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Abstract— Intrinsic calibration, i.e. finding the mapping be-
tween a camera’s image positions and corresponding view rays,
is a cumbersome, yet unavoidable task in order to accurately
generate and interpret results from many kinds of image
processing algorithms.

We address this problem in the context of vehicle-mounted
cameras with arbitrary fields of view with applications in
advanced driver assistance systems. In particular, we present
algorithms to gather the necessary data from unknown scenes
and to subsequently estimate the camera parameters. These
do rely on vehicle odometry only to resolve the focal scale
ambiguity and to recognize when a purely translational motion
is performed. We pay special attention to noise handling and
circumvention of numerical instabilities.

The proposed pipeline is tested by means of simulations to
examine its noise sensitivity. Additionally we calibrate a fisheye
camera from a natural scene of only 14 seconds length.

First results show that the self-calibration in natural scenes
is eligible and outperforms the straightforward approach of
using all calibration parameters from an identically constructed
camera.

I. INTRODUCTION

In order to provide comfort and security for both passen-

gers and nearby road users modern vehicles have access to

a growing number of more and more sophisticated sensors.

Rather than only monitoring the environment and raising a

warning in critical situations they also trigger and control

braking and evasive manoeuvres. In the future it is to be

expected that more and more driving situations will be

performed fully autonomously.

An important family of these sensors are video cameras of

different building classes. Today these are used for recogni-

tion of pedestrians, traffic signs, and other vehicles, as well as

localization of arbitrary obstacles, e.g. with the help of stereo

vision. In order to make use of these results it is imperative

to map positions in the camera’s image frame to the direction

of the respective object w. r. t. the vehicle coordinate system.

Determining this mapping is known as calibration.

One distinguishes between intrinsic and extrinsic calibra-

tion, the mapping of a frame’s image point to its view ray

and the mapping of the camera’s to the vehicle’s coordinate

system. To clarify: We define intrinsic calibration as the

estimation of all parameters needed to describe the mapping

between a world point (w.r.t. the camera position) and an

image point. This encompasses focal length, pixel sizes and
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lens or mirror distortion parameters.1 In this paper, we focus

on the intrinsic calibration and assume that the extrinsic

calibration is known to a certain accuracy. This is reasonable

since the vehicle chassis defines the position and alignment

of the camera. In contrast, even slight misalignments dur-

ing the camera’s and in particular the lens’ manufacturing

can have a large effect on the intrinsic parameters which

makes a calibration unavoidable (cf . Fig. 1). In practice,

the calibration procedure involves presenting a pattern of

known dimensions to the camera from different perspectives,

marking known points of this pattern in the camera image,

and using the correspondences to compute the lens distortion

parameters. We will refer to this procedure as classical

calibration. Although it has been automated [?], this method

can be considered cumbersome. Additionally, it is not always

possible to perform a classical calibration after, e. g. , a

camera has been exchanged in the vehicle.

We present a self-calibration algorithm, a method of esti-

mating a camera’s intrinsics without knowledge of the scene.

The used camera model is very general and also encompasses

wide-angle cameras with a field of view larger than 180◦. The

proposed algorithm can be divided in three sub-steps: a) the

estimation of the radial distortion parameters (Sec. III-B) up

to a scalar ambiguity, b) the center of distortion (Sec. III-B),

III-C), and c) the determination of the scalar (Sec. III-D).

In order to perform these calculations we rely on odometry

data from the vehicle. In the first two sub-steps, this data is

only used to ensure that the vehicle is describing a purely –

at least approximately – translational motion. In the second

step, we utilize the velocity and yaw rate to localize the

camera over time w. r. t. a scene-fixed world coordinate sys-

tem. Furthermore, it is assumed that during self-calibration

the change in pitch is limited which can be ensured by

an according sensor as well. Although the presence of this

odometry readings is very common in modern cars and does

not require more than the usual hardware, especially for the

third step we rely on an accuracy in motion estimation that

is not yet common in today’s vehicles. For a discussion on

this critical subject, we refer to section V.

We prove the feasibility of our approach by testing it in

simulations with different levels of sensor noise. Likewise

we calibrate a camera using a short sequence from a driving

scenario with moderate speed and compare the results to a

traditional calibration (Sec. IV).

1The notion intrinsic is sometimes defined more narrow in the literature,
excluding distortion parameters. For simpler presentation, we deviate from
this definition in this paper.



Based on the experimental findings our outline of a self-

calibrating vehicle-mounted camera system would be to

initialize a newly installed camera with a default intrinsic

calibration which will hopefully allow the image processing

algorithms to achieve a preliminary sufficient accuracy. In

this pre-calibration state the uncertainty of the camera read-

ings should be accordingly reweighed.

At the same time the camera is set to a calibration mode

which triggers it to track arbitrary points in the image whilst

storing the vehicle odometry (refined by the other calibrated

sensors) at the same time. Although much of this data can

be discarded immediately the remaining part will allow to

perform the calculations presented in this paper. After the

residual error has reached a sufficiently low value the camera

is then ready to be used for the designed purpose.

II. RELATED WORK

The literature on self-calibration can be divided into two

main approaches: calibration under arbitrary and restricted

motion. For a general overview over calibration methods we

refer to the survey by Puig et al. [?].

Civera et al. [?] showed that the intrinsic parameters of

a radially distorted camera [?] can be estimated along with

the 3d-position and camera location (SLAM) in a combined

filtering method, although they rely on a sophisticated Sum-

Of-Gaussians filter to handle the nonlinearities. Likewise,

Micusı́k et al. [?] present a method for estimating the

fundamental matrix (cf . [?]) with the help of a linearized

version of the radial distortion function based on the work

of Fitzgibbon [?].

If the camera motion is controlled or known within a

certain accuracy one can arrive at algorithms which usually

tend to be numerically more stable. We cite the work by

Kelly et al. [?] for fusing a visual and an inertial sensor and

refer to Ramalingam et al. [?] for a perspective on calibration

under purely translational and rotational motion.

III. SELF-CALIBRATION

A. Distortion model

In order to describe the camera distortion we use the model

proposed by Scaramuzza et al. [?]: An image point (ξ, ψ)
is written as (u, v) = (ξ − ξc, ψ − ψc) w.r.t. the center of

distortion (ξc, ψc). We define ξ to be the image column, ψ

the row w.r.t. the lower left image corner. This will later

yield a right-handed camera coordinate system.

The view ray of (u, v) is denoted by
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where f is an invertible function of the variable r =√
u2 + v2. Depending on the camera type, f can take various

models. We refer to [?] for a detailed overview. In the outline

of this algorithm and later experiments we assume that f

is a polynomial with the coefficients κ0, ..., κn, a versatile

choice encompassing dioptric and catadioptric radially sym-

metric cameras. The extension to other models is possible

and straightforward. Thus, in order to calibrate the camera

intrinsically we need to determine χc, ψc, κ0, ..., κn. 2

In reverse, mapping a view ray to an image point one has

to set up the equation
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with a scalar multiple of the view ray at the left-hand side and

u, v, r as unknowns. Normalizing by 1√
x2+y2

parametrizes

the ray by r:
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We, thus, can find the roots of

r
√

x2 + y2
z = f(r) (2)

and subsequently retrieve u and v. Please note, that the

polynomial (2) should only have one real-valued root that

can serve as a radius within the image boundaries.

B. Estimating the radial polynomial

In a first step we will derive a method for estimating

κ0, ..., κn. We extend the method by Tardif et al. [?] who

proposed to use straight line structures from the scene to

estimate the radial distortion in the camera image. However,

even in very defined scenarios like traffic scenes, it is hard to

distinguish between a straight and a slightly curved structure

in a distorted image. Therefore, we track the curve a static

object point follows during a purely translational movement

(cf . Fig. 4). In a rectified image this motion would describe

a straight line.

Assuming w1, w2, w3 are the view rays of three different

points of the curve described in the image, we can state that

the vectors lie on a plane and are hence linearly dependent.

Thus, the determinant of the concatenated column vectors

vanishes.
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The last conversion is an application of Laplace’s rule.

Inserting the polynomial for f(r) yields a linear equation

in the unknowns κ0, ..., κn. Using other points from this or

other tracks enables us to set up an over-determined system

of linear equations. A nonvanishing solution which mini-

mizes the residual lies in the subspace given by the singular

vector to the smallest singular value of the coefficient matrix.

2The model can be extended by a linear mapping between the image
point (u, v) and the x- and y-coordinate of the view ray to account for
nonquadratic pixels. We assume that A = I . A method for estimating A
for wide-angle cameras from an arbitrary image is presented in [?].



Fig. 1. The problem at hand: In order to e.g. transform a camera image (left) into this helpful ground plane view a representation of the image mapping
within the used camera is necessary. The shown ground plane views were computed with different intrinsic parameters: retrieved by a classical calibration
method ([?], middle left), by the self-calibration technique presented in this paper (middle right), and by the intrinsic parameters of an identically constructed
camera (right). Although the intrinsics of an identical camera model were used, the right image contains strong distortions. This emphasizes the need for
single camera calibration and the convenience of a self-calibration algorithm.

This vector can be efficiently computed by a singular value

decomposition.

Because of memory restrictions it is not possible to

consider every possible triplet of view rays. It is, thus, helpful

to choose those triplets of points that contribute most to

the calibration problem. We found the following reweighing

heuristic to yield very satisfying results:

In a first step, we choose the first, last, and a central point

from a track and set up the system of equations (3) with

one equation per track. The choice is reasonable because

the respective view rays will span the maximum angle and

hence contain information about the distortion of the largest

possible image region. This yields a preliminary solution

which allows us to assign weights to each view ray triplet.

It is evident that the larger the angle between the first and

the last point of a track the more information does its curve

in image coordinates contain about the distortion. Hence, we

use the preliminary solution from the first step to estimate

this angle φ and reweigh each linear equation by a factor of√
φ.

C. Estimating the center of distortion

The center of distortion (ξc, ψc) defines an image point

as the origin of the radial distortion and, thus, is a critical

parameter of the whole calibration. Introducing (ξc, ψc) to

(3) as a free variable results in nonlinearities and a multi-

modal fitness landscape. We therefore suggest to begin with

a coarse grid search around the image center and start a

steepest-descent from the best grid point. For every can-

didate distortion center we set up the system (3), retrieve

coefficients for the radial distortion polynomial and compute

the residual error by the following means:

First, we compute the view rays w1, ..., wm for each track,

e.g. (u1, v1), ..., (um, vm). Due to errors in the estimation

of the polynomial coefficients and in the tracking process

w1, ..., wm will, in general, not be linearly dependent which

we demanded in system (3). We thus compute a least-squares

normal vector n as the singular vector to the smallest singular

value of the system

wT
1 n = 0

...

wT
mn = 0

(4)

and use n to project the view rays on the common plane.

Let us denote those corrected view rays by w′

1, ..., w
′

m.

w′

k = wk − (wT
k n)n

Depending on the tracking errors and the current distortion

center candidate, (4) can be ill-posed. We detect this by

examining the ratio between the smallest and the second

smallest singular value. If this ratio becomes too large, this

is a strong indication that the distortion center candidate is

infeasible and we mark the track as not reconstructible.

Second, we reproject the corrected view rays w′

1, ...w
′

m

to the corrected image points (u′1, v
′

1), ..., (u
′

m, v
′

m) and

compute the residual error as

ǫ =

m∑

i=1

||(u′i, v′i)− (ui, vi)||2 + αηp + βηt (5)

As stated in section III-A the reprojection requires the roots

of a polynomial. If more than one root is real and lies

within the image coordinate range, we mark that point not

reprojectable.

The geometric error is incremented by values α, β mul-

tiplied by the number of nonreprojectable tracks ηt and

nonreprojetable points ηp. It is reasonable to choose α, β

high enough to dominate the sum (5) in order to prefer

candidates with the least number of infeasible tracks and

points.

D. Eliminating the scalar ambiguity

Every scalar multiple of the solution of (3) is a solution

itself. This is intuitively clear because we did not imply

any information of the observed scene’s size3. In order

to estimate the unknown scalar we assume that we now

have framewise (potentially noisy) position and orientation

information of the camera that we can obtain from the

vehicle’s odometry data. This information is denoted by the

translation vector tj and the 3×3 rotation matrix Rj at frame

j. Thus

Rjp−Rjtj

will transform the scene point p to the camera coordinate

system.

3However, this intuition is not completely accurate. We have to handle a
focal ambiguity, not a scale ambiguity.



Let us assume that we have tracked a point in two frames

k and l and computed the preliminary view rays
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via our model from section III-B. Our goal is to compute s.

Since the view rays intersect in the world coordinate

system, we demand them and the line between the two

camera centers to lie on a plane. Again, the determinant of

the respective concatenated vectors is zero:
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The transformations use the properties of the determinant

and the orthogonality of rotation matrices. They result in a

polynomial of degree 2 which can be solved for s. In this

ansatz we avoided implying distance relations which avoids

strong nonlinearities.

There are a few special cases that deserve investigation: If

the camera movement is purely translational (Rk = Rl), the

coefficient of s2 will vanish because the upper left 2×2 sub-

determinant is 0. Thus, the equation becomes linear which

simplifies matters. However, if the translation is additionally

perpendicular to the camera orientation, Rk(tk − tl) will

vanish in the z component and the constant term will drop

leaving s = 0 as the only, obviously infeasible, solution of

the equation. Likewise, if the translation is directed along

the optical axis, (uk, vk) will be a multitude of (ul, vl) and

thus all determinants go to 0 making every s a solution. In

conclusion, depending on the specific geometric relation of

the cameras numerical instabilities will occur.

Similar to the system (3) we set up (6) for chosen pairs

of view rays from a scene point with a known pair of cor-

responding camera locations. To circumvent the aforemen-

tioned instabilities we implement a RANSAC-like method

where we randomly choose a single equation and compute

the residual error for all other equations several times. We

form a consensus set of those equations that have a residual

error less than a given threshold and choose the largest such

consensus set to solve for s.

IV. EXPERIMENTS

We evaluate our approach by means of simulations and

images from a scene recorded by a vehicle-mounted fisheye

camera.

A. Simulations

Using a distortion model that we received with classical

calibration approaches presented in [?], we create tracks of

varying length, orientation, and measurement noise. As a

baseline method, we suggest to randomly choose triplets

from each track to set up a system of 1000 equations from

the type (3). This is compared to the proposed method from

section III-B where we apply the heuristic for choosing and

reweighing the view ray triplets. Fig. 2 shows the perfor-

mance of both methods for varying point position noise and

length of tracks.

Second, we test the sensitivity of the focal scale estimator

(cf . Sec. III-D) with respect to inaccuracy in camera position

and orientation. The experiment is performed with a short

simulated traffic scenario where the vehicle describes a

narrow curve (yaw rate 3◦ / frame) while the sensors track

bypassing points on the ground plane. The sequence consists

of 100 frames with 37 tracks. Fig. 3 shows the goodness of

the focal scale estimation with respect to growing camera

location uncertainty.
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Fig. 3. The sensitivity of the focal scale estimation method (cf . Sec. III-D)
for varying translation (red solid) and rotation angle noise (blue dashed).
The performance is quantified by the ratio of the ground truth over the
estimated camera model’s focal scalar.

B. Real-world data

As a first test for our algorithm to work with real-world

data we choose a sequence recorded at a parking lot where

the ego-vehicle steers into and subsequently passes a row

of parked cars at moderate speed. The scenario is no longer

than 210 frames (14 s). It contains a curve motion of about

80 frames followed by a purely translational motion of 130
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Fig. 2. The figure shows a comparison of the baseline method and the method proposed in section III-B. The goodness of an estimated distortion model
is measured by the average angular deviation between the estimated and the correct view rays for each image pixel. Every calibration trial was executed
with 100 input tracks.

frames. The camera is a fisheye camera mounted at the right

side mirror (height: 91cm) with a maximum view angle of

192. The resolution of the acquired camera image was 1280

× 800 pixels at 15 frames per second.

The image processing pipeline consists of a Harris corner

detector to identify points of interest and a multi-scale

template matching to framewisely track those points. In

order to handle the strong distortion, the matching is also

performed with horizontally or vertically squeezed versions

of the point template. Altogether every point is represented

by three differently scaled templates each squeezed to 3× 3
aspect ratios. We found this effort necessary to track features

over a sufficient distance. In order to track a point each of

its squeezed templates is searched in a surrounding via nor-

malized cross-correlation (NCC) and the one with maximum

NCC coefficient determines the match. The tracking can thus

deal with distortions without relying on a precalibration.

As an alternative approach we manually labeled a number

of points over the sequence yielding an outlier-free, yet

not subpixel-accurate input data set. Refer to Fig. 4 for a

comparison. The egomotion was retrieved by labeling land-

marks in other vehicle-mounted cameras that we calibrated

in the classical fashion beforehand. The motion estimation

was done framewisely yielding cumulative errors (drift) as

customary odometry sensors do. 4

We executed the entire calibration pipeline on the input

tracks using those from the translational motion for distortion

estimation (cf . Sec. III-B, Sec. III-C, 91 automatically and

21 manually tracked points) and the rotational motion for

focal scale estimation (cf . Sec. III-D, 151 automatically and

15 manually tracked points).

Fig. 5 shows the course of the estimated radial distortion

function f(r) (cf . Sec. III-A). The center of distortion

deviated by 9.44 and 2.55 pixels for the automatically,

and by 10.30 and 12.78 for the manually tracked points,

in column and row direction respectively. Furthermore, the

4Unfortunately in the sequences we had at our disposal the vehicle
odometry had not been recorded, thus, forcing us to follow this workaround.

smaller errors of the results retrieved by the automatically

tracked points show that their large number stabilizes the

output and circumvents the problem of outliers.
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Fig. 5. The estimation of the radial distortion function f(r) retrieved by
automatically and manually tracked scene points. For the graphs labeled
”Focal scale only” the polynomial coefficients κ0, ..., κn were taken from
the classical calibration (ground truth).

V. DISCUSSION

The simulations showed that the whole self-calibration

pipeline is eligible to estimate useful camera intrinsics un-

der presence of moderate noise. Our extension of Tardif’s

method [?] (cf . Sec. III-B) clearly outperforms the baseline

approach considering noise sensitivity and reliance on larger

tracks (cf . Fig. 2). Additionally, the method proposed in

section III-D allows to resolve the focal scale ambiguity at a

light camera location uncertainty of 5 cm and an orientation

uncertainty of 1 to 2 degrees. Our analysis shows that this

step is indeed critical in the presence of noise.

This level of accuracy in odometry readings can surely not

be achieved with customary hardware deployed in today’s

vehicles. However, we would like to point out that for the



Fig. 4. The tracked points for self-calibration were gathered manually (left) and by a multi-scale template matching approach (right). The automatically
acquired tracks were filtered for length and smoothness. The green curves indicate those which were passed on to the calibration stage.

main part of the algorithm only a straight translational motion

is required which can reasonably be verified using only the

steering wheel angle, a rather precise reading. Furthermore

it should be kept in mind that sensor precision will grow as

SLAM and egomotion estimation methods (on other sensors

than the cameras that we intend to calibrate) will become

widespread in modern vehicles. Thus, we claim that after

replacement of an omnidirectional camera, the readings from

the remaining sensors will be precise enough to guarantee for

a useful self-calibration.

The results on the real-world traffic sequence support

the results from the simulations. It is indeed possible to

reasonably calibrate the wide-angle camera by tracking scene

points. The results also surpass the ones retrieved by use

of the manually labeled points (cf . Fig. 5) although this

can be accounted to the relatively small number of tracks.

We should point out that the tracking algorithm was not

real-time capable. It is obvious that a sufficiently small

number of tracks followed at the same time will amend this

problem, albeit at the cost of longer sequences in order to

find sufficiently many stable points. The estimation algorithm

itself was implemented in Matlab and took less than three

seconds to execute on a standard desktop computer.

Finally, comparison with the parameters of an identically

constructed camera reveals that the self-calibration is in fact

a better solution than initializing the camera with a default

calibration.

VI. CONCLUSIONS

In future work we want to look more deeply into the

handling of outliers which were strongly reduced within

our tests compared to natural traffic scenes. These outliers

can be caused by nonstatic scene points, e.g., from other

vehicles, or reflecting surfaces. We furthermore will examine

the performance of our approach on larger datasets with

faster driving speed, different camera models and mounting

positions.


