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Object Recognition Robust Under
Translations, Deformations, and Changes
in Background

Rolf P. Wiirtz

Abstract —Recognition systems based on model matching using low
level features often fail due to a variation in background. As a solution,
| present a system for the recognition of human faces independent of
hairstyle. Correspondence maps between an image and a model are
established by coarse-fine matching in a Gabor pyramid. These are
used for hierarchical recognition.

Index Terms —Object recognition, face recognition, coarse-to-fine
strategy, parallel processing, Gabor function, wavelet transform, image
pyramid, correspondence problem, background independence.
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1 INTRODUCTION

THE recognition of familiar objects in an unrestricted environment
is an easy task for humans, and an exorbitantly difficult one for
computer vision. Images of “the same thing” can vary considera-
bly by movements in space, changes in lighting, internal distor-
tions, and a different background. Thus, the abstract concept of an
object can be defined as a huge equivalence class of the possible
images showing that object, leaving the problem of an appropriate
representation of such a class. It can be solved by storing examples
of objects (which are called models) and comparing them with a
given image. In the following | will present an algorithm which
adapts this model matching strategy.

The problem of object recognition can be traced back to the vis-
ual correspondence problem: Given two images of the same object, decide
which pairs of points correspond to the same point on the physical object.
It must also be decided which points have no corresponding partners in
the other image. Once correspondences are established for suffi-
ciently many points between the image and the models repre-
senting different objects, the similarities of local features at corre-
sponding points can be combined into a global similarity function.
Its optimum over all models reveals the recognized object.

The algorithm is demonstrated here on face recognition. Never-
theless, the problems for which | am proposing a solution are of
general nature, and it can be expected that at least parts of this algo-
rithm will be useful for wider domains. Also, good solutions to the
correspondence problem in the case of human faces will open the
door to many applications beyond mere person identification. Exam-
ples include the analysis of facial expression or video manipulation.

2 LocAL FEATURES

For matching, local features must be as similar as possible, and
their global arrangement must be preserved. If features are very
local, they are also very ambiguous and unstable. If many pixels
are combined into features they become more sensitive to local
distortions and many of them will be severely influenced by the
background. A good compromise between those extremes is pre-
sented by Gabor features.
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2.1 Gabor Wavelets

The features that have been used are extracted using 2-D Gabor
functions [1] manipulated such that their Fourier transform van-
ishes at zero [2], [3]:

v (X) = ;exp[— %J [exp(—il&) - exp(cf’2 )]

The normalization of the kernels is—in contrast to wavelet the-
ory—done such that all kernels roughly pick up equal amounts of
“energy” from the image, see [2], [4] for details.

2.2 Sampling
Convolving the image | with all kernels y/EyieIds a continuous

wavelet transform W(X IZ) of the image, a function of four (two

spatial and two frequency) coordinates. For implementation dis-
crete sampling has been applied. Analogous to [2], [3] the fre-
quency space is sampled in polar coordinates, with uniform sam-
pling for the D directions of the center frequencies and geometric
sampling for their L lengths. Spatial sampling is dependent on K,
and determined by the support of the thresholded kernel in fre-
quency space.

A single complex value of W(X IZ) will be referred to as a unit

throughout this article. In order to avoid confusion with several
notions of absolute value | am using the function A(:) for the
modulus of a complex number, and 2(:) for its phase. The vector of
all units at a given location X and all D spatial frequencies with
length |E| will be called a feature vector and denoted by h , the sin-

gle units making up h as h;. Finally, the set of all responses with a
fixed |IZ| is called a frequency level, for which the symbol K is used.

Fig. 1 shows the spatial sampling on each level.

2.3 Amplitude Thresholding

The phases of units with low response amplitudes are ill-defined
and numerically unstable [5]. Keeping such phases would dimin-
ish the reliability of the phase matching described in Section 3.4.
For amplitude matching there is no big difference between a low
amplitude and a zero amplitude. Therefore, zero amplitude and
phase is assigned to all units with amplitudes smaller than a
threshold t, times the maximal amplitude.

2.4 Background Suppression

Model and background are usually separated by a clear line. This
need not be visible, but there are always points from model and
background, respectively, which are direct neighbors in the image
plane. When the background changes, units closer to the border

than a distance R(IZ) = 20/|E| will match poorly (a background can
always be constructed such that these units can acquire arbitrary
values). Thus, they must be discarded from the representation,
which is done by convolution with a circle of radius R(IZ).

2.5 Model and Image Representation

In summary, model representations are calculated by convolving
the model image with the different Gabor kernels, followed by
amplitude thresholding and discarding all units influenced by the
background. The image also undergoes the convolutions and am-
plitude thresholding, but is not presegmented.
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Fig. 1. The spatial sampling points on the three frequency levels in image (above) and model (below). Some points are missing from the regular

grid due to low amplitudes or background influence.

3 CORRESPONDENCE MAPS

In this section, | describe four basic procedures for feature match-
ing. Their combination leads to reliable and sufficiently dense
correspondence mappings. A mapping is defined as a set of point
correspondences  M(M, I) = {(Xi"', %) ]i=1.. N}. For further
evaluation its size | M| is defined as the number N of point pairs,
the average displacement A(M) and the distortion D(:M) with com-

ponents D; and D, as follows:

(x -x") @

2] ;
D, (M) = IMI%\/Z(X;“ =Xy = AL(M) m=1,2 @)

i=1
D(M) is zero if and only if M is a simple shift or empty. Finally,
given an image |, a model M, a correspondence mapping M, and
a local similarity function Sy, the global similarity between model
and image is defined as the average over all local similarities:

Syop(M, 1, M) = ﬁis,oc(ﬁ(x;)’ ﬁ(;(iM)) 3)

3.1 Multidimensional Template Matching

Template matching must be slightly modified for matching feature
vectors rather than scalars. Multidimensional template matching
(MTM) consists of finding the displacement § for a data field f(X)
and a template t(X) such that the following becomes maximal:

oR.8)9)- ~2‘,5.oc(f(>“<)::(>‘< - 37))_ @)
area(|t(>2)|) . area(|t(7< - )7)| |f(i)|)

where the sum runs over the grid points in the support of its ar-
gument. The area-function in the denominator is the number of
grid points in the support of its argument. It is important not to
normalize by the norm of the function but only by the number of
points where the data vector f(x) and the shifted template
t(x - y) are both non-zero, because zeros are usually missing val-
ues rather than true zeros.

MTM is applied to the amplitudes of the units, because these are
varying slowly. For the following two sections the local similarity
function for two feature vectors will be:

3 A
Pt e

Sa(A™, ') Q)

3.2 Global Matching

The first part of the mapping procedure consists in finding the
part of the image where the object is located. For this it is sufficient
to restrict the model and image representations to the lowest fre-
quency level XK. The response amplitudes at gq; are used as the

data for MTM and the amplitudes at KUM as the template. The
result is a shift vector y,, which is added to every model point to
yield a first estimate of the mapping:

My(M, 1) = {(X, %+, )% € K,(M)} (6)

Although reconstruction from X, would not yield a recogniz-
able picture of the model the information suffices to find the cor-
rect location. On the lowest level the image information is smeared
out so far spatially that the local distortions between model and
image (which will be measured in the refinement steps) do not
impede the template matching. This can only work if the spatial
extent of the model is smaller than the one of the image, which is
guaranteed by the background suppression.
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Fig. 2. Mappings on the lowest level (|R| = 0.4). Both (a) and (b) show the mapping of 9\/10“'4, which results from multidimensional template

matching. In (c) and (d), the phases have been matched and point pairs with poor similarity have been discarded, resulting in JVlof .

3.3 Mapping Refinement

This section presents a method to refine a mapping M, that has
been established using the frequency levels X ... K to a map-
ping M, ,, using the information from level X ;. The refinement

n+1
is achieved by local MTM of the response amplitudes in the levels
K,..(M)and X, ,,(1). Both levels consist of a rectangular matrix
of feature vectors, missing feature vectors are replaced by zeros.
The matrix of the model is divided up into small non-overlapping
squares, whose size §™ depends on the level resolution and is cho-
sen such that they contain, in general, 2 x 2 feature vectors. On the
model borders or at possible holes resulting from amplitude
thresholding some of the rectangles may contain only zero to three
feature vectors. In the first case, they are dropped from processing,
otherwise they are filled up with zeros. Each little square serves as a
template for a local MTM.

The choice of the data field is more sophisticated. First, the
point pair from the mapping M, is chosen whose model point lies
closest to the center of the template. If it is precisely at the center of
the template, the corresponding image point becomes the center of
the data field, which attains a fixed size §', such that it contains (in
general, like above) 3 x 3 feature vectors. If the mapping is not
known yet at the center of the template, some heuristic must be
applied in order to determine the center of the data field, and its
size must be larger to account for the uncertainty in the corre-

spondence. Let €™ be the center of the model template, 5 its size,
oM

%™ the model point closest to ¢" which is part of the mapping

M"™, and X' the corresponding image point. Then center ¢' and
sizes §' of the data area are defined as follows:
¢ =x"+(c™-x") ™
s/ =s:v|~siM+2'|ciM—xiM|, i=12 ®)

This reflects the idea that where the correspondence is not known
the best one can do is assume a constant deviation from the closest
known mapping location. The poor knowledge is accounted for by
searching over a larger data field in (8).

Now, the data field is defined as all the feature vectors that fall
inside the above rectangle. If it is empty, no correspondence is
assigned to the points in the template. Otherwise, the existing
feature vectors are arranged into a rectangular matrix, missing
locations are assigned zero amplitude and phase. Then MTM is
applied to the pair of template and data, yielding local shift vec-
tors y,, which are relative to the mapping already known. For

each X in X,,(M) and inside the current template the pair
(%, (¢ +9,)+(x—c)) is included in the mapping M, .,

This procedure is executed for all the templates that make up
XK,.1(M). It is worth noting that the single MTMs of the nonover-
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Fig. 3. Mappings on the highest level (|R| = 15). Both (a) and (b) show the mapping of .’MZlel obtained by local template matching using information

from the middle level which was, in turn, created from the one on the lowest level show in Fig. 2. Parts (c) and (d) show the mapping of ﬂVlzf after

phase matching, and discarding poor matches. (e) Selected correspondences from .’sz .

lapping templates are independent of each other and can be exe-
cuted in parallel. The data fields may overlap, which can lead to
mappings that are unique but not invertible. Furthermore, the
mapping need not be strictly neighborhood preserving. Both
problems will be greatly alleviated by the removal of poor matches
described in Section 3.5.

3.4 Phase Adjustment

The two matching modules described so far have used only the
amplitudes of the complex units. For most locations, their phases
rotate with a frequency close to the center frequency of the gener-
ating wavelet. For phase matching, it is assumed that the phase
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frequency is equal to the center frequency, except for points with
small amplitude. Fleet [5] reports that it has proven sufficient to
exclude points with amplitudes smaller than 5 percent of the
maximal amplitude to reliably avoid these phase instabilities. |
have adopted this value for the threshold t, in Section 2.3.

The phase difference of two units found corresponding by am-
plitude matching is assumed to be caused by a local shift on the
scale of the discretization. With this heuristic it is clear how the
phases of two units have to be matched. The phase difference must
be equal to the product of the displacement vector and the center
frequency. For each orientation this yields a displacement in the
direction of k . For matching a whole feature vector each of its D
units votes for its displacement, and an agreement is reached by
choosing the displacement X which gives the least squared de-
viation from the single ones. Basic trigonometric operations yield
the following formula:

SO Vi WIS ©)

where the phase difference AP is defined as ?(hj') - ?(hj“") if the

amplitudes of both units are nonzero, and as zero otherwise. After
this matching step, the similarity of the local feature vectors must
be reevaluated, i.e., the remaining phase difference must become

part of a new local similarity function S,

> A(h")A(h})cos(AP(h" bj) ~ k; - X)

)

This is identical to S , if the phase differences after the applied local
shift are zero, remaining phase differences leading to a penalty.

Sp(™, ') = (10)

3.5 Elimination of Poor Correspondences

The mapping procedures described so far still have a serious
drawback: Every point in the model always finds a correspon-
dence in the image, which is not acceptable in the case of occlu-
sion. Unless further knowledge of the object classes, or three-
dimensional models, are employed, the only grounds on which
this can be detected is the actual similarity between features of the
corresponding points. In order to exclude mismatches a relative
similarity threshold g, is introduced for every frequency level. All

point pairs (XM, X ) are excluded from the mapping M for which

the condition S,,,(n(x™), h(x')) = g, is violated, with

% :Sglob(M’l’MO) (11)

st = Sgop(M, 1, M), n>0 12)

Sy00(M,) is the global similarity from (3), S,,, is the local similarity

function from (5) or (10), respectively. For all levels except the
lowest one, this threshold is calculated using only information
from mappings already known. Thus, no global information about
the current mapping is required, and the refinement steps can be
executed in parallel over all model locations.

3.6 Overall Mapping Procedure
Now there is a mapping initialization, a method to refine a map-

ping using information from a higher frequency level and two
methods for improving a mapping, namely phase matching and
dropping correspondences with poor similarity. They are com-

bined as follows: The initialization yields a mapping JVIOA. Phase
matching matched yields JVIOT, from which g is derived. Then the

poor matches are removed from M, , which leads to M; , the
final mapping on this level. This mapping together with the levels
XK, (M) and K,(1) is used for the refinement step, which results in

M;*. Phase matching yields M, , and with g, as derived from

M, this is reduced to M, . The same step is iterated until the
frequency levels are exhausted, (one more time with the current
parameters), and results in the mappings M,", M, , and M, .

The rough global organization of the mapping is achieved at a
low spatial frequency, where distortions do not matter. The low
level can only yield background independent mappings for the
interior of the model. The refinement steps find reliable mappings
closer to the boundary, because the influence of the background is
reduced to a smaller area. Also holes in the mapping can be filled
in at higher frequencies. Phase matching at each level achieves
high accuracy, see Figs. 2 and 3 for examples.

4 RECOGNITION

4.1 Recognition From Correspondence Mappings
Each correspondence mapping can be used to define a global
similarity between model and image as a linear combination of the
global similarity Sy, (3) and the length of the distortion vector (2).
S ML 1, M) = Sy (M(M, 1)) = [B(M(M, 1) (13)
Leaving out the distortion led to poor recognition results, which
shows that pure feature similarities are not enough to discriminate
between the models. Evaluating the similarity S, (M, I, M,) for a

database of models {M; | i =0 ... N} yields a series of similarities,
whose maximum corresponds to the recognized model.

4.2 Recognition Significance

This process always yields a model with highest similarity to the
given image, no matter if the correct person is actually contained
in the database. Thus, the significance of a recognition must be ex-
tracted from the the series of global similarities S; ordered in as-
cending sequence, and M; be the model with similarity S;. For the
recognition to be significant S,, the similarity of the “candidate”
model My, must be clearly distinct from all the other values. With s
the standard deviation of the series S; without S, the criteria for
the acceptance of a match is:

K, = {51 ;SO > tl}, K, = [50 > tz]

(14)

As in [2], both criteria are be combined with a logical OR in order
to keep more significant recognitions while ruling out all incorrect
ones. In the present evaluation, the model database always con-
tained the correct person, and the following cases are possible. The
best matching model M, can be correct, (C), or false, (F), and the
significance criterion can accept, (A), or reject, (R), it. The combi-
nation of both yields a total of four cases, of which, ideally, only
CA should occur. Any safe recognition algorithm must rule out
case FA, while the case CR reveals an imperfection of the image or
the algorithm. The quality of recognition can be judged by count-
ing the number of CA cases once the thresholds t; and t, have been
adjusted such that no FA cases remain.
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TABLE 1
RECOGNITION RESULTS
Mlell M1leI2 M2e11 M2&12 M1eI13
Method C CA C CA C CA C cCcA C cA
Hier. Level O 71 54 68 23 42 17 41 11 0
Hier. Level 1 40 29 62 45 73 54 59 18 0
Hier. Level 2 15 12 20 8 24 23 50 23 0
Hier. Total - 95 - 76 - 94 - 52 - 0
FACEREC 95 93 92 81 19 1 14 1 95 93

All numbers are percentages of the size of the test database.

4.3 Hierarchical Recognition

An insignificant recognition means that no reliable decision was
possible from the data available. Thus, the multilevel structure of
the algorithm can be used to improve average recognition time
and recognition quality. First, a recognition is attempted using

only the mapping .’Mof on the lowest level. Only for the R cases
the next mapping j\/lfr is used and for the R cases on this level,
recognition is again attempted using the mapping lezf

Beside the practical advantages hierarchical recognition also
models the psychophysical effect that low-pass filtered and sub-
sampled image is represented by sharp squares, it can only be
recognized after low-pass filtering. On the frequency levels pres-
ent in the low pass filtered image, a correct recognition is possible,
but it is not significant enough for the visual system to be satisfied.
If no higher frequency information is available, this is the final
result of the recognition attempt. In the presence of faulty high
frequency information recognition is again tried on the next higher
level, where it completely fails.

5 EXPERIMENTS AND RESULTS

The results have been obtained with the following parameters: The
image resolution was 128 x 128 pixels, the number of frequency
levels and directions was L = 3 and D = 4, respectively. Minimal
and maximal frequency was kpi, = 0.4, kna = 1.5 in frequency space
coordinates ranging from —x to z. The ratio ¢ of window width and
wavelength in the Gabor function was chosen to be 2.0, yielding ker-
nels that are close to receptive fields found in the visual cortex [1], [3].

For performance measures, two model databases M1 and M2,
and three image databases, have been set up. M1 consists of 83
persons looking straight into the camera, whose images have been
segmented by a simple rectangle which has the same size for all
models for a fair comparison with the system described in [2]. M2
consists of the same images as M1, now segmented by hand such
that the hair is invisible, and only the faces proper remain. There is
no need for precision in this segmentation, which demonstrates
the capabilities for recognition independent of the background,
and more specifically, recognition of persons independent of their
hairstyle.

Image database 11 was used to test the performance under
moderate conditions, and consists of the same 83 persons looking
15° to their right. Database 12 introduces hard conditions, namely,
three pictures of each person looking 15° and 30° to their right, and
one showing a facial expression of their choice (a total of 249 im-
ages). Experiments were conducted by comparing all images from |
with all models from M. For each experiment the thresholds t; and t,
have been adjusted such that false positive recognitions (FA cases)
are reliably excluded. The results are summarized in Table 1.

Image data base 11 did not pose problems for recognition with
either model database. For database 12, the number of correct and
significant recognitions drops considerably when switching from
model database M1 to M2. This shows that the feature vectors

inside the face are distorted strongly, and the recognition must
rely more on the overall appearance or outer form. In [2], the high
similarity of all silhouettes of the same persons probably made the
recognition problem simpler than it really is.

A third image database, 13, has been used which consisted of the
negatives of 11 in the sense that the gray value, 1(X) of each pixel

was replaced by 255 — I(X). Such images of human faces are hard to

recognize [6], which proves that human face recognition must make
some use of the Gabor phases. The recognition system failed to rec-
ognize the face from a negative image in all cases for both segmen-
tation schemes, because the assumption that phase differences are
caused by local displacements becomes completely wrong.

The results in Table 1 show that correct recognition is indeed
possible from the lowest level on, and the average recognition time
can be reduced by the hierarchical approach. Furthermore, hierar-
chical recognition was always superior to the one from the highest
level alone. This gives interesting insights into the distribution of
prominent recognition cues across the spatial frequency range.
More details can be found in [4].

As a general observation over many examples, the correspon-
dence maps obtained by this method are very reliable. This is of
importance not only for good recognition results but also for the
tracking of facial points [7], and possibly for measuring emotion.
As there is no objective method of finding the true correspon-
dences, this claim has been checked on a variety of model/image
pairs but not been proved quantitatively. Examples for correspon-
dence maps are shown in Figs. 2 and 3.

6 DISCUSSION AND RELATION TO OTHER WORK

| have presented an object recognition system which is robust un-
der changes in background, small deformations, and translations.
Its capabilities on hairstyle-invariant face recognition have been
demonstrated. The background invariance makes it superior to the
system described in [2].

In the system from [2], (which is called FACEREC in Table 1),
the concept of a jet requires frequency independent sampling of
Gabor responses which makes it hard to prevent the contamina-
tion of jet components by the background because the large sup-
ports of the low frequency kernels leads to the exclusion of nearly
all jet locations. This is even more serious because the optimal
value of the relative bandwidth o is 2z in the case of FACEREC.
Here, o0=2 has been used, which leads to smaller kernels while
covering the same frequency range, and those kernels are closer to
physiological data. Applying the FACEREC-procedures without
modification to the model database M2 yields very poor results
(see Table 1). This shows that the problem of background influ-
ence on the features may not be neglected lightly. Finally, the con-
cept of elastic graphs hinder massively parallel implementation,
because the update of one position propagates via the elasticity
term to all other positions. In the hierarchical system, all refine-
ment steps are completely independent of each other, which
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makes the parallel complexity proportional to the number of fre-
guency levels involved.

We close the discussion by comparing this system to the ones
in [8], which describes the state of the art in face recognition in
1995. The proposed system performs better than all of these in at
least one of the following respects:

1) No manual point correspondences or pose normalization
have been used.

2) Recognition is independent of background and hairstyle.

3) No specific properties of faces have been used.

4) Neither a 3D model nor multiple views have been used.
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