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Introduction 1

3 Selforganizational models of simple cells (→ slides) are usually linear and based on various
objectives, which yield certain receptive fields as optimal solutions. If these receptive fields are similar
to the physiological ones, this provides support for the objective used to be the underlying reason
for the shape of the physiological receptive fields. This section shows that sparseness and statistical
independence are plausible objectives, while linear compression is not.
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3 Selforganizational models of simple cells (→ slides)

While the what-question can be addressed rather directly, because one can measure the responses of the
cells and make a model of the responses as a function of the stimulus, the why-question is more difficult and
needs to be adressed indirectly. One approach is to make a hypothesis about why the cells have developed
their response properties, formulate that as an optimization problem, solve the optimization problem, and
then see whether the result bares similarity with the physiological response properties. If it does, it supports
the hypothesis, if not, it discredits the hypothesis. For simple cells we consider here the following three
hypotheses:

� Simple cells are there to (linearly) compress the visual input.

� Simple cells are there to decompose the visual input into statistically independent components.

� Simple cells are there to yield a sparse representation of the visual input.

3.1 Principal component analysis does not lead to simple cells

Learning material:1

□ 6 min video 3.1 Principal Component Analysis does not Lead to Simple Cells

□ Text below

1Generic instruction: Consider the (possibly nested) list of resources like a horizontal tree with an invisible root on
the very left, and decide from left to right what you want to select to work through. The invisible root node has to be
selected. For any selected parent node all children nodes marked with or • are mandatory and have to be selected.
Children nodes marked with □ or ◦ are optional and may be selected in addition to get a better understanding of
the material. If a parent node has no mandatory child, then at least one optional child has to be selected. Children
marked with + provide additional voluntary material that can be safely ignored, typically going beyond the scope of
the section. Children of non-selected parents may be ignored. and □ indicate children that cover (almost) the whole
material of the section. Missing content might then be indicated by struck through references to the corresponding
learning objectives. Items tend to be ordered by precedence and/or recommended temporal order from top to bottom,
assuming that you prefer to first watch a video before reading through lecture notes. If a detailed table of content for
videos or lecture notes is given, references to learning objectives might be provided in green, 1:30 should be read as
1 min and 30 seconds, and 1’30 should be read as page 1 at about 30% of the page. Video times may be linked directly
to the indicated position in the video, but be aware that the video might be downloaded anew each time you click on
a time. Resources without author name are usually authored by Laurenz Wiskott and his team.

A common way to linearly compress data is principal component anaylsis (PCA) (D: Hauptkomponenten-
analyse) (see Wiskott, 2016b, for an introduction). The data is considered as points in a vector space, and
PCA finds an ordered set of orthogonal directions, called principal components (PC) (D: Hauptkomponen-
ten), such that the variance of the data along the first PC (or projected onto the first PC) is maximal, along
the second PC it is maximal under the constraint of being uncorrelated to the first one, along the third PC
it is maximal under the constraint of being uncorrelated to the first and second one, ect. For optimal linear
compression one keeps the first few principal components and discards the other. How many PCs to keep
depends on several factors such as how much compression one needs and how much variance there is along
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the individual PCs.

Principal Components of Natural Images

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61–70, Fig. 1)

15 natural images of size 256×256 pixels.

20,000 random samples of size 64×64 pixels.

For each pixel the mean gray value over the 20,000 samples was removed.

The samples were windowed with a Gaussian with std. dev. 10 pixels.

Sanger’s rule was applied to the samples.

25/56

An early hypothsis was that
the purpose of simple cells is
to compress images for further
processing. Hancock et al.
(1992) have tested this by tak-
ing 15 natural images of size
256×256 pixels, from these
cutting out 20,000 random
samples of size 64×64 pixels,
removing the mean from each
pixel across the 20,000 sam-
ples, windowing the samples
with a Gaussian, and finally
calculating the first princi-
pal components with Sanger’s
rule, which is a neural learn-
ing rule for performing PCA.
The image patches of size 64×
64 are cast into vectors by
simply concatenating the rows
(or columns) into a vector of
length 4096, a transformation
that can be easily inverted by
rearranging the components of

the vector back into a matrix.

Principal Components of Natural Images

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61–70, Fig. 1)

The first principal components resemble simple-cell receptive fields in the
primary visual cortex, the later ones do not.

26/56

The first principal compo-
nents extracted from natu-
ral image patches windowed
with a Gaussian somewhat re-
semble simple cells (Hancock
et al., 1992). However, later
ones do not, and the Gaus-
sian window plays an impor-
tant role in making the filters
look plausible at all.

4



Principal Components of Natural Images

(Olshausen & Field, 1996, Nature 381:607–9, Fig. 1)

27/56

Olshausen and Field (1996)
have applied principal compo-
nent analysis (PCA) to nat-
ural image patches of size
8×8 and have found filters as
shown here.
One can understand this re-
sult, if one resorts to Fourier
theory and considers the im-
age patches as a linear super-
position of sine waves of dif-
ferent frequency, orientation,
and phase. Since natural im-
ages are known to have a 1/f2

power spectrum, i.e. low fre-
quencies f are stronger and
thus carry more variance, it
is clear that the early princi-
pal components (PCs) should
focus on low frequencies and
the later ones on high frequen-
cies. If one furthermore as-
sumes that the statistics of
natural images is translation

and rotation invariant (which is at least approximately true), one can see that sine waves of different phase
(related by translation) and orientation (related by rotation) but same frequency can be randomly mixed,
since they carry identical variance. Taking this together yields the PCs shown here.
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3.2 Sparseness leads to simple cells

Learning material:

□ 14 min video 3.2 Sparseness Leads to Simple Cells

□ Text below

Sparseness Principle

(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481)

A sparse representation

▶ can reduce metabolic costs, because fewer units are active,

▶ can reduce wiring, because fewer units need to be connected,

▶ can be more robust, because units tend to be more binary,

▶ can simplify learning and processing, because relevant information is
more localized,

▶ ...

28/56

Olshausen and Field (1996)
have argued that the goal of
sensory coding is to yield a
sparse (D: spärliche(?)) rep-
resentation. A sparse rep-
resentation is one, where for
any given input only few units
are strongly active, all others
are close to zero. This code
might have various advantages
for the brain.
The figure (Olshausen and
Field, 2004) shows a non-
sparse representation at the
top and a sparse representa-
tion at the bottom.
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Sparse Coding

Assumption: Images can be written as a superposition of basis functions,

I (x) =
∑

i

aiϕi (x) , (1)

with fixed functions ϕi (x) and variable coefficients ai .

Objective: Choose the (probably normalized) functions such that the
reconstruction error is small and the distribution of coefficients sparse, i.e.

minimize E :=

∫

x

(I (x)−
∑

i

aiϕi (x))
2 d2x

︸ ︷︷ ︸
reconstruction term

+λ
∑

i

|ai |
︸ ︷︷ ︸

sparseness term

. (2)

(Olshausen & Field, 1996, Nature 381:607–9)

29/56

The model by Olshausen and
Field (1996) assumes that im-
ages I(x) can be represented
by a linear superposition of
some fixed basis functions
ϕi(x), wich leads to the first
term in the cost function E.
The basis functions may be
overcomplete, i.e. there may
be more functions than pix-
els in the image, and non-
orthogonal, which they must
be in cast of an overcomplete
set.
The weighting coefficients ai
vary from image to image and
should be sparsely distributed,
i.e. should be near zero most of
the time and only occasionally
have a large positive or nega-
tive value. The second term in
the cost function E formalizes
the sparseness objective.
An optimization procedure

optimizes both, the basis functions across all images as well as the weighting coefficients for each image
individually.
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Sparseness term

30/56

Consider the case where we
want to represent a vector I
(the image) as a linear com-
bination of some basis vectors
ϕi with weighting factors ai,
i.e. I =

∑
i ϕiai. If we com-

bine the basis vectors in a ma-
trix Φ := (ϕ1, ...,ϕN ) and
the weighting factors in a vec-
tor a := (a1, ..., aN )T , we can
write I = Φa. With any or-
thogonal (rotation) matrix U
we can define a new Φ′ :=
ΦUT and a′ := Ua, so that
the image is preserved,

Φ′a′ = ΦUTU︸ ︷︷ ︸
= 1

a = I ,

but the basis vectors as well as
the weighting factors change.
Thus, we can rotate the repre-
sentation without compromis-
ing the qualitiy of the rep-
resented image, which leaves

room to optimize sparseness in addition.
The figure illustrates with a dashed circle all the weight vectors with length 3, which can be realized by
rotating one weight vector of same length. The solid lines represent the level lines of the sparseness term
|a1| + |a2|. One can see that on the circle the points on the axes, namely (0, 3), (3, 0), (0,−3), (−3, 0), have
the smallest value for the sparseness term, which corresponds to the intuition that the coefficients should be
either close to zero or large.
In the model (Olshausen and Field, 1996), the solution is not as clean, since the code is optimized for many
images simultaneously. Also, some normalization must be imposed on either the basis functions or the
weighting factors, because otherwise the latter could be made arbitrarily small while the former grow larger
and larger.
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Filters Generating a Sparse Code of Natural Images

(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481, Fig. 1a)

31/56

The filters obtained by opti-
mizing the sparseness of the
code in the model by Ol-
shausen and Field (1996) re-
semble simple cell receptive
fields fairly well (figure from
Olshausen and Field, 2004).
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3.3 Statistical independence leads to simple cells

Learning material:

□ 8 min video 3.3 Statistical Independence Leads to Simple Cells

□ Text below

For a more in depth introduction into independent component analysis see (Wiskott, 2016a).

Statistically Independent Sources

32/56

Assume two stastically inde-
pendent sources s1 and s2
are given, in this case sound
sources (left). If one plots
samples from the two sources
in a common coordinate sys-
tem such that one component
always comes from one source
and the other component from
the other source, then one
gets a two-dimensional data
distribution with two statis-
tically independent compo-
nents. Please notice that the
time structure of the signal is
now gone and actually irrele-
vant for what follows.
Intuitively statistical inde-
pendence (D: statistische
Unabhängigkeit) means that
knowing the value of one
component does not tell you
anything about the other
component of that sample.

Visually this roughly means that there may not be any diagonal structures in the plot.
Formaly statistical independence means that the joint probability density function (pdf) equals the product
of its marginal pdfs p(s1, s2) = p(s1)p(s2). This implies that if you cut through the distribution horizontally
anywhere, you always get the same 1D curve (namely p(s2)) just scaled differently (by p(s1)), and the same
holds for the vertical dimension.
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Linear Blind Source Separation

Whitening can be done with PCA.

Rotation can be done based on the objective that the components yi be
statistically independent, here p(y1, y2) = p(y1)p(y2).

33/56

If one takes samples s from
two statistically independent
sources and mixes them lin-
early with an invertible matrix
A, one gets a mixed signal x.
If one knewA it would be easy
to unmix the data again. One
would simply calculate the in-
verse of A and multiply the
data vectors with it. How-
ever, even if A is unknown
can one unmix the data, up
to permutation and scaling,
a process called linear blind
source separation, ’blind’ be-
cause neither the mixing ma-
trix A nor the sources si are
known (except that at most
one may be Gaussian). The
linear algorithm is usually re-
ferred to as Independent Com-
ponent Analysis (ICA).
The first step is whitening,
with the argument that statis-

tically independent components must at least be uncorrelated, and that is what whitening gives us. The
second step is a rotation, because any skewing or stretching would ruin our whitening again. The rotation
angle is dertermined such that some measure of statistical independence or non-Gaussianity is optimized.
It is interesting that making the individual components as non-Gaussian as possible is equivalent to making
them as statistically independent as possible. The converse is known from the central limit theorem, if one
mixes (adds) random variables, the resulting distribution gets more Gaussian.
The statistically independent components being extracted are all normalized to unit variance and their
assignment to the components as well as their sign is arbitrary. This is why I stated above ’up to permutation
and scaling’.
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Independent Component Analysis on Natural Images

(Bell & Sejnowski, 1997, Vision Research 37:3327–38, Fig. 1)

y = Rx = RAs (with whitened y, i.e. ⟨yyT ⟩ = I)

34/56

When applying ICA to natu-
ral images, the view is that
each image itself is a mixture,
i.e. a linear superposition, of
some statistically independent
sources in the real world, and
the task of the visual system
is to extract these underlying
sources from the image (Bell
and Sejnowski, 1997).

ICA-Filters for Natural Images

(Bell & Sejnowski, 1997, Vision Research 37:3327–38, Fig. 4)

35/56

When one applies ICA to nat-
ural images, one gets filters
that resemble simple cell re-
ceptive fields fairly well (Bell
and Sejnowski, 1997).
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3.4 Sparseness vs statistical independence

Learning material:

□ 8 min video 3.4 Sparseness vs Statistical Independence

□ Text below

Linear Filters in Comparison

Left: (Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481, Fig. 1a)

Right: (Bell & Sejnowski, 1997, Vision Research 37:3327–38, Fig. 4)

36/56

The filters obtained by the
sparseness objective (left) (Ol-
shausen and Field, 2004) and
by ICA (right) (Bell and Se-
jnowski, 1997) look very simi-
lar. The reason is that in the
linear and complete case and
if the underlying sources are
sparse the two objectives are
equivalent.
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Relation Between Sparseness and Independence

37/56

The left figure shows two
sparse and statistically inde-
pendent sources plotted in a
common graph with their joint
pdf. If one rotates the joint
pdf, thereby mixing the com-
ponents, two things happen:
(i) The individual compo-
nents get less sparse; (ii) The
components get more statisti-
cally dependent on each other.
Thus optimizing sparseness as
well as statistical indepen-
dence both lead to an unmix-
ing of the data; the objectives
are equivalent. This would
not be true if the sources were
non-sparse to begin with.

Linear Models of Visual Receptive Fields - Summary

▶ Linear filters resulting from principal component analysis on natural
images do not resemble simple cell receptive fields.

▶ Linear filters optimized for sparseness on natural images resemble
simple cell receptive fields.

▶ Linear filters optimized for statistical independence on natural images
also resemble simple cell receptive fields.

▶ Sparseness and statistical independence lead to similar results in linear
systems if the underlying sources are sparse.

38/56
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