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 Computing substrate shapes our models
➡Turing machine

➡Todays computers

➡Neural systems

➡Different things are simple and hard

• sequential processing

• separation of memory and processor

• digital representations 

• clocked

• running algorithms

• clear input and output

• massively parallel

• event-driven

• memory and processor same

• not running programs 

• not implementing algorithms 

• asynchronous

• adaptive

• dynamical system
“Turing complete” Beyond Turing?

➡There is a cost for the hardware / process mismatch



Neuromorphic hardware
➡ Emulate activation dynamics of biological neurons

➡ inherently parallel 
➡ event-based, asynchronous 
➡ co-location of memory and processing  
➡ adaptive  
➡ mismatch and variability 
➡ do not run algorithms and programs

•  using analogue physics of transistors in subthreshold regime 
•  to realise the leaky integrate-and-fire model

Ning et al. A Learning Neuromorphic Processor
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Figure 3: Silicon neuron schematics. The NMDA block implements a voltage gating mechanism; the
LEAK block models the neuron’s leak conductance; the spike-frequency adaptation block AHP models
the after-hyper-polarizing current effect; the positive-feedback block N+ models the effect of the Sodium
activation and inactivation channels; reset block K+ models the Potassium conductance functionality.

2.2 THE NEUROMORPHIC PROCESSOR BUILDING BLOCKS

Here we present the main building blocks used in the ROLLS neuromorphic processor chip, describing
the circuit schematics and explaining their behavior.

2.2.1 The silicon neuron block The neuron circuit integrated in this chip is derived from the adaptive
exponential I&F circuit proposed in (Indiveri et al., 2011), which can exhibit a wide range of neural
behaviors, such as spike-frequency adaptation properties, refractory period mechanism and adjustable
spiking threshold mechanism. The circuit schematic is shown in Fig. 3. It comprises an NMDA block
(MN1,N2), which implements the NMDA voltage gating function, a LEAK DPI circuit (ML1−L7) which
models the neuron’s leak conductance, an AHP DPI circuit (MA1−A7) in negative feedback mode, which
implements a spike-frequency adaptation behavior, an Na+ positive feedback block (MNa1−Na5) which
models the effect of Sodium activation and inactivation channels for producing the spike, and a K+ block
(MK1−K7) which models the effect of the Potassium conductance, resetting the neuron and implementing
a refractory period mechanism. The negative feedback mechanism of the AHP block, and the tunable reset
potential of the K+ block introduce two extra variables in the dynamic equation of the neuron that can
endow it with a wide variety of dynamical behaviors (Izhikevich, 2003). As the neuron circuit equations
are essentially the same of the adaptive I&F neuron model, we refer to the work of Brette and Gerstner
(2005) for an extensive analysis of the repertoire of behaviors that this neuron model can reproduce, in
comparison to, e.g., the Izhikevich neuron model.

All voltage bias variables in Fig. 3 ending with an exclamation mark represent global tunable parameters
which can be precisely set by the on chip Bias Generator (BG). There are a total of 13 tunable parameters,
which provides the user with high flexibility for configuring all neurons to produce different sets of
behaviors. In addition, by setting the bits of the relative latches in each neuron, it is possible to configure
two different leak time constants ( if tau1! / if tau2!) and refractory period settings ( if rfr1! / if rfr2!) per
neuron. This gives the user the opportunity to model up to four different populations of neurons within
the same chip that have different leak conductances and/or refractory periods.

Frontiers in Neuroscience 7

Inherit some of the properties of neural systems



neuron circuit of a neuron

Ning et al. A Learning Neuromorphic Processor
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activation and inactivation channels; reset block K+ models the Potassium conductance functionality.
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2.2.1 The silicon neuron block The neuron circuit integrated in this chip is derived from the adaptive
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behaviors, such as spike-frequency adaptation properties, refractory period mechanism and adjustable
spiking threshold mechanism. The circuit schematic is shown in Fig. 3. It comprises an NMDA block
(MN1,N2), which implements the NMDA voltage gating function, a LEAK DPI circuit (ML1−L7) which
models the neuron’s leak conductance, an AHP DPI circuit (MA1−A7) in negative feedback mode, which
implements a spike-frequency adaptation behavior, an Na+ positive feedback block (MNa1−Na5) which
models the effect of Sodium activation and inactivation channels for producing the spike, and a K+ block
(MK1−K7) which models the effect of the Potassium conductance, resetting the neuron and implementing
a refractory period mechanism. The negative feedback mechanism of the AHP block, and the tunable reset
potential of the K+ block introduce two extra variables in the dynamic equation of the neuron that can
endow it with a wide variety of dynamical behaviors (Izhikevich, 2003). As the neuron circuit equations
are essentially the same of the adaptive I&F neuron model, we refer to the work of Brette and Gerstner
(2005) for an extensive analysis of the repertoire of behaviors that this neuron model can reproduce, in
comparison to, e.g., the Izhikevich neuron model.
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neuron. This gives the user the opportunity to model up to four different populations of neurons within
the same chip that have different leak conductances and/or refractory periods.

Frontiers in Neuroscience 7

neural dynamics

Feed-forward feature extraction
Visual search and working memory: theory and experiment 15

Scene Spatial
Selection

Scene S/F
 Selection

Memory S/F
Maps

 Memory S/F
 Selection

Scene 
Guidance

Memory
Guidance

Search
 Cue

Feature
Matching

size
orientation

color

x

y

Scene
Space/Feature Maps

scene spatial salience

x

y

Camera Processing

conspicuity maps

feature extraction
feature m

aps

width

length

size

saturation

orientation

hue value

rate to 
space code

color

Camera Image

Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al (under revision)]
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Diverse Neuromorphic Hardware devices

Create and promote neuromorphic 
community in Europe: www.neurotechai.eu

“BrainDrop” (Stanford) DYNAP (Zurich) BrainScaleS (Heidelberg)

“TrueNorth” (IBM) Loihi (Intel) SpiNNaker (Manchester)

Analog

Digital



Schematics of a neuromorphic chip

Qiao et al, 2015
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1. Reactive controller

sensory system

motor system

nervous system
body

2 Dy na m ic  T h i n k i ng

into an activation value using a particular type of 
neural coding called “rate coding.” The idea is that 
there is a one-to-one mapping from the physical 
intensity value in the world to the activation value in 
the nervous system, that is, to the firing rate induced 
by stimulation of the sensory cell. Similarly, motor 
systems can be characterized using a rate code pic-
ture where the activation value in the nervous sys-
tem is mapped to the force generated by a motor.

Critically, Braitenberg took his metaphor one 
step farther by situating the vehicle in a structured 
environment. Figure I.2 shows one of his vehicles 
situated in an environment that has a stimulus off 
to the left such that stimulation hits the two sensors 

differentially. In particular, the left sensor receives 
a higher intensity than the right sensor. If we 
assume that this critter is wired up such that strong 
stimulus intensity leads to low activation levels, this 
situation will generate an orienting behavior, what 
biologists have called “taxis”—the critter will turn 
toward the input. Why does this happen? In this 
vehicle, the nervous system is organized ipsilater-
ally, so the right motor receives input from acti-
vation associated with the right sensor. Because 
strong stimulation leads to a lower firing rate, the 
left motor will receive less activation than the right 
motor. Consequently, the left motor will turn more 
slowly than the right motor and the vehicle will 
turn toward the source. As it approaches the source, 
the intensities get stronger and the firing rates drop 
perhaps to zero—the critter approaches the stimu-
lus and stops.

The lesson from this narrative is that mean-
ingful behavior is not generated solely from a 
feed-forward view of the nervous system; rather, 
meaningful behavior emerges when an organism 
is situated in an appropriately structured envi-
ronment. All four components of the vehicle are 
important. Indeed, we should really think of the 
structured environment as the fifth component of 
the vehicle—without it, no meaningful behavior 
will arise, as James J Gibson has forcefully argued.

When we put all five components together, 
the resultant “vehicle–environment system” forms 
something called a dynamical system. To see this, 
the graph on the top of Figure I.3 collapses the sen-
sor and motor characteristics down into one direct 
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FIGURE I.1: A  Braitenberg vehicle consists of sensory systems, motor systems, a nervous system, and a body. The 
sensory characteristic shown at the top right describes the activation output by the sensor system as a function of  
the physical intensity to which the sensor is sensitive. The motor characteristic shown at the bottom right describes the 
movement generated by the motor system as a function of the activation received as input.
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FIGURE I.2: The taxis vehicle of Braitenberg in an envi-
ronment with a single source of intensity. The sensor 
characteristic is a monotonic negative function, the motor 
characteristic a monotonic positive function. This leads 
to taxis behavior in which the vehicle turns toward the 
source (curved arrow).
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Braitenberg “de luxe”
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We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface
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USBConnector.h
TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has
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Navigation with a neuromorphic device

Milde, M.; Blum, H.; Dietmüller, A; Sumislawska, D.; Conradt, J.; Indiveri, G. & Sandamirskaya, Y. Obstacle avoidance and target acquisition 
for robot navigation using a mixed signal analog/digital neuromorphic processing system Frontiers in Neurorobotics, 2017.

Avoiding obstacles Output of the sensor and the chip

Target acquisition



2. Memory and reference frames
View-based target representation:

• target in view • target lost from view

Allocentric target representation:

Target Target
N✓rel

✓mem

�

N

ROLLS device

Neural ref. frame transformation:
relative 
target  

direction

robot’s  
heading 
direction

absolute 
target  

direction

tranformation  
map (gain field)✓mem = ✓rel � �



“Relational” architecture
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•Error estimation

•Computing differences
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3. Neuromorphic motor controller

Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking 
neural network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, arxiv, 2019 



Experiments with a robot

Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural 
network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, 2019 
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Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010). (a) The
continuous version of the serial order architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence. The content Dynamic Neural Field (DNF) represents the perceptual or
motor features of the stored items. A sequence of items is learned in adaptive connections between the
ordinal nodes and the content DNF. (b) The neuromorphic realization of the architecture using populations
of neurons. Note that in order to create stabilized peaks of activation that correspond to self-sustained
activation of a neural population, neurons within a group need to be recurrently connected. CoS is the
condition of satisfaction system that detects sequential transitions both during sequence learning and
acting-out.

here if an item was successfully learned and there’s no perceptual input (Laser off) the ordinals recall the202

learned item -¿ activity in the content DNF. Since the DNF is connected to the CoS, successful learning203

and not perceiving visual input anymore triggers the transition. (DVS on population is off -¿ no inhibition204

of CoS, but activation from content. When the laser is switched on the DVS on population becomes active205

and inhibits the CoS, next item can be learned. During sequence replay, on the other hand, the activity peak206

in the content DNF is supported by the active ordinal node. When the CoS becomes active and inhibits the207

ordinal nodes, the activity in the content DNF also ceases. In both cases, the decrease of activity in the208

content DNF leads to deactivation of the CoS node, which releases the inhibition on the ordinal nodes. The209

next ordinal node can become active now, driven by the asymmetric connection from the previous memory210

node.211

Fig. 4b shows how this neural dynamic architecture can be realized with populations of spiking neurons – a212

step required for the implementation in neuromorphic hardware (Sandamirskaya, 2013). Several constraints213

have to be taken into account: (1) the limited amount of silicon neurons, (2) robustness to mismatch, and214

(3) shared parameter settings across all neurons that need to exhibit different firing behaviors.215

To cope with mismatch, we used populations of 10-20 neurons to represent a neuronal node (ordinal,216

memory, or CoS nodes).217

Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via218

excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,219

forming a WTA network. This allows only one ordinal group to be active at a time.220

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.221

Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has222

excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding223

This is a provisional file, not the final typeset article 8

4. Sequences: serial order



Sequence learning “program”Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010). (a) The
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acting-out.

here if an item was successfully learned and there’s no perceptual input (Laser off) the ordinals recall the202

learned item -¿ activity in the content DNF. Since the DNF is connected to the CoS, successful learning203

and not perceiving visual input anymore triggers the transition. (DVS on population is off -¿ no inhibition204

of CoS, but activation from content. When the laser is switched on the DVS on population becomes active205

and inhibits the CoS, next item can be learned. During sequence replay, on the other hand, the activity peak206

in the content DNF is supported by the active ordinal node. When the CoS becomes active and inhibits the207

ordinal nodes, the activity in the content DNF also ceases. In both cases, the decrease of activity in the208

content DNF leads to deactivation of the CoS node, which releases the inhibition on the ordinal nodes. The209

next ordinal node can become active now, driven by the asymmetric connection from the previous memory210

node.211

Fig. 4b shows how this neural dynamic architecture can be realized with populations of spiking neurons – a212

step required for the implementation in neuromorphic hardware (Sandamirskaya, 2013). Several constraints213

have to be taken into account: (1) the limited amount of silicon neurons, (2) robustness to mismatch, and214

(3) shared parameter settings across all neurons that need to exhibit different firing behaviors.215

To cope with mismatch, we used populations of 10-20 neurons to represent a neuronal node (ordinal,216

memory, or CoS nodes).217

Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via218

excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,219

forming a WTA network. This allows only one ordinal group to be active at a time.220

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.221

Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has222

excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding223

This is a provisional file, not the final typeset article 8

Connectivity matrix

pr
e-

post-

non-plastic synapses

Sy
na

ps
e 

D
e-

M
ul

tip
le

xe
r

plastic synapses virtual 
synapses

neurons

AER Input

AE
R 

In
pu

t

AE
R 

O
ut

pu
t

Bias Generator

“Programm”

Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010). (a) The
continuous version of the serial order architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence. The content Dynamic Neural Field (DNF) represents the perceptual or
motor features of the stored items. A sequence of items is learned in adaptive connections between the
ordinal nodes and the content DNF. (b) The neuromorphic realization of the architecture using populations
of neurons. Note that in order to create stabilized peaks of activation that correspond to self-sustained
activation of a neural population, neurons within a group need to be recurrently connected. CoS is the
condition of satisfaction system that detects sequential transitions both during sequence learning and
acting-out.
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Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via218

excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,219

forming a WTA network. This allows only one ordinal group to be active at a time.220

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.221

Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has222

excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding223
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Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 12. Learning a sequence of cued locations with a robot. Top, left. The output of the Dynamic vision
Sensor (DVS) camera of the robot: events from rows of the DVS over time. Regions with high activity
correspond to horizontal positions of locations, cued with a laser pointer. Top, right. Plastic synapses after
learning. Dark red dots are synapses with high weights (only synapses from ordinal populations to the
content DNF are probed here). Middle Spiking activity of neurons on the ROLLS chip during the robotic
sequence learning experiment, in which sequence of three locations was learned (A-C-B) and reproduced
by turning to center respective location in the field of view of the robot’s DVS (the mapping from position
in the camera’s FoV and angle of rotation was hard-coded here for simplicity). Bottom. Snapshots of the
experiment from an overhead camera. See main text for details.
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5. Long-term memory: SLAM



Navigation: Head-direction network

With visual reset

Without visual reset



Map formation: Path integration in 2D

Moser et al. Annual Review of Neuroscience 2008 

“Grid cells”

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position

Parallela & ROLLS

Omnibot

Kreiser, R.; Pienroj, P.; Renner, A. & Sandamirskaya, Y. Pose Estimation and Map Formation with Spiking Neural Networks: 
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6. Autonomous learning: calibration of HD network
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Neuromorphic architectures: building blocks 

➡ Adaptive motor control
- key element for adaptive 

behavior
Glatz et al, arxiv, 2018 

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position

- state estimation, building 
representations  

➡ Simultaneous localisation and mapping: 
path integration, learning a map, sequences

Blatter et al, ISCAS, under rev; Kreiser et al 2018a, b  

➡ Reference frame transformations
- key for linking modalities  

Blum  et al 2017

➡ Braintenberg vehicle, sequences
- attractors in a sensory-motor loop

Milde et al 2017a,b; Kreiser et al 2018 



Conclusions

➡ lots of structure is needed to control behavior with neurons

➡ learning can then be very simple

➡ object representation/recognition is a map-formation 
problem, not (just) pattern learning and recognition 

-  one-shot
-  binary weight

- represent state with neuronal populations (“place code”)

- stabilise states and decision with recurrent connections (DNF)

- disinhibition for robustness

- adaptive couplings between sensed quantities and states

- error estimation and correction

➡ computing substrate sets additional constraints on models
- can lead to new inspiration and more efficient systems
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