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Abstract

Resolving relational spatial phrases requires that a coherent
mapping emerges between a visual scene and a triad of two
objects and a relational term. We present a theoretical ac-
count that solves this problem based on neural principles. A
neural dynamic architecture represents perceptual information
in activation fields that make detection and selection deci-
sions through neural interaction. Activation nodes and their
connectivity to the perceptual fields represent concepts. Dy-
namic instabilities enable the autonomous sequential organi-
zation of the processing steps needed to resolve relational spa-
tial phrases. These include bringing visual objects into the at-
tentional foreground, performing spatial transformations, and
making matching decisions. We demonstrate how the neural
architecture may autonomously test different hypotheses to re-
solve relational spatial phrases. We discuss how this neural
process account relates to existing theoretical perspectives and
how to move beyond the entry point sketched here.
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Introduction
Language enables humans to communicate about shared en-
vironments. For instance, I may use language to direct your
attention to an object in a visual scene. When several simi-
lar objects are visible such as in Fig. 1a, using object iden-
tity (“cup”) or feature (“red”) alone is not sufficient. A rela-
tional spatial phrase, for example “the red cup to the left of
the green cup”, resolves ambiguity in such situations. Even in
the scene in Fig. 1b, in which no object can be singled out by
feature reference, this phrase uniquely specifies one of them.
A typical relational phrase like the one above consists of a

(a) (b)

Fig. 1: Visual scenarios affording the use of spatial language.

target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
tation of an intention drives activation in those neural struc-
tures that are relevant for executing the processing step. The
resulting changes in activation states are detected through a
condition of satisfaction, which indicates the successful com-



pletion of a step, or a condition of dissatisfaction that indi-
cates its failure. These detection events are bifurcations of
the neural dynamics and they trigger the transition to the next
processing step. Detecting completion and triggering appro-
priate subsequent steps enables flexible control of the sequen-
tial chain of processes, so that spatial relational phrases of
different structure can be resolved. Moreover, in a situation
like Fig. 1b, where there are multiple eligible candidates for
the roles of reference and target, being able to detect failure
enables the architecture to test different hypotheses.

Methods
DFT describes neural activity at the population level through
dynamic fields (DFs), activation patterns defined over con-
tinuous feature dimensions (e.g., color hue value or spatial
position). DFs evolve continuously in time under the influ-
ence of external inputs and lateral interactions within the DF
as described by an integro-differential equation

τ u̇(x, t) =−u(x, t)+h+S(x, t)+
∫

f (u(x′, t))w(x− x′)dx′.

Here, u(x, t) is the activation field over feature dimension x
at time t, τ is a time constant, h is the negative resting level,
and S(x, t) is external input. An output signal f (u(x, t)) is
determined from the activation via a sigmoid function with
threshold at zero. This output is then convolved with an inter-
action kernel w that consists of local excitation and surround
inhibition (Amari, 1977).

The interaction patterns promote the formation of local-
ized activation peaks as attractor states of the DF, which
form when localized input drives activation beyond the output
threshold. The peak formation constitutes an instability in the
field dynamics (the detection instability), in which the sub-
threshold attractor state becomes unstable. Such instabilities
form discrete events that emerge from the time-continuous
changes of activation, and are critical in the autonomous se-
quential organization of neural processes.

DFs can support multiple peaks, which may be self-
sustained in the absence of localized input due to self-
excitation and constitute a form of working memory. Al-
ternatively, DFs with sufficiently strong inhibitory interac-
tions accommodate only a single peak at a time, leading
to autonomous selection decisions among localized inputs.
Discrete activation nodes with a neural dynamics analogous
to DFs are approximate descriptions of the field dynamics
around a peak location that may be ‘on’ (peak present) or
‘off’ (sub-threshold). Different DFs can be connected to form
larger architectures in which the output of one field serves as
input for another field, and fields of different dimensionalities
may be coupled to each other along shared feature dimen-
sions.

Architecture
The DFT architecture shown in Fig. 2 constitutes a single,
high-dimensional dynamical system. Neural representations

of perceptual feature spaces (right part of the figure) are com-
bined with neural representations of concepts (left part of the
figure). The concepts are implemented as synaptic connec-
tion patterns between discrete activation nodes and the per-
ceptual feature spaces of DFs. In terms of neural grounding,
these nodes are akin to amodal records of sensorimotor acti-
vation patterns in cortex (e.g., Damasio, 1989). The percep-
tual representations receive visual input from a camera im-
age, and provide the substrate for instantiating the concepts
and for binding them to objects in the visual scene. A sub-
set of nodes (top left) implements the aspects of intention
and condition of satisfaction for elementary processing steps.
These nodes control the progression of the dynamical system
through the steps by activating concepts and modulating DF
activation levels. We now step through the architecture, start-
ing with the top right of Fig. 2 and proceeding clockwise.

Perceptual system and feature attention
The visual input to the system consists of a distribution of
salient colors extracted from the camera image. It is fed into
the three-dimensional perceptual field, which forms an ac-
tivation distribution over the two spatial dimensions of the
image and one color dimension (top right in Fig. 2). To gen-
erate activation peaks and thereby bring specific objects into
the attentional foreground, the perceptual field requires ad-
ditional input from the color intention field (top middle in
Fig. 2). This field reflects the color of a task-relevant item
and projects into the perceptual field to implement a form of
feature attention.

The color intention field is coupled to two more fields rel-
evant for the sequential organization of operations. The color
condition-of-satisfaction (CoS) field receives excitatory input
from both the color intention field and the perceptual field. It
forms a peak if these two inputs coincide in color space, and
thereby signals that an item of the desired color has been se-
lected in the perceptual field. Conversely, the color condition-
of-dissatisfaction (CoD) field is inhibited by the color inten-
tion field, but has a higher resting level. Excitatory input from
the perceptual field induces a peak here when an item of any
non-matching color has been selected.

Representing spatial relations
The perceptual field provides purely spatial input to two fields
that represent object locations for the different roles in a re-
lational phrase. The location of a single reference object is
captured in the reference field, and the locations of one or
more potential target items are represented in the target can-
didates field. Based on the peak positions in these two fields,
the relative positions of the target candidates with respect to
the reference object can be determined by a reference frame
transformation (blue diamond in Fig. 2). This is implemented
here as a convolution of the field outputs, but may be realized
neurally using a four-dimensional field (Lipinski et al., 2012).
The result is fed into the two relational fields. There is again
a CoS and a CoD field here, with roles analogous to those in
the color representation. These fields receive additional input



Fig. 2: Overview of the architecture for autonomous spatial language. This figure shows a snapshot of the architecture’s
activation state when processing the phrase “the red object to the left of the green object” on the scene in Fig. 1a. Dynamic
fields are shown as color-coded activation patterns (blue for lowest, red for highest activation), dynamic nodes as circles with
activation levels indicated by the intensity of the filling color. For the perceptual field, slices through the three-dimensional
activation pattern are shown for the colors green, red, and blue (from top to bottom). Excitatory synaptic connections are
denoted by lines with arrow heads, inhibitory connections by lines ending in circles.

representing a template for the spatial term in the phrase (the
pattern for ‘left of’ is visible in Fig. 2; by design, the rela-
tional field is always centered on the location of the reference
object). This input is excitatory for the relational CoS field, so
that the field forms a peak when the relative location of one
target candidate matches the region activated by the spatial
template. It is inhibitory for the relational CoD field, which
forms a peak in the case of a mismatch. The CoS field inhibits
the CoD field to prevent it from signaling a mismatch if both
a matching and a non-matching target object are present.

In a reverse transformation (green diamond in Fig. 2), a
given location in the reference field and a given relative loca-
tion in the relational CoS field produce a single target loca-
tion in image coordinates in the target response field. Finally,
as part of the mechanism for hypothesis testing, the reference
inhibition-of-return (IoR) field forms a self-sustained peak for
any location that has been selected in the reference field, and
feeds inhibitory input back to that field.

Processing spatial phrases
As described above, spatial relations are characterized by a
reference, a target, and the relation itself. In a concrete spa-

tial phrase these three roles are filled by different concepts,
namely, spatial terms and features identifying the target and
reference objects (here, we only use color concepts). In the
architecture we employ conjunctive coding, in that a pair of
dynamic nodes exists for each possible conjunction of role
and filler (e.g., ‘reference: red’ and ‘target: red’). Each pair
of nodes includes a memory node (blue circles in Fig. 2) and
a production node (purple circles). In Fig. 2, each horizon-
tal row of nodes corresponds to one concept (e.g., ‘red’ or
‘right’), while each column of node pairs corresponds to one
role (e.g., ‘reference’).

A spatial phrase is fed into the architecture by activating
those memory nodes that correspond to the filler-role con-
junctions in the phrase. The memory nodes retain this acti-
vation through self-excitation. Each memory node is recip-
rocally coupled to its corresponding production node, so that
active memory nodes pre-activate their production nodes. To
become fully active, however, the production nodes need a
simultaneous input from an intention node (see below). The
production nodes are coupled to different fields by reciprocal,
patterned synaptic connections. Color nodes are connected



to different regions of the color intention field, spatial term
nodes to different regions in both relational fields. Through
these connections, each production node can evoke a specific
pattern of activation in the fields (and can conversely be pre-
activated by that pattern). Each of these activation patterns
is an instantiation of a featural or spatial concept in metric
perceptual space. Note that, while the patterned connections
have been hand-coded here, they should ultimately be ac-
quired based on neurally realistic learning.

Nodes representing intention and CoS control all aspects
of sequentiality. This includes the order in which the stored
concepts are invoked, the order in which the roles are filled,
and consequently which object is assigned to which role. For
each role exists a pair of an intention node and a CoS node
(green and red circles in Fig. 2, respectively). Each intention
node drives activation in the corresponding column of pro-
duction nodes and in specific fields associated with each role
(e.g., the reference field). The CoS node in turn receives in-
put from these fields, detects the formation of activation peaks
there, and inhibits the associated intention node when the re-
spective role has been filled.

To initiate processing, all intention nodes are simultane-
ously activated by user input. Sequentiality is enforced by
precondition constraints in the form of dynamic nodes (black
circle marked ‘p’ in Fig. 2) that inhibit the intention node
for one role until the CoS node of another role becomes ac-
tive. This is employed here to enforce a sequential selection
of target and reference object, since both processes rely on
the perceptual field.

Results
In the following, we describe the dynamic processes associ-
ated with resolving spatial phrases. All results come from real
time numerical solution of the differential equations driven by
camera input. The architecture can deal with a variety of dif-
ferently structured phrases and visual scenes. To simplify vi-
sual object recognition, we use scenes with uniformly colored
objects on a white background. We illustrate the core capabil-
ities of the architecture using the phrase “the red object to the
left of the green object” applied to two visual scenes. While
the reference object is uniquely specified by the phrase in the
first scene, two identical candidates for the reference object
require hypothesis testing in the second example.

Resolving a spatial phrase
We explain how the system resolves the above phrase, with
Fig. 1a as visual input. Fig. 3 shows the evolution of activa-
tion patterns for this scenario. The spatial phrase is encoded
as an activation pattern in the memory nodes, activating the
nodes ‘reference: green’, ‘target: red’, and ‘spatial term: left
of’. Processing is then initiated by activating all intention
nodes as well as the precondition node. From this point on,
the architecture works autonomously.

The intention nodes for reference and spatial term become
active, while the target intention node is inhibited by the pre-
condition node. The spatial term intention node boosts all

Fig. 3: Evolution of activation patterns for resolving a spatial
phrase on the scene in Fig. 1a. Continuous activation time
courses are shown for the intention nodes (top), and activation
patterns of relevant fields are shown at three selected time
steps t1, t2, t3 (bottom). Field activation is color coded (blue
for sub-threshold activation, yellow to red for peaks).

production nodes associated with the role ‘spatial term’, and
thereby activates the node ‘spatial term: left of’. This node
projects its spatial template into the relational CoS field as
a sub-threshold activation pattern (see t1 in Fig. 3). Analo-
gously, the reference intention node activates the production
node ‘reference: green’. This node projects into the color in-
tention field, producing a peak at the location corresponding
to the color green. This induces a peak in the perceptual field
which brings the green object into the foreground. The refer-
ence intention node also homogeneously boosts the reference
field, which, driven by input from the perceptual field, forms
a self-sustained peak at the position of the green object (see
snapshots in Fig. 3 at time t1). This peak means that referent
selection is complete, activating the reference CoS node. The
CoS node turns off the reference intention node and inhibits
the precondition node.

The target intention node can now become active. As it
does, it starts to bring red objects into the foreground, whose
positions are fed into the target candidates field (see snapshots
at time t2). The positions of the target candidates are trans-
formed and projected into the relational CoS field, where one
of them (the top-left one) matches the spatial term ‘left of’
best and forms a peak (see snapshots at time t3). This peak is
transformed back into image coordinates and fed into the tar-
get response field. The correct target object has been located.



Fig. 4: Evolution of activation patterns for resolving a spatial phrase on the scene in Fig. 1b. Activation patterns are depicted
analogously to Fig. 3

Testing multiple hypotheses

We now demonstrate how the architecture can autonomously
test hypotheses and discard erroneous ones by resolving the
same phrase as above for the scene in Fig. 1b. Activation plots
are shown in Fig. 3, with additional fields that are relevant for
this more complex scenario.

As in the previous scenario, the spatial template is instan-
tiated and the potential reference objects are brought to the
attentional foreground. Faced with two green objects, the
reference field autonomously performs a selection decision,
forming a single peak for the lower green object (see snap-
shots at t1). Its location is also stored in the reference IoR
field. Note that the spatial template is visible as inhibitory
pattern in the relational CoD field at this time.

In snapshot t2, the positions of the two red objects have
been fed into the target candidates field. Their locations rel-
ative to the reference object are determined by the reference
frame shift and fed into both relational fields (CoS and CoD).

At t3, a peak forms in the relational CoD field but not in the
relational CoS field, since none of the target candidates is to
the left of the chosen reference object. This signals that target
selection has failed. The target candidates field and the ref-
erence field are inhibited, so that peaks in these field vanish.
The target and reference CoS nodes turn off, essentially reac-
tivating the associated intention nodes and restarting the task
from the beginning. However, the reference IoR field still re-
tains the memory of the previously selected reference object
location, and its inhibitory input prevents this location from
being selected again in the reference field.

At t4, the green object in the top right is established as a
new hypothesis for the reference. Subsequently, the architec-
ture identifies the correct target candidate left of that refer-
ence. The activation snapshot of the target response field at t6
shows the position of that selected target in the image.



Discussion
We have shown how a neural dynamic architecture may re-
solve relational spatial phrases about visual scenes. The spe-
cific contribution of this paper is the autonomous control
of processing steps and the capability to validate or reject
hypotheses about the referents of a relational phrase when
only the combination of object description and spatial term
uniquely defines the target. Above that, the architecture gen-
eralizes to various scenarios, such as answering questions
about objects and the spatial relations between them. It is
easy to extend the architecture to incorporate additional fea-
tures beyond color, by adding the associated perceptual, in-
tention, CoS, and CoD fields.

As a process model, the architecture may account for hu-
man behavioral data. It currently captures the sequentiality of
visual search for target relations, but may provide more spe-
cific accounts such as predicting processing time as a func-
tion of different forms of cues (Logan, 1994). Similarly, the
time course of selection processes in the architecture may be
compared to the sequence of attentional shifts that humans
perform when they analyze individual relations (Franconeri
et al., 2012). Our future work will extend these links to ex-
periment.

The DFT architecture is conceptually related to a number
of approaches. In work by Roy, Hsiao, & Mavridis (2004),
word meanings are grounded in the physical environment of a
robot through a layer between low-level sensory and linguis-
tic representations that implements computational algorithms
but is not meant to mirror neural processes. We consider sim-
ilar computational outcomes, but conceive of the processes
as neural activation dynamics directly linked to sensory in-
puts. Previous proposals within psychology have linked spa-
tial language to processes of visual perception (e.g., Regier
& Carlson, 2001). We have moved beyond those proposals
by providing specific process accounts based on the well-
established neural dynamic mechanisms of detection, selec-
tion, and working memory. Moreover, we have accounted in
a principled way for how the succession of processing steps
is generated autonomously.

At a more general level, the architecture resonates with the
idea that relational concepts may be embedded in modal neu-
ral processes (Barsalou, 1999). All relational operations oc-
cur within neural fields, close in format to how perceptual
information is represented. The discrete activation nodes are
more akin to amodal representations but primarily organize
the processing in time. Mapping non-spatial concepts onto
spatial representations may provide a route toward extend-
ing the ideas of this model to general cognition (e.g., Knauff,
2013). The present work is only a first step toward a neurally
grounded account of higher cognition.
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