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We present an analysis of the representation of images as the magnitudes
of their transform with complex-valued Gabor wavelets. Such a represen-
tation is a model for complex cells in the early stage of visual processing
and of high technical usefulness for image understanding, because it
makes the representation insensitive to small local shifts. We show that
if the images are band limited and of zero mean, then reconstruction from
the magnitudes is unique up to the sign for almost all images.

1 Introduction

The first stage of processing of visual stimuli in the cortex is constituted by
simple and complex cells in V1. Simple cell responses are modeled to con-
siderable accuracy by linear convolution with Gabor functions (Daugman,
1985; Jones & Palmer, 1987). Pairs of cells differing in phase by 90 degrees are
frequently found (Pollen & Ronner, 1981). Complex cells differ from simple
cells by showing less specificity concerning the position of the stimulus.
Their responses are well modeled by the magnitudes of the Gabor filter
responses (short Gabor magnitudes) (Pollen & Ronner, 1983). Although the
properties of these cells are more complicated, especially concerning tem-
poral behavior, this functional description remains a good approximation
to the cell responses.

Besides the biological modeling, convolution with Gabor functions and
magnitude building are very useful for technical image processing pur-
poses. The complex cells can be combined to more complicated feature
detectors such as corner detectors (Würtz & Lourens, 2000). They have also
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proven useful for higher image understanding tasks such as texture clas-
sification (Fogel & Sagi, 1989; Portilla & Simoncelli, 2000), recognition of
faces (Lades et al., 1993; Würtz, 1997; Duc, Fischer, & Bigün, 1999; Wiskott,
Fellous, Krüger, & von der Malsburg, 1997), vehicles (Wu & Bhanu, 1997),
hand gestures (Triesch & von der Malsburg, 1996), and analysis of electron
microscopic sections of brain tissue (König, Kayser, Bonin, & Würtz, 2001).
Regarding texture classification, in Portilla and Simoncelli (2000), the suc-
cessful steerable filters have been enhanced to matched filters at the price
of redundancy, because the magnitudes capture important properties of
natural textures so well.

The deeper reason for this is that the magnitude operation introduces
robustness under local shifts in the sense that in the presence of small dis-
placements, the images of the Gabor magnitudes are more robust than the
full complex-valued responses because they are much smoother. This ro-
bustness is crucial for the registration part of recognition systems, which
have to cope with small local deformations. As a practical consequence,
similarity landscapes between local features are smoother if magnitudes are
used, which makes matching faster and less prone to local maxima (Lades
et al., 1993; Würtz, 1997; Wiskott et al., 1997).

If the Gabor functions are arranged into a wavelet transform and the
sampling is dense enough (see section 2), then the original image can be re-
covered from the transform values with arbitrary quality (except for the DC
value). Given the useful properties of the magnitudes of the Gabor trans-
form, an important theoretical question is how much image information can
be recovered from that. It has been observed experimentally that a recogniz-
able image can be recovered from the Gabor magnitudes (von der Malsburg
& Shams, 2002).

In this letter, we present a proof that, given appropriate transform pa-
rameters and band limitation, no image information is lost beside the DC
value of the image and a global sign. The proof uses techniques from Hayes
(1982) and applies to all images except a possible subset of measure zero.
The extension to localized Fourier transforms such as Gabor wavelets has
not been shown before. Theorems 4 and 5 have been mentioned without de-
tails of the proof in Wundrich, von der Malsburg, and Würtz (2002), where
we presented an algorithm for image reconstruction from the Gabor ampli-
tudes.

The fact that images can be reconstructed from their Fourier amplitudes
or phases alone is not widely known within the computer vision commu-
nity. There is an extensive discussion on the relative importance of phase
and amplitude information, which is reviewed briefly at the beginning of
section 4.

The practical importance of reconstruction from Gabor amplitudes seems
quite limited. For the visual system, it is clearly not a problem because the
simple cell information is readily available. The importance of our result
lies in the theoretical analysis of the effects of the nonlinearity introduced
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by the magnitudes. We demonstrate that, on the one hand, the resulting
representation shows invariance under small shifts and, on the other hand,
not more information is lost than by subsampling by a factor of two, the
global sign and the DC value.

2 Gabor Wavelets

For the analysis of image properties at various scales, the wavelet transform
is in wide use. The image is projected onto a family of wavelet functions,
which are derived from a single mother wavelet by translation �x0, rotation
with a matrix Q(ϑ), and scaling by a of the image plane:

I(�x0, a, ϑ) =
∫

R2
d2x I(�x)1

a
ψ∗

[
1
a

Q(ϑ)(�x − �x0)

]
. (2.1)

The mother wavelet (and, consequently, all wavelets) must satisfy the ad-
missibility condition (Kaiser, 1994), which means that their DC value is zero
(ψ̂(�0) = 0).

For modeling biological properties as well as to fulfill admissibility, stan-
dard Gabor functions are modified by a term that removes their DC value,
turning the real and imaginary part into a strict matched filter pair. Follow-
ing Murenzi (1989), we let:
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)
. (2.3)

In these equations, the diagonal matrix Sσ,τ = Diag(1/σ, 1/τ) controls the
shape of the elliptical gaussian relative to the wavelength.

We now switch from continuous functions to discretely sampled images
of N1 × N2 pixels. This lattice is denoted by S �N, the sampling interval for
image and translation space by�. To avoid confusion, we use three different
symbols for the different Fourier transforms: the continuous one (FT) is
denoted by Î( �ω), the 2D equivalent of Fourier series (DSFT) by Ǐ(�ν), and
the completely discretized and finite version (DFT) by Ĭ( �ρ), defined on the
same lattice S �N. For simplification, we also use normalized DFT coordinates
�̃ρ = [ρ1/N1 ρ2/N2]T.

The final discretization of our wavelet families in both spatial and fre-
quency domain takes the form

ψ�n0,m,l(�n) = a−1
mina−m

0 ψ

[
a−1

mina−m
0 Q
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2π l
L

)
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Now, the discrete Gabor wavelet transform can be computed in either do-
main by the inner product,

I(�n0,m, l) =
∑
�n∈S �N

I(�n) ψ∗
�n0,m,l

(�n)

=
∑
�ρ∈S �N

Ĭ( �ρ) ψ̆∗
�n0,m,l

( �ρ), (2.6)

and the inverse transform becomes

Ĭ( �ρ) = �4

4π2 Y0( �ρ)−1
∑
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a−2
mina−2m

0 I(�n0,m, l)ψ̆�n0,m,l( �ρ), (2.7)

with
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2

, (2.8)

where Y0( �ρ) is regularized for inversion by assigning Y−1
0 ( �ρ) = 0 where

Y0( �ρ) drops below an appropriate threshold. The transform constitutes a
frame for a given image class M if ∀I ∈ M: (Y0( �ρ) = 0 �⇒ Ĭ( �ρ) = 0). For
full details of the Gabor wavelet framework, see Lee, 1996.

3 Shift Insensitivity of Gabor Magnitudes

We now argue that the magnitude of the Gabor wavelet transform is less
sensitive to shift than the transform itself. Generally, the amount of shift
that can be tolerated by a representation is directly related to the frequency
content of the underlying signal. For signals without band limitation (like
Gabor-filtered images), the frequency content can be measured by the nor-
malized frequency moments introduced by Gabor (1946), who called them
mean frequencies. The first one,

�F1( f ) =
∫

d2ω �ω| f̂ ( �ω)|2
‖ f‖2 , (3.1)

can be interpreted as the center of signal energy in the frequency space. For
the Gabor function from equation 2.3 it is easily checked that �F1(ψ) ≈ �e1,
that is, any Gabor function is centered at the frequency that appears in
the exponent of the first gaussian in equation 2.3 (due to the admissibil-
ity correction, this holds only approximately). For nonpathological images,
�F1(I ∗ψ) ≈ �e1 will also hold, and for any real nonzero image, �F1(I ∗ψ)must
be different from �0. On the other hand, the Fourier transform of |I ∗ ψ |2 is



Image Representation by Complex Cell Responses 2567

the autocorrelation of Î · ψ̂ . Any autocorrelation is symmetric around the
origin, and therefore �F1(|I ∗ψ |2) = �0. This argument shows that the magni-
tudes consist of lower frequencies and consequently show slower variation
than the Gabor bands themselves. It can be refined by looking at the second
moment—the variance in frequency domain as well.

4 Reconstruction from Fourier Magnitudes

Due to their translation invariance, Fourier magnitudes have been used for
pattern recognition (Gardenier, McCallum, & Bates, 1986). The fact that the
inverse DFT applied to a modified transform with all magnitudes set to 1 and
original phases preserves essential image properties (Oppenheim & Lim,
1981) is frequently interpreted as saying that the Fourier magnitudes contain
“less” image information than the phases. However, analytical results and
existing phase retrieval algorithms provide hints that the situation is not as
simple. Tadmor and Tolhurst (1993) show that the assumption of the global
Fourier amplitudes being irrelevant for the image contents is too simple,
although the amplitude spectrum averaged over orientations does not vary
too much for natural images. As a consequence, the distribution of image
energy across orientations is an important distinguishing image property,
and strong orientations can be conveyed by the amplitude spectrum alone.
Lohmann, Mendlovic, and Shabtay (1997) show that the relative importance
of Fourier phase and amplitude can be reversed by modification of a single
pixel. These examples are rejected by Millane and Hsiao (2003), because
of remaining correlations of the final phases with the original phases. So
far, the discussion is not concluded, because generally accepted notions of
relative importance and of images are lacking.

The possibility of reconstructing recognizable images from phase or am-
plitude information alone is not a contradiction to the above results. It only
shows that it is very hard to trace the image information in the presence of
the simplest of nonlinearities.

In the following we review two articles (Hayes, 1982; Hayes & Mc-
Clellan, 1982) that show that almost all images can be reconstructed from
their Fourier magnitudes. The argument identifies unique reconstructabil-
ity with the reducibility of a polynomial in D variables, where D is the signal
dimension.

4.1 Polynomials in One or More Dimensions. The set P(n,D) of all
polynomials with complex coefficients and total degree n in D variables is a
vector space over C of dimension α(n,D). In the case D = 1, all polynomials
are reducible according to the fundamental theorem of algebra, that is, they
can be factored into polynomials of lower degree. For polynomials in two
or more variables, the situation is different. The following is a modified
version of a theorem from Hayes and McClellan (1982) and shows that in a
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certain sense, reducible polynomials are very uncommon in more than one
variable.

Theorem 1. The subset of polynomials in P(n,D) that are reducible over the
complex numbers corresponds to a set of measure zero in R2α(n,D), provided D > 1
and n > 1.

In the following sections, we will make full use of this result for 2D signal
processing. The idea is that only images on a finite support are taken into
account and that the many wrong phase functions lead to reconstructed
images with nonvanishing values outside this support. Throughout this
article, we mean by the support of a function of two variables the small-
est rectangle with edges parallel to the coordinate axes, which contains all
nonzero pixels. This should probably bear a different name, but we do not
expect any confusion by this simple terminology.

4.2 The Hayes Theorem and Extensions. Hayes’s theorem identifies the
2D z-transform,

Ǐ(�z) = 1
2π

∑
�n∈S �N

I(�n)z−n1
1 z−n2

2 , (4.1)

and the 2D discrete space Fourier transform (DSFT) on a compact support,
with polynomials in two variables, to which theorem 1 applies.

Theorem 2 (Hayes, 1982). Let I1, I2 be 2D real sequences with support S �N and
let � a set of |�| distinct points in [−π, π [2 arranged on a lattice L(�) with
|�| ≥ (2N1 − 1)(2N2 − 1). If Ǐ1(�z) has at most one irreducible nonsymmetric
factor and

|Ǐ1(�ν)| = |Ǐ2(�ν)| ∀�ν ∈ L(�), (4.2)

then

I1(�n) ∈ {I2(�n), I2( �N − �n − �1),
− I2(�n), −I2( �N − �n − �1)}. (4.3)

Theorem 2 states that DSFT magnitudes-only reconstruction yields ei-
ther the original, or a negated, point reflected, or a negated point reflected
version of the input signal. Together with the statement of theorem 1 that
the set of all reducible polynomials Ǐ(�z) is of measure zero, the technicality
about the irreducible nonsymmetric factors can be omitted, and we gen-
eralize theorem 2 to complex-valued sequences as follows (the proof is in
appendix A):
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Theorem 3. Let I1, I2 be complex sequences defined on the compact support S �N,
and let Ǐ1(�ν) and Ǐ2(�ν) be only trivially reducible (i.e., have factors only of the form
zp1

1 zp2
2 ), and

|Ǐ1(�ν)| = |Ǐ2(�ν)| ∀�ν ∈ L(�), (4.4)

with L(�), |�| as in theorem 2. Then

I1(�n) ∈ {
exp(jη)I2(�n), exp(jη)I∗2( �N − �n − �1) | η ∈ [0, 2π [

}
. (4.5)

5 Extension to Gabor Magnitudes

Theorem 3 is a theorem about arbitrary polynomials; therefore, it can be
applied equally well to the magnitudes of a complex spatial image signal
for the reconstruction of the discrete Fourier transform. Thus, the following
is a consequence of theorem 3:

Theorem 4. Let I1, I2 be complex sequences defined on the compact support
T �K = {−(K1 − 1)/2, . . . , (K1 − 1)/2} × {−(K2 − 1)/2, . . . , (K2 − 1)/2} with K1,
K2 odd numbers, N1 ≥ 2K1 − 1, N2 ≥ 2K2 − 1, and let I1(�n) and I2(�n) be only
trivially reducible, and

|I1(�n)| = |I2(�n)| ∀�n ∈ T �K. (5.1)

Then

Ĭ1( �ρ) ∈
{

exp(jη)Ĭ2( �ρ), exp(jη)Ĭ∗2(−�ρ) | η ∈ [0, 2π [
}
,

and consequently

I1(�n) ∈ {
exp(jη)I2(�n), exp(jη)I∗2(�n) | η ∈ [0, 2π [

}
. (5.2)

To complete the argument, we now relate the reconstructability from the
Gabor magnitudes to the reconstructability from the Gabor transform itself.

Theorem 5 (Gabor magnitude theorem). Let B(N1,N2) be the space of all
zero-mean band-limited functions on S �N such that Ĭ( �ρ) = 0 for |ρ1| > N1

4 , |ρ2| >
N2
4 , and Ĭ(�0) = 0, and let the wavelet family ψ�n0,m,l(�n) constitute a frame in
B(N1,N2).

For all I1, I2 ∈ B(N1,N2) such thatI1( �n0,m, l) = 〈I1, ψ�n0,m,l〉 andI2( �n0,m, l)
= 〈I2, ψ�n0,m,l〉 are only trivially reducible polynomials and

|I1(�n0,m, l)| = |I2(�n0,m, l)| ∀�n0,m, l, (5.3)

it follows that

I1(�n) = ±I2(�n). (5.4)
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The proof of theorem 5 is presented in appendix C. Theorem 1 states that
almost all images fulfill the irreducibility condition. It follows that images
that fulfill the band limitation condition of theorem 5 and have zero mean
can be reconstructed from their Gabor amplitudes up to the sign. The band
limitation implies that the images are sampled at twice the necessary density
in each dimension.

6 Discussion

We have shown that almost all images sampled at twice their critical rate
can be recovered from their Gabor magnitudes, DC value, and sign. This
means that images are still represented well on the complex cell level. The
higher sampling rate looks plausible in neuronal terms, if one considers
a single complex number to be represented by four positive real numbers
(because cell activities cannot be negative). Four simple cells, which code
for the linear wavelet coefficient, must be replaced by four complex cells at
slightly different positions in order to convey the same information. Thus,
the functional relevance of complex cells seems to be the local translational
invariance, and no further information seems to be lost. There is, of course, a
residual possibility for some natural images to fall into the subset of measure
zero of those images not represented uniquely by their Gabor magnitudes.

We have treated only Gabor wavelets, because we are interested in their
properties from the point of view of biological models as well as their tech-
nical applications. The reconstructability will also hold for other wavelet
types. The conditions on the wavelet should be that their Fourier transform
is real, localized in frequency space (to satisfy lemma 1; see appendix B),
and without too many zeros in frequency space, so that common nonzero
points between subbands can always be found.

Another important question that arose is the stability of the uniqueness
result in the presence of noise on the amplitudes. We were not able to find
a satisfactory theoretical answer to this. We have, however, developed a
reconstruction algorithm that is based on the principles of the proof pre-
sented here and are in the process of tackling this issue numerically. A brief
description of the algorithm can be found in Wundrich et al. (2002).

Appendix A: Proof of Theorem 3

From the equality of the squared moduli, it follows that

Ǐ1(�ν)Ǐ∗1(�ν) = Ǐ2(�ν)Ǐ∗2(�ν). (A.1)

The factorization of Ǐ1 and Ǐ2 is

Ǐ1(�ν) = |α| exp(jβ) exp(−jν1p1) exp(−jν2p2)Ǐ10(�ν),
Ǐ2(�ν) = |γ | exp(jζ ) exp(−jν1q1) exp(−jν2q2)Ǐ20(�ν), (A.2)
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where Ǐ10, Ǐ20 are irreducible and normalized. Substituting equation A.2 in
A.1, and simplifying yields

|α|2 Ǐ10(�ν)Ǐ∗10(�ν) = |γ |2 Ǐ20(�ν)Ǐ∗20(�ν). (A.3)

Since the polynomials on both sides of equation A.3 are normalized, it fol-
lows that |γ | = |α|. Because of the irreducibility, one polynomial on the
left has to be equal to one on the right of equation A.3. This results in the
following two cases:

1. Ǐ20(�ν) = Ǐ10(�ν)
Ǐ2(�ν) = Ǐ1(�ν) exp(j(ζ − β)) exp(−jν1(q1 − p1)) exp(−jν2(q2 − p2))

I2(�n) = exp(j(ζ − β))I1(n1 − q1 + p1,n2 − q2 + p2), (A.4)

2. Ǐ20(�ν) = Ǐ∗10(�ν)
Ǐ2(�ν) = Ǐ∗1(�ν) exp(j(ζ + β)) exp(−jν1(q1 + p1)) exp(−jν2(q2 + p2))

I2(�n) = exp(j(ζ + β))I∗1(−n1 + q1 + p1,−n2 + q2 + p2). (A.5)

That these two possibilities are compatible with each other can be checked
by simple calculations. From the fact that I1 and I2 have the same support,
the shifts can be determined, and after substitution of η = ζ ±β, we end up
with the two cases

1. I2(�n) = exp(jη)I1(�n), (A.6)

2. I2(�n) = exp(jη)I∗1( �N − �n − �1), (A.7)

which concludes the proof.

Appendix B: Lemma About Gabor Function

The following lemma is a technicality required for the proof of theorem 5
and allows distinguishing a subband from its point-inflected version.

Lemma 1.

�ωT�e(ϑ) > 0 ⇒ |ψ̂�x0,a,ϑ ( �ω)|2 > |ψ̂�x0,a,ϑ (−�ω)|2. (B.1)

Proof. Because of the wavelet property, it suffices to prove the proposition
for the mother wavelet: �x0 = �0, θ = 0 and a = 1. Then the | · | can be removed
because the functions are real in frequency space. �ωT�e(ϑ) reduces toω1. After
substituting equation 2.3, simplification, and removal of common positive
factors, it remains to show that

exp(2σ 2ω1)− 2 exp(σ 2ω1) > exp(−2σ 2ω1)− 2 exp(−σ 2ω1), (B.2)
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which is equivalent to

4 sinh(σ 2ω1) exp(−σ 2ω1) > 0 (B.3)

by elementary manipulations. Equation B.3 holds for all ω1 > 0 and all
σ �= 0.

Appendix C: Proof of Theorem 5

Due to Plancherel’s theorem, I(�n0,m, l) is a polynomial:

I1(�n0,m, l)

=
∑
�ρ∈S �N

Ĭ1( �ρ)
2πam

0√
N1N2�2

ψ̂

[
aminam

0 Q
(

2π l
L

)
2π
�

�̃ρ
]

exp(j2π �nT
0
�̃ρ). (C.1)

I1 and I2 are defined on S �N, and their Gabor wavelet transforms are only
trivially reducible polynomials in each subband (m, l). For the frequency
support argument, we shift the DFT frequency box so that �ρ = �0 is located
in the middle of it. Then the support of both Ĭ1 and Ĭ2 becomes T �K = {−(K1 −
1)/2, . . . , (K1−1)/2}×{−(K2−1)/2, . . . , (K2−1)/2}. Since the images are real,
K1 and K2 must be odd numbers, and the support is symmetrical around �0.
(With support, we imply that K1 and K2 are the smallest numbers to include
all nonzero elements of the images.) Furthermore, we define Ĭs( �ρ,m, l) and
Ĭs( �ρ) as the restriction of Ĭ( �ρ,m, l) and Ĭ( �ρ) on T �K.

From the condition of the theorem, N1 ≥ 2K1 − 1, N2 ≥ 2K2 − 1. Thus,
theorem 4 can be applied and leads to the following:

|I2(�n0,m, l)| = |I1(�n0,m, l)| ∀�n0 ∈ S �N, ∀m, l ⇒ Ĭs
2( �ρ,m, l)

∈ {
exp(jη(m, l))Ĭs

1( �ρ,m, l),

exp(jη(m, l))Ĭs ∗
1 (−�ρ,m, l)| η(m, l) ∈ [0, 2π [

}
. (C.2)

That is, both Gabor transforms must be equal up to a phase and a possible
point reflection, both of which may depend on the subband. In the following
steps, we remove the ambiguities exploiting known inter- and intrasubband
structure in the frequency domain.

First, we show that the magnitudes must be equal and the point-reflected
case cannot happen. Suppose

|Ĭs
2( �ρ,m, l)| = |Ĭs ∗

1 (−�ρ,m, l)| (C.3)

or, equivalently,

|Ĭs
2( �ρ)||ψ̆�0,m,l( �ρ)| = |Ĭs

1( �ρ)||ψ̆�0,m,l(−�ρ)|. (C.4)
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We pick a �ρ0 �= �0, such that Ĭs
1( �ρ0) �= 0 and such that the angle between

�̃ρ0 and the kernel’s center frequency is less than π/2. From lemma 1, it can
be concluded that

|ψ̆�0,m,l( �ρ0)| > |ψ̆�0,m,l(− �ρ0)|. (C.5)

Now, if we substitute �ρ0 into equation C.4, then equation C.5 can be satisfied
only if |Ĭs

1( �ρ0)| > |Ĭs
2( �ρ0)|, while substituting −�ρ0 into equation C.4 makes

|Ĭs
1( �ρ0)| < |Ĭs

2( �ρ0)| necessary. This is a contradiction.
Second, we consider the Fourier phases in each subband:

arg Ĭs
2( �ρ,m, l) = η(m, l)+ arg Ĭs

1( �ρ,m, l). (C.6)

Because the phases of the Gabor functions are equal for both images, it
follows that

arg Ĭs
2( �ρ) = η(m, l)+ arg Ĭs

1( �ρ), (C.7)

except at the points where the Gabor function itself is zero, which are the
grid points on the axis through �0 with the angle 2π

L (l + L
2 ).

Applying equation C.7 to a �ρ0 and −�ρ0 outside that axis and the zeros of
Ĭs
2 yields, together with the fact that the images are real,

η(m, l) = 0 ∨ η(m, l) = π. (C.8)

Choosing any two combinations of m, l, there is always some point that
lies on neither of the exceptional axes and where the image is nonzero.
Thus, η(m, l) must be equal for those two levels, and consequently for all.
This means that all subbands have the correct Fourier phase, or the phase
function of all subbands has an offset by π , and we conclude that

Ĭs
2( �ρ) = ±Ĭs

1( �ρ). (C.9)

From the band limitation in the conditions of the theorem, Ĭ1 and Ĭ2 are
zero outside T �K, and therefore equation C.9 also holds for them. Finally, the
inverse DFT yields

I2(�n) = ±I1(�n), (C.10)

which concludes the proof of the theorem.
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