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The old dream of AI was embodied AI

cognitive architectures linked to sensors and 
action systems 

the kind of perception that symbolic AI needed 
was harder than thought 

the kind of motion planning and control that 
symbolic AI presupposed needed detailed models 
of everything… and highly-demanding real time 
computation

background knowledge was very difficult to 
capture, especially for physical/perceptual 
processes 



Progress

motion planning through potential fields and 
more 

probabilistic thinking enables linking to low-
level sensors

software engineering makes design more 
efficient 

better computation is an enabler 

recent progress in DL may boost perception



Problems: 

background knowledge is still hard

=> “every new task 1 PhD thesis”

=> very little real planning, “thinking”… 

physical interaction is still very hard

perhaps the area with least real progress 

no real learning from experience

=> what we have now does not scale 



Organisms as models of embodied AI

earliest analogies based on low level 
behaviors, reflexes, fixed action patterns 

behavior-based robotics

inspiration from the morphology of 
organisms…

inspiration from decentralized control of 
locomotion, pattern generations… 



Neural inspiration for perception

ideas from ML and deep networks to train 
perceptual systems for given tasks with given 
data 

only beginning to impact on robotics…

but: does not deliver general  “symbols” 

perception continues to be specific to each task and 
environment 

difficult to automatically adapt to new tasks 
and environments



Hypothesis:

insights from neuroscience and embodied 
cognition suggest that a new radical form of 
the analogy with organisms could solve core 
problems of embodied AI 



Hypotheses 
1) neural cognitive architectures are built on a 
sensory-motor foundation that incorporates 
background knowledge

2) these architectures generate classes of naturalistic 
behavior/naturalistic tasks (rather than solving general 
computational tasks)

3) cognition emerges from sensory-motor behaviors 
through increasing invariance and complexity while 
retaining sensory-motor grounding (rather than 
through symbol manipulation) 

4) neural cognitive architectures provide the process 
foundation for autonomous learning from experience 



The need for neural dynamics

the forward NN capture only a small 
portion of (visual) cognition.. most cognition 
occurs without continuous sensory input

=> activation needs to be kept stable/be 
generated autonomously

requires neural interaction

excitatory coupling among neurons belonging to same 
state

inhibitory coupling among neurons belonging to 
competing states

[Schöner ToPiCs (in press)]



Dynamic Field Theory (DFT) 
neural dynamics in low-dimensional spaces

=> stable activation states as units of representation 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u



Dynamic Field Theory (DFT) 

instabilities enable elementary cognitive function: 
detection, selection, working memory, recall  

=> simulation 



www.dynamicfieldtheory.org

online lectures

Matlab toolbox 
Cosivina

graphical DFT 
programming tool 
Cedar 
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Sequences in neural dynamics

generation of sequential transitions between 
units of representation is the core 
processing element needed to extend neural 
dynamics toward cognition 



Sequences in neural dynamics

intentional states

their “condition of 
satisfaction” (Cos) 

may originate from 
sensory signals or other 
neural activation 
variables/fields inside an 
architecture…. 

intentional
noide

Condition of
 Satisfaction
(CoS)

intentional
field

CoS field
prediction

dimensions 2dimensions 1

from sensors or 
other neural 
fields/nodes

from sensors or 
other neural 
fields/nodes



Neural dynamic architectures

are enabled by stability which implies 
robustness: elements retain their function as 
they are coupled

coupling fields of different dimensions offers 
new functions

cued search

coordinate transforms

peak detection 



Neural dynamic architectures 

=> networks of neural dynamic systems

not conventional cognitive architectures: no information 
is passed on, no symbols are manipulated.. 

Examples

movement

scene representation

serial order 

perceptual grounding of relations

mental map formation

intentional systems 



serial order 
from 
demonstration

sequence of 
pointing 
movements 
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Figure 2.5: Architecture schematic - perception module. See text for details.
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[Tekülve et al., Frontiers (under review)]





Feed-forward feature extraction
Visual search and working memory: theory and experiment 15
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al (under revision)]



Scene representation 
and visual search
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al., Attention, Perception, & Psychophysics (under revision)]



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.

40 M. Richter, J. Lins, G. Sch€oner / Topics in Cognitive Science 9 (2017)

[Richter, 
Lins, 

Schöner, 
TopiCS 
(2017)]
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grounding 

of relations
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[Kounatidou, Richter, Schöner, CogSci 2018]Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-

tions here. The architecture has three such coordinate trans-
forms: the first (leftmost blue diamond) enables the position
of an already existing target object to be transformed into the
relational field. This enables the architecture to make infer-
ences on an already established mental model. The second
coordinate transform (middle diamond) enables the model to
transform peaks in the relational field back into the target
field. This path accounts for the creation of new objects in the
scene: a peak is induced in the relational field from the spa-
tial template that represents one of the spatial relations. The
position in space where the peak forms determines where the
new object is going to be placed in space. The third transfor-
mation (right diamond) has a crucial impact on the position
where the peak forms in the relational field. It transforms
the output of the spatial scene representation field and feeds
inhibitorily into the relational field, introducing inhibition in
positions that are already occupied by objects in the mental
model. Due to this inhibition, peaks induced in the relational
field tend to shift further outward, avoiding changes to the al-
ready established mental model. This is consistent with the
preferred mental models that humans tend to build (Ragni &
Knauff, 2013).

Mental mapping 
based on relations

“There is a cyan object above a green object.”

“blue right of red”

“cyan above green”
“red left of green”
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Figure 2: Schematic overview of the dynamic fields and nodes representing the agent’s intentional states grouped according to
their psychological modes. For clarity’s sake only the most relevant connections are shown and parts of the architecture relevant
to autonomous learning and exploration are hidden. Prior intentions are depicted as precondition nodes with labels describing
the inhibiting CoS followed by the inhibited IiA.

Perception The virtual environment contains cuboids of
different height and color, which are arranged in an array
along a single dimension facing the robotic agent. The agent’s
visual perception fields are therefore spanned across horizon-
tal retinal space and the two feature dimensions height and
color. A selective spatial attention mechanism causes peaks
to form in the same spatial location in the space/color and
space/height perception fields, representing a perception of
the particular height and color features at that particular loca-
tion (see Grieben et al. (2018) for details on the attentional se-
lection). To detect successful interaction with the world, the
agent perceives changes in the environment through a two-
layer transient detector that forms peaks in response to sudden
changes in visual input (see Berger et al. (2012) for details).

To monitor its own actions the agent requires self-
perception of the task-dependent “body parts”, which in-
cludes an estimate of the agent’s position in the world. A
simulated sensor provides input to a one-dimensional current

position field, as the agent’s movement is restricted to driving
in parallel to the cuboid array. Arm movement is restricted
to two Cartesian dimensions, lateral and forward translation,
which leads to a two-dimensional representation of the cur-
rent end effector position in the proprioception field. The

painting device is located at the robot’s end effector and can
either be filled with color or not. This categorical perceptual
state is represented through a neural node that is activated if
the device is filled.

Attention directed towards particular self-perceptions is
modeled through a homogeneous resting level boost, which
causes the sub-threshold sensor information to form a peak
in the respective perception field. Neural interaction in per-
ception fields is strong enough to prevent the destabilization
of perceptions through noise, but retains its input coupling
such that a continuous change in input induces a drift in peak
position.

Memory To allow the agent to engage in more sophisti-
cated actions that are not purely based on current perceptions,
the agent stores past perceptions of cuboids in memory. Each
visual perception of the agent leaves a slowly decaying two-
dimensional memory-trace spanned across world-space and
feature, modeling a memory process that is subject to inter-
ference (Erlhagen & Schöner, 2002). The trace is forwarded
as sub-threshold activation to a space/feature memory field
analog to the visual perception fields. Memory states rep-
resented as peaks in the memory field may emerge through

[Tekülve Schöner, CogSci 2019]



Intentional agent

[Tekülve Schöner, CogSci 2019]
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Figure 3: Activation snapshots of selected fields displaying the formation of CoS peaks during a successful painting sequence.
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=> demonstration/interactive 
session 



Why would this radically neural 
approach be useful?

architectures represent theories of task that 
capture background knowledge

about possible actions

about how to reach goals by combining primitives



Why would this radically neural 
approach be useful?

all elements of representation are 
perceptually grounded

open, in principle, to autonomous learning

because behavior is built from primitives

no need to control arbitrary movement 

+ open, in principle, to learning physical interaction 



Conclusion 1

but: this is a research frontier rather than a 
ready-made theory 

capturing background knowledge in 
architectures … 

autonomous learning from experience … 

physical interaction … 



…. the other dimension to the 
radical hypothesis: 

neuromorphics

when all AI is on a neural chip… all AI needs 
to be neural…

=> Yulia Sandamirskaya’s introduction 



Conclusion 2

sometimes a radical reset is needed to get 
out of dead-end roads..

that is what we are contemplating 


