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Introduction

* In the Cognitive Anteater Robotics Laboratory (CARL) at
UC Irvine, we develop neurorobots for studying cognition
and building neuromorphic applications.

* The robot behavior is controlled by a simulated nervous
system designed to reflect the brain’s architecture and
dynamics.

* Neurorobotics is a powerful tool for studying cognitive
behavior and examining the artificial brain in detalil.

* Neurorobotics is an ideal platform for the developing
neuromorphic applications.
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Part I. Neuromorphic Navigation Strategies

Part Il. Neuromodulated Goal-driven Perception
In Uncertain Domains
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PART |. Neuromorphic Navigation Strategies

Outdoor Autonomous Complete
Robotics Navigation Neuromorphic
Challenges Implementation Solution
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Adaptive Path Planning

 Inspired by recent empirical findings supporting experience
dependent plasticity of axonal conduction velocities.

« Cost of traversing through space is represented in the
axonal delay between neurons.

« Spike propagation travels faster over lower cost paths.

T. Hwu, AY Wang, N. Oros, and JL. Krichmar, “Adaptive robot path planning
using a spiking neuron algorithm with axonal delays,” IEEE TCDS, 2017.
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Overview of Spiking Wavefront
Planner

Axonal
Plasticity
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Android-Based Robotics Platform

Android smartphone (GPS, Compass, Accelerometer, Gyroscope)

Pan /Tilt
SPT200

LV-MaxSonars

ION RoboClaw
Motor Controller

I010-0OTG

N Bluetooth Dongle
http://www.socsdi.uci.edu/~jkrichma/ABR /index.html 9

Dagu Wild Thumper 6 WD All-Terrain Chassis
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No Path
Cost

— take short cut

Path Cost

— follow road
(not accurate
based on
GPS, so road
following
algorithm is
later
introduced)
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Spiking Wavefront Planner

« Spiking Wavefront Planner has lower cost and is

more parallelizable than A*.

« T. Hwu, AY Wang, N. Oros, and JL. Krichmar, “Adaptive robot path
planning using a spiking neuron algorithm with axonal delays,” IEEE
TCDS, 2017.

* Has been implemented in neuromorphic hardware.
— IBM TrueNorth

« KD Fischl, K Fair, W-Y Tsai, J. Sampson, and A. Andreou, “Path planning
on the TrueNorth Neurosynaptic system,” in IEEE ISCAS 2017.

— SpiNNaker
 Lightweight enough to run on smartphone.
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Road Following Algorithm

« Robot path planning algorithm relied on GPS and the phone’s
compass.

« Low resolution of these sensors did not find the road.
« Developed vision-based road following algorithm
« Finds paved paths.
« Handles irregular paths, removes shadows, and avoids obstacles.
« Uses smartphone’s camera.

« Determines the steering direction to center on road.

T. Hwu, JL. Krichmar, and X. Zou, "A complete neuromorphic solution to outdoor
navigation and path planning," in IEEE ISCAS, 2017.
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Gaussian
Blur +
RGB2GRAY

Sobel
Gradient
Estimation

Dilation +
Path
Estimation

Road Following Algorlthm

Contrast &
Brightness
Adjustment

Binary
Threshold

Path
Labeling on
RBG Frame

(T. Hwu, JL. Krichmar, and X. Zou, in IEEE ISCAS, 2017.)
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Path Planning Results

B

Percent of route )

that the robot

stayed on the

road when it is _

supposed to B) starting

off-road
Road d di
Original Following (—Panned Route ana ending
Added It Rt s on-road.

Starting
off-road D)
& 51.2% 63.2%
Ending
on-road
Starting 7 .
on-road /! D) starting
& 41.2% 87.3% on-road_
Ending - and ending
ST e off-road.

(T. Hwu, JL. Krichmar, and X. Zou, in IEEE ISCAS, 2017.)
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Terrain Classification Algorithm

 Developed a biologically inspired, energy efficient algorithm for
terrain classification.

* Collected terrain data on grass, dirt, road with an Android-Based
Robot (ABR).

 Constructed a Reservoir-based Spiking Neural Network (r-SNN) to
classify the terrains.

R t Network 3 pred-
E’DA ON & OFF 12 plus eﬁ:ﬁn ewor Nin RNN terrain
inAcc - Spike - d minus LinAecX+ in spike trains
& Gyro Events an_ m . LinAccX- O output
spike trains ; splke trains . grass
Data s W Supervised
| Neural .
Normalized " : A 3 target ‘. dirt
HSV 3- Spiking - 1173 GyroZ+ \\\ Network
Channel Behavior spike trains gyroz- terrain . road
Data spike trams

X. Zou, T. Hwu, E. Neftci, and JL. Krichmar, “Terrain classification with a reservoir-based
network of spiking neurons”, spotlight talk and poster presented in Southern California

Robotics Symposium, Caltech, 20109.
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Camera Screenshots Examples

Grass (0)

* r-SNN Test Prediction Error (Compared
w/ SVM and 3-L Logistic Regression)

Dirt (1)

Road (2)

r-SNN | SVM 3L Logistic
Regression

mse xent

Images |[5.2% |13.9% |11.5% | 16.2%
only

Gyroscope and Linear Accelerometer Data

Targeted Terrain Labels

Sensors | 8.1% |14.5% | 13.7% | 59.6%
only

; .'uih" i Lalh L ,-r“r\\.Jﬂ" 1"*L“J‘A’h""‘.\""“"‘JhL“dwr‘f-‘ﬂlthr‘ *‘M’H“.
| £58 R A e

-2

miE =
SILRIBERNITIIRSIRBERTR

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Linear Accelerometer Data

ke ""-'lhl-‘-d,muﬂ.nam.'ﬂ*@jl ln’l",i!\l.“‘v I'..“L“.Ah‘r. 'y l,""alm
L s s e b SRt L L s

e LINACCK e LinACCY Lin,

Gyroscope Data

—CyroX e GyroY Gyro

(X. Zou, T. Hwu, E. Neftci, and JL. Krichmar,
presented in SCR, Caltech, 2019.)

Images + | 3.5% | 8.8% 10.2% | 34.3%
Sensors

The r-SNN was the most efficient method
* only 70 RNN internal neurons
» adaptation of only RNN-to-output weights
* no need of splitting data into time chunks.

Learning rule modified from SuperSpike
r-SNN is compatible with event-driven
neuromorphic hardware for a low-power
autonomous navigation system.
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Self-Driving with Neuromorphic Implementation

NSle with IBM
TrueNorth

T. Hwu, J. Isbell, N. Oros, and J. L. Krichmar, IEEE IJCNN, 2017.
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Part I. Neuromorphic Navigation Strategies

Part Il. Neuromodulated Goal-driven Perception
In Uncertain Domains
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Part Il. Neuromodulated Goal-driven Perception
In Uncertain Domains

Biological Systems Goal-Driven
s ~ Perception
guide behavior with s ~N
relevant info focus on critical
+ rapidly adapt to stimuli that need
unforeseen environment quick response
- / \ /

N p

Our Neuromodulated Goal-Driven
Perception Model

i regulate goal selection with ACh&NE A
+ highlight goals and ignore distractors
g in noisy & dynamic scenarios )
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Parallel Hidden
Layers 3 and 4
(both 400 Neuron
f

Hidden Layer 1 Hidden Layer 2
(800 Neurons) (600 Neurons)

Input Layer
(28*28*2 Neurons)

ReLU(fully
connected)

......... (. cmemmne-d
ReLU(fully ReLU(fully
connected) connected)

connected)

............ » Forward Test

~~~~~~~~~~~~ » Forward Test on Even/Odd Goal
----------- » Forward Test on Low/High Goal

Top Layer for c-EB

1
Even/Odd Output
(2*2 Neurons) o
( W e\je
or

If odd

((1,0),
(1,0)

((0,1),
(0,1))

e (10),
it \O¥ (4,0))

((0,1),

[ ifhi
Low/High Outputgh o

(2"2I Neurons)

fully
connected

connected

Output Layer in the fwd pass
or Top Layer for c-EB in the bwd pass

s)
ully

~

oo

-------
~~~~~

:bwd pass

Digit Output_0
(10*2 Neurons)

Digit Output
(10*2
Neurons)
[Train: mean
of Output_0
and Output_1]
[Test: Either
Output_0 or
Output_1]

Even/Odd Output
(2*2 Neurons) :

Digit Output_1
(10*2 Neurons)

Low/High Output
(2*2 Neurons)

—>» Forward Training

L= Even/Odd-goal-directed c-EB
) SEEILE) Low/High-goal-directed c-EB
D SEREEE c-EB

Input Layer
in the fwd pass
(28*28*2 Neurons)

Output Layer
in the fwd pass

image with goal-
related pixels
highlighted

X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, “Neuromodulated goal-driven
perception in uncertain domains,” arXiv preprint arxiv:1903.00068, 20109.
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Modified Contrastive Excitation Backprop (c-EB)

Example (1): “5” and “4”

Modified from Zhang et al. (2018) ]f :

Cued from even, odd, low- or
high-value
Backpropagated contrastive Eto i e

signals for one layer -
Performed EB over remaining

c -EB generated input: even goal . c-EB generated input: odd goal

c-EB generated input: odd goal

0 10 20 20 “ S0

c -EB generated input: low goal c -EB generated |nput hlgh goal

layers
Highlighted only goal pixels by - -

o cancelling out common

_ c-EB generated input: even goal

Table 1. c-EB Prediction Accuracy for

winner neurons 10,000 test pairs of noisy MNIST digits

o ampllfylng dISCFImlnatIVE GOAL % CORRECT % CORRECT
TASK DIGIT GOAL

neurons PREDICTION PREDICTION
. . . EVEN 92.03 99.50
(X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, ODD 0115 99 75
arXiv preprint arXiv:1903.00068, 2019.) Low 95.39 99.54
HIGH 87.46 98.22

RSS 2019 31



ACh and NE Neuromodulation

. Extended Yu and Dayan’s ACh-NE model (2005)

. 4 ACh neurons => expected uncertainties
o drove attention toward a goal digit, and divert attention
from distractors

o  ACh[guess] T if pred’s correct; vice versa
. 1 NE neuron => unexpected uncertainties

O responded phasically when a goal identity change was
detected
O NE | if pred’s correct; vice versa
NE Ablation ACh Ablation NE&ACh Ablation
no reset, rand guess, rand guess,
longer lag high NE level no ACh/NE firing

(X. Zou, S. Kolouri, PK. Pilly, and JL. Krichmar, arXiv preprint arXiv:1903.00068, 2019.)
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Table 2. Average neuromodulation performance over 10
runs for each of the four goal validity settings.

(X. Zou, S. Kolouri,
PK. Pilly, and JL.

MAJOR MINOR % CORRECT % CORRECT % INCORRECT % INCORRECT . i
GOAL GOAL MAIJOR MINOR ACH SOFTMAX Cc-EB Krichma I, a rXiv
VALIDITY | VALIDITY GOAL GOAL PREDICTION PREDICTION .
preprint
0.99 0.01 67.0 0.1 26.0 6.9 .
0.85 0.15 54.0 1.3 38.9 5.8 arXiv:1903.00068,
0.70 0.30 37.4 4.8 53.3 4.5
P_VALID 1-P_VALID 49.5 12.4 31.7 6.4 2019')
Random Major Goal Validity Among 0.99, 0.85, 0.70
high 22 oo A 65;’7 =esad *0*53*7——-\ i R ol m—— e oo o
0.70 y . » 0.85
low e —e—— oot e e e i pad - . choice
+ major goal
0.85 . - 0.70 - ) 0.85 0.99 + minor goal
odd ——— e St Lk
— £ o ————— e e et g -—L Db+ - —— 2 B R
0 500 1000 1500 2000 00 3000 3500
. Noradrenergic Level
08
06
04
02
00 T T T T T - T
0 500 1000 1500 2000 2500 3000 3500
Cholinergic Level
10 rrva - ,_\\’ r- ey
8 | \ “
\ | \ ‘ |~ even
P J \ | J odd
/ / , —— low
4 / / — high
0 500 1000 1500 2000 2500 3000 3500
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Neuromodulated Goal-Driven Perception

 Extended neuroscience model to support goal-driven perception
 Compatible w/ many attention mechanisms
® c-EB was chosen, similar to ACh system
* Evaluated probability matching behavior
o  Explored options v/
always choosing the most likely goal X
® Underselected the most rewarding, similar to human
behavior
O Uncertainty seeking strategies governed by ACh systems can
inspire Al
* The system can be more scalable
O to learn goals online using a pool of ACh neurons without a
priori assumptions
O to work on more complex datasets (e.g. Microsoft COCO,
ImageNet)
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Action-Based Goal-Driven Perception

“I guess he
wants to
drink”

Desired actions can drive attention in humans

©)

Neuromodulatory systems operate on a
modified contrastive excitation backprop (c-
EB) attention method.

Predicts the current desired action and
increases attention to related objects.

The HSR will carry out the desired action on

the attended object.

Action = “read”
book

0 200 400 600
Result of top-down attention
RSS 2019 35



Hwu, Kashyap & Krichmar, “Applying a Neurobiological Model of Schemas and Memory
Consolidation to Contextual Awareness in Robotics”, IROS 2019, under review.
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CONCLUSIONS

e Attention and navigation algorithms are developed to
work in noisy and unpredictable environments.

 Android-Based Robot platform allows mapping,
localization, path planning, and reactive controls to be
Implemented with traditional or neuromorphic methods.

« Neuromodulated goal-driven perception extends
neuroscience Iideas, and can inspire Al and
neuroscience reciprocally.

* Neurorobotics will serve as an important platform for
cognitive systems that can be generalized across
multiple task domains and over longer time frames.
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Thank You!

« UCI CARL Lab Publications
— http://www.socscl.ucl.edu/~jkrichma/publications.html

« Android™ Based Robotics
o http://www.socscli.ucl.edu/~|krichma/ABR/

o https://github.com/UCI-ABR

* Contact us
— Xinyun Zou xinyunz5@uci.edu
— Jeffrey L. Krichmar jkrichma@uci.edu
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Path Readout

Address Event Representation (AER)

Time Neuron ID (r,c) g
1 () @""Q'@'c‘i
2 (1,2),(2,1),(2,2) - g
3 (1,3),(2,3),63; B

6 (36)(

9 (3,4)(4:2),6,6)

T. Hwu, AY Wang, N. Oros, and JL. Krichmar, “Adaptive robot path planning using a
spiking neuron algorithm with axonal delays,” IEEE TCDS, 2017.
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A. Map 1 — Without Road

10

15
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é ‘II{] ‘IIS EIC_J
C. Map 1 — With Road
and Obstacles
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5 10 15 20
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Map of Testing Environment

B. Map 1 — With Road

10

15

20

é 1I0 1I5 26
D. Map 2 — With Roads
and Obstacles

10

15

20

5 10 15 20

T. Hwu, A. Y. Wang, N. Oros, and J. L. Krichmar, “Adaptive robot path planning
using a spiking neuron algorithm with axonal delays,” IEEE TCDS, 2017.
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r-SNN Terrain Classification Algorithm

A. Spiking Neuron Model

. Leaky integrate-and-fire (LIF) neurons.

*  Synaptic current (i, ) jumps upon spike
arrival from presynaptic neurons.

. Postsynaptic membrane potential (U;) is

updated w.r.t. iy, membrane time constant,

and resting potential.
. If U; > threshold, a spike is triggered. A
refractory period follows.

B. Learning Rule

. Inspired from SuperSpike, RNN-to-output w;;

changes according to a nonlinear Hebbian

rule with individual synaptic eligibility traces

awy =1 [e® (S = oW))] - oWy - (1= o))
. n: learning rate, S;: target postsyn spike pattern,
. € jumps with presynaptic spikes.

Supervised Test Input Spikes

r-SNN Test Prediction Results

Supervised Test Output for Label 0 (Grass)

Input Neurons
8 8 &8 8

[+]
0 1000 2000 3000 4000 5000 6000 7000

Supervised Test Target Labels

0 1000 2000 3000 4000 5000 6000 7000

Time

Supervised Test Output for Label 1 (Dirt)

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Supervised Test Predicted Labels
(after 100 epochs)

Labels

Time

Supervised Test Output for Label 2 (Road)

o U

0 1000 2000 3000 4000 5000 6000 7000

0 1000 2000 3000 4000 5000 6000 7000

Time

(X. Zou, T. Hwu, E. Neftci, and JL. Krichmar, presented in SCR, Caltech, 2019.)

RSS 2019

41



