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a b s t r a c t

Invariant object recognition, which means the recognition of object categories independent of conditions
like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better
than artificial systems. During the last years several basic principleswere derived fromneurophysiological
observations and careful consideration: (1) Developing invariance to possible transformations of the
object by learning temporal sequences of visual features that occur during the respective alterations.
(2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different
kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an
interpretation in the case of ambiguous signals. In this paper we propose a network which implements
all of these concepts in a computationally efficient manner which gives very good results on standard
object datasets. By dynamically switching off weakly active neurons and pruning weights computation
is sped up and thus handling of large databases with several thousands of images and a number of
categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the
information content of training data and allow tuning to different databases relatively easily. Precondition
for successful learning is that training images are presented in an order assuring that images of the same
object under similar viewing conditions follow each other. Through an implementation with sparse data
structures the system has moderate memory demands and still yields very good recognition rates.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Visual processing is probably the best-examined brain function
in all neuroscience. Myriads of studies and experiments in neu-
rophysiology, neuroimaging, cognitive neuropsychology, compu-
tational neuroscience and related fields like psychophysics have
gathered a huge amount of data about the functionality of visual
processing areas in the brain. Turning this data into functional
models is difficult due to its diversity and lack of coherence. Thus,
inductive reasoning is not enough for understanding object recog-
nition in humans and has to resort to general concepts that allow
deductive conclusions. This lack of theoretical concepts was criti-
cized by Hawkins in Hawkins and Blakeslee (2004), where he pro-
posed filling this gap bymeans of hisMemory Prediction Framework.
It is based on the assumption that the neocortex executes the same
algorithm on input from each sensory modality and even for pro-
ducing motor output. This idea goes back to Mountcastle (1997),
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who postulated this after realizing that on the neurophysiological
level the neocortex looks remarkably alike in all of its regions de-
spite the differences in processing. The Memory Prediction Frame-
work collects many ideas about neural information processing in a
coherent framework and has led to a software system named Hi-
erarchical Temporal Memory (HTM), which implements the main
concepts (George, 2008). Three main ideas can be found in the
HTM:

1. Learning of temporal sequences for creating invariance to trans-
formations contained in the training data.

2. Learning in a hierarchical structure, inwhich lower level knowl-
edge can be reused in higher level context, making memory us-
age efficient.

3. Prediction of future signals for disambiguation of noisy input by
usage of feedback.

These principles can also be found in other systems (but not always
all of them at the same time) as for example VisNet2 (Rolls, 2008)
or HMAX (Serre, 2006).

In this article we present a computer vision system, which is
able to do invariant object recognition with very good results by
implementing these basic ideas. The system is efficient in memory
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usage since spatial and temporal patterns extracted on different
levels are stored globally thus avoiding the need to store patterns
repeatedly if they are encountered at different network positions
(which can happen in the HTM). Additionally, the system excludes
weakly active neurons from further computations. Together with
weight pruning, simulations can be sped up enough to handle large
databases containing thousands of images and categories. This can
hardly be done with belief propagation equations like those in the
HTM.

The layout of the article is the following: in the next chapter we
present general techniques used for object recognition and some
examples. In Section 3 we introduce our system in detail. Section 4
describes inference in the network and Section 5 how learning
is done. Technical details of the implementation are explained in
Section 6. Conducted experiments and results are presented in
Section 7. Section 8 closes the article with a conclusion and an
outlook on future work.

2. Related work

As a full review of object recognition would be far beyond the
scope of this article we will restrict the discussion to a few ex-
amples. The oldest is VIEWNET by Bradski and Grossberg (1995),
which combines different 2D-views of the same object (which
could be related by temporal proximity) for deriving a 3D-model.
This is done by feeding downsampled log-polar-descriptions of
preprocessed and thereby noise-reduced contours of test objects
into a Fuzzy ARTMAP. This system learns 2D-view categories,
which can be combined to 3D-categories and yield a recognition
rate of 90% on a database of images of airplanemodels. By accumu-
lating votes for 3D-objects over several views the recognition rate
can be increased to up to 98.5% when using 3 views of the same
object consecutively.

Another example is the work of Luciw, Weng, and Zeng (2008).
They perform supervised training of a neural network with two
2-dimensional topographic neuron layers and a top layer holding
one neuron for each trained class using Hebbian learning rules.
Whereas the lowest (sensory) layer 0 provides visual features from
the current input image the middle layer 1 gets input from layer
0 as well as feedback input from top layer 2 with a delay of one
time step (and hence one image). Feedback from layer 2, which is
weighted against feedforward input, is provided using the same
synaptic connection weights as for feedforward input into it. Since
training images are ordered in sequences showing different objects
rotating in 3D in most cases the next training image will show the
same object as the current one, and the feedback signal can be
seen as a prediction of future top layer activity. This is similar to
the proposed system, which uses predictive feedback on all layers
except the highest. Similar is also the handling of lateral inhibition
by sorting neurons according to activity and inhibiting all except
the k most active ones, but the proposed system does this locally
at each network position.

In comparison to this (Mobahi, Collobert, &Weston, 2009) only
use the continuity assumption during training of a deep convolu-
tional network with backpropagation. The training set is enhanced
with a video showing different objects undergoing the same 3D
rotation as the training objects. The usual training criterion is ex-
panded with a second term enforcing similar activations in the
next-to-last-layer for two consecutive images of the video and
dissimilar activations for non-consecutive frames and minimized
alternatingly for labeled training images, randomly chosen consec-
utive video frames and randomly chosen non-consecutive frames.
The authors then demonstrate that recognition on COIL100 dataset
is improved even if the additional video shows totally different ob-
jects.
In Bergstra and Bengio (2009) temporal coherence is used for
unsupervised learning of decorrelated filterswhose responses vary
slowly on videos of natural images. This is reached by minimiz-
ing a criterion involving the correlation coefficient of distinct fea-
tures and the change of responses of each single feature over small
batches of consecutive movie frames. The resulting filters are used
as initialization for supervised training of a networkwith one layer
of hidden neurons using a special complex-cell activation func-
tion. It is shown that prelearned features decrease test set error
on MNIST data base compared to random initialization of weights
and thus improve generalization.

In a similar approach (Zou, Ng, Zhu, & Yu, 2012) learn slowly
varying features from videos which are created by tracking key-
points in natural videos. The desired features can be extracted by
feedforward computation from input images and minimize a cri-
terion including terms for slow change in time, minimal informa-
tion loss and sparsity. This is done on two layers, where features of
the second layer are learned from first level features after dimen-
sionality reduction using PCA. Features of both levels are applied
in training an SVM for object recognition and improve test results
on several databases by ca. 4%–5% compared to features learned
without enforcing slowness. The features are also demonstrated to
possess some invariance against translation, rotation and zooming.

Another branch is the group of bag of words (BoW) methods as
used, e.g., by Csurka, Dance, Fan,Willamowski, and Bray (2004) and
Lazebnik, Schmid, and Ponce (2006). Thesemethods collect typical
visual features from training images in a bag of words (codebook)
and additional information about their distribution with respect
to object category. This information is used for inference after
finding in the BoW features most similar to ones from a test
image. Features are stored without any information about relative
position within the object, and arbitrarily scrambled objects are
still assigned to the same category.

The system by George and Hawkins (2009) is the most similar
model to the network presented in this paper. They build a
converging hierarchical network of nodes, with the lowest layer
covering the input image. Each node fulfills two tasks, namely
first to learn a small codebook of input patterns and then to
learn temporal groups of those patterns. The first task can be
accomplished in several ways, for example by choosing randomly
input patterns for memorization or by using online k-means for
the determination of suitable prototypes. The input patterns to be
learned are either input data that comes from sensors (e.g. image
features) or outputs of lower level nodes to which the current
node is connected. These outputs reveal which temporal group is
currently active in the lower level node and to which certainty.
Since input patterns combine this information for several adjacent
nodes they are also called coincidence patterns. The degrees of
certainty about groups can only be delivered by a node when
it has finished learning these temporal groupings, and an HTM
network has to be trained layer by layer. For learning temporal
groups a transition probability matrix is recorded during scanning
of the training data. Thematrix holds the informationwhich spatial
input patterns tend to follow each other in time. If a matrix
element is big the corresponding input patterns often appeared
consecutively in the input data and hence should be grouped
together. The grouping is derived by clustering the transition
probability matrix, which can be done using graph partitioning
algorithms or incremental clustering. Once the groupings are
known a node can do inference about which temporal group it
has observed based on its certainty about currently active input
patterns. The certainty of each temporal group being active is the
output that a node sends to one on the next level. This information
together with the same from adjacent nodes constitute higher
level input patterns. The temporal groups of the highest level node
represent different causes the system has learned to distinguish,
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in the case of an object recognition system each group represents
one category. The inference in each node is carried out using
a set of belief propagation equations, which compute degrees
of belief for coincidence patterns and temporal groups. Degrees
of belief for temporal groups are sent to the next higher level
and those about coincidence patterns are fed back to the lower
level.

A further approach with some conceptual similarity to the one
proposed here is Slow Feature Analysis (SFA) by Wiskott and Se-
jnowski (2002). SFA extracts decorrelated, slowly varying features
from input variables that vary quickly in time. This is done by first
expanding the input variables using non-linear functions which
have zero temporal mean and identity covariance matrix. Then
output functions are constructed as linear combinations of these
expansions using weights chosen to minimize temporal variance
of the output functions. This can be achieved by finding the min-
imum of a quadratic form of the weights and a matrix containing
the time averaged derivatives of the expansions. The final output
functions reveal aspects of the input signal that vary slowly in time.
Such a learning process is carried out by an SFAmodule. For object
recognition this scheme is applied in a hierarchical network where
SFA modules on the lowest level get the intensity values of sev-
eral neighboring pixels of an image as input (Franzius, Wilbert, &
Wiskott, 2011). Its output functions are the input to an SFA mod-
ule on the next level. This is repeated up to a single module at the
top level. When this system learns from image sequences showing
objects undergoing transformations one of the slowest signals at
the top level is correlated with one of the identities of presented
objects and hence can be used for classification. Additionally, fur-
ther aspects like object location can be determined. Although
different in its learning scheme to conventional neural networks
SFA also approximates a multimodal mapping between input and
output variables using linear combinations of (potentially) non-
linear functions. In this aspect it is similar to ordinary neural net-
works and can for example be mapped to a radial basis function
network.

Finally, our system bears some resemblance to VisNet2 by Rolls
(2008). This is also a hierarchical multilayer neural network learn-
ing sequences of visual features. The most important difference is,
that VisNet2 uses a biologically plausible local learning rule, the
trace rule, for determining temporal groups.

There is also a huge variety of possible feature extractionmeth-
ods to precede the network learning. These have recently been
identified as crucial for successful invariance (Lindeberg, 2013).
One of themost successful andwidely used features are SIFT (Lowe,
2004). In the present work we have not varied the basic features
but used templates of Gabor jets throughout.

3. The network

The system we present here is partly a neural model, in that
it contains entities with varying activities connected by synapses
whose strengths are determined using a learning algorithm. They
excite each other via these connections in both feedforward and
feedback direction. It is not a fully neural model in that it does
not apply a local learning rule to each possible connection of
two neurons but learns these using a less biologically realistic
scheme. Fig. 1 shows the general structure of the network. In the
following, we specify the two types of neurons, the definition of
their connection weights and a method to learn these weights.
The network is not very complicated, the main burden in the
description is to define andmotivate the different types ofweights,
how they are used with and without feedback, and how they are
learned.

Neurons are representatives of prototypes (like in a self-
organizing map) and also connected by synaptic weights like in a
Fig. 1. Visualization of the network architecture. Connections of nodes represent
possible synaptic connections between all neurons in one node and all in the other.

perceptron. Activation is by similarity of the input pattern to the
prototype (during learning) and by the usual hyperbolic tangent
of the sum of weighted inputs (for inference) and additionally by
lateral inhibition. The neurons must represent important image
features for all possible objects and their numberwill consequently
be large (each input on the lowest level may activate one of over
105 neurons). This leads to large networks. In order to keep the
simulation tractable we rely on sparse representations, meaning
that only significantly active neurons are simulated and the rest is
ignored. Therefore, the following description of the network will
also include the data representations and computational shortcuts
used.

The whole network consists of several (usually 3 or 4) layers of
node positions, eachmadeup of two sublayers ofnodes. These nodes
are collections of currently active neurons, which are represented
by an integer index for identification and a real activity value.
Nodes store this information in a hash map for fast data access
and can sort neurons according to their activity to suppress all
but the most active ones by lateral inhibition. Nodes N l,s

x1,x2 at
position (x1, x2) in the lower sublayer of level l store neurons n l,s

i
(called spatial neurons) representing spatial patterns s l

i on that
level, whereas in higher sublayers nodes N l,t

x1,x2 hold neurons n l,t
j

(named temporal neurons) representing possible temporal feature
groups t lj . Inactive neurons are not stored.

The connectivity between levels is convergent, which means
that (the temporal neurons of) C nodes on the lower level provide
the input to one single (spatial) node on the next level. Between
sublayers themapping is one to one, each spatial node is connected
to exactly one temporal node (and vice versa). The convergence is
chosen to result in one single node in the top most level, each of
the temporal neurons in this node is supposed to represent one of
the object categories the system has learned. Thus the most active
temporal neuron at the top level signals the recognized object
category. Most experiments in this article use a convergence factor
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of C = 9, meaning that 3 nodes per direction converge on 1 node
on the next level. This assignment yields a typical architecture of
9 × 9 nodes per sublayer on level 0, 3 × 3 on each sublayer of
level 1 and 1 node per sublayer on level 2. Temporal neurons on
level l have connectionsW l,s;l,t

i,j to spatial neurons of the same level,
from which they get their input and connections W l,t;l+1,s

j,i (v) to
spatial neurons on the next level to which they send their output
and which depend on the position v of neuron n l,t

j in the set
of node positions converging on a higher level node. Weights do
not depend on the absolute node position, making the network
convolutional (LeCun et al., 1989). In Fig. 1 these are depicted by
blue andgreen lines,where a line between twonodes represents all
possible connections between a neuron of one node and one from
the other. The weights are the same in feedforward and feedback
direction

W l,s;l,t
i,j = W l,t;l,s

j,i , (1)

W l,t;l+1,s
j,i (v) = W l+1,s;l,t

i,j (v). (2)

In the sparse implementation, weights do not exist from the
beginning but are established when training on one sublayer has
finished. Thus only after full training of the network all synaptic
connections are defined.

In order to recognize object categories irrespective of trans-
formations like changes in scale or viewing angle the system has
to learn from image sequences showing objects undergoing those
transformations. By selecting these transformations observable on
the training images it can be chosen which invariances the sys-
tem is supposed to develop. On each level it first builds a database
(codebook Cl) of features typical for these objects using vector
quantization. Then it learns sequences, in which these features oc-
cur at the same position when the object view changes. These se-
quences (or better temporal groups, because the actual order does
not matter) form the input to the next layer of the network. Spa-
tially adjacent groups constitute new spatial patterns that again
build up a codebook learned by vector quantization. Again tempo-
ral groups are formed from these patterns and the process is re-
peated until the top level of the hierarchy. That means the system
has to be trained layer by layer.

To understand the purpose of the temporal groups imagine
the following: the system looks at images of a rotating object (a
horse for example). The features at a certain image position change
over time as the horse rotates. A feature of the left profile of the
horse’s head may be followed by a frontal view feature and a
right profile one. If this happens often enough they are put into
the same temporal group. This group now represents a horse’s
head (partly) independent of viewing angle. If enough views are
presented during learning, any head feature may appear in a test
image. As long as it is similar enough to some training view the
same temporal group will be activated and the horse’s head will
be recognized. The same goes for other parts of the horse, which
result in different temporal groups. These are used on the next
level of the network hierarchy by concatenating their indices in
an order depending on their relative spatial position. Thus relative
positions are encoded so that the systemonly accepts horseswhich
have (for example) the head above the legs and not the other way
round. A further important reason for the hierarchical structure is
the reuse of lower level features. The legs of horses and cows may
look very similar. Hence the same temporal (leg) group can be used
for representing horses and cows (and even dogs or cats and so on).
On higher levels it is combined with other groups in which horses
and cows differmore, thus enabling differentiation. This is efficient
because the system needs only one representation for body parts
of different species. The same holds for other cases like wheels of
different cars and so forth.
It may happen that the system encounters (on some level) a
feature similar to two different known patterns from different
objects. Then it may confuse them. However, in previous images
the feature at the current position should sometime have been
unanimous and should have activated the correct temporal group.
A feedback signal from temporal groups of previous images can
select the correct interpretation by enhancing the activation of the
feature in question that best fits to the last activated temporal
groups. Also a pattern may appear in two different contexts
(e.g. during scaling and during rotation of an object) and therefore
is associated with two different temporal groups. Feedback now
allows to choose the one that better fits in the temporal context.

4. Inference

Inference in our system is done by computing activities of all
neurons for a given input image and then reading out the index
of the most active temporal neuron at the top level. This neuron
identifies the recognized object category. Activities on the lowest
level are calculated as similarities to the neurons’ prototypes. Then,
activities are calculated from bottom to top for one node position
after another according to

ai = tanh


j

Wjiaj


, (3)

with j running over all neurons sending connections to the given
one. Once learning is finished this can also be done in parallel
for node positions on the same level. Activities are calculated and
transferred to an activity stack storing the activities of the last
T time steps. This stack is necessary for learning and for calculation
of delayed feedback.

The use of synaptic weights instead of codebooks during infer-
ence is necessary to allow the efficient use of multiple hypotheses.
It is also expected to make the system robust against partial occlu-
sion. Spatial neurons activate temporal neurons on the same level
and these can activate spatial neurons on the next level. Since one
temporal neuron at one node-position is enough to excite a higher
level spatial neuron such a neuron can also be activated even if only
one of its parts is observed.

4.1. Computing spatial feedforward input

First the spatial pattern at the current node position is ex-
tracted. On the lowest level, this is an image feature (parquet graph,
see Section 6.1) on the corresponding image position, on the higher
levels a concatenation of the indices of the most active temporal
groups at node positions on the previous level that converge on
the current node.

4.2. Inhibiting spatial neurons

After calculation of the feedforward input the amount of active
neurons at the node position is reduced by setting the activity of
all but the K most active neurons to zero and deleting them from
the hash map. During learning K = 1, during recall it can also be
higher. This step is an efficient implementation of lateral inhibi-
tion between neurons at the same node position. Without that in-
hibition the network runs into overexcitation and the first neuron
which became most active at the top level will remain the winner
for all following images. Additionally, this saves working memory
and processing time since fewer operations need to be done for
computation of activities on the next level. This step can also be
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seen as a reduction of the number of hypotheses about which spa-
tial or temporal pattern was observed at the current position in
space and time.

4.3. Computing spatial feedback input

The next step is to add feedback input to the remaining active
neurons. This feedback comes from temporal groups which have
been active on the previous T images. If unrestricted feedback is
given the system again runs into overexcitation. The connection
weights between spatial patterns and temporal groups will be
defined in Section 5.

4.4. Application of the activation function

The neuron activities are now processed by the activation
function. The hyperbolic tangent was used for all experiments.
The activation function prevents activity values from growing
to infinity, which can happen because of feedback connections.
It also provides one of the two nonlinearities in the system
enabling robust classification (the other one being the inhibition
of neurons).

4.5. Transfer to activity stack

Then activities are written into the activity stack of the last
T images in a compressed form. If currently the same neurons
are active as in the memory for time step 0 only their activities
are updated. If a neuron has become inactive or a new one was
activated all stored activities of the last time steps are shifted
by one position (and the activity at time step T − 1 is deleted)
and current activity is copied to position 0. This has the effect
that not only one neuron occupies all stored positions and is
the only one giving feedback. Also the system is prevented from
only recording transitions of one neuron to itself while learning
temporal groups. During learning the activity stack is emptied
when a new object category is presented. This prevents the system
from learning temporal transitions between different categories.
The same effect would be reached by placing several empty images
between images of different object categories.

4.6. Computation for temporal neurons

Now the same kind of calculations are done for neurons rep-
resenting temporal groups. At first temporal neurons collect their
feedforward input by summing up activities of connected spatial
neurons multiplied with the corresponding connection weights.
Then inhibition is applied and feedback is given to the remaining
temporal neurons using synaptic weights to spatial patterns that
have been active on the next level. This time only neurons that
were active on the last image are used. Then the activation function
is used again and activities are moved to the activity stack.

4.7. No inference possible

If learning data was too sparse or too few hypotheses are kept
it may happen that no active temporal group can activate a spatial
pattern on the next level because there are no connections. In that
case no decision can be made about the category of the object on
the current image. This problem diminishes with more learning
data and more active hypotheses (higher K ) during testing.

The computation of neural activities is subsumed with pseudo-
code in Algorithms 1, 2 and 3.
Algorithm 1: Activity calculation for inference on all and for
training on finished levels
for l← 0 to highest trained level do

for x← 0 to xSize[l]-1 do
for y← 0 to ySize[l]-1 do

compute activity for N l,s
x,y;

compute activity for N l,t
x,y;

end
end

end

Algorithm 2: Computation for N l,s
x,y

if l=0 ∨ training-mode then
extract sl at current position;
find nearest neighborm in Cl;
set activity of neuronm to similarity with sl;

end
else

foreach input node N l−1,t
x′,y′ of N l,s

x,y do
get weights to potential neurons in N l,s

x,y;
foreach active neuron n ∈ N l−1,t

x′,y′ do
foreach potential neuron m ∈ N l,s

x,y do
multiply activity of nwith weight tom;
add to activity ofm;

end
end

end
end
sort neurons in N l,s

x,y according to activity;
delete all but K most active neurons;
foreach active neuron m ∈ N l,s

x,y do
for t ← 0 to T − 1 do

get weights to neuronm;
foreach active neuron n ∈ N l,t

x,y at time t in stack do
multiply activity of n with weight tom;
add to activity ofm;

end
end

end
foreach active neuron m ∈ N l,s

x,y do
apply hyperbolic tangent to activity;
store in activity stack;

end

5. Learning

Learning is done level by level and in two subsequent steps. First
a codebookCl of input patterns is learned using vector quantization
for spatial neurons, then temporal groups of these are established.
This is done on all positions of the network, but globally with only
one codebook per level and one container for the groups. This is a
shortcut, assuming that with enough learning examples and object
presentations at all positions of the network the nodes should
locally encounter the samepatterns and groups. Doing this globally
from the beginning can be seen as a way of speeding up learning
(because objects do not need to be presented at each positions of
the network) and saving memory (because not each position has
to store its own codebook). Meanwhile, the database can be bigger
and thus more distinctive than the small codebooks used in the
HTM of George (2008).
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Algorithm 3: Computation for N l,t
x,y

foreach active neuron n ∈ N l,s
x,y do

get weights to potential neurons in N l,t
x,y;

foreach potential neuron m ∈ N l,t
x,y do

multiply activity of nwith weight tom;
add to activity of m;

end
end
sort neurons in N l,t

x,y according to activity;
delete all but K most active neurons;
foreach active neuron m ∈ N l,t

x,y do
foreach active neuron n ∈ N l+1,s

x′′,y′′ (connected higher level
spatial node) at time 0 in stack do

get weights to neuron m;
multiply activity of nwith weight tom;
add to activity of m;

end
end
foreach active neuron m ∈ N l,t

x,y do
apply hyperbolic tangent to activity;
store in activity stack;

end

5.1. Learning prototypes for spatial neurons

The set of prototypes of spatial neurons is defined as a subset of
all training features, such that the maximal similarity between all
features in El and codebook features is above ϑQ

∀s l∈El∃s li ∈C
l : S(s l, s l

i ) ≥ ϑQ . (4)

When the codebook is finished, each prototype gives rise to one
spatial neuron.

For learning the codebook on level l all training images are
traversed in a fixed order. On each image visual features (see
Section 6.1) are extracted and activities on all levels l′ < l of
the network are computed. On each node position the spatial
input pattern s l is determined and its nearest neighbor s l

ibest
in the

codebook Cl is looked up:

s l
ibest = argmax

s li ∈C
l
S(s l, s l

i ). (5)

If S(s l, s l
ibest

) > ϑQ (4) is fulfilled for all training patterns seen so
far, and the codebook remains unchanged. Otherwise, the pattern
s l is added to the codebook, and the updated codebook again
fulfills (4) for all training patterns seen so far. By induction, finally
(4) holds for all features encountered during training. On level 0
the spatial patterns correspond to image features and the image
feature similarity function SImage is used (see Eq. (12)). On higher
levels an additional similarity function Ssp needs to be defined
that compares spatial patterns by taking the average similarity of
temporal groups at corresponding positions (see Eq. (8)).

5.2. Learning temporal groups

On the lth layer and for two different neurons i ≠ j we
define P l

ij as the probability that at some node on the layer both
neuron i and j were active during the time interval of length T .
Cooccurrences in different locations do not count. Thus not only
patterns following directly in time can be grouped together but
also patterns which occur with a delay. These probabilities are
turned into the adjacency matrix of a Temporal Correlation Graph
as follows:

M l
ij =


P l
ij

max
i

P l
ij
, if i ≠ j

1, if i = j.

(6)

M l is a symmetric matrix, which can easily be calculated by
counting cooccurrences of active neurons (which have been stored
in the activation stack) during one presentation of the whole train-
ing set. It is a sparse matrix because most codebook entries will
never cooccur. The normalization by the row maximum reflects
the idea that cooccurrences should beweighted independent of the
prior probabilities of the neurons becoming active.

This step can only be done with the completed codebook and
not during its creation, for nearest neighbor search in the codebook
gives different results if it does not yet contain all patterns. Like the
codebook Cl the Temporal Correlation Graph M l is global for each
level.

The entries of M l can be interpreted as temporal similarities.
This matrix is clustered hierarchically using spectral clustering,
which is explained in more detail in Section 6. Two different
stopping criteria are used for clustering. On lower levels of the
network hierarchy the criterion is the size of each cluster. As long
as it is above a parameter G the group is split up further. For
temporal groups on the top level of the network hierarchy the
matrix is partitioned into as many groups as categories need to be
learned. This is one of three supervision steps that make learning
not completely unsupervised. The second is emptying the activity
stack between training images of different object categories. This
is only done during learning, not in the recognition experiments.
Third, each temporal neuron at the top level is assigned the name
or the number of the category that it indicates.

Temporal groups of node positions converging on the same
higher level node constitute new spatial patterns. Their global
indices are written into one vector using some arbitrary but fixed
order. These vectors need to be compared for learning higher level
codebooks using vector quantization. Similarities of the vectors can
be defined as average similarities of their components (which are
temporal groups). Now a similarity measure must be devised for
comparison of the groups. This can be reached using the temporal
similarities stored in matrix M l. If one considers each similarity as
an edge between two patterns and looks at two distinct clusters t la
and t lb there are 3 different sets of edges: edges within set t la, edges
within set t lb and edges that connect patterns of t la with elements
of t lb. (See Fig. 2.) The sum of edge weights in the last set is the cut
between t la and t lb (cut(t

l
a, t

l
b), the sumof theweights of all medium

blue edges in Fig. 2). The sum of edgeweights in t la (respectively t lb)
is called Vr(t la) (resp. Vr(t lb)) because it is the volume of t la restricted
to the set (the ‘‘normal’’ volume would be sum of edge weights of
all vertices in t la to any other vertex). In Fig. 2 these are the sums of
the weights of all light blue respective all dark blue edges.

The cut is nownormalized by the restricted volume of the union
of both groups t la and t lb:

Stg(t la, t
l
b) =

cut(t la, t
l
b)

Vr(t la ∪ t lb)
. (7)

This leads to Stg(t, t) = 1, which is required for a useful similarity
measure.

Using similarity Stg spatial patterns on higher levels can be com-
pared exactly like image features by taking the average similarity
of along all converging connections:

Ssp(s l
i , s

l
j ) =

1
C

C−1
v=0

Stg(s l
i (v), s l

j (v)). (8)
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Fig. 2. Illustration of two different clusters. Linewidth of edges indicates similarity
of elements. Light blue edges connect patterns in t la , dark blue edges elements in
t lb and medium blue edges connect elements in t la with elements in t lb . The red
line illustrates the cut which separates both clusters. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Illustration of three different clusters. A membership value is computed
for the central vertex using the drawn edges. Weights of all edges with the same
color are added and divided by the sum of all edges irrespective of color. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The similarities of temporal groups are precomputed when the
clustering is done, such that spatial patterns constructed from
them can be compared very fast. Using this measure codebooks
on higher levels are learned using the same quantization thresh-
old ϑQ as on the lowest level.

Stg also allows to define synaptic connectionweightsW l,t;l+1,s
j,i (v)

between temporal neurons on one and spatial neurons on the next
level. For each temporal neuron t lj its similarity to the temporal
group s l+1

i (v) at its corresponding position v within the spatial
pattern s l+1

i can be applied and be divided by the total number of
groups C in that pattern:

W l,t;l+1,s
j,i (v) =

1
C
Stg(t lj , s

l+1
i (v)). (9)

In this way any spatial pattern of the higher level can be activated
by lower level neurons, even if it is only partly visible because of
occlusion.

The only thing left to define are connection weights W l,s;l,t
i,j be-

tween spatial and temporal neurons on the same level. These de-
termine how strongly a spatial pattern activates the neuron rep-
resenting the temporal feature group it was put into and possibly
also others. Theseweights are also defined using the temporal sim-
ilarities stored inM l.

For definition of them temporal similarities of a spatial pattern
to all patterns within a temporal group are added. In Fig. 3 these
are the weights of all edges with the same color:

Sst(s l
i , t

l
j ) =


{h|s lh∈t

l
j }

M(i, h)l. (10)
This sum should be highest for the group the pattern was put into
since the aim of clustering is to find clusters with high similarities
between their members. The NG clusters which yield the biggest
similarity sums are taken (three in Fig. 3) and the connection
weight of the current spatial pattern (and hence neuron) to this
group is defined as the similarity sumdividedby the total similarity
sumof all selected temporal groups (the sumofweights of all edges
in Fig. 3 irrespective of color):

W l,s;l,t
i,j =

Sst(s l
i , t

l
j )

NG−1
h=0

Sst(s l
i , t

l
h)

. (11)

Hence any spatial pattern activates its own temporal group but
also those to whose patterns it has a high similarity. Training is
subsumed with pseudo-code in Algorithms 4, 5 and 6.

Algorithm 4: Training of the network
for l← 0 to NoLevels-1 do

foreach training image do
calculate activities on trained levels;
for x← 0 to xSize[l]-1 do

for y← 0 to ySize[l]-1 do
learn spatial patterns at N l,s

x,y;
end

end
end
foreach training image do

calculate activities on trained levels;
for x← 0 to xSize[l]-1 do

for y← 0 to ySize[l]-1 do
learn temporal transitions at N l,t

x,y;
end

end
end
normalize and cluster transition matrix on level l

end

Algorithm 5: Learning of spatial patterns at N l,s
x,y

if l = 0 then
extract graph feast J⃗ at current position;
sl = J⃗;

end
else

foreach input node N l−1,t
x′,y′ of N l,s

x,y do
get index i of most active neuron;
concatenate indices i to a single vector sl;

end
end
find nearest neighbor of sl in Cl;
if similarity to nearest neighbor < ϑQ then

add sl to Cl;
end

6. Technical details

6.1. Low level features

As input features on the lowest level so called parquet graphs
(Westphal & Würtz, 2009) are used. These are features of medium
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Algorithm 6: Learning of temporal patterns at N l,t
x,y

get index i of most active neuron at N l,s
x,y in stack at time 0;

for t ← 1 to T − 1 do
get index j of most active neuron at N l,s

x,y in stack at time t;
increment elementM l

ij of transition matrix;
end

complexity built up of Gabor jets placed on a 3 × 3 grid. A Gabor
jet (Lades et al., 1993) is a vector containing responses of Gabor
filters to an image at the current image position. Gabor wavelets
are plane waves multiplied with a Gaussian for dampening of
their amplitude. They are used with 8 different orientations and
5 different scales yielding 40 complex values per image position,
of which here only the absolute values are used. Gabor wavelets
resemble the response properties of simple and (partly) complex
cells in the primary visual cortex of mammals. They are not
the only possible functions (derivatives of Gaussian also show
similar behavior) but have been demonstrated to be well suitable
as texture descriptors. Since each component is positive the
normalized scalar product of two jets gives a value between 0
and 1 that is 1 for identical jets and can be seen as a similarity
measure. By combining several of them at positions close-by in
an image a bigger patch can be described. These parquet graphs
can be compared by computing the average similarity of jets at
the same position in the underlying grid. If segmentation masks
are available for training images this can be incorporated into
the parquet graphs by labeling each grid position inactive that
was placed on the background during feature extraction. The
corresponding Gabor jet then contains only (or better mostly)
background information that is not used during comparisons. For
exclusion of this information grid positions are only used for
computing the average similarity of two parquet graphs if in
both of them the jets at that positions are labeled active. Parquet
graphs are compared by a similarity function, which averages the
similarities of the jets contained in the parquet graph:

SImage(F1, F2) =
1

|Pactive|


i∈Pactive

J1(i) · J2(i)
∥J1(i)∥ ∥J2(i)∥

. (12)

In Donatti, Lomp, and Würtz (2010) so called square graphs
were used. These are similar to parquet graphs, the only difference
is that they are constructed from 5 jets placed at the corners and in
the center of a square region. These will also be used in one test in
Section 7.

6.2. Clustering

On each level thematrixM is clustered using spectral clustering
(von Luxburg, 2006). This is a clustering method that partitions a
graph, in which each edgeweight is the similarity of the connected
vertices, into groups by ‘‘cutting’’ edges with small weights. While
doing this a certain normalization criterion is maintained that
prevents the method from creating too small clusters. Therefore
the graph Laplacian Lsym is computed frommatrixM . Since matrix
M is sparse Lsym is so, too. The solution to the clustering problem
can nowbe formulated asminimumof a quadratic form of Lsym and
an indicator vector for each cluster which has one discrete value
in every component belonging to the cluster and another discrete
value in all other components. Since finding an exact solution
to this problem is an NP-complete task an approximate solution
is obtained by computing eigenvectors of Lsym. These provide a
new representation of the input data in the eigenspace, where
the clustering is much easier. For computing the eigenvectors the
sparse eigenvalue problem library JADAMILU (Bollhöfer & Notay,
2007) is used. The actual clustering step is done using the K -
Lines algorithm (Fischer & Poland, 2004). Clustering is applied in a
hierarchical fashion here. First the complete matrix is split up into
two partitions. Each new partition is further split up into two new
subsets and the process is repeated until the stopping criterion is
met.

6.3. Storage of neural activities and connections weights

Since the model contains a lot of neurons (possibly several
thousand in each node) it is not feasible to store their activity all
the time (especially after inhibition, when only few active neurons
remain). Therefore, a special data structure was built which is
basically a hashmapwith the index as key value and the activity as
mapped value. In addition themap automatically deletes all entries
whose activity becomes 0.When inhibition is applied the container
for activities is sorted and resized to the number of kept activities
and the mapping between hash values and activities is restored.

It is an intrinsic property of natural images that visual features
are not placed arbitrarily within them. There is always an order.
Therefore not each feature follows every other in a sequence of
images showing a natural transformation of an object. Instead
the pattern of temporal succession is very sparse. When the
system is trained on one half of ETH80, e.g., a visual pattern on
the lowest level is on average followed by ca. 42 others. This
is approximately 0.08%. For higher levels this value increases
to 0.17% and 2.36%, thus still stays small. This is why these
successions can be stored in the sparse matrix M effectively. As a
consequence also the connectionweights between spatial patterns
and their temporal groups are very sparse. Therefore, they are
stored as vectors containing the index of the temporal group and
the connection strength. This decreases memory demand and also
computation time since no zero weights have to be traversed
during computation of activities. Connection weights between
temporal groups and spatial patterns on the next level are not
stored at all but are computed on the fly when needed.

6.4. Parallelization

Computation can further be sped up by introducing paralleliza-
tion using OpenMP. Activities in different nodes can then be com-
puted in parallel for all nodes of the same level. This is possible be-
cause data is written only in distinct local data structures (the hash
maps for the nodes). This is not possible for the learning routine,
since here global containers as matrix M are accessed and threads
would block each other.

7. Experiments

7.1. Determination of parameter values

Our system was tested using two standard databases for object
recognition: the ETH80 (Leibe & Schiele, 2003) (in the cropped
close perimg version), which contains images of 80 different
objects belonging to 8 different categories (apple, car, cow, cup,
dog, horse, pear, tomato). The images are taken on the upper
viewing hemisphere and are parameterized using two viewing
angles. 41 views are taken per object. The COIL100 (Nene, Nayar,
& Murase, 1996) consists of images of 100 different objects, where
each object is its own category. The images are taken at 72 viewing
angleswith constant latitude on the view sphere. In both databases
a black background was used instead of additional segmentation
information. All tests used the following scheme: the number of
views per object was split into two groups, the first set of views of
every object was used for training, the rest for testing. Most tests
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used a fifty–fifty partitioning, only the test of the generalization
capabilities used different percentages for training and testing.
Since the ETH80 contains an odd number of views, 21 views were
used for training and 20 for testing, resulting in 1680, respectively
1600 images.

All images had a size of 128× 128 pixels. A 3-layered network
was used with 9 nodes in x- and y-direction on its lowest layer
(so 81 in total), placed with a spacing of 14 pixels and an offset
of 7 onto the input images. 9 nodes of a 3 × 3 block of the
lowest level converged on the same upper level node, resulting in 3
nodes per direction on the intermediate level (9 in total). The same
convergence led to a single node in the top level.

Training views were sorted according to their distance on the
viewing hemisphere, computed from the viewing angles using the
Vincenty formula for spheres (Vincenty, 1975) (formula 14–16).
For COIL100 images the latitude was set to 45 degrees. Using
this sorting according to viewing angle the system is expected to
become invariant to the viewpoint of objects. If training images
would show scale changes in a meaningful order the Temporal
Correlation Graph would become invariant to object size and so
forth.

For fifty–fifty partitioning every other view of the order was
taken for training and the rest for testing, for other split-ups only
every third or fourth and so forth.

The system has several parameters whose influence on recog-
nition performance was tested in the following experiments. The
parameter valuesmay differ during training and recognition, as in-
dicated by the indices ‘‘tr’’ (training) and ‘‘te’’ (test).

Recognition rates are given on basic level for ETH80 (apple, car,
cow, cup, dog, horse, pear, tomato) and on name level for COIL100
(obj1, obj2 . . . , obj100).

For an overview the relevant parameters are listed again:

1. Number of active neurons per node K : this parameter deter-
mines how many neurons are used for computing the input to
the next layer/sublayer. It can be interpreted as lateral inhibi-
tion.

2. Number NG of temporal groups that are activated by a spatial
neuron: if NG is bigger than 1 a spatial neuron not only acti-
vates the temporal group it was put into, but also others it has
connections to.

3. Time Range T : this parameter determines how many past im-
age activities are kept in the activation stack for learning and
feedback calculation.

4. Similarity thresholdϑQ : determines themaximal distance of an
input pattern to a codebook vector.

5. Maximal size of temporal groups G: determines how big a tem-
poral group can be.

Several tests were conducted to find an appropriate set of
parameter values for the ETH80. Then each of the parameters
was changed to demonstrate its influence on the results and for
showing the optimality of the chosen value. The optimal parameter
set for the ETH80 is the following: ϑQ tr = 0.92 (not needed during
recognition), Ttr = 20, Tte = 2, Ktr = 1, Kte = 18, NGtr,te = ∞ (all
possible connections are used) and Gtr = 50 (not needed during
recognition). This gave a recognition rate of 99.06%. For COIL100
all parameters were kept except Kte which was set to 1, yielding
a recognition rate of 100.00%. Since results were already optimal
no more parameter tests were run on COIL100. Generalization
capabilities and influence of Gtr were also tested on this dataset.

The first set of tests determined the influence of the time
range parameter T during training and testing. During testing the
system gets feedback from the last Tte images. When these are
from the same category this is highly likely to have a positive
effect on recognition rates. If the images show objects of different
categories this additional information will have a negative impact
Table 1
Tests for K and NG .

K NG = 1 NG = 2 NG = 3 NG = ∞

1 84.69 85.25 84.88 84.88
2 88.31 89.50 89.12 89.44
3 90.06 91.50 91.25 91.31
4 91.12 93.19 93.25 92.50
5 92.44 93.19 93.81 94.38
6 93.31 93.94 94.75 95.06
7 93.56 94.75 94.88 95.12
8 94.38 95.19 95.31 95.62
9 95.19 95.38 95.69 95.62

10 95.31 95.94 95.81 95.94
11 95.38 96.81 96.38 96.88
12 95.88 96.38 96.12 97.25
13 95.94 96.88 96.44 97.38
14 96.00 96.75 97.25 98.25
15 96.06 97.06 97.44 98.62
16 96.50 97.31 97.56 98.81
17 96.56 97.44 97.69 98.38
18 96.81 97.94 97.69 99.06
19 97.06 97.94 97.94 98.44
20 97.12 98.06 98.38 98.56

on recognition rates. Thus each time the presented category
changes the system gets useless feedback and the higher Tte the
more images of the new categorywill be negatively affected. Hence
Tte should not be too high during testing. Since during training
activity values are deleted when a new category is presented it
can be assumed that higher values for Ttr are desirable since they
cannot lead to disturbing feedback but result in more relations
between features that are recorded in the learning process. For
testing these assumptions a set of experiments was performed on
the fifty–fifty partitioning of ETH80. The system was trained with
values of Ttr from 2 to 20, with an increase of 2 after each training.
Each trained systemwas tested for recognitionwith values of Tte in
the same range (and changed about the same amount) and with 3
different values of Kte: 2, 10 and 18. The best results were reached
for the relatively high value of 20 for Ttr, whereas for Tte the lowest
possible value 2 is optimal andKte should be 18. These settings gave
a recognition rate of 99.06%.

The system behaves differently as a function of Ttr and Tte for
different values of Kte. Whereas for Kte = 10 and Kte = 18 the
recognition rates increase with increasing Ttr (which means it is
good to record relations of temporally more distant features up
to a certain distance) they decrease with increasing Tte. This can
be interpreted as harmful effects of previous images of different
categories which affect more subsequent images if Tte gets higher.
For Kte = 2 recognition rates also increase with Ttr but do not
decrease with higher Tte. Obviously unfavorable feedback inputs
have little effect when the number of hypotheses is reduced to
2 after collection of feedforward input to a node. Only the most
active neurons (or hypotheses), which fit best to the input data get
support via feedback calculations and no alternative hypotheses
fitting the preceding object stay active.

The first tests used a value of NG of ∞, which means that
every spatial neuron actives all temporal groups (or neurons) it
has connections to. To show the optimality of this setting a further
set of experiments was executed with optimal Ttr and Tte. For this
Kte was changed from 1 to 20 and NG set to the values 1,2,3 and
∞. Table 1 summarizes all results. Kte has the biggest influence. A
value of 18 is optimal in combination with the correct NG value.
NG’s impact on the recognition rate is weaker than Kte’s. For values
of Kte < 5 it is sometimes better to use only a few possible
connections to temporal groups, for all higher values of Kte (except
9) best results are reached by using all connections.

The third test was for determination of the similarity threshold
ϑQ . This has a very strong effect, see Table 2.



M. Lessmann, R.P. Würtz / Neural Networks 54 (2014) 70–84 79
Table 2
Tests for ϑQ .

ϑQ 0.75 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
RR 14.00 21.69 23.81 24.44 47.06 61.62 77.06 99.06 98.94 98.50 97.31 94.06
Table 3
Tests for G.

Database G = 25 G = 50 G = 100 G = 250 G = 500 G = 1000

ETH80 98.81 99.06 87.38 25.12 25.00 56.94
COIL100 100.00 100.00 99.42 98.56 98.22 99.47
On the one hand the systemmakes only very rough distinctions
between spatial patterns if the threshold is 0.75 (the mean
similarity of high-dimensional random Gabor jets). Almost all
possible parquet graphs will be assigned to the same pattern in the
codebook (whichwill contain very few patterns). Consequently, no
distinction can be made on the lowest level and hence also on the
higher levels. On the other hand setting the threshold very high (for
example to 1.0) increases the demand for computing resources but
does not necessarily bring the highest recognition rates. Since for
testing the system has to generalize over patterns of the training
set the recognition performance depends on the distribution of
patterns in the test set compared to the distribution of the training
set. For covering the one distributionwith the other not all training
patterns are required, and overfitting will occur for too high values
of ϑQ . The test shows that 0.92 is the best value for ϑQ .

The last parameter is the maximal size of temporal groups
G. The bigger G the bigger the temporal groups and the less
distinctive theywill be, resulting in groups that represent (parts of)
different categories. Small temporal groups will have less ability to
generalize over different instances of the same object.

Table 3 shows that G = 50 yields the best results for ETH80.
For COIL100 G = 25 works just as well. Overall it is justified to
chose 50 as maximal group size. COIL100 is not very sensitive to
this parameter at all whereas recognition rates for ETH80 drop
enormously for G > 100. A look at the confusion matrices of the
ETH80 tests show that with G = 250 the majority of votes falls
into the categories tomato, pear and cups. For G = 500 tomatoes
and cars collect the most votes and with G = 1000 most votes
fall into the car category. So with increasing G groups and patterns
assigned to cars get more attractive, otherwise tomatoes have a
bigger influence. Due to this shift fruits get distinguished relatively
well and recognition rates increase again.

For comparison of the different visual features the standard test
with optimal parameters and (roughly) half–half partitioning was
also conducted using the square graph features from Donatti et al.
(2010). The achieved recognition rates were 99.00% for ETH80 and
99.89% for COIL100. The difference to the parquet graph features is
0.06% in the first dataset and 0.11% in the second, so the shape of
the parquet graphs has little influence.

7.2. Speed improvements

We then looked at the effect of parallelization via OpenMP on
both datasets. Computations were done on an AMD Socket AM3
Phenom II X6 1090T CPU with 6 cores at 3200 MHz. For additional
speedupwe also appliedweight pruning, i.e., discarding allweights
below ϑP . All tests used the fifty–fifty partitioning of ETH80 and
COIL100. As Table 4 shows, small weights have minor impact on
recognition performance and can be ignored. Columns show the
value of ϑP , the achieved recognition rate, the computation time in
seconds (averaged over 4 runs) using a single core, and the time in
seconds for parallel execution with 6 threads.

As can be seen in Table 4 computation time is reduced
considerably whereas the drop in recognition rates is surprisingly
Table 4
Tests for ϑP and parallelization.

ϑP RR Time serial (s) Time parallel (s)

ETH80

0 99.06 21796 8500
0.001 98.81 3815 1844
0.01 98.38 1205 811
0.1 97.56 972 728

COIL100

0 100.00 46610 20269
0.001 99.97 5420 3292
0.01 99.92 3081 2178
0.1 99.97 2963 2116

small. Even for the highest value of ϑP the absolute number is
only 24 of 1600 images less that have been correctly classified in
the more sensitive database ETH80 compared to no pruning. For
a pruning threshold of 0.001, which already reduces computation
time a lot, the drop in correctly recognized images corresponds
to only 4 images. In COIL100 the biggest decline corresponds to
only 3 images of 3600 that had to be classified. Computation for
ETH80 is approximately 22.42 times faster using pruning with
a threshold of 0.1 and 29.96 times faster using parallelization
additionally. For COIL100 the factor for pruning is 15.73 and
including parallelization it is close to 22.02. Thus pruning is a
very valuable tool in speeding up the system. A value of 0.1 for
ϑP seems a suitable choice since it reduces computation time a lot
but decreases recognition rates only slightly (even on ETH80 only
by 1.5%).

Parallelization also reduces the computation time, although
the gain decreases with stronger pruning. The less computations
need to be done per network node the less time can be saved by
executing them in parallel. The test computer did not use 100% of
CPU power during parallelized tests, therefore no gains should be
expected with more cores. The minimal time needed on average
per image was 0.455 s for ETH80 and 0.588 s for COIL100.

The nearest neighbor search in these experiments was done us-
ing Intel’s Math Kernel Library (INTEL, 2007) for fast computation
of the product between all query parquet graphs of one image in
one matrix and the codebook stored in a second matrix. This can
also be sped up a lot at the cost of slightly decreased accuracy us-
ing hashing methods (full details at (Lessmann &Würtz, 2012a)).

7.3. Generalization

Further tests show the generalization capabilities of the system
for ETH80 and COIL100. The system was trained on 2.5%, 5%,
10%–90% of all images in the database and recognition was tested
on the remaining images using the twooptimal parameter sets. The
first column of Table 5 shows the percentage of all images of each
database that the system was requested to use for training, the
second column the actual number of obtained images, the third the
real percentage of used images and the last column the recognition
rate achieved on the remaining images.
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Table 5
Tests for generalization.

% requested # obtained % obtained Recog. rate

ETH80

2.50 160 4.88 27.44
5.00 240 7.32 25.95

10.00 400 12.20 31.70
20.00 720 21.95 87.89
30.00 1040 31.71 90.98
40.00 1360 41.46 98.12
50.00 1680 51.22 99.06
60.00 2000 60.98 99.30
70.00 2320 70.73 99.17
80.00 2640 80.49 95.47
90.00 2960 90.24 96.25

COIL100

2.50 200 2.78 58.00
5.00 400 5.56 74.91

10.00 800 11.11 88.89
20.00 1500 20.83 97.46
30.00 2200 30.56 99.18
40.00 2900 40.28 99.63
50.00 3600 50.00 100.00
60.00 4300 59.72 99.93
70.00 5100 70.83 99.86
80.00 5800 80.56 99.93
90.00 6500 90.28 99.71

Table 6
Tests for codebook and feedback usage.

Database Use codebook No feedback

ETH80 83.25 83.75
COIL100 99.50 99.64

The results in Table 5 demonstrate very good generalization.
Even with only 20% of the data recognition rates of almost 88% and
97% can be reached. 50% is definitely enough to capture the correct
labels. The results show a peak of performance around 50% training
data. The reason for this is that parameter tests were done using
a fifty–fifty partitioning and parameter values are hence optimal
for this amount of training data. With further tuning the results
on higher amounts of training data can be improved. The system
shows better results on high percentages of training data if a higher
similarity threshold of 0.94 is used.

Next we conducted the standard test with both databases
without feedback and with feedback but using nearest neighbor
search in the higher level codebooks for activation of spatial
patterns instead of using the neural connections (Table 6).

The outcome for the ETH80 reveals the advantage of using both
feedback and neural connections, since both improve recognition
performance considerably. The positive effects of feedback by
resolving ambiguities have been described before, the neural
mechanism causes more spatial patterns to become active and
offers the system more valuable hypotheses to choose from. For
COIL100 the effects of feedback and neural-like computation are
nearly negligible. Since computation was done with K = 1 there
are no multiple hypotheses between which feedback can make
a decision. The reason that higher values than 1 for K decrease
recognition rates might be that COIL100 only depends on one
viewing angle and has more diverse objects. This probably has the
effect that clearly separated temporal groups are learned andmost
additional hypotheses only add noise. Since the codebook activates
only one possible hypothesis it probably has a similar effect as
using the neural connections with K = 1.

A further test was run using unrestricted feedback, which en-
hances the activity of each neuron receiving feedback, irrespective
of its previous activity. The result is that one object category stays
active all the time, which means recognition rates of 12.5% and 1%
Table 7
Architecture test on ETH80.

% Arch-1 Arch-2 Arch-3 Arch-4 Arch-Def

2.5 56.19 53.65 49.65 41.67 48.43
5.0 70.03 73.45 61.09 49.05 62.40

10.0 80.17 81.25 71.32 47.43 71.70
20.0 90.12 90.86 92.30 90.59 94.53
30.0 91.96 94.55 96.21 94.78 98.48
40.0 91.88 94.48 94.84 87.34 98.23
50.0 90.38 94.88 94.94 87.50 98.75
60.0 92.27 94.53 97.81 88.59 98.67
70.0 95.42 98.33 97.81 92.29 99.38
80.0 94.38 96.09 97.81 92.97 97.97
90.0 96.56 96.88 97.19 96.56 98.44

for ETH80 and COIL100, respectively. This can be seen as overex-
citation and also fits well to the finding that feedback connections
to the neocortex are modulatory but not driving (only active neu-
rons aremodified). Otherwise strong feedback loops could result in
chaotic oscillations of neural activity (Koch, 2004). The same hap-
pens when no inhibition is applied during inference and all neu-
rons in each node stay active if ever activated. It can be assumed
that neural activity in certain brain regions would degenerate if no
inhibitory influences would operate.

7.4. Evaluation of the basic principles

We conducted additional tests to show the validity of the three
basic principles introduced at the beginning: learning of temporal
groups, hierarchical network structure and feedback. For checking
the influence of network architecture and the number of levels the
generalization test for ETH80 and COIL100 was performed with
different networks, all with a pruning threshold ϑP = 0.01. For
demonstrating the general capabilities of the system the optimal
Kte was determined for each test, whereas Ttr = 20 and Tte = 2
throughout. The testswere also repeated using the default-3-level-
architecture used before. The architectures were all the same on
the lowest level, containing 8×8nodes placedwith a distance of 16
pixel in x- and y-direction on the input image and using an offset of
8 pixels in both dimensions. Based on this 4 different settings were
employed, one utilizing 2 levels, two different with 3-levels and a
last one using 4 levels (in the following explanation 4 × 4 nodes
on level 1 for example means 16 nodes on the middle spatial layer
and 16 nodes in the temporal layer):

1. Arch-1: The 2-level-architecture, all 64 nodes of the lowest level
converged on one top-level-node.

2. Arch-2: The first 3-level-network, 4×4nodes of the lowest level
converged on one node in the middle level of 2×2. All nodes of
this level converged then on the same top-level-node.

3. Arch-3: The second 3-level-setting, 2 × 2 nodes of level 0
converged on the same node of the next level, resulting in a
middle level of size 4 × 4. These 16 nodes then converged on
the same top-level node.

4. Arch-4: The 4-level-architecture, on each level 2 × 2-nodes
converged on one node of the next level. This resulted in 4× 4
nodes on level 1, 2× 2 on level 2 and 1 on the top level.

5. Arch-Def: The default architecture with 9× 9 nodes on level 0,
3× 3 on level 1 and 1 node on level 2.

Table 7 shows the results. Each column corresponds to one of the
architectures, each row to the size of the training set.

The number of levels and the number of nodes per level
determine the model complexity together with the neuron
numbers. For higher complexity more parameters need to be
learned and more training data is needed. Hence for low amounts
of training data less complex systems perform better whereaswith
increasing data themore complex systems become better. This can
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Table 8
Architecture test on COIL100.

% Arch-1 Arch-2 Arch-3 Arch-4 Arch-Def

2.5 60.69 58.83 60.29 55.59 59.24
5.0 75.63 74.90 77.22 68.10 75.47

10.0 90.27 89.86 91.92 81.20 88.48
20.0 97.91 97.63 98.46 95.58 97.60
30.0 99.58 99.64 99.48 98.58 99.16
40.0 99.88 99.86 99.91 99.35 99.70
50.0 99.97 100.00 99.94 98.83 99.75
60.0 99.83 99.76 99.97 99.38 99.86
70.0 100.00 100.00 100.00 98.95 100.00
80.0 100.00 100.00 100.00 99.57 99.93
90.0 100.00 100.00 100.00 98.71 100.00

Table 9
Architecture test on ETH80 without feedback.

% Arch-1 Arch-2 Arch-3 Arch-4 Arch-Def

2.5 49.13 47.31 46.60 36.76 43.40
5.0 62.70 61.12 59.21 45.49 58.82

10.0 68.16 67.19 65.73 44.62 63.85
20.0 81.25 78.63 80.00 77.38 79.14
30.0 83.26 81.56 81.88 80.49 81.25
40.0 84.17 81.61 82.34 79.27 82.86
50.0 83.25 80.62 82.19 80.06 82.81
60.0 84.30 81.80 83.44 82.03 83.36
70.0 88.44 86.46 85.83 82.81 86.25
80.0 88.12 87.19 88.91 84.53 87.03
90.0 92.19 90.31 90.94 90.62 90.00

be observed in the results above. For 2.5% of data used for learning
the 2-level-system performs best, considerably better than the 4-
level-system, also notably better than the default system andArch-
3 but only a little bit better than Arch-2. The reason is that Arch-
2 with 4 nodes in the middle level is less complex than Arch-3
with its 16 middle-level-nodes. For training set sizes of 5% and
10% Arch-1 is too simple and Arch-2 becomes the best performing
system. For higher amounts of training data Arch-3 should bemore
appropriate and indeed performs better than Arch-1 and Arch-2
(except for one outlier). Nevertheless, it is still not as good as Arch-
Def. This can be explained by a relatively similar complexity but a
bigger input layer that samples the input imagesmore densely and
hence increases the training data further. The 4-layer-architecture
is too complex for all cases, leading to very poor results for few
training data and good but not optimal performance for many
training images.

It can be expected that systems with at least 3 levels have
further advantages over 2-level-systems when training objects are
not rigid and contain subparts that canmove relative to each other
more freely. Then the data shows more hierarchical organization
and the greater flexibility of the system can make use of it.

The systems were also tested on COIL100, leading to results
presented in Table 8. Here also the least complex system performs
best for the least amount of training images and the 4-level-system
is always theworst (but notmuchworse for high amounts of data).
The distinction between the 3-level-systems is less clear, but since
this database is easy to classify the differences in the results are
negligible.

For demonstrating the positive influence of feedback from
earlier images we repeated the test on ETH80 without feedback
(the influence on COIL100 can be expected to be much less
pronounced since for COIL100 Kte is always 1, and feedback cannot
distinguish between different hypotheses). The results are shown
in Table 9.

It can clearly be seen that feedback leads to an improvement, for
Arch-Def up to nearly 20% points, although this difference becomes
smaller for higher amounts of training data. Another observation
is that missing feedback favors less complex systems. In almost all
tests without feedback Arch-1 gives the best results.
Table 10
Training list shuffling test on ETH80.

Shuffle on level RR σ Kte

No 98.06 0.0 52
Identity 81.25 6.32 46
Basic 86.56 6.65 44
Abstract 50.63 5.88 32
Complete 20.45 5.26 12

Finally, we have tested how important it is for the system
to see images in meaningful temporal order during learning of
temporal groups, or, how strongly is learning affected if images
are sorted randomly and not according to viewing angle? For
this the fifty–fifty partitioning test on ETH80 was conducted with
training image lists shuffled randomly on different levels. The
control experiment contained all images in the usual order, sorted
by basic category, then identity, and finally viewing angle.

In further tests training images were shuffled randomly on dif-
ferent levels. First all images of the same identity were shuffled,
destroying sorting by viewing angle but keeping sorting by identity
and categories. Then imageswere shuffled on the level of basic cat-
egory, such that, e.g., images of different cows followed each other
randomly, but basic categories still stayed separated. In the next
tests basic categories of the same abstract category weremixed. As
a consequence images of apples, pears and tomatoes could follow
each other (abstract category ‘‘fruits and vegetables’’) as well as
images of cows, dogs and horses (abstract category ‘‘animals’’). For
the twoother abstract categories ‘‘human-made,small (graspable)’’
and ‘‘human-made,big (vehicle)’’ this has no influence, since each
of them consists of only one basic category (cups respectively cars).
The last tests were done using completely randomly shuffled lists.

Each test was done 10 times with different random seeds and
average recognition rates were computed for the optimal value of
Kte (except in case of the control experiment with the non-shuffled
list).

In the earlier tests activities of the previous Ttr training images
were deleted when a new object category was encountered during
training. This is not possible here, since when training on a fully
shuffled list each image can contain a new category and hence
activities would be deleted after each image and nothing could be
learned. Hence deletion of old activities had to be dropped and a
new optimal value for Ttr was determined for optimal results on
the non-shuffled list. This was found to be Ttr = 35 and gave a
recognition rate of 98.06%. That this is only 1% less than the best
result using deletion of activities shows that the system does not
critically depend on this weakly supervised aspect of training. The
pruning threshold was ϑP = 0.01 during testing. Table 10 shows
the results.

As expected recognition rates decrease with shuffling. This
shows that order of training images is very important for the
training towork.What surprises a little bit is that shuffling on basic
category level is less harmful than on identity level (although both
mean recognition rates are about one standard deviation of each
other). A possible explanation is that viewing angle of consecutive
images is more important than object identity. If images are
shuffled on identity level the sorting according to viewing angles
is definitively destroyed. In the case of shuffling on basic category
level it may lead to (at least partly) advantageous succession of
viewing angles even if the identity of objects differs.

7.5. Comparison with other methods

The first systemwe compare ourwith is the HTMbyGeorge and
Hawkins. Their company Numenta offers the ‘‘vision toolkit’’. This
uses also Gabor functions for extracting features from input images
which are scaled to size 200× 200 pixels. Then it trains a network
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Table 11
Comparison TCG and HTM on ETH80.

% TCG TCG w/o feedback HTM

2.5 48.43 49.13 60.20
5.0 62.40 62.70 67.00

10.0 71.70 68.16 69.90
20.0 94.53 81.25 86.00
30.0 98.48 83.26 89.10
40.0 98.23 84.17 90.80
50.0 98.75 83.25 92.10
60.0 98.67 84.30 93.20
70.0 99.38 88.44 94.00
80.0 97.97 88.12 94.40
90.0 98.44 92.19 96.30

on a given training dataset and performs a recognition test on a
given test set. The network comes pretrained on the lowest level
on several thousand natural images, thus that only higher levels of
the network need to be trained, which makes training really fast.
The software offers an optimization-option, which tests several
different network architectures and parameter values on training
and testing data for optimizing the recognition rates. This option
was used for the following results. Unfortunately wewere not able
to find out two important information about the system. First of all
we do not know if and when how training images are sorted. The
documentation does not provide information about this and also
a request per email did not result in an answer. Maybe they are
sorted according to their similarity, maybe they are just used in the
order in which they are added to the training set or in alphabetical
order. The second unclear point is if time based inference is used
and thus activities of past images influence the classification of the
current test image per feedback. Contradicting information was
found about this aspect. The following Table 11 shows the result of
the HTM in comparison to our default architecture using feedback
and the 2-level-architecture using no feedback.

For the two lowest percentages of training data the HTM
outperforms both results of the Temporal Correlation Graph. For
higher amounts this changes. Whereas the HTM is always better
than TCG without feedback (although the difference decreases
with increasing training data) it is outperformed by the TCG using
feedback. Because of the missing information about the HTM it is
hard to judge the results. Would the HTM using the same order of
training images perform better? Could it in principle use feedback
to be better which was not included in the used version? This
cannot be answered here, but it seems fair to say that both systems
showcomparable behavior on the test data.What theHTMmaynot
be suited for is to handle larger numbers of categories. The vision
toolkit is restricted to amaximumnumber of 50 categories. For this
reason the systems could not be compared on the COIL100 dataset.
The Temporal Correlation Graph scales well with the number of
categories. For demonstrating this theAmsterdamLibrary ofObject
Images ALOI (Geusebroek, Burghouts, & Smeulders, 2005) was
used. It contains 1000 different objects in COIL-style (72 viewing
angles per object) and hence contains 72000 images in total. A
second part of ALOI contains the same 1000 objects with the same
viewing angle but 24 different illumination directions, resulting
in 24000 images. On both data sets a fifty–fifty partitioning
test was performed with one half of viewing angles respectively
illumination conditions per object in the training set and the rest
in the testing set. The default architecture was used together with
the following parameter values: Ttr = 20, Tte = 2, Ktr = 1, Kte =

1, ϑQ = 0.92, G = 200, NG = ∞ and ϑP = 0.01. On the
standard dataset a recognition rate of 99.57% was reached and on
the illumination set a rate of 99.37%. This shows that the Temporal
Correlation Graph is able to apply its classification capabilities
without any restrictions to data sets containing a great many
categories (and to other transformations than rotation in depth).
Table 12
Test results on ALOI1000.

Method RR (viewpoint) RR (illumination direction)

HMAX 80.76 83.13
SalBayes 89.71 75.50
SIFT 70.95 71.47
TCG 98.06 98.73

It is hard to find test results of other object recognition systems
that use all objects of the ALOI1000. Some results could be found in
Elazary and Itti (2010) introducing the SalBayes system. It employs
several features maps (42 in the implementation) which are based
on center–surround responses of 7 different features (intensity,
opponent color and orientations of edges) on different scales.
Resulting maps are processed by a normalization operator that
promotes maps in which the global maximum of feature values
clearly stands out in comparison to the other local maxima. The
feature value at the globalmaximumposition in the ith normalized
map constitutes the ith component of a 42-dimensional feature
vector extracted for each training image. Using several training
images a Gaussian is fitted to the distribution of feature vector
components over each object category by determiningmean value
and variance. These parameters can then be used to assign feature
vectors of the same kind extracted on test images (unnormalized)
class probabilities using Bayes’ theorem which are then used for
classification. For the tests presented there only 25% of images
were used for training. Because of this we have repeated our tests
using only one quarter of images for training. Table 12 shows the
results of the TCG (K = 2 for illumination direction) and the
comparison values from Elazary and Itti (2010).

As can be seen the Temporal Correlation Graph outperforms
the other approaches clearly. Whereas on the viewpoint set the
distance to the second best (SalBayes) is already 8.35% on the
illumination direction set the difference to the second best (HMAX)
gets 15.60%. In this test the TCG’s learning of the transformation
present in the training data seems to be clearly advantageous
compared to scale- and shift-invariance as built into HMAX and
the relying on extraction of invariant features at salient points as
in SIFT and SalBayes.

Table 13 subsumes results for the generalization test on the
COIL100 of our system and two others. For comparison we took
the system ofWestphal (Westphal &Würtz, 2009), which uses the
same features as ours, and the system from Linde and Lindeberg
(2004). For this the best results that we could find are reported. It
differs considerably in its method from the proposed system, for
example it uses just one global histogram per image as features.
These histograms are classified by using nearest neighbor search
on the χ-measure or using an SVM. The results shown here have
been obtained using an SVM and 14-dimensional histograms. It
has to be noted that results of Westphal have been obtained using
5-fold cross validation and not a single partitioning into training
and test set as for both other systems. The first column shows
the distance in viewing angle of two consecutive images in the
training set. The second through fourth columns show the obtained
recognition rates.

In Linde and Lindeberg (2012) the results of Linde and Lindberg
for 30° were improved to 100.00% and for 60° to 99.00%. The
comparison reveals that our system outperforms the approach of
Westphal. Nevertheless it cannot fully compete with the system
of Linde and Lindeberg for very sparse training sets. Whereas
they reach recognition rates of over 97% for 90° distance between
training images our system drops to 70.35%. However, it needs
to be considered that they include several different features and
information channels as color information for example, which our
system does not use. It uses only Gabor responses to grayscale
images.
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Table 13
Tests for generalization on COIL100.

Dis. Proposed system Westphal Linde/Lindeberg

10° 100.00 99.68 100.00
20° 98.91 97.97 99.96
30° 95.87 92.93 99.88
40° 93.05 88.45 –
45° 88.61 – 99.37
50° 88.89 83.20 –
60° 79.02 76.61 97.99
70° 81.44 75.79 –
80° 77.28 72.39 –
90° 70.38 65.63 97.13

Table 14
Leave-one-out-cross-validation on ETH80.

cat. TCG Donatti Westphal Leibe Suard

apple 97.32 70.98 91.22 91.46 98.29
car 100.00 98.54 80.98 99.51 99.76
cow 86.59 59.02 49.76 86.83 84.15
cup 100.00 91.22 98.05 100.00 100.00
dog 92.20 60.73 35.85 83.66 86.10
horse 90.73 50.73 57.80 84.88 86.34
pear 89.76 95.61 87.80 99.51 100.00
tomato 97.07 74.63 95.12 98.29 98.29
all 94.21 75.18 74.56 93.02 94.12

At last leave-one-object-out-cross-validation was performed
on the ETH80, where the system was trained on all images except
that of one object identity and then was tested on all left out
images. This was done for all 80 different object identities and
then the average recognition rate was determined. For better
comparability the unsegmented color version of the ETH80 was
used. Quantization threshold ϑQ was set to 0.94 for this test and
K set to 38, the other parameter values stayed the same. The
Temporal Correlation Graph was compared with the systems of
Donatti (Donatti et al., 2010), Westphal (Westphal &Würtz, 2009),
Leibe (Leibe & Schiele, 2003) and Suard (Suard, Rakotomamonjy, &
Bensrhair, 2006). Results can be seen in Table 14.

Whereas the systems of Westphal uses the same features as
our system and Donatti the very similar square graph features, the
results from Leibe and Schiele are the best they obtained when in-
troducing the ETH80 using an optimal multi-cue decision tree in-
corporating color, texture and contour features. Suard et al. report
the best results we could find. They use a labeled graph, which de-
scribes the contour of an object and histograms of oriented gradi-
ents that describe the texture of image regions. These are combined
by multiplying suitable kernel functions, which are then used for
classification by an SVM. In comparison to ourmethod this one uti-
lizes two different cues and learns fully supervised since an SVM
needs class labels. Additionally, segmentation masks are needed
for building contour graphs. Table 14 shows that among these sys-
tems ours gets the bests results in 4 categories and has the best
overall performance. For apples, cows and tomatoes it is slightly
worse than the decision tree from Leibe and Suard’s approach, for
pears the difference to them is higher. Because of the advance in
the difficult categories ‘‘dog’’ and ‘‘horse’’ our system leads with
respect to the total recognition rate nevertheless. The overall best
result for a leave-one-out-cross-validation on ETH80we could find
are those from Linde and Lindeberg (2012), where a total recogni-
tion rate of 97.7% was reached using a 25-dimensional histogram
for each image computed from partial Gaussian derivatives on
different scales. This exceeds our result by ca. 3.5% but was not
performed on the full ETH80 dataset but with a subset of 1280 im-
ages including only viewpoints on the equator of the view sphere
(comparable to viewpoint selection in COIL100) with blackened
backgrounds. It is hard to judge the difficulty of this changed test
setting. On the one hand the smaller number of images leads to
smaller training and test sets for each identity, which can be as-
sumed to increase difficulty. Additionally the authors mention as
reason for blackening the background discarding of unintended
background cues which simplify recognition. On the other hand by
restricting views to constant latitude one dimension of transfor-
mation the used recognition system should be invariant to is com-
pletely removed. It is reasonable to assume that this is one of the
reasons why COIL100 is easier to classify than the complete ETH80
and hence this viewpoint selectionwould also facilitate leave-one-
out-cross-validation on ETH80. A fair comparison could only be
done if our system was tested on the reduced ETH80 or the sys-
tem from Linde and Lindeberg (2012) on the full database.

8. Conclusion and future work

We have presented an object recognition system capable of ob-
ject recognition on standard benchmark data sets. It generalizes
well over different views of the same object, but different identi-
ties of the same object category remain difficult. A major goal of
future work is tomake the systemmore neural network like by us-
ing a biologically plausible local learning rule for determining the
synaptic connection weights.
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