

Attention and Navigation Strategies for Neurorobotics and Neuromorphic Applications

Xinyun Zou

June 23, 2019

RSS 2019

Introduction

- In the Cognitive Anteater Robotics Laboratory (CARL) at UC Irvine, we develop neurorobots for studying cognition and building neuromorphic applications.
- The robot behavior is controlled by a simulated nervous system designed to reflect the brain's architecture and dynamics.
- Neurorobotics is a powerful tool for studying cognitive behavior and examining the artificial brain in detail.
- Neurorobotics is an ideal platform for the developing neuromorphic applications.

CARL Family

Part I. Neuromorphic Navigation Strategies

Part II. Neuromodulated Goal-driven Perception in Uncertain Domains

Part I. Neuromorphic Navigation Strategies

Part II. Neuromodulated Goal-driven Perception in Uncertain Domains

PART I. Neuromorphic Navigation Strategies

Outdoor Robotics Challenges

- Changes in lighting
- Different
 terrains
- Lack of continuous power

Autonomous Navigation Implementation

- Long-term strategy
 - spike wavefront path planning
- Reactive strategies
 - terrain classification
 - road following
 - obstacle avoidance

Complete Neuromorphic Solution

- Massively parallel
- Eventdriven
- Energyefficient

Adaptive Path Planning

- Inspired by recent empirical findings supporting experience dependent plasticity of axonal conduction velocities.
- Cost of traversing through space is represented in the axonal delay between neurons.
- Spike propagation travels faster over lower cost paths.

T. Hwu, AY Wang, N. Oros, and JL. Krichmar, "Adaptive robot path planning using a spiking neuron algorithm with axonal delays," IEEE TCDS, 2017.

Overview of Spiking Wavefront Planner

Overlay 2D Neuron Grid Over Physical Space

Code Obstacles and Environmental Costs Using Axonal Plasticity

Android-Based Robotics Platform

Android smartphone (GPS, Compass, Accelerometer, Gyroscope)

Pan/Tilt SPT200

http://www.socsci.uci.edu/~jkrichma/ABR/index.html

Dagu Wild Thumper 6WD All-Terrain Chassis

RSS 2019

- No Path Cost
 - take short cut

- Path Cost
 - follow road

 (not accurate
 based on
 GPS, so road
 following
 algorithm is
 later
 introduced)

Spiking Wavefront Planner

- Spiking Wavefront Planner has lower cost and is more parallelizable than A*.
 - T. Hwu, AY Wang, N. Oros, and JL. Krichmar, "Adaptive robot path planning using a spiking neuron algorithm with axonal delays," IEEE TCDS, 2017.
- Has been implemented in neuromorphic hardware.

- IBM TrueNorth

• KD Fischl, K Fair, W-Y Tsai, J. Sampson, and A. Andreou, "Path planning on the TrueNorth Neurosynaptic system," in IEEE ISCAS 2017.

- SpiNNaker

• Lightweight enough to run on smartphone.

Road Following Algorithm

- Robot path planning algorithm relied on GPS and the phone's compass.
 - Low resolution of these sensors did not find the road.
- Developed vision-based road following algorithm
 - Finds paved paths.
 - Handles irregular paths, removes shadows, and avoids obstacles.
 - Uses smartphone's camera.
 - Determines the steering direction to center on road.

T. Hwu, JL. Krichmar, and X. Zou, "A complete neuromorphic solution to outdoor navigation and path planning," in IEEE ISCAS, 2017.

Road Following Algorithm

Gaussian Blur + RGB2GRAY

Sobel Gradient Estimation

Dilation + Path Estimation

Contrast & Brightness Adjustment

Binary Threshold

Path Labeling on RBG Frame

(T. Hwu, JL. Krichmar, and X. Zou, in IEEE ISCAS, 2017.)

RSS 2019

Path Planning Results

	Percent of route that the robot stayed on the road when it is supposed to		B)	B) starting
	Original	Road Following Added	Planned Route Road Follow No Road Follow	and ending on-road.
Starting off-road & Ending on-road	51.2%	63.2%	D)	
Starting on-road & Ending off-road	41.2%	87.3%	Planned Route Road Follow No Boad Follow	D) starting on-road and ending off-road.

(T. Hwu, JL. Krichmar, and X. Zou, in IEEE ISCAS, 2017.)

Terrain Classification Algorithm

- Developed a biologically inspired, energy efficient algorithm for terrain classification.
- Collected terrain data on grass, dirt, road with an Android-Based Robot (ABR).
- Constructed a Reservoir-based Spiking Neural Network (r-SNN) to classify the terrains.

X. Zou, T. Hwu, E. Neftci, and JL. Krichmar, "Terrain classification with a reservoir-based network of spiking neurons", spotlight talk and poster presented in Southern California Robotics Symposium, Caltech, 2019.

UC Irvine

Camera Screenshots Examples ٠ Grass (0)

Gyroscope and Linear Accelerometer Data

(X. Zou, T. Hwu, E. Neftci, and JL. Krichmar, presented in SCR, Caltech, 2019.)

r-SNN Test Prediction Error (Compared w/ SVM and 3-L Logistic Regression)

	r-SNN	SVM	3L Logistic Regression	
			mse	xent
Images only	5.2%	13.9%	11.5%	16.2%
Sensors only	8.1%	14.5%	13.7%	59.6%
Images + Sensors	3.5%	8.8%	10.2%	34.3%

- The r-SNN was the most efficient method
 - only 70 RNN internal neurons
 - adaptation of only RNN-to-output weights
 - no need of splitting data into time chunks.
- Learning rule modified from SuperSpike
- r-SNN is compatible with event-driven neuromorphic hardware for a low-power autonomous navigation system.

Self-Driving with Neuromorphic Implementation

NS1e with IBM TrueNorth

T. Hwu, J. Isbell, N. Oros, and J. L. Krichmar, IEEE IJCNN, 2017.

RSS 2019

Part I. Neuromorphic Navigation Strategies

Part II. Neuromodulated Goal-driven Perception in Uncertain Domains

Part II. Neuromodulated Goal-driven Perception in Uncertain Domains

Biological Systems

guide behavior with relevant info + rapidly adapt to unforeseen environment Goal-Driven Perception

focus on critical stimuli that need quick response

Our Neuromodulated Goal-Driven Perception Model

regulate goal selection with ACh&NE + highlight goals and ignore distractors in noisy & dynamic scenarios

X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, "Neuromodulated goal-driven perception in uncertain domains," arXiv preprint arXiv:1903.00068, 2019.

RSS 2019

UC Irvine

Modified Contrastive Excitation Backprop (c-EB)

- Modified from Zhang et al. (2018)
- Cued from even, odd, low- or high-value
- Backpropagated contrastive signals for one layer
- Performed EB over remaining layers
- Highlighted only goal pixels by

 cancelling out common winner neurons
 - amplifying discriminative neurons

(X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, arXiv preprint arXiv:1903.00068, 2019.)

Table 1. c-EB Prediction Accuracy for10,000 test pairs of noisy MNIST digits

Goal Task	% Correct Digit Prediction	% Correct Goal Prediction
Even	92.03	99.50
Odd	91.15	99.75
Low	95.39	99.54
High	87.46	98.22

ACh and NE Neuromodulation

- Extended Yu and Dayan's ACh-NE model (2005)
- 4 ACh neurons => expected uncertainties
 - drove attention toward a goal digit, and divert attention from distractors
 - ACh[guess] 1 if pred's correct; vice versa
- 1 NE neuron => unexpected uncertainties
 - responded phasically when a goal identity change was detected
 - \circ NE \downarrow if pred's correct; vice versa

NE Ablation	ACh Ablation	NE&ACh Ablation
no reset,	rand guess,	rand guess,
Ionger lag	high NE level	no ACh/NE firing

(X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, arXiv preprint arXiv:1903.00068, 2019.)

Table 2. Average neuromodulation performance over 10runs for each of the four goal validity settings.

Major	Minor	% Correct	% Correct	% Incorrect	% Incorrect
Goal	Goal	Major	Minor	ACh Softmax	c-EB
Validity	Validity	Goal	Goal	Prediction	Prediction
0.99	0.01	67.0	0.1	26.0	6.9
0.85	0.15	54.0	1.3	38.9	5.8
0.70	0.30	37.4	4.8	53.3	4.5
P_VALID	1-P_VALID	49.5	12.4	31.7	6.4

(X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, arXiv preprint arXiv:1903.00068, 2019.)

RSS 2019

Neuromodulated Goal-Driven Perception

- Extended neuroscience model to support goal-driven perception
- Compatible w/ many attention mechanisms
 - c-EB was chosen, similar to ACh system
- Evaluated probability matching behavior
 - Explored options ✓
 always choosing the most likely goal X
 - Underselected the most rewarding, similar to human behavior
 - Uncertainty seeking strategies governed by ACh systems can inspire Al
- The system can be more scalable
 - to learn goals online using a pool of ACh neurons without a priori assumptions
 - to work on more complex datasets (e.g. Microsoft COCO, ImageNet)

Action-Based Goal-Driven Perception

- Desired actions can drive attention in humans
 - Neuromodulatory systems operate on a modified contrastive excitation backprop (c-EB) attention method.
 - Predicts the current desired action and increases attention to related objects.
 - The HSR will carry out the desired action on the attended object.

Object Grabbing by Toyota HSR

Hwu, Kashyap & Krichmar, "Applying a Neurobiological Model of Schemas and Memory Consolidation to Contextual Awareness in Robotics", IROS 2019, under review.

RSS 2019

CONCLUSIONS

- Attention and navigation algorithms are developed to work in noisy and unpredictable environments.
- Android-Based Robot platform allows mapping, localization, path planning, and reactive controls to be implemented with traditional or neuromorphic methods.
- Neuromodulated goal-driven perception extends neuroscience ideas, and can inspire AI and neuroscience reciprocally.
- Neurorobotics will serve as an important platform for cognitive systems that can be generalized across multiple task domains and over longer time frames.

Thank You!

- UCI CARL Lab Publications
 - <u>http://www.socsci.uci.edu/~jkrichma/publications.html</u>
- Android[™] Based Robotics
 - http://www.socsci.uci.edu/~jkrichma/ABR/
 - https://github.com/UCI-ABR
- Contact us
 - Xinyun Zou xinyunz5@uci.edu
 - Jeffrey L. Krichmar jkrichma@uci.edu

Path Readout

Address Event Representation (AER)

T. Hwu, AY Wang, N. Oros, and JL. Krichmar, "Adaptive robot path planning using a spiking neuron algorithm with axonal delays," IEEE TCDS, 2017.

Map of Testing Environment

T. Hwu, A. Y. Wang, N. Oros, and J. L. Krichmar, "Adaptive robot path planning using a spiking neuron algorithm with axonal delays," *IEEE TCDS*, 2017.

r-SNN Terrain Classification Algorithm

A. Spiking Neuron Model

- Leaky integrate-and-fire (LIF) neurons.
- Synaptic current (*i*_{syn}) jumps upon spike arrival from presynaptic neurons.
- Postsynaptic membrane potential (U_i) is updated w.r.t. i_{syn} , membrane time constant, and resting potential.
- If U_i > threshold, a spike is triggered. A refractory period follows.

B. Learning Rule

 Inspired from SuperSpike, RNN-to-output w_{ij} changes according to a nonlinear Hebbian rule with individual synaptic eligibility traces

 $\Delta w_{ij} = \eta \cdot \left[\epsilon \otimes \left(\widehat{S}_i - \sigma(U_i) \right) \right] \cdot \sigma(U_i) \cdot \left(1 - \sigma(U_i) \right)$

- η : learning rate, \hat{S}_i : target postsyn spike pattern,
- ϵ jumps with presynaptic spikes.

r-SNN Test Prediction Results

(X. Zou, T. Hwu, E. Neftci, and JL. Krichmar, presented in SCR, Caltech, 2019.)