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Abstract

The medial temporal lobe (MTL) is well known to be essential for declarative memory.

However, a growing body of research suggests that MTL structures might be

involved in perceptual processes as well. Our previous modeling work suggests that

sensory representations in cortex influence the accuracy of episodic memory

retrieved from the MTL. We adopt that model here to show that, conversely, epi-

sodic memory can also influence the quality of sensory representations. We model

the effect of episodic memory as (a) repeatedly replaying episodes from memory and

(b) recombining episode fragments to form novel sequences that are more informa-

tive for learning sensory representations than the original episodes. We demonstrate

that the performance in visual discrimination tasks is superior when episodic memory

is present and that this difference is due to episodic memory driving the learning of a

more optimized sensory representation. We conclude that the MTL can, even if it

has only a purely mnemonic function, influence perceptual discrimination indirectly.
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1 | INTRODUCTION

We use episodic memory to remember events that we have experi-

enced ourselves (Tulving, 1972). However, while we may remember

the basic events and their sequential relation in an episode, we cannot

recall the detailed sensory information that we experienced during

the episode. Indeed, experimental studies have found that episodic

memory in humans preserves mostly the gist of the experienced epi-

sode and few of the details (Koutstaal & Schacter, 1997; Sachs, 1967).

We have suggested previously that this property of the episodic

memory system results from the fact that episodes are stored in terms

of a higher order representation of sensory input and not the sensory

input itself (Cheng, Werning, & Suddendorf, 2016; Fang, Demic, &

Cheng, 2018; Fang, Rüther, Bellebaum, Wiskott, & Cheng, 2018),

which is compatible with the indexing theory by Teyler and DiScenna

(1986). Moreover, this is reminiscent of Tulving's SPI model, which

posits that sensory information has to pass through the semantic sys-

tem before being stored by the episodic system (Tulving, 1995). SPI

stands for serial encoding, parallel storage and independent retrieval,

which describes the phase-dependent information flow among the

perceptual, semantic, and episodic components.

This higher order representation is generated during the

processing of sensory information, as the information is high-

dimensional and has to be represented by patterns of neural activity

in cortex. Due to biophysical constraints (Ganguli & Sompolinsky,

2012), for example, metabolic costs (Lennie, 2003) or the space

required for neuronal connections, the dimensionality of the cortical

representation is reduced along the stream of sensory processing

(Beyeler, Rounds, Carlson, Dutt, & Krichmar, 2019). At every stage of

processing the sensory representation has to contain meaningful fea-

tures that are informative of the content in the input. The nature of

these features can be learned from statistical regularities in the input.
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For example, consider the sensory representation of the visual system,

which has been shown to process information hierarchically (Felleman &

Van Essen, 1991). In primary visual cortex, input is represented by sim-

ple and complex cells (Hubel & Wiesel, 1959), hence represented by

location, orientation and spatial frequency of elements in view. On the

other end of the abstraction spectrum, in inferior temporal areas, shape,

and identity of entire objects are represented (Gross, 1992).

The higher-level visual areas directly project to medial temporal

lobe (MTL) structures, which are well known to be crucial for episodic

memory (Scoville & Milner, 1957; Squire & Zola, 1998). We have pre-

viously suggested that episodic memories are best represented by

sequences of neural activity patterns (Cheng, 2013; Cheng & Wer-

ning, 2016; Cheng et al., 2016). This representational format seems

well supported by the hippocampus, which has been shown to be

important for storing and retrieving sequences (Agster, Fortin, &

Eichenbaum, 2002; Fortin, Agster, & Eichenbaum, 2002). Specifically,

previous modeling work has suggested that the recurrent network in

the hippocampal region CA3 encodes sequences during the experi-

ence and replays them during retrieval (Bayati et al., 2018; Buhry,

Azizi, & Cheng, 2011; Cheng, 2013; Levy, 1996; Lisman, 1999). In

summary, we have suggested that a perceptual-semantic representa-

tional network in the neocortex provides higher order representations

of the sensory information, while the episodic memory trace only

stores the gist of scenes and their temporal evolution.

According to the traditional view, the MTL exclusively subserves

mnemonic processes (Squire, Stark, & Clark, 2004; Squire & Zola-Mor-

gan, 1991). However, a growing body of results from the last two

decades suggests that the MTL may also play a critical role in high-level

perception (perceptual-mnemonic hypothesis; Buckley, Booth, Rolls, &

Gaffan, 2001; Bussey & Saksida, 2007). Most of these studies apply

variants of two basic types of perceptual tasks in lesion and fMRI

experiments to test that hypothesis (Graham, Barense, & Lee, 2010).

1. Discrimination tasks, in which participants have to compare images

and judge similarity. Lee et al. applied a morphing technique to

generate image pairs with five different similarity levels containing

faces, objects, natural scenes, or art (A. C. H. Lee, Fischer, et al.,

2005), but see (Shrager, Gold, Hopkins, & Squire, 2006). Partici-

pants had to decide which of the two images is more similar to a

reference image. Patients with broad MTL damage (including hip-

pocampus and perirhinal cortex) were strongly impaired in scene

discrimination and less so in face and object discrimination.

Patients with specific hippocampal damage were only impaired in

scene discrimination and only slightly.

2. Oddity judgment tasks, in which the participant has to pick the odd-

one-out of a number of shown objects. These objects can be simple

geometrical shapes, faces, familiar or novel objects, artificial scenes,

often shown from different angles. Buckley et al. (2001) conducted

such an oddity judgment study with monkeys and found that subjects

with perirhinal cortex lesions were impaired. While Stark and Squire

(2000) were not able to replicate this result in humans, Lee, Buckley

et al. (2005) found similar impairments in patients with MTL damage,

especially when the stimuli were shown from differing viewing angles.

A different task worth mentioning was used in a study by A. C.

H. Lee and Rudebeck (2010), in which participants had to judge

whether or not a line drawing of a novel object is geometrically possi-

ble. The results show that, firstly, a patient with broad MTL lesions

performed poorer on the task than controls. Secondly, fixation pat-

terns of the MTL patient, when responding incorrectly, differed from

those of controls and hence the authors concluded that a deficit of

visual processing and not a memory deficit is responsible.

Overall, the studies on MTL function in visual perception have

been interpreted to suggest that the perirhinal cortex is involved in

the visual perception of complex objects and faces by processing

complex conjunctions of features, and that the hippocampus is

involved in the visual processing of scenes, although there are alterna-

tive theories and contradicting evidence.

Based on results of a computational study and a preliminary experi-

ment, it has recently been suggested that episodic memory retrieval is

facilitated by an appropriate sensory representation (Fang, Rüther, et al.,

2018).We adopt this model and propose that, conversely, episodic mem-

ory also leads to more optimized sensory representations. We do not

aim to provide a detailed model of the MTL memory system, but focus

on how episodic memory can serve to indirectly improve perception. We

hypothesize that the sensory representations are initially learned through

sensory experience but can be improved further by replaying experi-

ences from memory, perhaps during a process of systems consolidation

(Cheng, 2017). Using these sensory representations, we model a simple

visual discrimination task and show that, after training with episodic

memory, performance is better than without episodic memory. We dis-

cuss the modeling results with respect to the studies mentioned above,

and explain how the model can account for experimental results.

2 | METHODS

The model consists of three components: Sensory input, the represen-

tational system, and the episodic memory system. In the following, we

first give a brief overview of the model and then provide more details

about the individual components below. For the sensory input, we use a

stream of images. We use slow feature analysis (SFA; Wiskott &

Sejnowski, 2002) to train the representational system to extract more

abstract representations of the input images. SFA is an unsupervised

learning algorithm that extracts slowly varying features (e.g., identity

and position of an object in the input) from quickly varying data

(e.g., pixel values). SFA training is based on changes of the input in time,

but the learned feature representation is extracted from a single input

image by an instantaneous function. This is consistent with the assump-

tion in our modeling framework, that semantic memory is represented

as near-instantaneous patterns of neural activity, as opposed to episodic

memory, which is represented as sequences of activity patterns that are

stored in hippocampus (Cheng, 2013; Cheng &Werning, 2016).

A sequential episodic memory system can be used to perform at

least two manipulations on the original data: (a) Episodes can be rep-

layed verbatim from memory multiple times. While the resulting data

do not contain more information than the original data, learning
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systems can profit from a simple repetition of the training data.

Indeed, neural activity in the rat hippocampus has been shown to

replay previously experienced sequences during sleep (A. K. Lee &

Wilson, 2002; Louie & Wilson, 2001) or even during periods of rest in

the awake state (Diba & Buzsáki, 2007; Foster & Wilson, 2006). Fur-

thermore, there is evidence for coordinated replay in hippocampus

and visual cortex (Ji & Wilson, 2007). (b) Episode fragments are rec-

ombined to form novel sequences that have smoother transitions than

the original episodes. It is well conceivable that the retrieval of memo-

ries leads to the retrieval of other memories that are related. Indeed,

offline hippocampal sequences corresponding to never-experienced

paths have been observed in experiments (Gupta, van der Meer, Tou-

retzky, & Redish, 2010). These novel paths were stitched together

from fragments that individually were experienced before. We

hypothesize that the novel, recombined sequences are more informa-

tive for learning sensory representations than the original episodes.

While in a biological system repeated replay and the generation

of novel sequences certainly are intermingled, we model both pro-

cesses separately in order to disambiguate the effects. In the replay

condition, the total number of training patterns is increased by repeti-

tion and the original episodes are not altered. In the novel sequences

condition, the total number of patterns is held constant, but their

sequential ordering is different from the sequences in the stored

episodes.

We do not store sensory input directly in episodic memory but a

lower-dimensional representation of it (SFAlo, Figure 1). To study the

potential effect of episodic memory on tuning sensory representa-

tions, we use a second layer of sensory representation (SFAhi,

Figure 1) that processes the output of SFAlo. The structure of the rep-

resentational system in our model can be viewed as a simplified model

of a hierarchical visual system. Before the actual experiment takes

place, SFAlo is pretrained (double dashed line in Figure 1) and then

fixed for the remainder of the study. Then SFAhi is trained on a set of

training data. These training episodes are first fed through SFAlo, with

subsequent whitening, and the resulting data are used to train SFAhi

(dashed lines in Figure 1).

There are two different instances of SFAhi, which we will com-

pare. One instance is trained directly on the output of SFAlo

(SFAhi[S]—“simple”) and the other on sequences that were stored and

retrieved from episodic memory (SFAhi[E]—“episodic”) after passing

through SFAlo. This notation is used for both memory models, verba-

tim replay and generation of novel sequences. After training SFAhi, a

set of test data is used to assess the quality of the sensory representa-

tion that the two SFAhi instances have extracted (solid lines in

Figure 1). The assessment criteria are described further below

(Section 2.4). A different set of test data is used to simulate a visual

discrimination task.

Whitening, which is performed on the output of SFAlo, is a linear

transformation that normalizes the data to have zero mean and vari-

ance one in all directions. The output of SFAlo on the pretraining data

are already whitened (Equations 2 and 3). However, because the train-

ing data are slightly different from the pretraining data, the output of

F IGURE 1 Structure of the
representational system. The diagram
depicts the information flow in the model,

illustrating how each of the three data
sets (bottom) are used in the three
different stages of the simulation. A
rhombus at the end of a line denotes that
the data are used for training the
particular module. An arrowhead indicates
that the data are fed through the module.
Pretraining: Before the actual experiments,
SFAlo is pretrained (double dashed line).
Training: Training data are fed through
SFAlo, which extracts low-level visual
features that are used to train SFAhi

(dashed lines). In our study, we contrast
two SFAhi instances. In the simple
scenario SFAhi[S] is trained on the output
of SFAlo directly, while in the episodic
scenario data are stored in episodic
memory first and then retrieved to train
SFAhi[E]. Test: Finally, the quality of the
features the SFAhi instances extract is
evaluated by feeding a set of testing data
first through SFAlo and then through SFAhi

(solid lines). For the role of the whitening
see the main text

GÖRLER ET AL. 3



SFAlo can have a mean and variance different from zero and one,

respectively, when fed with training data. In our experiments we

found that training of incremental SFA worked more consistently on

whitened data, so we included the additional whitening step. The

whitening matrix is trained on the output of SFAlo on the training data

and the same whitening matrix is used during testing.

2.1 | Sensory input

As input, we use streams of grayscale images with 30 × 30 pixels con-

taining a single object, which is either the letter “T” or the letter “L”. The

black objects with smoothed edges are moving and rotating on a white

background according to a randomwalk. The square images are represen-

ted in x- and y-coordinates ranging from −1 to 1. Changes in position and

angle are drawn from a Gaussian distribution with zero mean and a stan-

dard deviation of 0.25. Independent Gaussian noise with zero mean and

SD 0.1 is added to each pixel in each frame. Pixel values range from 0 to 1.

Each data set consists of several episodes of same length that are

strung together and presented as one long stream (Figure 2). For each

episode, the starting position and angle are randomly initialized. After

each episode, the object identity changes, that is, the two letters are

presented alternately (Figure 2). In the following, we refer to object

identity and x,y-coordinates as latent variables. While the pixel values

themselves can be directly observed, latent variables can only be

inferred from pixel values.

Pre-training and test data consist of 100 episodes of length 50.

The length and number of episodes in the training data varies

between the experiments.

2.2 | Sensory representation

A well supported hypothesis about the function of the visual system is

that it generates representations of the visual inputs that are invariant

to many transformations, for example, changes of object orientation

and position, view angle, lighting, and so on (Logothetis & Sheinberg,

1996; Rolls, 2000). SFA proposes that invariant representations are

most likely those that are varying slowly in time. Therefore, the

objective of SFA is to extract features from the input that vary as slowly

as possible. Indeed, SFA applied to sequences of moving objects natu-

rally learns a compact representation of object identity and pose

(Franzius, Wilbert, & Wiskott, 2011), akin to that found in inferior tem-

poral cortex. Experimental evidence supports the hypothesis that slow-

ness may play an important role in forming neural representations (Li &

DiCarlo, 2010). While the features being extracted by SFA on such a

high level are usually easy to analyze and interpret, namely object

identity and pose, the functions that extract the features are much

less accessible. However, on the lowest level of the visual hierarchy,

the functions can be analyzed and have been found to correspond to

complex cell receptive fields (Berkes & Wiskott, 2005). Here we use a

linear version of this model to learn plausible invariant representa-

tions of the visual input. Note that we model the representations

formed in the neocortex with SFA, not the hippocampal mechanisms,

although studies have demonstrated slowly changing neural signals

(Cai et al., 2016; Tsao et al., 2018) as well as time cells (MacDonald,

Lepage, Eden, & Eichenbaum, 2011; Pastalkova, Itskov,

Amarasingham, & Buzsáki, 2008) in the hippocampus. As opposed to

the representations generated by SFA, these are attributable to a

putative explicit representation of time in the hippocampus.

SFA finds instantaneous scalar functions that generate slowly

varying output from quickly varying input. Given a multidimensional

input x(t) and a function space F, SFA finds a set of functions {g(1)(x),

g(2)(x), …, g(i)(x), …} with g(i)(x) ∈ F, such that the output signals y(i)(t) ≔

g(i)(x(t)), 8i, minimize

Δ y ið Þ
� �

≔ _y ið Þ
� �2

� �
t

delta valueð Þ ð1Þ

under the following constraints:

y ið Þ
D E

t
=0 zeromeanð Þ, ð2Þ

y ið Þ
� �2

� �
t

=1 unit varianceð Þ, ð3Þ

y ið Þy jð Þ
D E

t
=08j< i decorrelation and orderð Þ: ð4Þ

F IGURE 2 Example input. Shown are two episodes containing four images each (top), and the corresponding relevant latent variables (object
identity and x,y-coordinates, bottom). Episodes are strung together to form one data set. The object is switched and its position is randomized at
the start of each episode, hence the latent variables exhibit a jump at the transition between episodes
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The delta value defined by Equation (1) is a measure of the slow-

ness of the signal y(i)(t). It will also be used as one of the criteria for

comparing the quality of different sensory representations. Equa-

tions (2) and (3) ensure that SFA does not generate the trivial solution

of a constant function (for which Δ = 0). The constraint in Equation (4)

ensures that SFA does not yield the same feature twice and that the

features are ordered according to the degree of their slowness, that is,

y(1)(t) has the smallest delta value and Δ(y(i)) < Δ(y( j)) for i < j.

The standard batch implementation of SFA is available from the

Python library Modular Toolkit for Data Processing (MDP; Zito, Wil-

bert, Wiskott, & Berkes, 2008). There is also an incremental version of

the algorithm (Kompella, Luciw, & Schmidhuber, 2012), which has

been shown to asymptotically reach the same performance as batch

SFA with sufficient training and has the advantage of being a more

plausible model for a biological learning system. In an incremental

learning system, samples from the training data are presented one by

one and the model parameters are updated every time a sample is

presented. No memory of the previous samples is available, only the

information stored in the model parameters of the learning system. By

contrast, all samples are available at the same time in a batch learning

algorithm and training is done once on the entire training data set.

Since we want to study the effects of memory on the learning of rep-

resentations, we have to dissociate memory from the learning pro-

cess. Hence, for the high-level sensory representation (SFAhi) we use

the incremental algorithm which does not require holding the entire

training data set in memory. The learning rate is set to 0.005, which

yielded the best asymptotic performance in our scenarios. However,

because the low-level representation (SFAlo) serves only pre-

processing purposes and remains unchanged during the experiments,

SFAlo is implemented with the batch algorithm to be sure to reach

optimal performance.

For simplicity, we operate in a linear function space (“linear SFA”),

which is sufficient to reliably extract the features of interest (position

and identity of the object). We use several identical SFAlo nodes with

overlapping receptive fields as a simple model of receptive fields in

visual cortex, as it is common in work on SFA. As illustrated in

Figure 3, the receptive field of each node of SFAlo spans an 18 × 18

pixel area of the input image and has an overlap of 6 pixels with the

receptive fields of the neighboring nodes. Thus, 3 × 3 nodes jointly

cover the image space. Each node of SFAlo generates 32 features, and

all 9 × 32 SFAlo features are strung together in a single vector. These

features are further processed by SFAhi, which is a single node of lin-

ear incremental SFA that extracts 16 features.

2.3 | Episodic memory

The training data are stored in episodic memory after passing through

SFAlo. The focus of our model is the function of a sequential episodic

memory in the formation of an optimal sensory representation and

not the functioning of the memory system itself. Therefore, our epi-

sodic memory model is highly simplified. Its sequential nature is remi-

niscent of theoretical considerations proposing that the hippocampus

holds a record of past stimuli and episodic memory recall results in a

“jump back in time” (Howard & Eichenbaum, 2013). Experimental data

indeed show that the population vector in the hippocampus changes

gradually over time and on successful memory retrieval, the popula-

tion activity at the time of encoding is reinstated (Folkerts,

Rutishauser, & Howard, 2018). While the population vector in the hip-

pocampus might encode past, present and even future to some extent

at the same time, our model is simplified to focus on the sequential

nature of episodic memory without an explicit representation of time

or context. However, recalling a past memory reinstates the activity (=

the retrieved pattern) that was present at the time of experience in

the model as well. Furthermore, since the stored patterns are SFA fea-

tures, and these features change slowly in time, the patterns in the

hippocampus change gradually at the time of experience.

When modeling storage and retrieval of episodic memory, we dis-

tinguish two different modes as mentioned above.

2.3.1 | Repeated verbatim replay of the episodes

In the simple scenario SFAhi[S] is trained on the training data con-

sisting of 100 episodes of length 50. Episodic training is modeled by

repeated training of SFAhi[E] on the same data set for up to 40 itera-

tions. In each repetition, every episode is replayed faithfully, but the

order of the episodes in the input stream is randomized. Repeated

training iterations have an impact on the representation only because

of the incremental nature of the SFA implementation we use.

F IGURE 3 Structure of the slow feature analysis (SFA) network.
The black dots represent SFA nodes. The gray patches represent the
receptive fields that partially overlap in the SFAlo network
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2.3.2 | Generating novel sequences from episode
fragments

The episodic system is represented by a highly simplified algorithmic

model for sequence storage and retrieval, which was inspired by itera-

tive retrieval from a hetero-associative network. In this model, each

episode element or pattern yi is stored individually. The sequential

information is preserved by storing a retrieval key y*i+1 pointing to the

next pattern in the episode. Hence, the information about sequential

order is only available on a pairwise basis (yi , y
*
i+1 ), not on a global

level.

Because the last element of an episode does not have a

succeeding element that could be used as a key, it is not stored as a

pattern explicitly. It is only stored as a key associated with the

second-to-last episode element (Figures 4 and 5).

Retrieval of a sequence is initiated by providing a retrieval cue

ŷt =0 to the system. The algorithm calculates the Euclidean distance of

ŷt to all patterns in memory and retrieves the one with the smallest

distance, y0 i. The key y*i+1 associated with y0 i is then used as a cue for

the next retrieval step: ŷt+1 = y
*
i+1. The process described so far is able

to retrieve episodes from memory perfectly (except for the last pat-

tern of an episode which cannot be retrieved, see above), unless two

or more patterns from different episodes are identical. Sequence

retrieval in biological neural networks, however, is subject to internal

and external noise, we therefore add a noise term ϵt�N(0, σ), σ = 0.2

to the cue in each retrieval step (Equation 5). To avoid getting stuck in

short loops during retrieval, a depression term is introduced: Every

pattern yi in memory is associated with a depression value ai that is

added to the distance to the cue during retrieval. ai is initialized with

0 and is increased by a fixed amount α every time yi is retrieved.

Depression values decay exponentially with a decay constant of 1
b .

Equation (7) defines the depression term, with ûi t+1ð Þ being a unit vec-

tor, in which the element at position it+ 1 is 1.

dt = ŷt + ϵt−y0k k, ŷt + ϵt−y1k k,…, ŷt + ϵt−ynk kð Þ Euclidean distancesð Þ
ð5Þ

it +1 = argmin dt + atð Þ index of pattern to retrieveð Þ ð6Þ

at+1 = at �e−1
b + α � ûi t+1ð Þ depression termð Þ ð7Þ

In our simulations α and b are both set to 400. This provides

enough immediate depression to avoid short retrieval loops, but the

decay still allows one pattern to be retrieved multiple times during

one simulation.

Because the last element of each episode is stored in memory

only as a key (Figure 5, empty rings), it cannot be retrieved from mem-

ory. Therefore, when cued with one such pattern, the algorithm will

retrieve a pattern that is similar to the cue, thus continuing the

sequence in a smooth manner where the input stream normally would

have exhibited a jump. These transitions are more frequent when the

stored episodes are shorter. Figure 5 visualizes retrieval from episodic

memory, contrasting episodes of length three and six. The loss of

information by not storing the last pattern of each episode is negligi-

ble because in an episode consecutive patterns are similar. Further-

more, other episodes most probably contain similar patterns as well

because of the high total number of patterns in memory (30,000 in

our simulations, see below).

Taken together, retrieved sequences differ from original episodes

due to two mechanisms: (a) Random retrieval errors. Their frequency

depends on the level σ of retrieval noise. (b) Tying together episode

fragments from memory that fit smoothly. The frequency of this hap-

pening depends on the number of episodes in memory.

We study the influence of episodic memory for episodes of dif-

ferent lengths, while keeping the total number of frames in the train-

ing data constant at 30,000. The number and length of episodes in

the training data varies from 15,000 episodes of length two up to

50 episodes of length 600. From episodic memory, however, we

always retrieve 375 sequences of length 80, each of which may be

composed of fragments of several stored episodes.

2.4 | Comparison of feature quality

After training SFAhi with and without episodic memory, we assess the

quality of their features using the following two different criteria.

1. The delta value (Equation 1) of the SFAhi output on a set of testing

data is used as a measurement of feature quality (e.g., Figure 8a).

F IGURE 4 Illustration of the simplified model of episodic
memory. The two episodes at the top are stored in the model of
episodic memory as a set of pattern–key pairs. A key to the next

pattern is stored along with each pattern. The last pattern of each
episode (K, L) is not stored explicitly, that is, it only appears in
memory as a key. During retrieval, noise is added to the retrieval cue
and the closest memory pattern (Euclidean distance) to the noisy cue
is retrieved. The corresponding key is used as the next retrieval cue.
Due to the noise, retrieval can yield an incorrect transition (G ! H in
this example)
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Since the delta value is the objective function of SFA, features with

a lower delta value are better in terms of the algorithm. To enable

a meaningful comparison, SFAhi output is whitened before calcu-

lating delta values. Note that the delta value does not evaluate the

nature of the features. It quantifies the invariance of the represen-

tation, grounded in the assumption that a meaningful representa-

tion of information about a continuous input stream varies slowly

in time.

2. We assess how well the latent variables are represented by the

SFAhi features. While the three slowest SFAhi features could be

made to code for the three latent variables (x-coordinate, y-coordi-

nate, object identity) by separating the timescales on which the

latent variables vary, this scenario is probably not a good descrip-

tion of most latent variables that humans encounter. We therefore

did not design the input sequences that way and as a consequence

there is no one-to-one relationship between features and latent

variables, for example, one feature may code for a linear combina-

tion of x- and y-coordinate and react more strongly for one object

than for the other. Hence, we assess how well linear combinations

of the features correlate with each latent variable. To do so, we

train a multivariate linear regressor to predict the latent variables

given the first three SFAhi features, using the training data.

2.5 | Visual discrimination performance

We follow the approach from one of the first studies that showed

perceptual deficits in patients with MTL damage (A. C. H. Lee, Fischer,

et al., 2005). Patients and controls viewed pairs of test images, along

with a sample image to compare to. The task was to decide which one

of the two test images was more similar to the sample image. The test

image pairs were linear combinations of the shown sample image and

a second sample image, which was not shown.

To simulate such a visual discrimination task, we use two differ-

ent paradigms for image generation, each of which takes into account

one of the latent variable types: Paradigm 1 mixes the sample images

based on the coordinate of the object, Paradigm 2 mixes based on

object identity, which models the original task more closely. By vary-

ing the level of similarity of the mixtures (“mixing level”), the difficulty

of the task can be controlled for.

2.5.1 | Paradigm 1 (position discrimination)

The two sample images (S1/S2) show the letter T in different spatial

positions. The distance between these two positions is fixed at 1 unit.

(a) (b)

F IGURE 5 Visualization of noise-free sequence retrieval from episodic memory. Retrieval is compared for stored episodes of different
lengths. Example patterns are visualized in two-dimensional space. Patterns and keys in memory are represented by filled circles and rings,
respectively. The pattern–key associations stored in memory are depicted by solid lines. The initial retrieval cue is the key marked by an
arrowhead. In each retrieval step the pattern closest to the cue is retrieved from memory. In the noise-free case this is the pattern identical to the
key (the filled circle in the ring). However, if the end of a stored episode is reached, there is no pattern identical to the key in memory (circle
empty) and the most similar pattern is retrieved (dashed line). After retrieving a pattern, the key associated (solid line) to that pattern is used as a
cue for the next retrieval step. Dashed lines and black filled circles represent the retrieved sequence. (a) Episodic memory contains three episodes
of length six. A sequence of length six is retrieved from memory. During retrieval, the end of a stored episode is reached twice. (b) Episodic
memory contains six episodes of length three. A sequence of length six is retrieved from memory. During retrieval, the end of a stored episode is
reached four times [Color figure can be viewed at wileyonlinelibrary.com]
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Based on these samples, test images (T1/T2) are generated by using

different mixing levels. For example, for a mixing level of 0, T1 is iden-

tical to S1 and T2 is identical to S2. When the mixing level is

increased, the letters in T1 and T2 are moved along a line toward each

other until for a mixing level of 0.5, T1 and T2 are identical. An exam-

ple set of image pairs is shown in Figure 6a.

2.5.2 | Paradigm 2 (object discrimination)

Two noise-free sample images, one showing the letter T at a random

position (S1) and the other showing the letter L at the same position

(S2), are generated. Based on these samples, test images (T1/T2) for

different levels of mixing level m are generated. Test images are a lin-

ear combination of the two sample images:

T1 = 1−mð Þ �S1 + m �S2
T2 = m �S1 + 1−mð Þ �S2

ð8Þ

Gaussian noise with zero mean and a SD of 0.1 is added to the

pixels of the images after mixing (gray values range from 0 to 1). An

example set of image pairs according to Paradigm 2 is shown in

Figure 6b.

In both paradigms, the task is to decide, which image, T1 or T2, is

more similar to S1. T1 is always the correct answer. The images are

first processed by SFAlo and then by either SFAhi[S] or SFAhi[E]. In

both cases, the resulting representations of T1 and T2 are compared

to the representation of S1. If the Euclidean distance is smaller for T1

than for T2, the algorithm makes a correct decision in favor of T1. We

evaluate 20,000 trials for each mixing level (0, 0.1, 0.2, 0.3, 0.4, 0.45,

0.475, 0.49, 0.5) and calculate the hit rate (percentage of correct deci-

sions) for each of them.

3 | RESULTS

3.1 | The effect of memory on visual
discrimination performance

When training the sensory representation, we used two different sim-

plified memory models (Section 2.3). (a) Repeated verbatim replay of

the episodes. The performance of the SFAhi[E] module, trained on up

to 40 repetitions of the training episodes, is compared to the perfor-

mance of the SFAhi[S] module that was exposed to the training epi-

sodes only once and serves as our model of MTL lesion.

(b) Generating novel sequences from training episodes with a simple

hetero-associative sequence storage model. Here SFAhi[E] was trained

on the newly generated sequences, while SFAhi[S] was trained on the

original episodes, again serving as our lesion model. Here the total

amount of training data is identical between [E] and [S].

Additionally, we studied the influence of noise in the sequence

storage model on the sensory representations. We compared the per-

formance of the SFAhi[E] module trained with noise-free memory

(σ = 0) to the one trained with elevated noise levels in memory (σ = 4).

Hence, the memory in this case is not completely absent, but retrieval

is less reliable. This might be a more realistic model for the effect of

partial lesions.

For all memory models, the discrimination performance is better

with intact episodic memory in both discrimination paradigms (posi-

tion as well as object discrimination, see Section 2.5; Figure 7),

(a)

(b)

F IGURE 6 Sample stimuli for the simulated visual discrimination. (a) Example stimulus set for Paradigm 1. Two sample images (S1/S2) that
only differ in the position of the letter T are generated (left-most images). The distance between the letter positions is fixed. The discrimination
task is to decide which one of two different mixtures T1/T2 (shown as vertical pairs) is more similar to S1. The mixing level indicates the difficulty
of the task. For mixing level 0.5 both T1 and T2 are identical (apart from noise). Reducing mixing levels increases the distance between T1 and T2
until, for mixing level 0, T1 = S1 and T2 = S2. (b) Example stimulus set for Paradigm 2. Two noise-free images are generated, one showing T at a
random position and the other showing the letter L at the same position. Different linear mixtures of the two images are generated. Noise is
added after mixing
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consistent with the finding that hippocampal patients are impaired in

sensory discrimination tasks. Our results show that episodic memory

can have a positive influence on the learning of sensory representa-

tions, not only by allowing to repeat the learning process (repeated

verbatim replay) but also by providing memories in a more useful

order (generating novel sequences). Our results suggest that an

impairment in a visual discrimination task due to an MTL lesion need

not imply an involvement of the MTL in visual processing. In our

model, the influence of the MTL is indirect, through providing the

memory for tuning the sensory representations. This is the main result

of our study. In the following, we examine each memory model and

the properties of the resulting sensory representations in detail to

understand what difference the use of episodic memory exactly

makes.

This analysis will eventually allow us to account for the perfor-

mance difference between intact and lesioned memory, which, first, is

more pronounced for simple replay than for generated novel

sequences and, second, more pronounced in Paradigm 1 than in

F IGURE 7 Sensory discrimination performance is superior with intact episodic memory. The dashed lines represent the hit rate of the
sensory representation trained with lesioned memory, the solid lines represent performance with intact memory. The mixing level represents the
level of similarity of the images to discriminate, which amounts to the level of difficulty of the discrimination. Each row of the figure shows the
results from a different memory model as follows: (a and b) Repeated verbatim replay of the episodes. (c and d) Generating novel sequences from
a hetero-associative sequence storage model. (e and f) Elevated versus no retrieval noise (σ) in the sequence storage model. The columns

represent the two discrimination paradigms: (a, c, and e) Results for Paradigm 1 (position discrimination). (b, d, and f) Results for Paradigm
2 (object discrimination)
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Paradigm 2. Anticipating the results of our analysis below, the first

effect is due to the fact that, in our simplified model, verbatim replay

improves learning more than the generation of novel sequences. This

might explain why replay is frequently observed in the hippocampus

(Diba & Buzsáki, 2007; Louie & Wilson, 2001) and why it is important

for learning (Girardeau et al., 2009).

The second effect arises because two different properties of the

sensory representations are responsible for the differences in perfor-

mance. In Paradigm 1, the difference arises mainly because the fea-

tures in SFAhi[E] code for the object coordinate much more precisely

than SFAhi[S] does. As a result, a distance in coordinate space yields a

large distance in the feature space of SFAhi[E] with a higher probabil-

ity than in the feature space of SFAhi[S]. In Paradigm 2, the perfor-

mance differences only arise because the sensory representation of

feature space of SFAhi[E] is more robust to noise in the input than the

feature space of SFAhi[S] is. If no input noise was added, or the noise

was added before calculating the linear combination of the sample

images, using either SFAhi[E] or SFAhi[S] would yield perfect perfor-

mance. This is the direct consequence of using only linear functions in

SFA in our model. Since the output of SFA on a linear combination of

two inputs equals the linear combination of the output of SFA on the

individual inputs, the discrimination algorithm would be able to tell

which mixture is closer to the reference image no matter how good,

or bad, the representation of the input was. For more biologically

plausible stimuli, nonlinear functions would have to be used in SFA,

and we would expect larger differences in Paradigm 2. Hence, despite

the performance difference between Paradigm 1 and 2 in this dataset,

the model does not predict in general that position discrimination

would profit more from an intact episodic memory than object

discrimination.

3.2 | Evaluation of learned feature representations

3.2.1 | Repeated replay of the episodes

Replaying episodes faithfully from memory repeatedly is possibly the

simplest form of sequential memory recall. It provides the neocortex

with overall more training data and more opportunities to learn from

the experienced episodes. Thus, we expect better sensory representa-

tions after multiple repetitions of memory replay. This is reminiscent

of a process of systems consolidation, in which information from hip-

pocampal memories is gradually extracted into neocortical memory

stores with repeated retrievals.

Indeed, we find that the more often the training data are rep-

layed, the better the SFAhi features are in terms of their delta value

(Figure 8a) and the better they represent the latent variables

(Figure 8b–h) in the test data. While the time course of the delta value

and the feature-latent-variable correlations are not identical, they are

quite similar and asymptote by 40 presentations.

For the discrimination experiment we used two different

instances of SFAhi: The simple SFAhi[S], which was trained only once

on the training data and therefore serves as our model of sensory

representation after hippocampal lesion, and the episodic SFAhi[E],

which was trained 40 times on the same data and serves as our

model of normal sensory representation trained with episodic mem-

ory. Scatter plots show clearly that the features extracted by

SFAhi[E] are much better correlated with the latent variables

(Figure 8f–h) than those of SFAhi[S] (Figure 8c–e). These results show

that episodic memory can enable the learning of an adequate sensory

representation when only a limited amount of experience is available,

by simple replay of those.

For comparison, we trained another SFAhi instance by generating

40 unique data sets, instead of using the same data set 40 times. This

new network was thus trained on the same overall amount of training

data, but it has been exposed to more unique sensory stimuli than the

network trained by replaying a limited amount of experience from

memory. Interestingly, the replay network outperforms the network

trained on more data (Figure 8a,b). This additionally emphasizes the

importance of memory replay for learning.

In order to visualize the linear transformation that SFAhi[E] learned,

which we call the sensory representation, we plotted the response

of the entire network to stimuli at different positions (Figure 9). As

stimuli we used a single black pixel (Figure 9b,d) and noisy images

containing the letters T (Figure 9c,e; top row) and L (Figure 9c,e; bot-

tom row). The responses to the single black pixel were normalized

by subtracting the answer to a uniform white stimulus. The figure

shows that the Features 1 and 2 of SFAhi[E] are sensitive to the

position of the black pixels and exhibit a spatial gradient (Figure 9b,

c). Thus, Features 1 and 2 mainly extract the x- and y-coordinates of

the object in the input by applying a weight gradient. Feature

3 appears to be sensitive more to the number of black pixels (which

differs between L and T), while being mostly invariant to their posi-

tion. Hence, Feature 3 mainly extracts the identity of the object in

the input by simply counting the number of black pixels. These prop-

erties are even more pronounced in the output of the linear regres-

sor (Figure 9d,e).

3.2.2 | Generating novel sequences by tying
together episode fragments

Episodic memory can also be used to improve training performance

without increasing the total amount of data. When modeled with a

hetero-associative sequence storage model (as described above,

Section 2.3), the hippocampal system can associate similar patterns

with each other that were experienced at different times. It has

been shown that this sequential or associative property of the

hippocampal memory is exploited for inference or generalization

(Bunsey & Eichenbaum, 1996; Wimmer & Shohamy, 2012;

Zeithamova, Dominick, & Preston, 2012). We hypothesize that

these properties can also be used in our case of training the sen-

sory representations. By associating similar episode fragments with

each other, novel sequences can be generated from memory that

are more useful to the representational learning system than the

original episodes.
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In our model, the two different objects are presented alternately,

that is, at the start of a new episode the object identity is switched.

Also, the position of the object is randomly re-initialized. When the

episodes are strung together to form the training data set, the latent

variables (object coordinates, identity) jump at the transitions between

episodes (see also Section 2.1; Figure 2). These discontinuities make it

harder for SFA to learn a representation of the latent variables,

because SFA learns features that vary slowly in time. The shorter the

episodes in the training data are, the more discontinuities with regard

to the latent variables are present in the data (given that the overall

amount of data is constant). This is reflected in the delta values (aver-

age rate of change) of the latent variables in the training data

(Figure 10c, dashed lines). Hence, we expect the quality of the sensory

representation learned to be lower with shorter episodes.

The hetero-associative sequence storage model of episodic mem-

ory, however, counteracts the discontinuities in the original data by

associating similar episodes or episode fragments with each other,

generating smooth sequences of fixed length. A data set composed of

these sequences has a fixed number of discontinuities, which is

reflected in the delta values (Figure 10c, solid lines). Hence, if the

sequences retrieved from episodic memory are used to train SFA we

would expect the sensory representation to be independent of the

episode length in the training data.

We trained SFAhi instances on episodes of different lengths

between 2 and 600 while keeping the overall amount of data con-

stant. SFAhi[S] is trained on these episodes directly, whereas SFAhi

[E] is trained on sequences retrieved from episodic memory. This pro-

cess is averaged over 16 repetitions to smooth out fluctuations that

are introduced by randomness in the movement statistics of the input

data, the selection of initial retrieval cues and the retrieval noise in

episodic memory.

As expected, the longer the episodes in the training data are, the

more precisely the features generated by SFAhi[S] represent the latent

variables of the input, that is, delta values decline (Figure 10a) and

F IGURE 8 Repeated replay of episodes from memory improves sensory representations. Training was conducted 40 times, shuffling the
order in which the episodes are presented in each repetition. The quality of the extracted features was evaluated on test data after each
repetition. (a) Average delta value of the three slowest features. For comparison, the plot also shows the average delta value if new training data
are generated in each repetition instead of replaying from memory (“more”). Besides, delta values are shown for the pretrained SFAlo and for a
batch SFAhi using the 12-fold amount of training data (“batch”). Triangles denote the SFAhi instances that were used in (c)–(h) and for the visual
discrimination task. (b) Correlation of SFAhi feature output with latent variables in the input. A multivariate linear regressor, for x, y, and object
identity, was trained on the first three features using the training data. The regressor was then used to reconstruct the latent variables from SFAhi

feature output on the test data. The figure shows Pearson correlations (r-values) between original and reconstructed coordinates (c–h). r-Values
of the x- and y-coordinates are averaged. (c–h) Predictions of regressor versus latent variables. A subsample of 1,000 data points is shown. The
dashed line represents a linear regression. (c)–(e) show the data points for SFA features after the first training, (f)–(h) show data after all
40 training iterations. SFA, slow feature analysis
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feature-latent-variable correlations increase (Figure 10b). By contrast,

when episodic memory is used to generate the training data for

SFAhi[E], the feature quality is almost independent of the length of

the original episodes and is generally higher, but especially so for

short episodes. Note that testing was always performed on

sequences of length 50, regardless of how the sensory representa-

tions were trained, to facilitate a fair comparison across different

training conditions (with/without episodic memory, different lengths

of episodes).

This result shows that episodic memory can improve the sensory

representations by providing training data in a more useful order.

While this main effect is only substantial for shorter episodes in our

model, it is conceivable that it is more general for real sensory inputs,

which are much more complex. In order to optimize representations

for different aspects of sensory percepts, episodic memory content

could be reorganized according to different criteria. Notably, the iden-

tity of the object is harder to extract for the SFA algorithm than the

position, thus optimally representing the object identity in the feature

output requires longer training episodes than representing x- and y-

coordinate (Figure 10b). Gupta et al. (2010) recorded place cell

sequences from rats that the animals never experienced. They suggest

that this observation reflects mechanisms to learn a complete repre-

sentation of the environment. Recombining episode fragments could

have a similar function in tuning sensory representations.

For the visual discrimination we used SFAhi[S] and SFAhi[E]

instances from the trials where training episodes were of length

2, because the strongest effect of episodic memory was observed in

that case.

Aside

In addition to the main effect described above, the data show two

other, more nuanced, effects. Even though they do not affect our

main results in any way, we explore the origin of these effects in the

following to precisely understand the behavior of the model. This

section can be skipped on a first reading.

1. Even for the longest training episodes, feature quality is higher in

the episodic scenario, at least when measured by delta value of

the SFA output. If the reason for the performance advantage of

SFAhi[E] over SFAhi[S] was only that it is trained on data containing

fewer jumps, one would expect that SFAhi[S] performs better than

SFAhi[E] for episodes of a length larger than 80, which is the

length of sequences generated by episodic memory. Since epi-

sodic memory is cued randomly, it will repeat at least parts of the

episodes multiple times with a high probability. Because there are

as many unique patterns as there are patterns in the training set,

this repetition of some patterns implies that other patterns are

not used at all, thus there are fewer unique patterns presented in

the episodic than in the simple scenario. We show above

(Section 3.2.1) that the system profits more from a repetition of

input data than from being trained on more unique patterns. This

explains the described effect – in the episodic scenario the train-

ing data contains repetitions, while in the simple scenario every

input pattern is unique.

2. Counterintuitively, the delta value of the SFAhi features increases

slightly and the precision of their object coordinate representation

(b)

(c)

(d)

(e)

(a)

F IGURE 9 Sensory representations of SFAhi[E] for stimuli at
different positions. SFAhi training was conducted 40 times. The value
of each pixel is the response to an object centered on the respective
position of the input image. (a) Legend depicting how to read the
plots (b)–(e). The legend shows three example input images and
illustrates which pixels of the plot represent the responses to these
images. The top left pixel of the plots, for instance, is the response of
the system to an object in the top left corner of the input image.
Hence, if the pixel values of a plot display a gradient, that means the
system responds differently to objects at different positions—the
feature “codes” for object position. (b) Stimuli were single black pixels.
Data were normalized by subtracting the representation of a zero
image. From left to right: Features 1, 2, 3. (c) Stimuli were noisy images
with either the letter T (top row) or L (bottom row). From left to right:
Features 1, 2, 3. All plots in (b) and (c) display a spatial gradient,
especially feature 1 and 2 code for object position. Feature
3 additionally displays a clear response difference between objects T
and L, hence coding for object identity. (d and e) The same information
as in (b) and (c) is depicted for the predictions of the linear regressor
for x-coordinate, y-coordinate, and object identity (from left to right).
Response gradients for the letters in Column 1 and 2 (x,y) and object
specificity for Column 3 (identity) are more pronounced than in (b).
This was expected since the SFA features are learned in an
unsupervised manner, whereas the linear regressors were trained using
ground truth as supervisory signal. SFA, slow feature analysis
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decreases slightly with increasing training episode length in the

episodic scenario (Figure 10a,b). We found that this effect arises

because of the property described above as well: With 30,000

training patterns at hand, SFAhi performs better when some of the

patterns are left out while others are repeated during training

instead of presenting the full data set. Because the last pattern of

each episode cannot be retrieved from memory, there are actu-

ally only 15,000 patterns in memory for training episodes of

length 2. On the contrary, for an episode length of 600 a total of

29,950 patterns are stored in memory. As a consequence, the

probability of retrieving the same patterns multiple times is lower

for longer episodes, thus feature quality of SFAhi[E] decreases

slightly with increasing episode length. We tested this hypothesis

by choosing depression parameters (Equation 7) such that a pat-

tern would not be retrieved multiple times and by storing a suffi-

ciently large number of patterns in memory, so that 375 smooth

sequences of length 80 could be retrieved. When SFAhi[E] was

trained on those sequences, the delta value of the features is

independent of the episode length (results not shown), con-

firming our hypothesis.

These two effects further emphasize that replaying the same epi-

sodes causes a larger improvement of the sensory representations

than providing the model with more unique episodes, a result we

found above (Section 3.2.1; Figure 8a,b).

3.2.3 | Noise in episodic memory

The above approaches have compared a memory-free model to a

model with a fully functioning memory system. In reality, when the

MTL is damaged or in the case of age-related impairment, episodic

memory might not be completely absent. Also, memory models of for-

getting in the healthy suggest that memory is not completely lost, but

that retrieval can fail or be incorrect due to interference of memory

traces (Anderson, 2000; Underwood, 1957) or inaccurate retrieval

cues (Tulving, 1974). We model these various effects with increased

levels of retrieval noise in our hetero-associative memory. Gradually

increasing the retrieval noise in the hetero-associative sequence stor-

age model will lead to associations of more and more dissimilar pat-

terns, up to the point at which retrieval is completely random. All

other aspects of the model remain unchanged. As before, we gener-

ated 30,000 frames of training data that are stored in episodic mem-

ory. While SFAhi[S] was trained on the data directly, training of

SFAhi[E] used sequences retrieved from memory that consist of a total

number of 30,000 frames as well. The length of individual episodes in

(a)

(b)

(c)

F IGURE 10 Generating novel sequences using episodic memory improves sensory representations. The overall amount of training data was
fixed at 30,000 frames, but the number and length of individual episodes varied from 15,000 episodes of length two up to 50 episodes of length
600. From these episodes, episodic memory always generated 375 sequences of length 80. We contrast the feature quality between the simple
and the episodic scenario, depending on the length of the training episodes. In the simple scenario, those episodes were used for training
SFAhi[S] directly, whereas in the episodic scenario, they were stored in episodic memory first, which then generated sequences with fixed length
to train SFAhi[E] on. (a) Average of the delta values for the three slowest features on the test data. Triangular markers in the plot denote the SFAhi

instances that were used for the visual discrimination. (b) Correlation of SFAhi feature output with latent variables of the input on test data. As in
Figure 8, this is the Pearson correlation between latent variables and estimates by the regressors. (c) Average delta value of the latent variables,
that is, coordinates and binary object category in the training data. In the episodic scenario, this is the output of episodic memory. SFA, slow
feature analysis
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the training data was varied (x-axis in Figure 11), whereas the

sequences retrieved from episodic memory always had a length of

80 patterns. Note that training SFAhi[E] with large noise in episodic

memory is qualitatively different from training SFAhi[S] (without epi-

sodic memory), hence varying the level of retrieval noise does not

yield a gradual transition from the episodic to the simple scenario.

As expected, with higher retrieval noise the feature quality is gen-

erally lower, that is, the features vary quicker (higher delta values) and

represent the latent variables of the input less precisely (lower

feature-latent-variables correlations; Figure 11). Retrieval noise leads

to jumps to incorrect elements that are farther away from the previ-

ous element than the correct next element is. As a result, the delta

values in the latent variables of the retrieved sequences are higher for

larger noise (Figure 11C).

For the visual discrimination we used SFAhi[E] instances from trials

with training episodes of length 2. Intact episodic memory was modeled

by using a retrieval noise level of σ = 0 and impaired episodic memory

was modeled by an intermediate level of retrieval noise σ = 4.

Aside

This section examines a theoretical detail of the model behavior and

can be skipped on a first reading. Apart from the main effect—the

reduction of feature quality with increased retrieval noise—the data

exhibit a second feature. For intermediate levels of retrieval noise,

(2 ≤ σ ≤ 4), feature quality increases with episode length, before

reaching an asymptote at an episode length of 5–10 (in the episodic

scenario), unlike for low (σ < 2) or high (σ = 6) noise where the curves

are flat. This effect is a purely theoretical result and does not affect

our aforementioned main result. However, since the cause of this

effect is not immediately obvious it warrants more detailed

consideration. There are two ways in which an element might be

retrieved that is different from the key. A: The model retrieves the

element closest to the cue, which is the sum of the key and retrieval

noise (Equation 5). The larger the retrieval noise, the more likely it is

that a jump to an incorrect item occurs and the larger the jump. This

gives rise to the main effect discussed above. B: If the key refers to

the last element of an episode, a different element is retrieved

because the last element of an episode is not stored in our model. This

kind of jump occurs whether there is retrieval noise or not (see

Section 3.2.2). The second effect discussed here is a result of combin-

ing A and B. The shorter the episodes, the more often the end of an

episode is reached. When this happens in the presence of little or no

noise (σ < 2), the element closest to the key is retrieved, leading to

almost no change in delta value of the underlying latent variables

(Figure 11C). In the presence of intermediate noise, the closest ele-

ment to the cue = key + noise is in many cases different from the ele-

ment closest to the key and therefore further away from the previous

element (Figure 12). This leads to a bigger jump at the end of an epi-

sode, which does not occur in the middle of an episode, because in

the latter case, the correct element is stored in the system and will be

retrieved correctly, as long as the noise is not too large. Thus, these

bigger jumps occur more frequently the shorter the episodes in mem-

ory are, which is reflected in the delta values of the latent variables

(Figure 11C) and the resulting feature quality (Figure 11a,b). For very

large retrieval noise (σ = 6), the noise vector is larger than the average

inter-item distance and so it makes no difference whether the ele-

ment associated with the key is stored in the system or not

(Figure 12). Hence, for large noise the quality of the extracted fea-

tures does not depend on the length of the stored episodes

(Figure 11).

(a)

(b)

(c)

F IGURE 11 Retrieval noise (σ) in episodic memory reduces the quality of features extracted by SFAhi[E]. Larger line markers denote more
noise. (a) Average of the delta values of the three slowest features on test data. Triangular markers in the plot denote the SFAhi instances that
were used for the visual discrimination. (b) Correlation of SFAhi feature output with x- and y-coordinate of the input on test data. (c) Average
delta value of latent variables, that is, coordinates, of the training data for SFAhi. In the episodic scenario this is the output of episodic memory.
Note that the lines for σ = 0 and σ = 1 are almost identical. For legibility, the results relating to object identity are not shown, but they display the
same effect as the coordinates
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4 | DISCUSSION

We have proposed an algorithmic model for how episodic memory in

MTL can improve sensory discrimination performance by helping to

optimize the representation of sensory information in neocortex. We

separately investigated the effects that episodic memory has when it

(a) repeatedly replays the memory of the original episodes faithfully or

(b) generates novel sequences by tying together episode fragments

from memory. We found that, in our model, 40-fold replay from epi-

sodic memory (total of 200,000 patterns) leads to a substantially bet-

ter sensory representation. The generation of novel sequences from

episodic memory (total of 30,000 patterns) can also have a beneficial

effect when the individual original episodes are short and the retrieval

noise is low. Most importantly, we found that an optimized sensory

representation can be advantageous for perceptual decision making.

In simulated visual discrimination tasks, the systems that were trained

using episodic memory outperformed the systems without episodic

memory.

While our results were obtained with a particular kind of sensory

representation extracted using SFA, there is a case to be made that

our finding would extend to other types of models as well. Using epi-

sodic memory to replay the memory of the sensory experience faith-

fully is equivalent to repeated training iterations on the same data set.

It is likely that replay benefits any incremental learning algorithm,

since many machine learning algorithms and biological agents require

multiple repetitions to converge to an optimum, when extracting

information from training data. For instance, reinforcement learning

algorithms profit greatly from experience replay (Lin, 1993; Mnih

et al., 2015). Hence, our findings that replay helps improve sensory

discrimination is likely not limited to the particular algorithm that we

have used here.

The benefit of retrieving sequences composed of episode frag-

ments from memory might not be quite as general. The generation of

novel sequences is equivalent to changing the order of presentation of

individual samples. This transposition only makes a difference for

learning algorithms that are sensitive to the temporal order in the train-

ing data. Such learning algorithms are probably employed by biological

systems that have to represent temporal and possibly causal relation-

ships. For instance, it has been suggested that the hippocampus helps

to establish associations between spatially and temporally disco-

ntiguous events (Pyka & Cheng, 2014; Wallenstein, Eichenbaum, &

Hasselmo, 1998). In our model, this is reflected in the sequential nature

of episodic memory and the generation of novel sequences during

which temporally discontiguous patterns can be associated. The partic-

ular algorithm we used in this study, SFA, is just one example of an

algorithm that is sensitive to temporal order. It was previously shown

to be well-suited for modeling realistic neuronal responses in the visual

system (Berkes & Wiskott, 2005) as well as the hippocampus (Franzius,

Sprekeler, & Wiskott, 2007), and so appears to be a reasonable choice

for an algorithmic model of sensory representations.

Similarly, the memory in our model need not necessarily be epi-

sodic memory. In our study, we are looking at how the MTL can have

an influence on perceptual tasks, and since memory in the human

MTL has been linked strongly to episodic memory, we only refer to

episodic memory. However, other types of memory could have a simi-

lar effect on neocortical representations by improving the quantity or

the quality of the training data. Our model, though, has features that

are consistent with episodic memory, namely that it has sensory con-

tent and that it is sequential.

4.1 | Sensory representations for visual
discrimination

Our results suggest that visual discrimination is more accurate when

the sensory representation has been tuned by intact episodic memory.

Although the stimuli used in the model are highly simplified for

F IGURE 12 Aside: intermediate levels of retrieval noise
selectively increase pattern distances at the end of episodes. Patterns
and keys in memory are represented by gray filled circles and rings,
respectively. The pattern–key associations stored in memory are
depicted by gray lines. Suppose pattern No. 3 was just retrieved. The
next retrieval step will be cued by the key associated with pattern
No. 3 (thick black ring). Left: Retrieval step within an episode. The
pattern (No. 0) corresponding to the key (thick black ring) is available
in memory. Right: Retrieval step within an episode. The pattern
corresponding to the key is not available in memory (pattern No. 0 is
missing in the thick black ring). Different levels of retrieval noise are
depicted by black rings with different radii (low, intermediate, high).
After applying noise, the noisy retrieval cue can be anywhere within
the respective ring. Retrieval always proceeds by retrieving the
pattern closest to the noisy cue. If the noise is low, the noisy cue will
not deviate much from the stored key, hence the retrieved pattern
will be always the one closest to the key (left panel: No. 0, right panel:
No. 1). When the noise is increased, the variability of the noisy cue is
at some point so high that a number of different patterns can be

retrieved, that have a larger distance to the previous pattern. For the
retrieval steps within an episode (left panel), this point is reached only
for high levels of noise, but for the retrieval steps at the end of an
episode (right panel), this happens already at intermediate noise
levels. This differential effect is strongest for short episodes, when
there are more episode endings. Thus, feature quality is impaired
more by intermediate noise for short episodes than for long episodes
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computational reasons, the same principles that we have identified

should apply to more complex images as well. Processing those more

complex images would require a more advanced sensory representa-

tion, which would take longer to train and perhaps consist of more

layers. Hence, it could probably profit even more from episodic mem-

ory than our very simple representation.

The perceptual task that we modeled was a discrimination task,

which involves only two comparisons. However, the procedure to per-

form an oddity judgment task (Barense, Gaffan, & Graham, 2007;

Lech & Suchan, 2014; A. C. H. Lee, Buckley, et al., 2005) based on

sensory representations is similar, since odd-one-out judgments could

be made on the basis of pairwise comparisons. The odd-one-out will

then be determined as the one stimulus with the highest average dif-

ference to the other stimuli. Thus, the findings of lesion experiments

based on visual discrimination or oddity judgment tasks could both be

accounted for by the tuning of sensory representations driven by epi-

sodic memory.

In other perceptual tasks, even when they do not involve stimulus

comparisons, the participant's decision still has to be based on a sen-

sory representation that processes the features of the image or the

visual scene. In a study by Lee et al. (A. C. H. Lee & Rudebeck, 2010),

participants had to judge line drawings on their geometrical plausibil-

ity. A patient with MTL lesions showed impaired performance and dif-

ferent fixation patterns as compared to healthy controls. When the

sensory representation is not well optimized—for example, to repre-

sent geometry and perspectivity of the stimulus—it is harder to detect

regions of interest and possible geometrical flaws. Furthermore, it is

not obvious whether this geometric plausibility judgment is a purely

perceptual task, since it requires experience with, and analysis of, geo-

metrical drawings.

4.2 | MTL activation during perceptual tasks

While in our model memory stored in MTL affects the properties of

the sensory representation, which can account for the results of lesion

studies, the MTL is not involved in the visual discrimination process

itself. Our model thus does not predict the MTL activation that has

been observed during certain perceptual tasks in fMRI studies

(Barense, Henson, Lee, & Graham, 2010; Lech & Suchan, 2014; A. C.

H. Lee, Bandelow, Schwarzbauer, Henson, & Graham, 2006; A. C.

H. Lee, Scahill, & Graham, 2008). While the perceptual-mnemonic

hypothesis attributes this activation to the direct involvement of the

MTL in perception, incidental memory encoding processes could be

an alternative explanation, especially because the presented stimuli

are usually trial-unique (A. C. H. Lee et al., 2008). In some studies, the

authors acknowledge this possibility while others are designed to con-

trol for that. For instance, Lech and Suchan (2014) controlled for inci-

dental encoding by conducting an additional recognition task after the

visual task and comparing the recognition of the studied items to the

recognition of the items from an oddity judgment task. Since signifi-

cantly fewer of the items from the oddity task were recognized as

compared to the studied items, the authors concluded that no

incidental encoding had occurred. However, although the recognition

rate on the studied items (~50%) is indeed higher than on the items

from the oddity task (~30%), a comparison to random performance is

not possible because the false alarm rate was not given. Hence, it can-

not be excluded that items from the oddity task have been stored and

successfully retrieved from memory. Furthermore, it is not surprising

that the memory of incidentally encoded items is weaker than that of

explicitly encoded items, especially because the memory had been

maintained over a delay period of 1 week.

In another fMRI study by Lee et al. the pool of initially trial-unique

stimuli was used three times in an oddity judgment task in order to

investigate whether MTL activation decreases when a stimulus is

presented repeatedly (A. C. H. Lee et al., 2008). Indeed, the authors

found clear evidence of incidental memory encoding in posterior hip-

pocampus and parahippocampus during oddity judgments. For per-

irhinal cortex and anterior hippocampus the evidence is less clear, but

incidental encoding could not be ruled out, especially because the par-

ticipants' performance on the task improved across the three sessions.

4.3 | Functional subdivision of the MTL

Studies often suggest differential roles for the hippocampus and the

perirhinal cortex in perception, depending on the stimulus material

(Barense et al., 2010; A. C. H. Lee, Buckley, et al., 2005; A. C. H. Lee,

Fischer, et al., 2005; A. C. H. Lee et al., 2008). It has been proposed

that the hippocampus is involved in the perception of scenes, whereas

the perirhinal cortex in involved in the perception of faces and com-

plex objects. In lesion studies, performance is compared between

patients with localized hippocampal damage and patients with exten-

sive MTL damage, which indeed includes the perirhinal cortex, but

also other structures (A. C. H. Lee, Fischer, et al., 2005; Shrager et al.,

2006; Suzuki, 2009). Moreover, the hippocampus is usually damaged

to a larger degree in MTL patients as compared to hippocampal

patients. The influence of the perirhinal cortex on perception is then

derived by subtracting the effect of hippocampal lesions from that of

MTL lesions. It is possible that the resulting difference reflects the

specific contribution of the perirhinal cortex to perception. Alterna-

tively, the lesion size alone could account for the different impair-

ments of hippocampal and MTL patients (Suzuki, 2009). According to

this view, scene perception is already impaired by a small lesion, while

it requires a larger lesion to impair the perception of objects and faces.

Furthermore, the influence of lesion size on task performance might

not be linear, such that a small increase in lesion size could have a

large effect on visual perception, or vice versa.

Studies using fMRI are inconclusive in this regard. Some do report

differential activation of the hippocampus and the perirhinal cortex

depending on the type of stimulus (Barense et al., 2010; A. C. H. Lee

et al., 2008), while others could not reproduce that finding (Lech &

Suchan, 2014; A. C. H. Lee et al., 2006). This leaves room for specula-

tion that the reported activation differences are not attributable to

different stimulus categories, but to different stimulus complexities or

differences in the low-level features, for example, round or sharp

16 GÖRLER ET AL.



edges, textures, and so on. For instance, it has been shown that

second-order image statistics differ between image categories

(Torralba & Oliva, 2003).

We conclude that the influence of the MTL on perceptual pro-

cesses might stem from its mnemonic function, not from a direct role

in the perceptual process. Increased activation in MTL areas during

perceptual tasks might reflect task-irrelevant, memory-related activity.

Patients with damage to the MTL might be impaired in perceptual

tasks because their sensory representation is less optimized, due to

the limited availability of episodic memory for the tuning of sensory

representations.
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