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Abstract—We present an object recognition system based on
the Dynamic Link Architecture, which is an extension to classical
Artificial Neural Networks. The Dynamic Link Architecture ex-
ploits correlations in the fine-scale temporal structure of cellular
signals in order to group neurons dynamically into higher-
order entities. These entities represent a very rich structure and
can code for high level objects. In order to demonstrate the
capabilities of the Dynamic Link Architecture we implemented
a program that can recognize human faces and other objects
from video images. Memorized objects are represented by sparse
graphs, whose vertices are labeled by a multi-resolution descrip-
tion in terms of a local power spectrum, and whose edges are
labeled by geometrical distance vectors. Object recognition can
be formulated as elastic graph matching, which is performed
here by stochastic optimization of a matching cost function. Qur
implementation on a transputer network successfully achieves
recognition of human faces and office objects from gray level
camera images. The performance of the program is evaluated by
a statistical analysis of recognition results from a portrait gallery
comprising images of 87 persons.

Index Terms—Computer vision, distortion invariance, dynamic
link architecture, elastic graph matching, object recognition,
neural network, wavelet.

I. INTRODUCTION

HIS paper describes an object recognition system based
on a new neural information processing concept, the
Dynamic Link Architecture (DLA) [1], [2], [3]. The DLA,
first proposed in 1981, attempts to solve certain conceptual
problems of conventional Artificial Neural Networks. One
of the most prominent among these is the expression of
syntactical relationships in neural networks. Various ambitious
applications become accessible via the Dynamic Link Archi-
tecture, such as distortion invariant object recognition, sensory
segmentation, and scene analysis. This might soon result in
massively parallel and fault-tolerant technical applications as
well as new insights into brain function.
The innovative idea behind the Dynamic Link Architecture
is the use of synaptic plasticity already on the time scale of
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information processing and not only for memory acquisition.
This enables it to instantly group sets of neurons into higher
symbolic units. Conventional neural systems do not provide
this ability to bind separate subsets of neurons, inevitably
merging them into one structureless global assembly. Whereas
conventional schemes are very successful with small, tightly
defined problem spaces, they do not cope well with complex
problems, especially when flexibility is required. The power of
the Dynamic Link Architecture can best be demonstrated by
applying it to a complex problem like position and distortion
invariant object recognition, which is the subject of this paper.

To demonstrate the performance of our system we chose the
problem of face discrimination, which is particularly demand-
ing due to variations in perspective and facial expression. Our
system is, however, in no way specialized to that application,
as we demonstrate by letting it discriminate also between
office items.

II. INVARIANT OBJECT RECOGNITION
IN THE DYNAMIC LINK ARCHITECTURE

In this section we give a qualitative description of object
recognition in the Dynamic Link Architecture, with special
emphasis on a neural style of formulation. Our specific
implementation in more conventional algorithmic fashion is
described in Section III, which can be read independently. For
a preliminary report see [4].

A. The Representation Domains

Although object representation and object recognition even-
tually will have to be implemented in a multi-level structure,
we will restrict ourselves here for reasons of simplicity to
the minimum of two levels—an image domain I and a
model domain M (see Fig. 1). Biologically speaking, I may
correspond to primary visual cortical areas, and M to infero-
temporal cortex.

The image domain contains a two-dimensional array of
nodes Al = {(x,a)|a = 1,---, F}. Each node at position x
consists of F' different feature detector neurons (z, «), where
the label « is used to distinguish different feature types. These
types could simply be local light intensities, but it is desirable
to have more complex types that are derived by some filter
operation. The image domain I is coupled to a light sensor
array (eye or camera). An input presented to that array leads
to a specific activation s._ of the feature neurons (z,q) in

paes
the image domain I.  Thus each node AL contains a set of
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Fig. 1. Matching graphs in image domain and object domain. Within the
object domain there is a subgraph M that is identical to a subgraph I in the
image domain: I and M contain the same features (a, b, c, - - ) in the same
arrangement. In both domains, neurons in neighboring nodes are connected.
Connections between domains are feature-type preserving, but not position
specific (for example, all a-detectors in I are connected to all a-detectors
in M). Due to graph identity, all connections between corresponding points
exist. Graph dynamics is a positive feedback loop: signal correlations favor
activation of links, active links produce correlations. Locally, graph dynamics
favors richly connected blocks of neurons—here, blocks are formed out of
neighboring cells in I and neighboring cells in M, in corresponding positions.
More globally, dynamic attractors are optimal combinations of local blocks—
here, the graph composed of graph I, graph M and connections between
corresponding nodes. Other objects in the model domain lose the competition;
they have a different arrangement of feature types, and there is no complete
system of one-to-one connections to I.

activity signals J! = {sl |a = 1,---,F}. We will use
the term “jet” for the feature vectors JI. All cells within
I are connected excitatorily over short distances, including
zero distance, irrespective of feature type. The connection in
I between neuron (x, «) and neuron (y, 5) will be denoted as
Ta{a;y,@ ’

With this given structure, images are represented in the
image domain as attributed graphs. Their vertices are what
we have called nodes. Attributes attached to the vertices are
activity vectors of local feature detectors, which we called
“jets.” The links are the connections T‘,L{a;yﬁ forx #y. ' A
particular object is represented by that subgraph of the image
domain which is affected by the object. For simplicity, we will
continue to use the symbol I for object-representing subgraphs
in the image domain.

The model domain is an assemblage of attributed graphs, all
being idealized copies of subgraphs in the image domain. We
will use the symbol M for individual model graphs, although
it occasionally will also refer to the whole model domain.

There are excitatory connections Ta{fyg between image
domain and model domain. These connections are feature-
preserving: Two neurons, one in the image domain, one in
the model domain, have a connection between them if and
only if they belong to corresponding feature types. There is
no condition on the position within the image domain. Thus, a
graph in I and an identical graph in M have a complete set of

I An alternative (almost equivalent) view would consider individual feature
detectors as nodes, their activities as attributes, and all T! connections as
links.
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connections between corresponding neurons in corresponding
nodes, irrespective of the position of I in the image domain.

Object identification in the structure just described can
now be realized as a process of elastic graph matching. Two
subproblems have to be solved: Identification of an appropriate
subgraph I of the full image domain (“segmentation”), and
identification of a matching subgraph M in the model domain.

B. Links and Their Dynamics

What is the machinery necessary to perform the attributed
graph matching? It must be based on a data format able to
encode information on attributes and links in the image domain
and to transport that information to the model domain. This
has to be done without automatically sending information on
position within the image domain, to achieve our goal of
separating position information from relational information.

Here is a signal code which does just that. We assume that
the actual output signal oZ_(¢) of neuron (z, ) in I fluctuates
rapidly in time. The structure of the signal o ,(t) is deter-
mined by three factors: the input image, random spontaneous
excitation within neurons, and interaction with other cells of
the same or neighboring nodes in the image domain, using
connections Txla;yﬁ. The actual attribute values can be read
off the fluctuating signals as time averages, s., = (0.4(t))t,
where the average (-); is taken over a time interval shorter
than the presentation time of the image.

Binding between neurons is encoded in the form of temporal
correlations Cf,.. 5 = (01,0} 5):. These correlations are in-
duced by the excitatory connections within /. The key feature
introduced with such correlations is a higher-order neural
coding scheme [5] as opposed to first-order coding schemes
(mean firing rates) used in conventional neural networks.

Four types of bindings are relevant for the task of object
recognition and object representation: i) binding all those
nodes and cells together that belong to the same object (seg-
mentation); ii) expressing neighborhood relationships within
the image of the object (done with the help of connections
Téa;x, 5 With = # 2'); iii) bundling individual feature cells
within one node into a jet, thus avoiding conjunction errors
between features present in different locations (done with
the help of connections T;’a;w within a node); iv) binding
corresponding points in image graph and model graph to each
other (for which the 77 connections are important).

The basic mechanism of the Dynamic Link Architecture
then is as follows. In addition to the connection parameter T,
between two neurons? i and J, there is a dynamical variable
Jij. Only the J-variables play the role of synaptic weights for
signal transmission. The T-parameters merely act to constrain
the J-variables (for instance as 0 < J;; < Tj;). The T-
parameters may be changed slowly by long-term synaptic
plasticity. The connection weights J;; themselves are subject
to a process of rapid modification (taking place in fractions of
a second). The weight J;; is controlled (in a way similar to
Hebbian plasticity) by the signal correlations C;; = (0;0;)4
between the neurons ¢ and j: negative C;; lead to a decrease,

2The index i stands for both position index z and feature index « of neuron
(z, ).
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positive C;; lead to an increase of J;;. In the absence of any
correlations between the two nodes, J;; slowly returns to some
resting value JZ‘; a fixed fraction of T5;.

Crucial for the Dynamic Link Architecture is a process
of rapid network self-organization. This process is based on
a positive feedback loop: A network with a given set of
connectivity variables J;; supports an activity process. This
is characterized by strong correlations C;; between strongly
connected nodes ¢ and j. In turn, strong correlations between
nodes lead to strengthening of their connections, closing the
loop. Certain constellations of links cooperate with each other
in establishing correlations, and consequently in reinforcing
themselves. In order to avoid certain instabilities, the positive
feed-back loop must be complemented by a competition
mechanism between the J;; (which can be achieved in a crude
but effective way by keeping the number of links into or out
of a node constant).

The positive feed-back loop leads to a run-away situation
which can change the connectivity state .J;; profoundly and
on a fast time scale, eventually stabilizing certain connectivity
structures that maximize cooperation and minimize compe-
tition between links. Let us call such self-organized struc-
tures ‘“‘connectivity patterns.” Among connectivity patterns
there is a number of useful structures. A large network can
spontaneously decompose into smaller blocks—segments—
, a process that is important for scene segmentation [6],
[71, [8], [9], [10]). Another type of network pattern has the
form of two-dimensional graphs with short-range connections,
just as are needed for the representation of images. Finally,
network self-organization can activate as connection patterns
those composite graphs that are formed by linking all pairs
of corresponding nodes in two identical graphs. This latter
process is fundamental for the application dealt with here.

C. Object Recognition with Dynamic Links

Attributed graph matching has often been discussed and
advocated in the context of object recognition. Our pattern
recognition system is based on a special form of attributed
graph matching which resembles elastic matching [11], [12]:
an attributed graph in the model domain, encoding an object,
is locally distorted to cope with deformations and changes in
perspective. In the mathematical literature, the relation to be
established in graph matching is precise isomorphism. This is
too restrictive for the purposes of object recognition. Here, a
somewhat less rigid notion of equivalence between graphs is
more appropriate: Two graphs are “approximately identical”
if there exists an approximate neighborhood-preserving and
feature type-preserving mapping between almost all nodes of
I and M.

We will give here a qualitative description of the particular
process by which elastic graph matching takes place in the
Dynamic Link Architecture. If there is a stored model graph
M that is identical or approximately identical to a part I of
the image domain, then the graph dynamics have to find and
selectively activate the subgraph composed of I, M and the
one-to-one connections between corresponding points in I and
M. This task can be divided into three different aspects: 1)
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group and selectively activate the nodes in the subgraph [
of the image domain (segmentation), ii) identify and activate
the nodes and links in the subgraph M in the model domain
(retrieval of a connection pattern from an associative memory
for connection patterns), iii) pare down the many-to-many
connections between nodes with similar features in I and M
to a consistent (i.e., topology-preserving) one-to-one mapping.

The first aspect amounts to figure-ground segmentation,
which can be achieved in part without reference to the model
domain, simply by binding nodes z, x’ with similar feature
vectors (jets) J! and JII, together, such nodes being likely to
lie within the same object. In such a way, nodes within parts
of the image corresponding to one object tend to synchronize
their activity, while nodes between different image segments
tend to desynchronize and so break their dynamic links. This
principle has been exploited and proved to be effective in a
number of simulations [6]-[9].

The second of these processes, retrieval of a graph from an
associative memory for graphs, has been demonstrated before
[3], [13], [14]. The third process, paring down many-to-many
connections between topological connectivity patterns to one-
to-one connections, has been studied extensively, both in com-
puter simulations [15], [16] and analytically [17]. Essential for
this process are events with simultaneous activation of a block
of neighboring cells in / and a block of neighboring cells in
M, in corresponding positions. All these cells have potentially
strong connections among themselves, favoring such double-
blocks over other combinations of cells.

A system based on these principles will possess translational
invariance, since, according to construction, the set of TIM_
connections between a graph I and a graph M is independent
of the position of I in the image domain and depends only
on the correspondence of feature types in I and M. More
generally, further invariances like scale or rotational invariance
can be implemented (for an algorithmic version see [18]) by
extending the meaning of “feature correspondence” in the
construction of the 7'M -connections: if, e.g., scale changes
are to be accommodated, feature correspondence has to allow
for connections between features encoding the same quality on
different scales. These connections then allow for the matching
of similar graphs, where the image is a scaled version of the
model.

It should be emphasized here that the three processes i)—iii)
described above cannot be carried out sequentially and have
to happen in an interlaced fashion, each process needing the
partial results of the others. The Dynamic Link Architecture
has the potential to achieve this, because the different types
of connections (image-image, image-model and model-model)
are treated equivalently and can cooperate locally.

III. THE ELASTIC GRAPH MATCHING ALGORITHM

We now come to a concrete implementation, which will
specify all detail left open in the abstract description of
the previous section. A literal, fully neural realization is not
adapted to current computers, and our actual algorithm (see
also [4]) is designed for efficient use of available arithmetic
processors.
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The success of our system rests to a large extent on the
particular way in which we use graphs to represent form.
Vertices are labeled with collections of features that describe
the gray-level distribution locally with high precision and more
globally with lower precision, providing for great robustness
with respect to deformation. Edges are labeled with metric
information on the relative position of vertices. During graph
comparison, a parameter specifies the precision with which
metric information is to be preserved.

In a nutshell, our system works like this. A set of feature
vectors over a dense grid of image points is formed, the
feature vectors being based on Gabor-type wavelets. During
storage, sparse model graphs are formed and are labeled with
jets from a rectangular subgrid centered over the object to
be stored. During recognition, matching takes place by the
adaptive formation of a sparse image graph to best match a
given model graph. The matching process is based throughout
on one-to-one links between vertices in the model graph and
the image graph. The process of image graph formation is
controlled by a cost function which favors similarity of jets
attached to corresponding vertices and which penalizes metric
deformation. The process is repeated for every stored model
graph, and the match with the lowest cost is identified as the
model recognized.

A. Image Processing

Let I(Z) be the gray level distribution of the input image.
Our preprocessing then starts with a linear filter operation,
which can be written as a convolution of the image I with
a family of kernels 1. The parameter k determines the
wavelength and orientation of the kernel ;.. The operator W
symbolizes the convolution with all possible k:

(WI) (E, 1:'6) = /’(/JE (20 — @) I (%) d®x = (Vg * 1) () -

(1)

We start with the definition of the kernels 1;; in image

coordinates. They take the form of a plane wave restricted
by a Gaussian envelope function:

Yp (L) = 2P|~ 3 [exp (zk‘x) —exp (—o /2)} .
2)
The first term in the square brackets determines the oscillatory
part of the kernel. The second term compensates for the dc-
value of the kernel, to avoid unwanted dependence of the filter
response on the absolute intensity of the image. For sufficiently
high values of o the effect of the dc-term becomes negligible.
The complex valued 1;; combine an even (cosine-type) and
odd (sine-type) part (see Fig. 2).
The filter response of ¢ in Fourier space is given by

(Fup) (Ro)
o2 (ks - ;;')2
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(b

Fig. 2. The shape of a wavelet. (a) The real part (cosine phase) for |E| =
0.72, ¢ = 45°. (b) The imaginary part (sine phase). All kernels have the
same shape except for size and orientation.

where F denotes the Fourier transform. The first Gaussian
centered at the characteristic frequency k provides a bandpass
filter. The second exponential removes the dc-component of
%z . Equation (3) does not normalize the energy picked up
by a kernel in the convolution. Consequently, this energy
will be proportional to |k|2. D. Field [19] noted that the
power spectrum of “natural images” decreases like 1 /|E |2. The
energy in the resulting components of our image transform
should therefore be roughly independent of |E |, an assumption
which we have confirmed for our images. This property is
important for matching and had been enforced rigidly in earlier
versions of our system [4].

The 1);; form a family that is self-similar under the applica-
tion of the group of translations, rotations, and scalings. The
family is also known as “Gabor-based wavelets”. The wavelets
are parameterized by the wave vector k, which controls
the width of the Gaussian window and the wavelength and
orientation of the oscillatory part. The parameter o determines
the ratio of window width to wavelength, i.e., the number of
oscillations under the envelope function.

The Gabor-based wavelets seem to be a good approximation
to the sensitivity profiles of neurons found in visual cortex
of higher vertebrates (see, e.g., [20]). There is evidence that
those cells tend to come in pairs with even and odd symmetry
(see [21] and references from [19]), similar to the real and
imaginary parts of (2). In the choice of the actual values of
relative bandwidth o and the sampling density of k, which
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are closely related, we diverged, however, somewhat from
biological findings in order to achieve better recognition
(see Section III-H). Research on this point is ongoing. The
convolution (1) is evaluated on a sampling grid of both the
spatial domain (&) and the frequency domain (E), as discussed
in the next section and Section III-H.

B. Vertex Labels

In order to derive suitable vertex labels for our graphs
from the wavelet transform we had to overcome the following
problem: it is known that sharp edges are especially important
locations for object recognition. The Gabor-based wavelets
respond strongly to edges if the direction is perpendicular to
their wavevector k. But when hitting an edge, the real and
the imaginary parts of WI oscillate with the characteristic
frequency instead of providing a smooth peak for matching.
To remedy this we abandoned the linearity of our transform
and used the magnitude, i.e., the absolute value of the complex
response. The magnitude provides a monotonic measure of
image properties, i.e., “there is an edge present at position
z.” Following Fourier terminology we call this quantity the
“root of a local power spectrum.” It is a positive-valued real
function of & attached to every point of the image domain. To
generate a local description of an image we sample W at five
logarithmically spaced frequency levels (see Fig. 3) and eight
orientations indexed by v € {0,---,4} and p € {0,---,7}:

cos @,

where f is the spacing factor between kernels in the frequency
domain. We have investigated values of f = 2 (ka0 = 7/2)
and f = /2 (with various Valu_t?s for k,q2, see Section I1I-H).

The magnitudes of (WI)(k,,,Zo) form a feature vector
located at &,, which will be referred to as a “jet”:

Ton (To) = ‘(WI) (EW fo)‘ . (5)

As part of elastic graph matching, the similarity of pairs
of vertex labels has to be evaluated. After some experiments,
we settled for the normed dot product of jets as our similarity
function. For jets J I and M in image domain and model
domain, respectively, it is defined as

Jh-gM
1T T
Being invariant to changes in jet length, S,, proved to be rather

robust with respect to the global changes in contrast induced
by varying illumination.

) with ky = kmae/f"s 6y = % )

Sy (T, TM) = (6)

C. Edge Labels

Edge labels encode information on relative position. In the
fully neural version of our system, described in Section II,
edges were just required to encode neighborhood relationships.
During the matching process, the preservation of topology
between image graph and model graph was imposed by the
constraint of neighboring vertices matching to neighboring
vertices, neighborhood being encoded by simultaneous activ-
ity. In a digital computer, we can afford to pass metric edge
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Fig. 3.  Plot of ihe sum of the Fourier transforms of all kernels, section
through the line k& = (0, k). Note that inside the critical frequency range
between 7/16 and /2 the variations are small compared to the height of
the plateau. This indicates that a bandpass-filtered version of the image could
be reconstructed from the (linear) transform with good accuracy.

information between the graphs to be compared. We have
labeled edges between vertices &; and &; with the Euclidean
distance vector:

-

Ny =T — T, (i,5) € E, @)

where E is the set of edges in the image or model graph. The
edge labels of the image graph are compared to the corre-
sponding ones in the model graph by a quadratic comparison
function

S (Al

N M NI N M2
iijij) = (Aij - Aij) . (®)
In our simulations we have tried different edge sets F, in
particular the set FEcompiete Of all possible connections and the
set E,,,, containing the (four) next neighbors of each node.
Most of our results have been obtained with the latter, which

is better suited for handling local distortions.

D. Elastic Graph Matching

Elastic matching of a model graph M to a variable graph
I in the image domain amounts to a search for a set {z!} of
vertex positions which simultaneously optimizes the matching
of vertex labels and of edge labels. We evaluate the quality of
a match according to the cost function

Ctotal({xl‘l}) = ACe + C,
= XY SBL LAY =D S.(T @), T,
(i,J)€E =%

€))

which is a linear combination of an edge term and a vertex
term. The coefficient A\ controls the rigidity of the image
graph, large values penalizing distortion of the graph I with
respect to the graph M. The graph rigidity can even be varied
dynamically during optimization, a strategy we use in our two-
stage optimization process as described below.
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An object to be memorized is extracted from an image as a
model graph by placing a rectangular grid of points over the
object and by recording the corresponding jets. Our images
have 128 x 128 pixels with 256 gray levels, our grid had 7
x 10 points spaced by 11 pixels (8 x 10 points for the office
items). For more details see below, Section III-G.

To compare stored model graphs with current image data,
a two-stage optimization process is performed, varying the
image graph to minimize the cost Ciota Of its match to the
model. During the first stage of optimization, the image graph
is shifted while keeping its form rigid. This corresponds to the
limit A — 00 in Cyota). To initialize the process, the shape of
the model graph is positioned arbitrarily in the image plane
(e.g., centered, or in the lower-left corner). The rigid graph
diffuses with a given maximum step size (e.g., 10 pixels). After
each step, the total cost Cota = Cy = — Ziev S, is computed
and the new grid position is accepted if it reduces Cipta1. Since
all of our images contain just one object, this global move
procedure is able to position the graph on that object. The total
cost surface Cyiota) correspondingly shows just one pronounced
minimum (see Fig. 4), even if the graphs I and M belong
to two different objects. A more sophisticated segmentation
procedure will be required for images with several candidate
objects.

Our simulations show that this first stage is very robust. It
already works using only the lowest frequency band (center
frequency 7/8, width o = 27) of the jets. Even small subsets
of the 70 vertices and only a few iterations (< 50) are sufficient
to position the graph.

During the second stage of the matching procedure the
rigidity parameter A is set to a finite value to permit small
graph distortions and the vertices in the image domain can
diffuse: they are visited sequentially and in random order
and are shifted by a random vector below a preset maximum
length. The update procedure terminates when a set of vertex
positions {z!]i € V} has been found that constitute a local
minimum of Ciota (see Fig. 6).

Both optimization stages correspond to a simulated anneal-
ing procedure at zero temperature. As shown in Fig. 5, the
local jet potential is also smooth enough to guarantee a straight
descent to the minimum. Each stage is terminated once a
predefined number of trials have failed to improve the cost
value.

E. Complexity Considerations

Many researchers feel that the computational complexity
of attributed graph matching is prohibitive. Their argument is
mainly based on the NP-completeness of the general subgraph
matching problem [22]. However, this worst case argument is
not applicable (and convincing) for two reasons: i) pattern
recognition problems like the one addressed here are solved
satisfactorily in almost all situations if good approximations
to the best matching solution can be found for the average
instance. In particular, we do not require to find the globally
optimal solution in the hardest instance which makes the gen-
eral subgraph matching problem intractable. Neural network
systems are especially designed for an efficient search of aver-
age case approximations due to their stochastic and analogue
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Fig. 4. Global field potential. (a) Contour plot of the total cost of an object
graph compared with an undistorted image graph against its location. Both
graphs are derived from the same image. (b) The same graphs extracted from
different faces. The minimum of this potential gives the rough location of the
face in the image. (c) Same potential as (b), but only the lowest frequency
level is evaluated. The second minimum is an echo introduced by the wrap-
around inherent in the FFT. Due to the fact that our starting grids do not
transgress the image boundary we are safe from getting caught there.

nature [23]. Furthermore, ii) the combinatorial explosion of
possible matching solutions is dramatically reduced by the
constraint that nodes are distinguishable by their attributes
and that we are mainly dealing with planar or other low-
dimensional graphs (see, e.g., [24] for a discussion of efficient
algorithms). The hierarchical representation of our image
data suggests that the average running time of our matching
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(b) (©)

Fig. 5. Local field potential. (b) shows the comparison of a single jet [cross in
image (a)] with all the other jets in the same image (gray level proportional
to similarity). In (c) the same jet is compared to an image with the same
person looking 15° to her right. After the jets are positioned roughly in the
first stage, these local potentials are minimized for each model jet with edge
costs as a constraint. Note that the potential is smooth near the minimum. The
numerous secondary minima do not hurt because the jets have been brought
close to their final location in the first stage of the matching.

algorithm scales linearly with the number of resolution levels
which translates into a logarithmical scaling behavior as a
function of the image size. Rapid convergence times for our
algorithm can also be expected from the smooth cost surface
as shown in Fig. 5. Local minima which dramatically com-
plicate hard optimization problems (as the travelling salesman
problem) do not slow down our diffusion-type graph matching
procedure. The actual small convergence times we experience
with full-scale images prove that scaling with image size is
not a problem.

F. Hardware Implementation

The system as described in the previous section requires
a large amount of computing power. However, its design is
highly data-parallel, and it is therefore easily implemented on
parallel computers.

We use a system based on the transputer, a microprocessor
with integrated support for a message-passing, distributed
memory MIMD architecture [25]. Our machine consists of 23
transputers, one of which hosts the development system, one
is a combined frame grabber/graphics display, and the others
are used as a processor farm. We programmed in occam, an
implementation of the Communicating Sequential Processes
model [26]. One of the advantages of this language is the ease
with which the real-time parts of the system (e.g., control of
the frame grabber) can be implemented. It also permits very
good exploitation of the concurrency inherent in the hardware
(overlap of computation and communication). Parallel parts
of our program reach efficiencies between 0.75 and 0.90 on
21 processors.
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(@) (b)

Fig. 6. (a) Example of a stored object, represented by a model graph in the
form of a rectangular grid. The vertices are labeled with jets. The overlayed
photograph is the one used to store the object. (b) Image that was presented
to the system. Graph matching is initialized with an undistorted copy of the
object graph. This graph is then first positioned by “global moves,” and it is
then modified by individual jet diffusion. The grid shows the graph which was
accepted as the best match, characterized by Ciota) = —67.0 (the possible
optimum for identical images is —70.0).

The convolution of a 128 x 128 pixel image with 40 wavelet
filters requires less than 7 s. Comparison of an image to
a stored object takes between 2 and 5 s on one transputer,
depending on parameters. A recognition run, comparing one
image to a gallery of 87 stored objects, thus takes about 25 s.

G. Acquisition of Image Galleries

In order to test our program on a large number of images, we
acquired a series of images from 87 persons and from a small
set of office items. They were obtained with a CCD camera
providing a standard video signal, and digitized at 640 x 512
pixels with 8 bits of resolution by our transputer-based frame
grabber. A section 512 pixels square was then low-pass filtered
and decimated down to 128 x 128 pixels, and was stored on
disk.

For each person we acquired three images in a standardized
setting with constant lighting and magnification factor (see
Fig. 7 for examples). Due to the automatic gain control of
our camera, however, some differences in contrast level were
introduced, for which we compensated to a certain degree by
stretching the gray-level histogram of each image.

Our model domain was formed by storing a separate model
graph for one standard image per person. The graph was
formed by placing a square grid over the object. The grid
had 7 x 10 points (8 x 10 for the office items) with a spacing
of 11 pixels between neighbors. For a single first image this
placement was done by hand. For all subsequent images the
placement was done by matching the image to the first graph in
the model domain by the global move step (A = oo) described
in Section III-D.

H. Parameter Settings

Hard boundaries for image resolution as given by Nyquist’s
theorem result in 7 octaves for our 128 x 128 images. Our
Gaussian envelope functions allow only for about 5 octaves
to be investigated without aliasing. The maximum frequency
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Fig. 7. Examples of the images used. Altogether, four complete galleries
of 87 people were taken. (a), (e), (g) Images from standard image database.
Subjects were asked to look straight into the camera. (b) In gallery 1 they
looked 15° to their right. (c), (f), and (h) In gallery 2, subjects were asked for
a different facial expression of their own choice. (d) One of the office items.

must be chosen such as to avoid strong wrap-around effects
in the frequency space representation of the transformation
kernels. This restricts us to 5 octaves with k., the center
frequency of the highest band, at 3w/4, where 7 is the
bandlimit. However, for our images the actually useful band
is much narrower. An object is never as wide as the whole
image and single pixels are quite noisy, so that only the range
between 7/32 and 7/2 contains information useful for object
recognition. To cover this band a trade-off has to be made
between the number of frequency levels in one jet and the
number of vertices in the graph.

We investigated two values for the spacing of resolution
levels, octaves and half-octaves. In the case of octaves, only
the choice of ky.x = 7/2 is sensible, as the kernels are very
wide in frequency space. We used three levels and a grid of
9 x 13 vertices. For the case of half-octaves, we used five
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levels, a 7 x 10 grid, and kmax = 37/4,7/2, or w/3; of these
choices, 7/2 yielded the best results, by a slight margin. Some
comparison runs with a preliminary set of parameters indicated
that the choice of octaves does not lead to optimal results,
probably due to the fact that we can only use a small number
of levels, with the additional problem that the kernels overlap.
The bulk of our results have been obtained with half-octaves
and Kpax = /2.

The parameter A in (9) constrains the deformation of
the graph, a smaller value being more permissive of object
distortion in the image. On the two galleries we used (see
below), we investigated a range of 1076 < X\ < 1072, All
values in the range 1076 < A < 3-107* gave good results.
The value A = 3-10~5 proved to be optimal and we have used
it for the results reported below, except where stated otherwise.

The parameters controlling diffusion should be chosen to
find a good approximation to the minimum of (9) in the
shortest possible time. For the maximum shift of a single
vertex (see Section III-D), a value of half the (original)
distance between two neighboring vertices is appropriate. The
number of failed moves before diffusion is terminated should
be set such that no further improvements occur except in rare
cases. We examined the resulting distribution of cost values for
a number of different settings of this parameter and determined
that a value of 100 was sufficient. A lower value would lead
to significant changes in final values of Ciota) and yield only
little reduction in computing time.

1. Significance Criterion

The process of comparing an image with all models stored
in a database always yields a best value for Ciqta), ifrespective
of whether or not a corresponding image of the same person is
contained in the database. For a recognition mechanism to be
of use, we must find some criterion to evaluate the significance
of a match.

Our results show that the answer can, with some reliability,
be extracted from the statistics of the series of all Cigtal
values. Let the series C; denote these values ordered in ascend-
ing sequence, i.e., C; < C;11 Vi € {0,1,---, N — 1}, and M;
be the model which gave the result C;. For the recognition to be
significant we expect Cy, which corresponds to My, the “can-
didate” model, to be clearly distinct from all the other values.
This has been formalized as follows: If m is the mean and s the
standard deviation of the series {C; |i =1,2,---, N — 1} (not
containing the candidate model), then we define the criteria for
significance and acceptance of a match:

Ci1—Co

where 1= ——
S

—C

Ky = [r1 > t], (10)

Ko = [rg >ta] , where rg:= 11

with parameters ¢; and t. The criteria can be combined to
improve performance further:

K= [k1V Ka] . (12)
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Fig. 8. Histograms for significance of recognition. (a) 71 as defined in (10).
(b) ro as defined in (11). Solid line: the correct model is in the database.
Dashed line: the correct model is not in the database. Ideally, the distributions
should not overlap. The upper limits of the dashed histograms were chosen
as acceptance thresholds in order to rule out all false positive recognitions.

Of course, we will expect a tradeoff between ruling out all
false recognitions and accepting all correct ones. Altogether
there are six cases to be distinguished:

1) A correct model was in the database, was picked as the
best match, and the match was judged significant.

2) The database contained no correct model and the best
match was rejected.

3) A correct model was in the database, was picked as the
best match, but the match was rejected.

4) A correct model was in the database, was not picked as
the best match, and the match was rejected.

5) The database contained no correct model, but the best
match was accepted.

6) A correct model was in the database but another one
was picked as best match, and the match was accepted.

Obviously, cases 1 and 2 are desirable. Cases 3 and 4 are
annoying and represent two slightly different versions of false
negatives. Cases 5 and 6 are the ones we want to avoid, since
they represent two cases of false positives.

J. Recognition Results

In order to set the parameter ¢; and to, we looked at the
density distribution of the values of r; and 7o defined in the
previous section. These distributions were obtained in compar-
ing the 88 models of gallery 1 (persons looking 15° to their
right, see Fig. 7) to the standard image database. Fig. 8 shows
the resulting histograms. We then selected thresholds such that
no false positives (case 5) resulted. The corresponding values
are t; = 1.37 and t5 = 3.50.
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TABLE I
RESULTS OF COMPARING TWO GALLERIES (GAL. 1, HEAD ROTATION BY
15°; GAL. 2, GRIMACES; SEE SECTION III-G) AGAINST THE STANDARD
IMAGE DATABASE OF THE SAME PERSONS. ALL ENTRIES ARE
EXPRESSED AS PERCENTAGES. COLUMNS CORRESPOND TO THE SI1X
CASES EXPLAINED IN SECTION III-T

Gallery Criterion Case 1 2 3 4 5 6
K1 86 100 11 2 0 0
gal. 1 K2 83 100 15 2 0 0
K 88 100 10 2 0 0
K1 79 100 17 3 0 0
gal. 2 K2 80 100 16 3 0 0
K 84 100 13 3 0 0
Fig. 9. (a) Example of a stored picture from the database of office items.

The rectangular grid shows the positions of the stored jets. (b) A different
view of the same object, with the deformed image graph after matching to
the correct model graph.

Table I summarizes the results for two galleries, containing
88 and 87 models, respectively. Note that although some
matches are declared not significant because of our desire
to eliminate false positives, most of these actually found the
correct object. Furthermore, just eliminating case 5 also avoids
all instances of case 6. In the case of gallery 2 (grimaces),
all instances of case 4 result from rotations of the image in
the image plane. Note that the thresholds ¢; and ¢ obtained
from gallery 1 are also effective for gallery 2. None of the
results reported have been distorted by deliberately leaving
out images.

In order to demonstrate that our system is by no means
specialized to the recognition of faces and can equally well
cope with other objects, we investigated a sample of 7 different
objects from an office environment (see Fig. 9 for an example).
Three different views were taken for each object. One view
of each object was selected at random for the database
and recognition performance was tested with the remaining
14 pictures. In 13 of these cases (93%) the system yielded the
correct classification, while in one case the correct database
entry was only in the second place.

The result was achieved with the parameter \ set to 1072 in
the cost function (9), corresponding to a higher deformation
penality. The need for a larger A can be understood qualita-
tively. For faces with their rich structure, jets from adjacent
image locations have a higher variability. This prevents the
vertices from moving too freely in the image plane during
the diffusion process. For office items with their large even
surfaces the variability is much lower, which would result in
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a higher deformation during diffusion. A larger value of A and
a stiffer graph is therefore more appropriate (see Fig. 9).

IV. RELATED WORK

The purpose of our study is to demonstrate and develop
the power of the Dynamic Link Architecture. Nevertheless, it
would be interesting to compare our system both conceptually
and in its performance to related object recognition systems.
However, we do not attempt performance comparisons. In the
absence of common benchmark databases these are very diffi-
cult to make. (We are prepared, however, to share our database
for such tests, and to test our system on databases provided
to us by others.) On the conceptual side, a baseline to which
our system may be compared are methods using correlation
or template matching. In the simplest version, correlation is
performed by rigidly comparing stored patterns to the image,
either directly [27] or by first comparing a small set of canon-
ical patterns (eigen-patterns characteristic for an object class)
and then treating their set of amplitudes as a global feature
vector for the recognition proper [28], [29]. These methods
have the weakness that they cannot deal even with position
invariance. Position (and size) invariance can be achieved
by pre-processing the image by taking the magnitude of the
Fourier-transform (resp., the Mellin transform) [30], [31], [32].
Systems based on the magnitude of Fourier components, how-
ever, have the drawback of being extremely sensitive to image
distortions, as produced by perspective transformations, for
example. An attempt (A. Goldstein, personal communication)
to recognize faces from our galleries with the help of pattern
correlation in all possible relative positions, evaluated with
our significance criterion, had a recognition rate of 48% for
gallery 1 (15° head rotation) and 51% for gallery 2 (grimaces).

Neural models based on graph matching have been pro-
posed which represent each potential link between image and
model by a neuron [14]. Topology constraints can then be
implemented in a soft fashion by connections between those
neurons. Simic ([33], [34]) has analytically compared that
class of graph matching methods to another one that is called
elastic matching and that includes our type of approach. He
found that graph matching systems that enforce constraints
strictly (as does elastic matching) are in their scaling behavior
vastly superior compared to networks that represent links
(vertex pairings) explicitly by neurons.

V. DISCUSSION

The Dynamic Link Architecture derives its power from
a data format based on syntactically linked structures. This
capability has been exploited here on three levels. Firstly, when
an image is formed in the image domain, the local feature
detectors centered at one of its points are bundled to form a
composite feature detector (called a jet). A composite feature
detector can be shipped to the model domain and can be com-
pared as a whole to other composite feature detectors there.
This frees the system from the necessity to train new individual
neurons as detectors for complex features before new object
classes can be recognized, a major burden on conventional
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layered systems. Secondly, links are used to represent neigh-
borhood relationships within the image domain and within
the model domain. Neural objects thereby acquire internal
structure, and their communication can now be constrained to
combinations with matched syntactical structure. This forms
the basis for elastic graph matching. Finally, the dynamic
binding between matched graphs, which in the present context
is an unimportant by-product of recognition, will be useful to
back-label the image with all the patterns recognized and to
build up representations of composite objects and scenes.

This paper describes two versions of the system for object
recognition in the Dynamic Link Architecture. One is fully
neural and is described in qualitative form to convey the idea
(Section II); the other is optimized for ease of implementation
on current digital hardware, and is formulated in full detail
(Section III). The latter falls short of being fully neural in
detail, but it is computationally efficient and avoids some of
the complexities of nonlinear dynamics. Although we have
chosen human faces as objects to test the performance of our
system, we made no specific efforts to optimize its structure
just for that application (see Fig. 9), in order to retain its full
conceptual generality.

Our system can deal successfully with a large gallery of
objects, recognizing them under different circumstances like
distortion and rotation in depth. In all retrieval operations the
rate of false assignments was below 5%. Furthermore, we
have determined a clear criterion on the significance of the
recognition process. With this significance criterion all false
assignments were rejected and at the same time no image was
accepted if its corresponding model was temporarily removed
from the gallery. This means that the capacity of the gallery to
store distinguishable objects is certainly larger than its present
size. No limits to this capacity other than a linear increase in
computation time have been encountered so far.

This large capacity could be used in a further step to reduce
the rate of about 15% where the system failed to identify a
stored model: if, for each object, a small number of different
views (e.g., from a different perspective or under different
lighting conditions) are stored in the model domain as graphs,
then graph dynamics can interpolate between and extrapolate
from these different views, at the same time keeping the
rejection capability constant.

Our object recognition system admittedly is processing-
intensive. Most of the time is spent on image transformation
and on optimizing the map between an image and individual
stored models. Processing demands beyond image transfor-
mation grow linearly with the size of the model gallery. This
would not slow a system with fully parallel hardware, but it
would still be expensive. This expense can easily be reduced
in future systems by arranging models in a decision tree
and by searching this tree in a sequential fashion. Such a
strategy would reduce the processing costs in the search to
a scale logarithmic in the number of models. Moreover, early
identification of object classes could serve to relabel image
points in terms of object-class specific attributes and could
thus enormously speed up later matches.

The general system described in Section II inherently gen-
eralizes over object position, due to the structure of feature
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specific connections between the image and the object domain.
Because Gabor-based wavelets are designed to be robust with
respect to small distortions, including changes in size and in
orientation, the system also generalizes over such changes.
Since the wavelet kernels are dilated and rotated versions of
each other, it would also be possible to let these connections
fully generalize over size and orientation. This would lead,
however, to dense connections between nodes and less spe-
cific single connections between features, and elastic graph
matching would become difficult or impossible. An alternative,
which we are pursuing at present [18], is to introduce global
parameters for orientation and size and let these diffuse during
the matching, in the same way the grid position is diffusing in
the first step of the present matching procedure. It is interesting
to note in this context that the reaction time of the human
visual system grows for objects in unexpected orientations.
This suggests that our visual system does not have invariance
to orientation to the same degree to which it has translation
invariance.

A somewhat more complex issue is invariance with respect
to perspective movement. Our system is based on a two-
dimensional representation. Essentially different views of a
three-dimensional object have to be recognized with the help
of multiple views. It is, however, mandatory that recognition be
robust with respect to small changes in perspective. A system
based on Gabor-based wavelets and topological mapping is
ideally suited for this, as we have demonstrated here.

Some of the shortcomings of the present system can be over-
come with the help of natural extensions. For instance, visual
segmentation can be achieved with the help of mechanisms
that induce temporal signal correlations within segments and
anticorrelations between segments [7]-[9], [35], and composite
objects and scenes can be represented in a hierarchically
structured system where the nodes of graphs are themselves
smaller graphs to some depth of recursion. Once developed
to its full potential, the Dynamic Link Architecture may thus
prove to be a natural basis for the implementation of a broad
range of interesting cognitive processes.
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ERRATA
This electronic version corrects the following errors in the
printed original:
o In equation 4 the complex exponential should be a 2-
dimensional vector.
o In the third paragraph of Section III-D (page 304), the

equation should read “Ciotal = Co = — D _,cy So”
o In Fig. 8, parts (a) and (b) are interchanged in the printed
version.



