃗ for each center frequency k⃗j yielding histograms
Hj. These are local features of the point x⃗, which are compared by
the sum of the minima of their components. Finally, the similarity
is added over all center frequencies:

SLGBPHS(H1,H2) =

K
j=1

16
i=1

min

H1

j (i),H
2
j (i)


. (7)
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Fig. 2. Situation-independent recognition is mediated by a model database of some persons in all situations (of which only two are shown). Each node of the probe and
gallery graphs is coded into rank lists π and γ by their similarities to the models. These rank lists are comparable, while the graph similarities are not. Note that the probe
person is not in the model database. (Node indices have been dropped for clarity, and the numbers in the rank lists are just examples).
2.3. How to compare images in different situations

The graph matching procedure assumes that the same or very
similar local features can be found in the probe image as well
as in the gallery images. This is only true for translation in the
image plane and small distortions. For other changes like in-plane
rotation or rescaling, the expected variations can be modeled and
become part of the similarity function (Günther & Würtz, 2009).

For the recognition of an arbitrary subject a large gallery
database is created, which contains all known subjects in a pre-
ferred situation v = 0. Throughout this paper, this situation will
be a frontal pose under frontal illumination. This choice has also
been shown to be favorable by Müller, Heinrichs, Tewes, Schäfer,
and Würtz (2007).

The technique rests on the heuristic that persons that are sim-
ilar in one situation will also be similar in another one. The simi-
larities themselves may vary widely, but the order of similarities
to different persons should be maintained. The variations between
situations are modeled by a database of models, which are known
in all situations, and personal identity is coded by a similarity rank
list to the models of the same situation (see Fig. 2 for an illustra-
tion). The collection of graphsMv

m for allmodels of a single situation
constitutes a bunch graph Mv .

The rank list for a probe subject P is created as follows. First,
all local similarities Sv to all model images Mv

m are calculated.
For each index n and situation v a rank list ρvn is created, which
contains the rank of similarity for each model index m, so that for
each pair of model images Mv

m,M
v
m′ the following holds (ρvn (m) ∈

{1, . . . ,NM}):

ρvn (m) < ρvn (m
′) ⇒ Sloc(P,Mv

m, n) ≥ Sloc(P,Mv
m′ , n). (8)
Themost similar model candidate would be the one with ρvn (m) =

0, the follower-up the one with ρvn (m) = 1, etc. For each node n,
these lists now serve as a representation of the probe graph P . For
varying P we will use the notation ρvn (P,m).

Each subject Gg in the gallery is assigned a rank list representa-
tion γg,n by matching each of its landmarks to those of the model
subjects in the preferred situation:

γg,n(m) = ρ0
n (Gg ,m), m = 1 . . .NM . (9)

For recognition we first assume that a probe image Pv appears
in the known situation v. The requirement to know the situation
will be dropped in Section 2.7. This probe is also represented
as a similarity rank list πvn for each landmark of all models in
situation v:

πvn (m) = ρvn (P
v,m), m = 1 . . .NM . (10)

2.4. Rank list comparison

Having represented gallery and probe graphs by a set of rank
lists of equal length all that is required for invariant recognition is
a function Srank(π, γ ) that measures the similarity of these rank
lists. Such a function should fulfill three requirements:

1. It should take values between 0 and 1 and be maximal for two
identical rank lists:

∀ρ1, ρ2 : 1 = Srank(ρ1, ρ1) ≥ Srank(ρ1, ρ2); (11)

2. It should be high if manymodel indices appear at the same rank
and low if the ranks are mixed;
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3. Cooccurrences with high image similarities (i.e., with low rank
ρ) should be weightedmore strongly than those with low ones.
It is expected that high image similarities are more informative
about identity.

These requirements are fulfilled if Srank(ρ1, ρ2) takes the follow-
ing form:

Srank(ρ1, ρ2) =
1
F

NM
m=1

f (ρ1(m)+ ρ2(m)) (12)

F =

NM
m=1

f (2m) (13)

where f is a monotonically decreasing function and F a normaliza-
tion factor, which enforces the maximal similarity of 1.

From the comparison with Spearman rank-correlation one
would expect the difference between the individual ranks rather
than the sum. The minus sign, however, would weigh high entries,
which correspond to images of low similarity, equally as low
entries, thus violating the third condition.

In earlier studies (Müller, 2010; Müller et al., 2007) we have
used f (x) = (x + 1)d with d ∈ [−2, 0). Here, we use f (x) = λx,
with λ ∈ [0.9, 1). This faster decaying function yields slightly bet-
ter recognition results (Müller & Würtz, 2009) and, additionally,
allows for a natural interpretation and implementation as a neural
network (see Section 3). These considerations lead to the following
form:

Srank(π, γg) =
1
F

NM
m=1

λπ(m)+γg (m). (14)

2.5. Recognition

In graphs of different situations, the nodes are numbered such
that corresponding landmarks have the same value of n, across all
situations. Consequently, graphs in different situations have only
subsets of these landmarks as nodes, the set of node indices for
each situation is denoted by Lv .

The rank list similarity can be evaluated separately for each
feature, and the resulting similarities are averaged over all features
shared by the graphs in both situations. Features unavailable due
to self-occlusion are ignored in the accumulated similarity as well
as the normalization. It is assumed that the same subset of features
is available in all images in a single situation:

Srec(g) =
1

|Lv ∩ L0|


n∈Lv∩L0

Srank(πvn , γg,n). (15)

As usual, the recognized person is the one with the index g that
maximizes this similarity (see Eq. (1)).

2.6. Combined local similarity functions

The above recognition procedure can be applied with all local
similarity functions defined in Section 2.2. Besides that, the rank
lists produced by different local similarity functions can be com-
bined by averaging over the resulting rank list similarities. Thus,
global similarity functions can be created for all nonempty subsets
S ⊆ {Abs, Canb,Manh, LGBPHS}, the rank lists are denoted byπv,sn
and γ s

g,n:

SS
rec(g) =

1
|S|

1
|Lv ∩ L0|


s∈S


n∈Lv∩L0

Ssrank(π
v,s
n , γ s

g,n). (16)

Clearly, Eq. (15) is a special case of this if S contains only one ele-
ment.
2.7. Estimation of the situation proper

In a realistic setting, the situation of the probe image P is, of
course, unknown. There are many ways to estimate the situation,
see, e.g., Murphy-Chutorian and Trivedi (2009) orMa, Zhang, Shan,
Chen, and Gao (2006) for pose. Here, we have settled for a very
simple, albeit rather inefficient (Table 2) one. This is situation
estimation by standard matching of bunch graphs Mv for all
situations, and assigning the situation with the highest similarity:

vest = argmax
v

1
|Lv|

1
NM


n∈Lv

NM
m=1

SAbs(P,Mv
m, n). (17)

In the case of NV situations, bunch graph matching leads to NV
graphs for a given probe image P . For each situation, the average
similarity of that graph to all corresponding graphs of the model is
calculated. The highest similarity indicates the estimated situation
vest, which is used instead of the known situation in the above
procedure.

2.8. Learning from an unlabeled model set

Some data sets (like, e.g., FRGC (Phillips, Flynn, Scruggs, Bowyer,
& Worek, 2006)) have a training set labeled with identity, but not
with situation. With a slight modification of rank list construction,
such training sets can also be used as a model for the transforma-
tion to be learned. The model set consists of images labeled with
an identity index i and amodel index d enumerating themodel im-
ages belonging to each identity. When creating the rank list ρ for
a given image, local similarities Sloc(P,Md,i) to all model images
are calculated. The rank list is built from the ranks of all identities,
based on the maximal local similarity for each identity. As in the
labeled case, the length of the resulting rank lists is the number of
identities in the model set:

ρn(i) < ρn(i′) ⇒ max
d

Sloc(P,Md,i, n) ≥ max
d

Sloc(P,Md,i′ , n). (18)

The maximal local similarity for each identity performs automatic
situation estimation for each identity. On these rank lists, recogni-
tion proceeds as above.

3. Rank list comparison by a spiking neural network

Thorpe, Delorme, andVan Rullen (2001) have proposed a neural
network that can evaluate rank codes. A set of feature detectors
respond to an input pattern such that the most similar detector
fires a spike first. The order inwhich the sent spikes arrive can then
be decoded by a circuit depicted in the left half of Fig. 3.

We assume a neuronal module that calculates the similarity
of stored model images to the actual probe image. Each gallery
subject has one representing neuron. The similarity influences the
time a neuron corresponding to this subject sends a spike. The
higher the similarity the earlier the spike.

The activation in response to a spike train aj is calculated as

A =

K
j=1

λorder(aj)wj (19)

with λ determining the activity decrease per spike. The activity
A is maximal if order(aj) is the same as the order of the weights,
because then the largestweight gets the smallest exponent and the
largest multiplier. Put the other way around, if bj is the sequence
to elicit the largest activation the weights may be chosen as

wj =
1
K
λorder(bj). (20)
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Fig. 3. Left: a neural circuit sensitive to the order of firing neurons, the preferred order is stored in the weights wj (after Thorpe et al., 2001). Right: the same circuit is
repeated for each gallery image. The probe image is represented as a rank list π according to similarities with model images in the same situation. The similarities of the
gallery to the model images in neutral situation are coded in the weightswm,g .
For the functionality only the order of the weights matters. The
form in Eq. (20) is chosen for convenience and in accordance with
Thorpe et al. (2001). The parameter λ needs to be adjusted, its
optimal value varies with the size of the rank list NM .

For our purposes, such a decoding circuit is required for each
gallery image Gg . π is the rank list or the firing order of a number
of NM model neurons firing according to their similarity of each
model image with index m to the probe image. The rank list γg of
gallery image Gg is coded in the synaptic weightswm,g as follows:

wm,g =
1
NM
λγg (m). (21)

The activity Ag then becomes

Ag =

NM
m=1

λπ(m)wm,g (22)

=
1
NM

NM
m=1

λπ(m)+γg (m). (23)

This is precisely the similarity function between the rank lists π
and γg introduced in Eq. (14).

We have implemented the network in a continuous-time
fashion (Bodenstein, 2011), meaning that the precise spiking times
are implemented as floats. This allows us to study the robustness of
the network under the influence of disturbances like imprecision
in spike timing, varying synaptic delays, multiple spikes, etc.

The formalization of the spiking network is as follows. After a
global reset, each feature detector fires a spike at time:

ti = 1 − Sloc(JMi , J
G
i ). (24)

This network has the advantage that the evaluation of situation-
invariant recognition can be very fast. The similarities have values
in [0, 1] and so do these spiking times. To map these values to
biologically realistic timings requires a time unit of about 20 ms.
This speed can only be exploited if the results are robust against
noise and other disturbances of the spike time. We will analyze
this property experimentally in Section 4.3.
4. Experiments and results

4.1. Face databases

4.1.1. The CAS–PEAL database
The CAS–PEAL face database (Gao et al., 2008, 2004) contains

1015 Chinese individuals in different poses and 191 in different
illumination conditions. In this database, the situations are
carefully controlled,whichmakes it the prime candidate for testing
our system. We only use the poses of −45◦, 0◦,+45◦ and the
illumination conditions as shown in Fig. 4.

4.1.2. The PIE database
The PIE database (Sim, Baker, & Bsat, 2003) contains pictures

that were taken under similar pose variation for 68 identities.
To test the transferability of the learned transformation from the
CAS–PEAL images, the model set still contains the 500 CAS–PEAL
images. Also the bunch graph is built as in the CAS–PEAL setup.
Only the test images (gallery in frontal pose and probe images in
±45◦) have been replaced by the PIE images. As similaritieswe also
used SAbs, SCanb and SLGBPHS.

4.1.3. The SCface database—pose variation
As a third database, the pose variations of the SCface database

(see Fig. 5) (Grgic, Delac, & Grgic, 2009) have been used in the same
way as the PIE database. This database contains 130 identities, and
we picked the ones close to the poses of −45◦, 0◦,+45◦.

4.1.4. The SCface database—surveillance camera images
Even more interesting for real-world face recognition is the

collection of poor quality surveillance camera and infrared images
in the SCface database (Grgic et al., 2009) (see Fig. 5). Each setting
can be interpreted as a different situation. Splitting the images into
a model set (80 identities) and test set (49 identities, one identity
has been used for manual labeling) enables rank list comparison
for such different images as normal and infrared pictures.

4.1.5. The FRGC database
The FRGC database (Phillips et al., 2006) comes with a number

of defined experiments, some dealing with 3D data. For this paper
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Fig. 4. Examples for pose variation (top row) and illumination variation in frontal
pose from the CAS–PEAL database.

we carried out the two experiments that use single images.
Experiment 2.1 calculates similarities between all images marked
as target and calculates the receiver operating characteristic (ROC)
curve using amask. Experiment 2.4 calculates similarities between
target and query images. As model images we use the training
images of this database. As these are only labeledwith identity and
not with a given situation, the rank lists are built as described in
Section 2.8. As local similarities we used the combination of SManh
and SLGBPHS, which performed best in the case of the unmarked
data.

4.2. Recognition performance of rank list comparison

The method was first tested on the CAS–PEAL face database
(Gao et al., 2004). The landmarks are found by elastic bunch graph
matching, starting from images of 24 subjects that were labeled by
Fig. 5. Example images from the SCface database. One person is depicted by 5
surveillance cameras and two infrared cameras at different resolutions. The fourth
picture in the fourth row is from a high-resolution infrared camera, the fifth a high
quality portrait, which serves as gallery entry. The bottom row shows the three
poses, with the middle one the gallery image.

hand. From these, basic bunch graphs Mv
basic have been built for

each situation (12 identities for pose, 8 for illumination).
The remaining 1015 subjects have been partitioned into model

sets and testing sets. The testing sets provide the gallery images
in the standard situation and test images for all other situations.
In the pose case, we have used the first 500 subjects for model
and the following 515 for testing. In the illumination case the first
100 subjects were used for model and the following 91 for testing
(these are called the standard partition for illumination and pose,
respectively).

For statistical evaluation, we have also used 100 randomized
partitions with the same number of models/testing for both
situations.

From the basic bunch graphs Mv
basic in each situation the

landmarks on the model set have been determined by incremental
bunch graph building (Heinrichs, Müller, Tewes, & Würtz, 2006;
Müller et al., 2007). After EBGM was performed with Mv

basic on
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Table 1
Recognition rates on the CAS–PEAL database for the different local similarity
functions and their combinations on the standard partition. The bottom rows show
recognition rates from other groups on the same database for comparison (all in %).

Pose Illum.

Local similarity

SAbs 97.4 82.7
SCanb 95.0 76.5
SManh 97.5 81.7
SLGBPHS 81.7 79.9
SAbs � SLGBPHS 98.2 88.2
SAbs � SCanb 98.4 83.8
SAbs � SManh 97.7 83.1
SLGBPHS � SCanb 96.0 86.8
SLGBPHS � SManh 98.2 88.0
SCanb � SManh 97.9 80.9
SAbs � SLGBPHS � SCanb 98.9 88.9
SAbs � SLGBPHS � SManh 98.3 87.8
SAbs � SCanb � SManh 98.2 84.2
SLGBPHS � SCanb � SManh 98.6 87.6
SAbs � SLGBPHS � SCanb � SManh 98.7 88.0

Other approaches

Gao et al. (2008) 71.0 51.0
Zhang et al. (2008) 70.1
Tan and Triggs (2010) 72.7

Table 2
Computation times (in seconds) on a 3.4 GHz Xeon for the components of the
recognition method on the CAS–PEAL database.

Pose Illumination

Situation estimation 13.6 46.4
Feature extraction 3.7 3.7
Local similarity evaluation and rank list creation 0.5 0.1
Gallery comparison 2.3 0.2
Total 20.1 50.4

each situation of the model set, good matches have been added to
the bunch graph to achieve also a good match on previously poor
matches. This is repeated until all model images are in the bunch
graphs Mv belonging to their situation. This leads to improved
landmark finding (see (Heinrichs et al., 2006) for full details of the
method).

For aligning a gallery image, a singlematch has to be performed
with the bunch graph M0 of the standard situation. After that,
similarities to all model images are calculated and the rank lists
are created.

Identifying a probe image in situation v works as follows. A
singlematchwith the bunch graphMv of the appropriate situation
has to bedone for landmark finding. A comparisonwith eachmodel
subject is done to calculate the rank lists. Then the rank lists can be
compared to the ones from the gallery in an all-to-all comparison.

The tests with different combinations of local similarity
functions are shown in Table 1. In the following evaluations, the
best combination was applied.

Table 2 shows the computation times for the components of
the recognition procedure. They are clearly dominated by the
situation estimation, which is a crude and inefficient method.
Much better ones are available, especially in the case of pose
differences (Murphy-Chutorian & Trivedi, 2009). These can be
used preceding the rank list evaluation without any change to the
application of the learned invariances.

4.3. Robustness of the spiking neural network

We have tested the neural network on the pose and illumina-
tion variations of the CAS–PEAL database (Gao et al., 2008, 2004).
Landmarks and bunch graphs were created exactly as described in
Section 4.2. As similarities we used the combination of SAbs · SCanb,
and SLGBPHS, which yields optimal recognition rates. The firing oc-
curred at times according to Eq. (24).

As was expected, the network achieves precisely the same
recognition rates as the rank list comparison. A critical question
is if it still does so in the presence of disturbances, which would be
inevitable in any real system relying on precise timing.

4.3.1. Random noise
First we have added random offsets χ(d) both equally or

Gaussian distributed with a standard deviation of d to the spike
timings of (24) and measured the recognition rate:

ti = 1 − S(JMi , J
G
i )+ χ(d). (25)

As spike timing is the only carrier of information in the network,
it is clear that recognition must decline when noise is added.
However, the results in Fig. 7(a) show that small amounts (around
0.05 time units) can still be tolerated.

4.3.2. Early stopping
In an additional experiment on the CAS–PEAL dataset, the

decision was made on the basis of subsets of the k most similar
model candidates. Neuronally, this means a decision was already
made when the first k spikes had reached the gallery neurons. The
resulting recognition rates are shown in Fig. 7(b). This shows that
recognition rates are not impaired if only the 10–20 most similar
model candidates are used. Thus, identity decisions can be made
even faster if the gallery neurons do not wait for all spikes to
come in.

4.3.3. Dependence on the size of the model gallery
Model learning is only useful if the number of individuals in

the model can be much smaller than the number of people in
the gallery. We have tested different model sizes with a fixed
gallery size of 500 individuals for pose and 91 for illumination. The
results are shown in Fig. 7(d). The curves show that the recognition
rate for pose saturates around a model database size of 300.
This small number of examples seem to suffice to learn the pose
transformation for many more people, even of different ethnicity
(Table 3). For illumination this saturationwas not achieved due to a
lack of training examples, but it may be expected around the same
number (Fig. 7(d)).
Table 3
Overview of the recognition rates (in %) of all experiments except FRGC.

Test set Model set
CAS–PEAL pose CAS–PEAL illum. CAS–PEAL pose + PIE CAS–PEAL pose + SCface pose SCface surveillance

CAS–PEAL pose 98.9
CAS–PEAL illum. 88.9
PIE 69.1 69.1
SCface pose 48.8 48.8
CAS–PEAL + PIE + SCface pose 84.4
SCface surveillance 20.5
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Fig. 6. ROC curves for verification on the CAS–PEAL database. The left column shows the results for pose variation, the right for illumination variation. The lower graphs
show the ROC curves for 100 random different partitions of the identities into model and test set. The relatively small variation of the curves shows that the verification
capabilities do not depend critically on the selection of models.
4.3.4. Multiple spikes
The assumption that an activated feature detector would fire

only a single spike at a precise time is not in accordance with
neurophysiology. The general view is that activation causes a spike
train, with activity being coded in the frequency of spikes (for a
recent discussion of evidence see Rolls & Treves, 2011). In a second
simulation the active neurons created a volley of spikes, which
lasted for T = 3 time units:

ti(n) = n · (1 − S(JMi , J
G
i )),

n ∈


1, 2, . . .

T
1 − S(JMi , J

G
i )


. (26)

Subsequent spikes interfere with the evaluation of the rank
lists, because they cannot be distinguished from first spikes. The
results in Fig. 7(d) show that this does not impede recognition
performance.

4.4. Further recognition results

4.4.1. Verification on CAS–PEAL
Beyond the pure recognition rate, the relationship between

false positive and false negative decisions in an identity verification
task is an important measure of the method’s quality. In such a
scenario the presumed identity is known. The system has to decide
if the probe image actually belongs to that identity. As the probe
image may be in a different situation, this decision is critical and
an important application scenario for situation independence.

We have used all images in situation v = 0 of the testing set as
gallery images and the ones in different situations as probe. Using
the model set they have been compared with all gallery images.
If the similarity was above a threshold the identity was accepted,
otherwise rejected. This decision is correct if acceptance occurred
between images of the same identity or rejection between images
of different identities. Varying the threshold yields an ROC for this
decision.
Fig. 6 shows this ROC for the described scenario. The correct
acceptance rate (CAR) at 0.1% false acceptance rate (FAR) is 60.8%
for pose and 37.9% for illumination. The equal error rate (EER) is
4.0% (pose) respectively 11.8% (illumination).

To estimate the dependency of verification on the partitioning
of the data, the available subjects have been assigned to model
or test in 100 randomly chosen partitions. In the lower half of
Fig. 6, we show the collection of all these ROC curves. The relatively
small variation shows that the selection of model identities is not
crucial for the success of the method or, put more blandly, no
matter on which people the change of situation is learned, it can
be generalized to the rest.

4.4.2. The PIE database
Using the trained CAS–PEAL model, we reach a recognition rate

of 69.1% on the PIE database. Thinking of the difference between
model and test set in the form of illumination and race of the
subjects, this can be regarded as relatively successful.

4.4.3. The SCface database—pose variation
The recognition rate for the SCface database reaches 48.8%. As

an additional difficulty presented by this database, pose angles
have a relatively large variation.

4.4.4. Combined databases
Using CAS–PEAL and SCface images as model for the PIE testing

set, the recognition rate stays the same. This is also the case in
CAS–PEAL and PIE as themodel for SCface as testing set. The images
of PIE and SCface seem to be too different to be similar at rank list
creation and so to influence recognition. The recognition rate in
the case of all three databases as test set is 84.4%. See Table 3 for
all pairings of model and gallery we have investigated.
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Fig. 7. Results of experiments on the spike-based network. In 7(a) noise was added to the spike times, which are the only carrier of information. 7(b) shows the recognition
rate if the spike evaluation is stopped early. 7(c) shows the dependence of the recognition rate on the size of the model database, and 7(d) shows that it does not make a
difference if the sent spikes are part of a longer spike train with a frequency coding for the similarity.
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Fig. 8. ROC for FRGC experiment 2.1 with a CAR of 79.5% at an FAR of 0.1% (left) and for FRGC experiment 2.4 with a CAR of 23.6% at an FAR of 0.1% (right). The crosses mark
the verification rates of the reference method (PCA).
4.4.5. The SCface database—surveillance camera images
Because of the poor quality of the surveillance camera images

this is a very difficult task.With identities 2–81 asmodel, a recogni-
tion rate of 20.5%was achieved.With randomized partitioning into
model and test set, the recognition rates were 21.4% ± 2.0%. This
shows that the variation introduced by the different cameras could
be learned to a certain degree. For comparison, the baseline recog-
nition rates for PCA as reported by Grgic et al. (2009) varied be-
tween 0.7% and 8.5%. The authors also discuss that the sample used
for training may be just too small to capture the variability in the
surveillance images.Wewould also expect the performance to im-
prove significantlywith largermodel sets.We found only one other
study that does recognition on these images (Choi, Ro, & Platanio-
tis, 2011). They report recognition rates around 50%, at the cost of
manually cropping all images to standard scale and resolution.

4.4.6. The FRGC database
Fig. 8 shows ROCs for the two FRGC experiments. In experi-

ment 2.1 CAR at 0.1% FAR reaches 79.5%, showing an improvement
over the referencemethod (PCA) at 66%. In experiment 2.4, the im-
provement is even larger at 23.6% compared to 12% for PCA. In this
experiment, variation between the images is larger. The improved
CAR shows that variations are successfully learned. As part of the
FRGC protocol, we compare our results to the baseline, which is de-
fined as PCA. Our results are below the median of all contestants
published by Phillips et al. (2006) but close to the mean, which
is only published informally by Phillips (2005, p. 67). This is a re-
spectable result given that the contestants are full-blown commer-
cial recognition systems, which invest a lot more effort than our
simple learning principle.

5. Discussion

We have presented a face recognition system, which is capable
of learning the variations caused by pose and illumination changes
and partly from different cameras strictly from examples. The
model database holding the variations for a limited number of
persons allows the generalization to identities known only in a
single situation. The high recognition rates in comparison with
previously published recognition results on various databases (see
Table 3 for an overview) demonstrate that a usable model of
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the variations due to pose and illumination changes has been
learned from examples. Results on the FRGC database show that
variation can also be learned from a model that is only labeled by
identity and not with situation. There are some publications that
achieve higher recognition rates on the CAS–PEAL database than
our method, (Luo et al., 2007; Rana, Liu, Lazarescu, & Venkatesh,
2008), but they use extensive manual preprocessing for cropping
and normalizing the images. We have not found fully automatic
recognition methods tested on the CAS–PEAL database.

Clearly, the method must be accompanied by an efficient
estimation of situation, which is ongoing research beyond the
scope of this paper.

We have also shown that the procedure can be carried out by
a neural network based on spike timing in a way robust enough
to make it a prime candidate for both biological modeling and
massively parallel implementation.
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