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The old dream of Al was embodied Al

B cognitive architectures linked to sensors and
action systems

B the kind of perception that symbolic Al needed
was harder than thought

B the kind of motion planning and control that
symbolic Al presupposed needed detailed models
of everything... and highly-demanding real time
computation

B background knowledge was very difficult to
capture, especially for physical/perceptual
processes



Progress

B motion planning through potential fields and
more

B probabilistic thinking enables linking to low-
level sensors

B software engineering makes design more
efficient

B better computation is an enabler

B recent progress in DL may boost perception



Problems:

B background knowledge is still hard
B => “every new task | PhD thesis”

B => very little real planning, “thinking”...
B physical interaction is still very hard

B perhaps the area with least real progress

B no real learning from experience

B => what we have now does not scale



Organisms as models of embodied Al

M earliest analogies based on low level
behaviors, reflexes, fixed action patterns

B behavior-based robotics

M inspiration from the morphology of
organisms...

M inspiration from decentralized control of
locomotion, pattern generations...



Neural inspiration for perception

M ideas from ML and deep networks to train
perceptual systems for given tasks with given
data

B only beginning to impact on robotics...

B but: does not deliver general “symbols”

B perception continues to be specific to each task and
environment

B difficult to automatically adapt to new tasks
and environments



Hypothesis:

B insights from neuroscience and embodied
cognition suggest that a new radical form of
the analogy with organisms could solve core
problems of embodied Al



Hypotheses

B |) neural cognitive architectures are built on a
sensory-motor foundation that incorporates
background knowledge

M 2) these architectures generate classes of naturalistic
behavior/naturalistic tasks (rather than solving general
computational tasks)

M 3) cognition emerges from sensory-motor behaviors
through increasing invariance and complexity while
retaining sensory-motor grounding (rather than
through symbol manipulation)

B 4) neural cognitive architectures provide the process
foundation for autonomous learning from experience



The need for neural dynamics

B the forward NN capture only a small
portion of (visual) cognition.. most cognition
occurs without continuous sensory input

B => activation needs to be kept stable/be
generated autonomously

B requires neural interaction

B excitatory coupling among neurons belonging to same
state

M inhibitory coupling among neurons belonging to
competing states

[Schoner ToPiCs (in press)]



Dynamic Field Theory (DFT)

B neural dynamics in low-dimensional spaces

B => stable activation states as units of representation

>

activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes
eaks against diffusion

dimension, X



Dynamic Field Theory (DFT)

M instabilities enable elementary cognitive function:
detection, selection, working memory, recall

B => simulation



www.dynamicfieldtheory.org
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Sequences in neural dynamics

B generation of sequential transitions between
units of representation is the core
processing element needed to extend neural
dynamics toward cognition



Sequences in neural dynamics
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Neural dynamic architectures

B are enabled by stability which implies
robustness: elements retain their function as

they are coupled

B coupling fields of different dimensions offers
new functions

B cued search
B coordinate transforms

B peak detection



Neural dynamic architectures

B => networks of neural dynamic systems

B not conventional cognitive architectures: no information

is passed on, no symbols are manipulated..

B Examples
B movement
B scene representation
M serial order
B perceptual grounding of relations
B mental map formation

M intentional systems



B serial order
from
demonstration

M sequence of
pointing
movements

[ Tekulve et al., Frontiers (under review)]
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Perceptual e
grounding
of relations

[Richter,
Lins,
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(2017)]
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Mental mappin “cyan above green”
PPTE “red left of green”

based on relations “blue right of red”

B “There is a cyan object above a green c
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Intentional agent
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=> demonstration/interactive
session



Why would this radically neural
approach be useful?

B architectures represent theories of task that
capture background knowledge

B about possible actions

B about how to reach goals by combining primitives



Why would this radically neural
approach be useful?

M all elements of representation are
perceptually grounded

B open, in principle, to autonomous learning

B because behavior is built from primitives
B no need to control arbitrary movement

@ + open, in principle, to learning physical interaction



Conclusion |

B but: this is a research frontier rather than a
ready-made theory

B capturing background knowledge in
architectures ...

M autonomous learning from experience ...

B physical interaction ...



....the other dimension to the
radical hypothesis:
neuromorphics

B when all Al is on a neural chip... all Al needs
to be neural...

B => Yulia Sandamirskaya’s introduction



Conclusion 2

B sometimes a radical reset is needed to get
out of dead-end roads..

B that is what we are contemplating



