• RUB
  • INI
  • Projects
  • Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-Visual Environments
2021
2023
Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-Visual Environments
Noah Krystiniak, M.Sc.
Raphael C. Engelhardt, M.Sc.
Prof. Dr. Wolfgang Konen
Funding:

Supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.


Publication abstract:

Real-world reinforcement learning (RL) environments, whether in robotics or industrial settings, often involve non-visual observations and require not only efficient but also reliable and thus interpretable and flexible RL approaches. To improve efficiency, agents that perform state representation learning with auxiliary tasks have been widely studied in visual observation contexts. However, for real-world problems, dedicated representation learning modules that are decoupled from RL agents are more suited to meet requirements. This study compares common auxiliary tasks based on, to the best of our knowledge, the only decoupled representation learning method for low-dimensional non-visual observations. We evaluate potential improvements in sample efficiency and returns for environments ranging from a simple pendulum to a complex simulated robotics task. Our findings show that representation learning with auxiliary tasks only provides performance gains in sufficiently complex environments and that learning environment dynamics is preferable to predicting rewards. These insights can inform future development of interpretable representation learning approaches for non-visual observations and advance the use of RL solutions in real-world scenarios.


Publications

    2024

  • *Best Paper Award* Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-visual Environments: A Comparison
    Lange, M., Krystiniak, N., Engelhardt, R. C., Konen, W., & Wiskott, L.
    In G. Nicosia, Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M., & Umeton, R. (Eds.), Machine Learning, Optimization, and Data Science (pp. 177–191) Cham: Springer Nature Switzerland

The Institut für Neuroinformatik (INI) is a research unit of the Faculties of Computer Science and Medicine at the Ruhr-Universität Bochum. Its scientific goal is to understand the fundamental principles through which organisms generate behavior and cognition while linked to their environments through sensory and effector systems. Inspired by our insights into such natural cognitive systems, we seek new solutions to problems of information processing in artificial cognitive systems. We draw from a variety of disciplines that include experimental psychology and neurophysiology as well as machine learning, neural artificial intelligence, computer vision, and robotics.

Universitätsstr. 150, Building NB, Room 3/32
D-44801 Bochum, Germany

Tel: (+49) 234 32-28967
Fax: (+49) 234 32-14210