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— Summary —

Receptive fields are a conceptualization of the first step of perceptual information processing in, e.g., the
visual, auditory, or somatosensory system. The sonsory input is encoded in a way that makes further pro-
cessing easier, e.g. by reducing dimensionality or by feature extraction. In the visual system, receptive fields
are particularly sensitive to local spots of light, to bars or edges, to direction of motion etc. There are
different levels at which one can analyze, model, and understand receptive fields. Abstract mathematical
descriptions serve as phenomenological models of what receptive fields do. More detailed biologically mo-
tivated models can be used to investigate how receptive fields work. With objective function models one

can test hypotheses about the purpose of the receptive fields. And self-organizing models can illustrate how
receptive fields develop. Often, models combine more than one of these aspects.
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— Lecture 1/2 — — Lecture 1 Exercises, Lecture 1 Solutions

1 Physiological receptive fields (— slides) in the visual system include center surround receptive
fields sensitive to a bright /dark spot on a dark/bright background, simple cells that are sensitive to a
bar or grating at a particular location, and complex cells that are also sensitive to bars and gratings
but much less to location. Center surround receptive fields offer an explanation for the so-called
Hermann grid illusion. Complex cells as compared to simple cells already realize some translation
invariance, one prominent ability of the visual system as a whole.

2 Phenomenological models (— slides) provide a mathematical formalization of the computation
of receptive fields. Center surround and simple cells can be modeled by linear filters. For the latter
we use a Gabor-wavelet, i.e. a (co)sine wave windowed by a Gaussian envelope function, to achieve
the sensitivity to edges and gratings. Quadratically combining a sine and a cosine Gabor-wavelet is a
minimal model achieving the invariance of complex cells, much like in the sin(¢)? + cos(¢)? = 1 rule.

— Section 2 Exercises, Section 2 Solutions

3 Selforganizational models of simple cells (— slides) are usually linear and based on various
objectives, which yield certain receptive fields as optimal solutions. If these receptive fields are similar
to the physiological ones, this provides support for the objective used to be the underlying reason
for the shape of the physiological receptive fields. This section shows that sparseness and statistical
independence are plausible objectives, while linear compression is not.

— Lecture 2/2 — — Lecture 2 Exercises, Lecture 2 Solutions

4 Selforganizational model of complex cells (— slides) is nonlinear (quadratic form), since
otherwise the translation invariance could not be achieve. This model is based on the objective that
the output should vary slowly over time. It self-organizes from image sequences receptive fields that
share many properties with complex cells.

5 Optimal stimuli for quadratic forms can be derived with methods known from linear algebra,

in particular the trust region problem. Quadratic forms are often used to model complex cells, and

being able to derive optimal stimuli helps in comparing the results with physiological experiments.
— Section 5 Exercises, Section 5 Solutions
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1 Physiological receptive fields (— slides)

Learning material:'

O 26 min video + Physielogicalreceptive-fields
O Text below

LGeneric instruction: Consider the (possibly nested) list of resources like a horizontal tree with an invisible root on
the very left, and decide from left to right what you want to select to work through. The invisible root node has to be
selected. For any selected parent node all children nodes marked with B or ® are mandatory and have to be selected.
Children nodes marked with O or O are optional and may be selected in addition to get a better understanding of
the material. If a parent node has no mandatory child, then at least one optional child has to be selected. Children
marked with + provide additional voluntary material that can be safely ignored, typically going beyond the scope of
the section. Children of non-selected parents may be ignored. B and O indicate children that cover (almost) the whole
material of the section. Missing content might then be indicated by struck through references to the corresponding
learning objectives. Items tend to be ordered by precedence and/or recommended temporal order from top to bottom,
assuming that you prefer to first watch a video before reading through lecture notes. If a detailed table of content for
videos or lecture notes is given, references to learning objectives might be provided in green, 1:30 should be read as
1 min and 30 seconds, and 1’30 should be read as page 1 at about 30% of the page. Video times may be linked directly
to the indicated position in the video, but be aware that the video might be downloaded anew each time you click on
a time. Resources without author name are usually authored by Laurenz Wiskott and his team.

Let us first consider some basic properties of physiological receptive fields, mainly in the visual system-

Physiological Receptive Fields -~ © CC BY 20
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https://creativecommons.org/licenses/by/2.0/
https://en.wikipedia.org/wiki/File:Rice_fields_near_Sapa,_Vi%C3%AAt_Nam.jpg
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Visual Pathways and Areas (Macaque)

(Oram & Perrett, 1994, Neur. Netw. 7(6-7):945-972)

Visual input from the retina
gets projected through the lat-
eral geniculate nucleus (LGN,
not shown here), which is sub-
cortical, to the primary vi-
sual cortex (V1, 'V’ and 'T’
indicating ’visual’ and ’pri-
mary’ respectively). From
there it goes through V2 and
V4 to the inferior temporal
cortex (IT), which can be fur-
ther subdivided into posterior
(PIT), central (CIT), and an-
terior (AIT) IT. IT is thought
to be instrumental for ob-
ject recognition, while V1-V4
extract more elementary fea-
tures. This path is referred to
as the what-path, because it
tells us what we see.

Another path goes through V2
and V4 to areas MT/MST,
which are particularly respon-
sive to motion. This path has

been termed the where- or how-path, because it is thought to tell us where the objects are or how we can
handle them, e.g. grasp them. The paths converge in the posterior (STPp) and anterior (STPa) superior
temporal polysensory area. Cells in STPa, for instance, have been found to be sensitive to body motion,
such as walking. Figure by Oram and Perrett (1994).



The Visual System

(Wiskott, 2003, CogPrints 3321; after Oram & Perrett, 1994, J. Cogn. Neurosci., 6(2):99-116)
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Measuring Receptive Fields

(http://www.medinfo.ufl.edu/... 2001-10-29 (outdated))
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ture detectors.

This  schematic  drawing
(Wiskott, 2003) highlights
some organizational principles
of the visual system. It is
hierarchically structured in
areas (listed on the left; in
models usually referred to as
layers, not to be confused with
the layers of cortex), which
are coupled by feedforward
(gray upward arrows) as well
as feedback (gray downward
arrows) connections  with
some shortcut connections
that skip an area. Processing
in each area takes about 10ms
(latencies are shown on the
left). Along the hierarchy the
receptive field sizes increase
(indicated by the triangles in
the middle), the feature com-
plexity increases (indicated
by some typical stimuli on the
right to which a neuron might

respond or not), and the invariance, e.g. to shift (or translation), scaling, and rotation, increases.

It is possible to make quite
detailed measurements of re-
sponse properties of single
cells in awake or anaesthetized
animals. To measure vi-
sual receptive fields, one typi-
cally places an animal in front
of a computer monitor, let
the animal fixate the center
of the screen, presents vi-
sual stimuli, and simultane-
ously records extracellularly
from individual neurons. Vi-
sually driven neurons usually
respond only to stimuli within
a particular region, which is
referred to as the receptive
field. They also only re-
spond to particular shapes or
features, such as orientation,
color, or motion. One says the
cell has a tuning for one or
several of these features. One
also speaks of such cells as fea-



Center-Surround Cells in Retina and LGN
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(Delldot /Xoneca, 2005/2008, Wikimedia, () CCO, URL)
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Assumed Connectivity

On-Center Off-Center

(Paskari, 2007, Wikipedia, (©) CCO, URL)
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Cells in retina and LGN
(lateral geniculate nucleus,
which is a relay station
between retina and cortex,
have center-surround recep-
tive fields. Some of them
respond best to a bright
spot on a dark background
(on-center cell /stimulus),
others to a dark spot on a
bright background (off-center
cell/stimulus). They do not
respond well to full field
stimuli (dark or bright).
Interestingly, an on-center
cell gives a response if an
off-center stimulus disappears
(release-of-inhibition reponse)
and the other way around.

Center-surround receptive
fields can be set up easily by
a corresponding feedforward
connectivity. For an on-center
cell, connections coming from
the center of the recptive
field would be excitatory
and those coming from the
surround would be inhibitory.
For off-center cell it would
be the other way around. A
canonical way of plotting such
a receptive field is to plot
the excitatory and inhibitory
regions in the visual field (see
lower left). Such receptive
fields are conceptually linear.



Hermann Grid

(http://www-psych.stanford.edu/ 2001-10-29 (outdated))
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Hermann Grid

8(1+4(—1/16)) + 4(4(—1/16)) =5 8(1+2(—1/16)) + 4(6(—1/16)) = 5.5

(http://www-psych.stanford.edu/ 2001-10-29 (outdated))
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A Hermann grid is a white
square grid of appropriate size
on a black background. If you
look at it you might notice
that the white looks darkened
somehow at the crosses, but
only in the periphery and not
at the point of fixation. This
is an optical illusion that can
be explained with the center-
surround receptive fields in
the retina or LGN.
(http://wwu-psych
.stanford.edu/ 2001-10-
29 (outdated))

To explain the Hermann grid
illusion, place a simple center-
surround receptive field at a
cross and at a line. By
adding the product of the im-
age gray value with the re-
ceptive field weight one gets
a somewhat lower response
at a cross (value 5) than a
line (value 5 1/2) due to the
stronger surround inhibition.
This effect depends on the
width of the stripes compared
to the size of the receptive
fields. In the fovea, i.e. around
the point of fixation, the re-
ceptive fields are very small
and the Hermann grid illu-
sion cannot be observed with
a coarse grid.
(http://wwu-psych
.stanford.edu/ 2001-10-
29 (outdated))



Simple Cells in Primary Visual Cortex (V1)

(Hubel, 1989, Auge und Gehirn: Neurobiologie des Sehens, Fig. 4.10)
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Complex Cells in Primary Visual Cortex (V1)

Figure: (Hubel, 1989, Auge und Gehirn: Neurobiologie des Sehens, Fig. 4.13)
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In the first cortical area dedi-
cated to visual processing, re-
ferred to as primary visual
cortex or, for short, V1, one
mainly distinguishes between
two types of cells based on
their receptive fields: simple
cells and complex cells. Both
cell types prefer oriented stim-
uli, such as bars and stripes,
but simple cells care about
the exact location of the stim-
uli while complex cells don’t.
Thus, in some sense complex
cells have a higher degree of
invariance than simple cells.
(Hubel, 1989, Auge und
Gehirn:  Neurobiologie des
Sehens, Fig. 4.10)

In the first cortical area dedi-
cated to visual processing, re-
ferred to as primary visual
cortex or, for short, V1, one
mainly distinguishes between
two types of cells based on
their receptive fields: simple
cells and complex cells. Both
cell types prefer oriented stim-
uli, such as bars and stripes,
but simple cells care about
the exact location of the stim-
uli while complex cells don’t.
Thus, in some sense complex
cells have a higher degree of
invariance than simple cells.
Figure: (Hubel, 1989, Auge
und Gehirn:  Neurobiologie
des Sehens, Fig. 4.13)
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Orientation Tuning

Simple and complex cells usu-
ally have preferences for cer-
tain orientations. This can
be measured by presenting
gratings of different orienta-
tion to the cell (or rather
the animal) and recording
the corresponding neural re-
sponses.  Normally, drifting
gratings are used, because the
cells respond stronger to mov-
ing stimuli.

The responses to different ori-
entations can be conveniently
visualized in a polar plot. One
simply plots the firing rate in
radial direction as a function
of orientation in azimuthal di-
rection.  The graph shows
a standard orientation tuning
with one preferred orientation
at about 160°, which appears
here as two lobes in 180° dis-
tance due to the two different

drifting directions. Since the two lobes have same size, the cell does not have a preference for a particular

drifting direction.

11



Orientation Tuning

non-oriented cell

(De Valois et al., 1982)

secondary response-lobes

(De Valois et al., 1982)
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standard orientation tuning

(De Valois et al., 1982)

direction selectivity

(De Valois et al., 1982)

direction.

12

Complex cells have a great va-
riety of different orientation
tunings. In standard tun-
ing the cell responds well to
one orientatoin regardless of
the direction of drifting of the
grating (upper right panel),
giving rise to two large re-
sponse lobes in the polar plot.
Some cells have additional sec-
ondary response lobes at a dif-
ferent orientation (lower left
panel). This means that the-
ses cells respond well to two
different orientations. Other
cells don’t care about orienta-
tion at all (upper left panel),
although they are selective for
oriented stimuli, such as grat-
ings. Some cells are direction
selective (lower right panel),
meaning that they respond to
a particular orientation only if
the grating drifts in the right
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End- and Side-Inhibition

A somewhat peculiar behav-
ior of some complex cells is
end- and side-inhibition. Such
cells do not respond maxi-
mally if the whole receptive
field is filled with a grating
but only if part of the re-
ceptive field is filled. If one
slowly moves a grating into
such a receptive field from the
preferred side, the response
first increases but then drops
again. End-inhibition means
that the grid has to be moved
into the receptive field with
the ends of the stripes first;
side-inhibition means the the
grid has to be moved sideways
into the receptive field.

One way to interpret this be-
havior is to assume that the
receptive field consists of an
excitatory subfield and an in-
hibitory subfield of same pre-

ferred orientation. Only only the excitatory subfield is stimulated with a grating, the response is higher than
if both the excitatory and the inhibitory subfield are stimulated.

15/56

Cell Tuning in Inferior Temporal Cortex (IT)

(Sato, Uchida et al, 2013, J. Neuroscience, Fig. 5, URL)

13

In higher areas, such as infe-
rior temporal cortex, it may
be a bit of a stretch to speak of
receptive fields, but cells still
show a clear preference for cer-
tain objects or features. One
therefore also speaks of these
cells as feature detectors.

In this figure red circles, blue
triangles, and green squares
represent face, monkey body,
and animal body categories,
respectively. The ordinate in-
dicates the evoked response of
a cell recorded from, the ab-
scissa indicates the rank of an
image in terms of the evoked
reponse. The top five images
in each graph indicate the first
rank stimuli, the bottom five
images the last rank stimuli.
Figure: (Sato et al., 2013,
Fig. 5, URL)!2


http://www.jneurosci.org/content/33/42/16642

Somatosensory Cells

(http://zeus.rutgers.edu/~ikovacs/SandP/c_fig7.jpg 2001-10-30 (outdated))
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Physiological Receptive Fields - Summary

» Retina and LGN have center-surround receptive fields.

» V1 has two major types of receptive fields, those of simple cells and
complex cells.

» Both types of cells respond well to bars or gratings of a particular
orientation and frequency.

» Simple cells are sensitive to the exact location of the bar or grating,
complex cells are not.

» Higher areas show more complex receptive fields that may even be
tuned to specific objects.

17/56
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The concept of a receptive
field is also used in other
modalities. A cell in the so-
matosensoric areas might, for
instance, respond only to tac-
tile stimuli in a certain re-
gion of the palm and might
even have an orientation pref-
erence, like the cell shown
here, which prefers horizontal
stimuli.



2 Phenomenological models (— slides)

Learning material:

O O 6 min video Introducing Convolutions: Intuition + Convolution Theorem (by Faculty of

Khan on YouTube) [00:12-06:35]

® 31 min video 2 Phenomenological models

O Text below

Models of Visual Receptive Fields

18/56
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https://www.youtube.com/watch?v=N-zd-T17uiE&t=12
https://www.youtube.com/watch?v=N-zd-T17uiE&t=12
https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-S2-LectureVideo-2-PhenomenologicalModels-Public.mov

There are several levels at which one can model receptive fields (or any other neural subsystem). One can

ask:

e What does it do?
e How does it do it?

e Why does it do it?

The what-question tries to get at the phenomenology of the receptive field. It yields descriptive models of
the function. We consider this in this section. The how-question gets at the mechanistic realization of the
function. We are not going to consider this at all. The why-question finally gets at the role the receptive
fields play in the context of the whole brain. It is closely linked to the question of what would be optimal to
do in this area. We consider this in Section 3.

19/56

Standard Simple-Cell Model

16

The standard model of a sim-
ple cell is simply a linear fil-
ter having the shape of a
wavelet. The response is the
inner product w”z (sum over
pointwise products) between
the filter (weight vector w)
and the image (input vector
x). Such a filter is strongly
excited by a bar or grating of
the correct frequency (in case
of a grating), orientation, and
exact position. If the grating
is shifted in phase by 180°, or
in position by one wavelength
orthogonal to the wave fronts,
the model unit gives a strong
negative response.
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Standard Complex-Cell Model

17

The standard model for a
complex cell is the so-called
quadrature filter pair model.
The response of two standard
simple cell models are squared
and added. The filters of
the two simple cells form a so
called quadrature filter pair,
in this case two wavelets that
differ only by a slight shift
of the stripes by half a stripe
width. Their relationship is
therefore similar to that of sin
and cos, for which sin(¢)? +
cos(¢)? = 1 holds, which im-
plies that the square sum is
invariant to a change of ¢.
Similarly, the response of the
standard complex cell model
is approximately invariant to a
shift of stimulus. This invari-
ance is the defining property
of an ideal complex cell.



Gabor wavelets are often used
for image processing and to

Gabor Wavelets model simple and complex

Gabor wavelets (with DC-correction) are defined as cells. They are localized
(2 1252 ) in space and frequency, and
pi(x) = Loexp | -2 exp(ik;” x) — exp _z they actually do that as pre-

J o2 202 J 2 ’ . ) . .
cise as theoretically possible,
with wave vectors k; having different orientations and different Le. they fulfill Heisenberg’s
frequencies. uncertainty relationship ex-

actly (side note for physi-
cists and electrical engineers).
A Gabor wavelet is essen-
tially the product of a Gaus-
sian (black solid line) with a
(co)sine wave and could there-
fore be written in its sim-
plest one-dimensional form as
exp(—x?) sin(z) (green dashed
line) or exp(—z?) cos(z) (blue
solid line); together these form
Gabor wavelets fulfill the uncertainty relationship exactly. a quadrature filter pair.
2/56 The equation given on the
slide is more complicated and
simpler in some aspects for

several reasons. This is not essential for the lecture, but for the technically interested reader I explain
the differences.

The sin(x) and cos(z) wavelets are combined into one complex wavelet with exp(iz) = cos(z) + isin(z)
(second exponential in the equation). This makes in particular the convolution more efficient. Since a
convolution is always complex, the second convolution in the imaginary part comes for free.

The simple z in exp(iz) is multiplied by a wave number k; to allow chosing a spatial frequence different
from 1, and index j allows to chose different wave numbers for different cells, yielding exp(ik;z)

In two (or higher) dimensions a wave not only has a frequency but also a direction, thus k; becomes a two
(or higher) dimensional vector and the product kjz an inner product, yielding exp(iija:). (Please note
the difference between x representing an image, in which case it might be a 10000-dimensional vector for
a 100x100-pixel image, and @ representing space, in which case it is just two-dimensional for an image.
Here we use the latter version.)

It is common to add a parameter o to the Gaussian exp(—z?) to control its width, yielding exp(—%).

2,2
The additional factor kf in exp(—kgj;c2 ) scales the Gaussian such that all Gabor wavelets look alike, no
matter what frequency they have. This is referred to as self-similarity of the family of Gabor wavelets
with constant o.

The term — exp(—";) at the end pulls the cosine wavelet a bit down in the center to make it really DC-free

(DC stands for direct current here), i.e. the integral over the whole filter is zero. This is guaranteed for
symmetry reasons for the sine filter, but for the cosine filter it must be taken care of explicitely. The filter
being DC-free has the advantage that the response of the modeled simple or complex cell does not depend
on overall brightness of the image, which is a simple form of visual invariance.

2
The prefactor % finally scales the Gabor wavelets such that the average magnitude of the responses of
the convolution on natural images are more balanced for different k& and o.

18



Applying a linear filter at all
locations of an image is math-
ematically a cross-correlation.
Convolution If one mirrors the filter at its
] , N origine and applies that to all

53) = alx) explicy(x)) = [ 10 )ux — x ) locations of an image, that is a

with smoothly varying amplitudes _COHV.O.IUtiOH' The latter is I?SS
intuitive but has some nice

aj =4/ R(Jj)? + S(J))? mathematical properties, e.g.

it is symmetric and it corre-
. 5 - 5 .
(Ian e?naloghﬁst;);he rule \/(acos(¢))* + (asin(¢))? = a) and quickly sponds to a multiplication in
varying p .

Fourier space. Thus, we use
convolution and just have to
keep in mind that the filter is
flipped.
The first equation defines a
convolution of an image I(x’)
with a complex filter (or ker-
nel) ¢;(x’). Since the filter is
complex, i.e. it has a real and
an imaginary part, the con-
23756 volution result is complex as
Phase is not globallv consistent. well. In our case the real and
imaginary part represent the

Gabor Wavelets

cos- and sin-Gabor wavelet, respectively.

To get an intuitive understanding of the convolution it might help to start with the expression
f I(x dza:’ which simply means you put the image and the filter on top of each other, do a pointwise
multlphcatlon and then integrate the result, which gives you one scalar value. The operation actually is an
inner product if you consider image and filter as vectors. It is large if image and filter are similar (point
in the same direction) and close to zero, if they are unrelated (orthogonal to each other). If the filter is a
Gabor wavelet, this scalar models a simple-cell response at the origin of the image.

To get the response at another location x, one needs to shift the filter, which can be done by subtracting a
constant from the argument, yielding [ I(z')y; (2’ — w)dQ:c’ which is a cross-correlation. This then models a
simple-cell response at location . If x is considered a variable rather than a constant, the cross-correlation
becomes a cross-correlation function in .

Now the final step is to simply mirror the filter at its origin, so that the sign of its argument changes, yielding
[ I(z);(x — x')d*a’, which is a convolution.

A complex number can always be written in terms amplitude a and phase ¢ rather than real and imaginary
part, yielding a;(x) exp(i¢;(x)).

The plot shows the response of a hypothetical cos- and sin-Gabor wavelet in blue and green, respectively,
and the resulting amplitude in black. The phase changes approximately with the same spatial frequency as
that of the Gabor wavelet but not exactly, so that phase is not globally consistent with the frequency of the
filter.
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This figure illustrates the re-
sponse of a standard simple or
complex cell model. White in
the first and fourth column in-
dicate zero, black some maxi-
mum value. Grey in the sec-
ond and third column indi-
cate zero, black a negative and
white a positive value.

If one applies a simple cell
model with a wavelet like
weight vector (second column)
to all locations of an in-
put image (first column), one
gets a response distribution as
shown in the third column.
The operation is mathemat-
ically a convolution. Please
realize that the convolution
result represents the activity
of many identical simple cells
24/56 at different locations, one for
each pixel. There are several
things to note here:

Gabor Wavelets

e The simple cell response oscillates with the spatial frequency (and orientation) of its wavelet filter. This
results from the shift of the filter relative to the image and the wavelet structure of the filter.

e The magnitude of the oscillating response is largest at sharp edges of the correct orientation. It would
actually be even larger for gratings of the right frequency and orientation, but these are rare (and not
present in this image). Since sharp edges contain all frequencies, they are very good stimuli for all filters.

For the standard complex cell model, one needs a quadrature filter pair, so imagine the filters in the second
column complemented by a partner with slightly shifted stripes. Using that filter alone would yield very
similar responses like those shown in the third column, just shifted by half a stripe width. If one squares the
two responses (the one shown and the one complemented) and adds them, one gets the comlex cell responses
shown in the fourth column. They are non-negative and do not oscillate, and they are strong at sharp edges
of the correct orientation again.
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3 Selforganizational models of simple cells (— slides)

While the what-question can be addressed rather directly, because one can measure the responses of the
cells and make a model of the responses as a function of the stimulus, the why-question is more difficult and
needs to be adressed indirectly. One approach is to make a hypothesis about why the cells have developed
their response properties, formulate that as an optimization problem, solve the optimization problem, and
then see whether the result bares similarity with the physiological response properties. If it does, it supports

the hypothesis, if not, it discredits the hypothesis. For simple cells we consider here the following three
hypotheses:

e Simple cells are there to (linearly) compress the visual input.
e Simple cells are there to decompose the visual input into statistically independent components.

e Simple cells are there to yield a sparse representation of the visual input.
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3.1 Principal component analysis does not lead to simple cells

Learning material:

O 6 min video 3-

O Text below

A common way to linearly compress data is principal component anaylsis (PCA) (D: Hauptkomponenten-
analyse) (see Wiskott, 2016b, for an introduction). The data is considered as points in a vector space, and
PCA finds an ordered set of orthogonal directions, called principal components (PC) (D: Hauptkomponen-
ten), such that the variance of the data along the first PC (or projected onto the first PC) is maximal, along
the second PC it is maximal under the constraint of being uncorrelated to the first one, along the third PC
it is maximal under the constraint of being uncorrelated to the first and second one, ect. For optimal linear
compression one keeps the first few principal components and discards the other. How many PCs to keep
depends on several factors such as how much compression one needs and how much variance there is along
the individual PCs.

An early hypothsis was that
the purpose of simple cells is
to compress images for further
processing.  Hancock et al.
(1992) have tested this by tak-
ing 15 natural images of size
256x256 pixels, from these
cutting out 20,000 random
samples of size 64x64 pixels,
removing the mean from each
pixel across the 20,000 sam-
ples, windowing the samples
with a Gaussian, and finally
calculating the first princi-
pal components with Sanger’s
rule, which is a neural learn-
20,000 random samples of size 64x64 pixels. ing rule for performing PCA.
The image patches of size 64 x
64 are cast into vectors by
simply concatenating the rows

Sanger's rule was applied to the samples. (or columns) into a vector of
25/56 length 4096, a transformation
that can be easily inverted by
rearranging the components of

Principal Components of Natural Images

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61-70, Fig. 1)

15 natural images of size 256 x256 pixels.

For each pixel the mean gray value over the 20,000 samples was removed.

The samples were windowed with a Gaussian with std. dev. 10 pixels.

the vector back into a matrix.
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Principal Components of Natural Images

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61-70, Fig. 1)

The first principal components resemble simple-cell receptive fields in the
primary visual cortex, the later ones do not.

26/56

Principal Components of Natural Images

(Olshausen & Field, 1996, Nature 381:607-9, Fig. 1)

27/56

The first principal compo-
nents extracted from natu-
ral image patches windowed
with a Gaussian somewhat re-
semble simple cells (Hancock
et al.,, 1992). However, later
ones do not, and the Gaus-
sian window plays an impor-
tant role in making the filters
look plausible at all.

Olshausen and Field (1996)
have applied principal compo-
nent analysis (PCA) to nat-
ural image patches of size
8x8 and have found filters as
shown here.

One can understand this re-
sult, if one resorts to Fourier
theory and considers the im-
age patches as a linear super-
position of sine waves of dif-
ferent frequency, orientation,
and phase. Since natural im-
ages are known to have a 1/ f?
power spectrum, i.e. low fre-
quencies f are stronger and
thus carry more variance, it
is clear that the early princi-
pal components (PCs) should
focus on low frequencies and
the later ones on high frequen-
cies. If one furthermore as-
sumes that the statistics of
natural images is translation

and rotation invariant (which is at least approximately true), one can see that sine waves of different phase
(related by translation) and orientation (related by rotation) but same frequency can be randomly mixed,
since they carry identical variance. Taking this together yields the PCs shown here.



3.2 Sparseness leads to simple cells

Learning material:

0 14 min video 3.2 Sparseness Leads to Simple Cells
O Text below

Sparseness Principle

(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481)

A sparse representation

» can reduce metabolic costs, because fewer units are active,

» can reduce wiring, because fewer units need to be connected,
» can be more robust, because units tend to be more binary,
>

can simplify learning and processing, because relevant information is
more localized,

v

28/56
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Olshausen and Field (1996)
have argued that the goal of
sensory coding is to yield a
sparse (D: spérliche(?)) rep-
resentation. A sparse rep-
resentation is one, where for
any given input only few units
are strongly active, all others
are close to zero. This code
might have various advantages
for the brain.

The figure (Olshausen and
Field, 2004) shows a non-
sparse representation at the
top and a sparse representa-
tion at the bottom.


https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-S3-LectureVideo-3.2-SparsenessLeadsToSimpleCells-Public.mov

Sparse Coding

I(x) = Z aipi(x),

1

reconstruction term

29/56

Assumption: Images can be written as a superposition of basis functions,

(1)

with fixed functions ¢;(x) and variable coefficients a;.

Objective: Choose the (probably normalized) functions such that the
reconstruction error is small and the distribution of coefficients sparse, i.e.

minimize E := /(/(x)—za,-¢>,-(x))2d2x+A Z\a,| @

——

sparseness term

(Olshausen & Field, 1996, Nature 381:607-9)

The model by Olshausen and
Field (1996) assumes that im-
ages I(x) can be represented
by a linear superposition of
some fixed basis functions
¢i(x), wich leads to the first
term in the cost function F.
The basis functions may be
overcomplete, i.e. there may
be more functions than pix-
els in the image, and non-
orthogonal, which they must
be in cast of an overcomplete
set.

The weighting coefficients a;
vary from image to image and
should be sparsely distributed,
i.e. should be near zero most of
the time and only occasionally
have a large positive or nega-
tive value. The second term in
the cost function E formalizes
the sparseness objective.

An optimization procedure

optimizes both, the basis functions across all images as well as the weighting coefficients for each image

individually.
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Sparseness term

30/56

room to optimize sparseness in addition.

Consider the case where we
want to represent a vector I
(the image) as a linear com-
bination of some basis vectors
¢; with weighting factors a;,
ie. I =5, ¢ia; If we com-
bine the basis vectors in a ma-
trix ® := (¢1,...,¢n) and
the weighting factors in a vec-
tor @ := (ay,...,an)T, we can
write I = ®a. With any or-
thogonal (rotation) matrix U
we can define a new ® :=
®UT and a’' := Ua, so that
the image is preserved,

®a =dUUa =1,
N——"

=1

but the basis vectors as well as
the weighting factors change.
Thus, we can rotate the repre-
sentation without compromis-
ing the qualitiy of the rep-
resented image, which leaves

The figure illustrates with a dashed circle all the weight vectors with length 3, which can be realized by
rotating one weight vector of same length. The solid lines represent the level lines of the sparseness term
|a1| + |az|. One can see that on the circle the points on the axes, namely (0, 3), (3,0), (0,—3),(—3,0), have
the smallest value for the sparseness term, which corresponds to the intuition that the coefficients should be

either close to zero or large.

In the model (Olshausen and Field, 1996), the solution is not as clean, since the code is optimized for many
images simultaneously. Also, some normalization must be imposed on either the basis functions or the
weighting factors, because otherwise the latter could be made arbitrarily small while the former grow larger

and larger.
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Filters Generating a Sparse Code of Natural Images

(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481, Fig. 1a)

27

The filters obtained by opti-
mizing the sparseness of the
code in the model by OIl-
shausen and Field (1996) re-
semble simple cell receptive
fields fairly well (figure from
Olshausen and Field, 2004).



3.3 Statistical independence leads to simple cells

Learning material:

O 8 min video 3-3-Statistical IndependeneeLeadsto-Simple- Gells
O Text below

.

For a more in depth introduction into independent component analysis see (Wiskott, 2016a).

Statistically Independent Sources

32/56

Assume two stastically inde-
pendent sources s; and s
are given, in this case sound
sources (left). If one plots
samples from the two sources
in a common coordinate sys-
tem such that one component
always comes from one source
and the other component from
the other source, then one
gets a two-dimensional data
distribution with two statis-
tically independent compo-
nents. Please notice that the
time structure of the signal is
now gone and actually irrele-
vant for what follows.

Intuitively  statistical inde-
pendence  (D:  statistische
Unabhéngigkeit) means that
knowing the value of one
component does not tell you
anything about the other
component of that sample.

Visually this roughly means that there may not be any diagonal structures in the plot.

Formaly statistical independence means that the joint probability density function (pdf) equals the product
of its marginal pdfs p(si, s2) = p(s1)p(s2). This implies that if you cut through the distribution horizontally
anywhere, you always get the same 1D curve (namely p(sq)) just scaled differently (by p(s1)), and the same

holds for the vertical dimension.
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Linear Blind Source Separation

Whitening can be done with PCA.

Rotation can be done based on the objective that the components y; be
statistically independent, here p(y1, y2) = p(y1)p(y2).

If one takes samples s from
two statistically independent
sources and mixes them lin-
early with an invertible matrix
A, one gets a mixed signal x.
If one knew A it would be easy
to unmix the data again. One
would simply calculate the in-
verse of A and multiply the
data vectors with it. How-
ever, even if A is unknown
can one unmix the data, up
to permutation and scaling,
a process called linear blind
source separation, 'blind’ be-
cause neither the mixing ma-
trix A nor the sources s; are
known (except that at most
one may be Gaussian). The
linear algorithm is usually re-
ferred to as Independent Com-
ponent Analysis (ICA).

The first step is whitening,
with the argument that statis-

tically independent components must at least be uncorrelated, and that is what whitening gives us. The
second step is a rotation, because any skewing or stretching would ruin our whitening again. The rotation
angle is dertermined such that some measure of statistical independence or non-Gaussianity is optimized.
It is interesting that making the individual components as non-Gaussian as possible is equivalent to making
them as statistically independent as possible. The converse is known from the central limit theorem, if one
mixes (adds) random variables, the resulting distribution gets more Gaussian.

The statistically independent components being extracted are all normalized to unit variance and their
assignment to the components as well as their sign is arbitrary. This is why I stated above "up to permutation
and scaling’.
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Independent Component Analysis on Natural Images

(Bell & Sejnowski, 1997, Vision Research 37:3327-38, Fig. 1)
y = Rx = RAs (with whitened y, i.e. (yy) =1)

34/56

ICA-Filters for Natural Images

(Bell & Sejnowski, 1997, Vision Research 37:3327-38, Fig. 4)
35/56
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When applying ICA to natu-
ral images, the view is that
each image itself is a mixture,
i.e. a linear superposition, of
some statistically independent
sources in the real world, and
the task of the visual system
is to extract these underlying
sources from the image (Bell
and Sejnowski, 1997).

When one applies ICA to nat-
ural images, one gets filters
that resemble simple cell re-
ceptive fields fairly well (Bell
and Sejnowski, 1997).



3.4 Sparseness vs statistical independence

O 8 min video 3-4-Sparseness-vs-Statistical Independence
O Text below

Linear Filters in Comparison

Left: (Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481, Fig. 1a)
Right: (Bell & Sejnowski, 1997, Vision Research 37:3327-38, Fig. 4)

36/56
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The filters obtained by the
sparseness objective (left) (Ol-
shausen and Field, 2004) and
by ICA (right) (Bell and Se-
jnowski, 1997) look very simi-
lar. The reason is that in the
linear and complete case and
if the underlying sources are
sparse the two objectives are
equivalent.
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Relation Between Sparseness and Independence

38/56

Linear Models of Visual Receptive Fields - Summary

Linear filters resulting from principal component analysis on natural
images do not resemble simple cell receptive fields.

Linear filters optimized for sparseness on natural images resemble
simple cell receptive fields.

Linear filters optimized for statistical independence on natural images
also resemble simple cell receptive fields.

Sparseness and statistical independence lead to similar results in linear
systems if the underlying sources are sparse.

32

The left figure shows two
sparse and statistically inde-
pendent sources plotted in a
common graph with their joint
pdf. If one rotates the joint
pdf, thereby mixing the com-
ponents, two things happen:
(i) The individual compo-
nents get less sparse; (ii) The
components get more statisti-
cally dependent on each other.
Thus optimizing sparseness as
well as statistical indepen-
dence both lead to an unmix-
ing of the data; the objectives
are equivalent. This would
not be true if the sources were
non-sparse to begin with.
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4 Selforganizational model of complex cells (— slides)

4.1 Slow Feature Analysis (SFA)

Learning material:

O 9 min video 4.1 Slow Feature Analysis

0 Text below

Slow Feature Analysis

39/56
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Section title: Slow Feature
Analysis

© CCo. URL


https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-L2-Exercises-Public.pdf
https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-L2-Solutions-Public.pdf
https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-S4-LectureVideo-4.1-SlowFeatureAnalysis-Public.mov
https://creativecommons.org/public-domain/cc0/
https://pixabay.com/en/snail-shell-crawl-mollusk-1330766/

Slowness as a Learning Principle
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Foldidk (1991), Mitchison (1991), Becker & Hinton (1992), O'Reilly & Johnson (1994), Stone &
Bray (1995), Wallis & Rolls (1997), Peng et al. (1998), Wiskott (1998), Kording & Kénig (2001),
Wiskott & Sejnowski (2002)

40/56 (Wiskott & Sejnowski, 2002, Neural Comp. 14(4):715-770)

Slowness as a learning prin-
ciple is based on the obser-
vation that different represen-
tations of the visual sensory
input vary on different time
scales. Our visual environ-
ment itself is rather stable. It
varies on a time scale of sec-
onds.

The primary sensory signal on
the hand, e.g. responses of
single receptors in our retina
or the gray value of a single
pixel of a CCD camera, vary
on a faster time scale of mil-
liseconds, simply as a conse-
quence of the very small recep-
tive field sizes combined with
gaze changes or moving ob-
jects. As an example imagine
you are looking at a quietly
grazing zebra. As your eyes
scan the zebra, single recep-
tors rapidly change from black

to white and back again because of the stripes of the zebra. But the scenery itself does not change much.
Finally, your internal high-level representation of the environment changes on a similar time scale as the
environment itself, namely on a slow time scale. The brain is somehow able to extract the slowly varying
high-level representation from the quickly varying primary sensory input. The hypothesis of the slowness
learning principle is that the time scale itself provides the cue for this extraction. The idea is that if the
system manages to extract slowly varying features from the quickly varying sensory input, then there is a
good chance that the features are a good representation of the visual environment.

A number of people have worked along these lines. Slow feature analysis is within this tradition but differs

in some significant technical aspects from all previous approaches.
Figure: (Wiskott et al., 2011, Fig. 2, (©) CC BY 4.0, URL)*2
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Optimization Problem
x(t)

y(t) = g(x(t))
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Given an input signal x(t).

Find an input-output function g(x) (e.g. polynomial of degree 2).

The function generates the output signal y(t) = g(x(t)).

This is done instantaneously.

The output signal should vary slowly, i.e. minimize (y?).

The output signal should carry much information, i.e. (y;) =0, (y7) =1,
and (yjyi) =0 Vj <.

41/56 (Wiskott & Sejnowski, 2002, Neural Comp. 14(4):715-770)

Slow feature analysis is based
on a clearcut optimization
problem. The goal is to find
input-output functions that
extract most slowly varying
features from a quickly vary-
ing input signal.

It is important that the func-
tions are instantaneous, i.e.
one time slice of the output
signal is based on just one
time slice of the input signal
(marked in yellow). Otherwise
low-pass filtering would be a
valid but not particularly use-
ful method of extracting slow
output signals. Instantaneous
functions also make the sys-
tem fast after training, as is
important in visual process-
ing, for instance. It is also
possible to take a few input
time slices into account, e.g.
to make the system sensitive

to motion or to process scalar input signals with a fast dynamics on a short time scale. However, low-pass

filtering should never be the main method by which slowness is achieved.

Without any constraints, the optimal but not very useful output signal would be constant. We thus impose
the constraints of unit variance (y?) = 1 and, for mathematical convenience, zero mean (y;) = 0. To make
different output signal components represent different information, we impose the decorrelation constraint
(yjyi) = 0. Without this constraint, all output components would typically be the same. Notice that the
constraint is asymmetric, later components have to be uncorrelated to earlier ones but not the other way
around. This induces an order. The first component is the slowest possible one, the second component is
the next slowest one under the constraint of being uncorrelated to the first, the third component is the next

slowest one under the constraint of being uncorrelated to the first two, etc.
Figure: (Wiskott et al., 2011, Fig. 1, ©) CC BY 4.0, URL)*3
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4.2 Complex cells with SFA on natural images

Learning material:

O 15 min video 4-2-Complex-Cells-with-SEA-en Natural Images
O Text below

Learning Receptive Fields

Pietro Berkes  Henning Sprekeler ~ Sven Dahne Niko Wilbert

51/56
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https://creativecommons.org/public-domain/pdm/
https://commons.wikimedia.org/wiki/File:The_Sower.jpg
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"Natural’ Image Sequences

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

Training sequences are gen-
erated from natural images
by moving a selection win-
dow across the image by vary-
ing translation, rotation, and
zoom. Each selected frame is
resampled to a size of 16x16
pixels. By concatenating the
rows of each frame one ob-
tains the 256-dimensional in-
put vectors for training SFA.
To reduce the dimensionality,
we perform principal compo-
nent analysis on the input im-
ages and only keep the first
100 components.

Trained with such image se-
quences, SFA yields a set
of functions that extract the
most slowly varying features.
The functions are ordered by
slowness, so that the first one
extracts the slowest feature,
the second one the next slow-

est feature, etc. We typically keep the first 100 functions, because the input is 100-dimensional and because
later functions yield output signals that vary faster than even the input and the slowness objective is not

met

anymore.
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Units are Polynomials

1
EXTHx+fo+ c

0q

—
x

SN—r
Il

Each gj(x) has  (N(N+1)/2+ N +1) =5151

44/56 (Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

(h11X12 + hioxixo + ... + hNNX/2\/)/2 + fixg+ ...+ fyxy + ¢

free parameters!

The function space used here
is the set of polynomials of
degree two in the 256 pixel
gray values, or rather their
100 first principal compo-
nents.  This yields 1 con-
stant term, 100 linear terms,
100 quadratic terms, and 4950
mixed products of two differ-
ent input components, which
makes 5151 terms in total.
This is a large function space
(therefore the dimensionality
reduction of the images down
to 100, to keep the dimension-
ality manageable).

Using such a large function
space is important as it pro-
vides sufficient computational
power and reduces built-in
prejudices about expected re-
sults. Using even larger func-
tion spaces might be interest-
ing but was computationally

prohibitive for us. One might also argue that physiological cells have computational limitations and that
there are experimental results suggesting that polynomials of degree two might be appropriate also for that

reason.
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Optimal Stimuli

45/56

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

The optimal stimuli of the
units obtained with SFA have
the shape of Gabor wavelets,
which is in good agreement
with physiological complex
cells.

Notice that the receptive fields
are not particularly localized
but cover a large fraction of
the image patch. This is be-
cause responses are typically
more slowly varying if the re-
ceptive fields are large. On
the other hand, the receptive
fields do not extend to the
borders of the image patch
at full strength, because that
would cause rapid changes in
the output if new image gray
values move into the receptive
field. Maybe, one can say that
a large Gaussian envelop func-
tion is optimal for slowness.
Notice also that since the SFA

units are nonlinear, the optimal stimuli only give a first hint at the full response properties of the units. If
the units were linear, the optimal stimuli would characterize them completely.

Invariances
1. phase invariance 2. rotation invariance
3. shift invariance 4. curvature invariance

5. size invariance

46/56 (Berkes & Wiskott, 2006, Neur. Comp. 18(8):1868-95; Berkes & Wiskott, 2007, Nature Protocols 2(2):400-7)

The first few invariances of the
units can typically be inter-
preted intuitively. Every unit
shows phase invariance, which
means that the exact position
of the black and white stripes
within the wavelet does not
matter. This makes the units
similar to complex cells rather
then simple cells. The unit
shown here has in addition
rotation invariance, i.e. the
wavelet may rotate a bit, shift
invariance, i.e. the wavelet
may move a little bit, curva-
ture invariance, i.e. the stripes
of the wavelet may bend a lit-
tle bit, and size invariance, i.e.
the wavelet may vary in size a
little bit without changing the
response too much.



Orientation Tuning
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Simple and complex cells usu-
ally have preferences for cer-
tain orientations. This can
be measured by presenting
gratings of different orienta-
tion to the cell (or rather
the animal) and recording
the corresponding neural re-
sponses.  Normally, drifting
gratings are used, because the
cells respond stronger to mov-
ing stimuli.

The responses to different ori-
entations can be conveniently
visualized in a polar plot. One
simply plots the firing rate in
radial direction as a function
of orientation in azimuthal di-
rection.  The graph shows
a standard orientation tuning
with one preferred orientation
at about 160°, which appears
here as two lobes in 180° dis-
tance due to the two different

drifting directions. Since the two lobes have same size, the cell does not have a preference for a particular

drifting direction.

Orientation Tunings

non-oriented cell

(De Valois et al., 1982) (simulated unit # 4)

secondary response-lobes

(De Valos et al., 1982) (simulated unit # 32)

48/56

standard orientation tuning

(De Valos et al., 1982) (simulated unit # 6)

direction selectivity

(De Valos et al., 1982) (simulated unit # 7)

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

40

A common way of charac-
terizing physiological complex
cells is to measure their ori-
entation tuning, which can be
conveniently plotted in polar
plots like shown here. Com-
plex cells have a great variety
of different orientation tunings
(black curves). Interestingly
the units trained with SFA re-
produce quite a few of these
(blue curves). Some units
are not selective for orienta-
tion at all (non-oriented cells).
Many have only one preferred
orientation (standard orienta-
tion tuning). Some units have
an additional positive reponse
at a second orientation (sec-
ondary response lobes). Oth-
ers are direction selective, i.e.
they respond only if the grat-
ing moves in one particular di-
rection.
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End- and Side-Inhibition

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

50/56

Histograms

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

selective than physiological ones (lower right panel).
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Some SFA wunits also show
end- or side-inhibition (blue
curves). The level to which
the response drops when the
grating covers the whole re-
ceptive field relative to the
maximum response varies a
lot for both types of cells in
any case and is not a discrep-
ancy between the simulation
results and physiological mea-
surements.

The good agreement of the
simulation results with phys-
iological measurements is not
only on a cell-by-cell level but
also on a population level.
The histograms of orienta-
tion bandwidth (upper left
panel) and relative orienta-
tion between maximum ex-
citation and maximum in-
hibition (upper right panel)
fit quite nicely experimental
data. Frequency bandwidth
of the simulated cells is bi-
ased towards low values (lower
left panel). This is a conse-
quence of the relatively small
image patches used in com-
bination with the dimension-
ality reduction, which leaves
only a small bandwidth avail-
able. We have no good expla-
nation for the fact that sim-
ulated units are less direction



4.3 Complex cells with SFA on colored noise images

Learning material:

O 10 min video 4.3 Complex Cells with SFA on Colored Noise Images
O Text below

Learning Receptive Fields

©

Pietro Berkes  Henning Sprekeler ~ Sven Dahne Niko Wilbert

51/56

42

URL

© public domain



https://www.ini.rub.de/PEOPLE/wiskott/Teaching/ComputationalNeuroscience/PublicWeb/VisualReceptiveFields-S4-LectureVideo-4.3-ComplexCellsWithSFAOnColoredNoiseImages-Public.mov
https://creativecommons.org/public-domain/pdm/
https://commons.wikimedia.org/wiki/File:The_Sower.jpg
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Colored Noise Image Sequences

It also works with colored noise but not with white noise image sequences.

The results do not depend on higher order statistics in the images.

(Berkes & Wiskott, 2005, J. of Vision, 5(6):579-602)

Interestingly, the results ob-
tained do not depend on the
natural images used. In fact,
one gets qualitatively identi-
cal results when colored noise
images are used. This means
that the higher-order statis-
tics of natural images is not
essential for the development
of complex cell properties
based on the slowness princi-
ple. Instead, the transforma-
tions are essential. Control
experiments show that with-
out translation, i.e. with only
rotation and zoom around a
common center, the optimal
stimuli become spirals, fun-
nels, and tunnels, but not
wavelets. Thus, translation is
essential. Rotation and zoom
only limit the size of the re-
ceptive field and are less influ-
ential.

The fact that colored noise images are sufficient for the development of complex cells with SFA implies
that the problem is in principle amenable to an analytical treatment, since all conditions can be formulated
analytically.
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Theory

If we assume infinitely large receptive fields, variational calculus leads to
the eigenvalue equation

ng(r, I’/) = Afgf(r? r/) )
with the differential operator

D - (V2>(Vr + Vr’)2
—(WA(r X V4 ¥ x Vy)?
—(a

(Y, -1+ Vo ¥,

If we assume perfect translation invariance, this eigenvalue problem can
be solved and yields input-output functions with plane waves as optimal
stimuli.

(Sprekeler & Wiskott, 2011, Neural Computation, 23(2):303-335)
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An analytical treatment (vari-
ational calculus) of the self-
organization of complex cell
receptive fields with SFA un-
der the assumption of in-
finitely large receptive fields
leads to an eigenvalue equa-
tion with a differential opera-
tor D containing three terms.
They result from translation,
rotation, and zoom. If we
assume perfect translation in-
variance, this eigenvalue prob-
lem can be solved and yields
input-output functions with
plane waves as optimal stim-
uli.



Retinal Waves

(2011-06-14 http://mcb.berkeley.edu/labs/feller/Movies.htm; Blankenship et al, 2009, Neuron)

(model by Godfrey & Swindale, 2007; implementation by Sven Dihne, 2009)

54/56 (Dshne, Wilbert, & Wiskott, 2014, PLoS Comp Biol, 10(5):1003564)
Results with Retinal Waves
optimal stimuli orientation tuning
55/56 (Dahne, Wilbert, & Wiskott, 2014, PLoS Comp Biol, 10(5):e1003564)
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Learning Receptive Fields - Summary

Slow feature analysis applied to image sequences
with translation, rotation, and zoom yields many
receptive-field properties of complex cells in V1.

Also the histograms of a number of cell properties fit well.
The results do not seem to depend on higher-order image-statistics.
The results depend on the presence of translational motion.

Complex cell receptive fields can therefore emerge also based on retinal
waves.

The model predicts a systematic relationship between
reponse time-scale and receptive-field properties.

The results can be partially understood theoretically.
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5 Optimal stimuli for quadratic forms

Learning material: ]

O Text below J

\.

This section is based on (Berkes and Wiskott, 2006, sec. 4).

We have seen above that SFA with polynomials of degree two applied to quasi-natural image sequences
yields many properties of complex cells. One way to visualize the results was to plot the optimal excitatory
(inhibitory) stimuli, which yield the maximal (minimal) output under a fixed norm constraint. In this section
we will se how one can find these optimal stimuli.

The problem of finding the optimal excitatory stimulus for quadratic forms under a fixed norm
constraint can be mathematically formulated as follows:
maximize ¢ g(x)= %XTHX +fTx+c 5

. 1
under the constraint ¢ xTx=r2. 5.1)

This problem is known as the Trust Region Subproblem and has been extensively studied in the context
of numerical optimization, where a nonlinear function is minimized by successively approximating it by an
inhomogeneous quadratic form, which is in turn minimized in a small neighborhood.

If the linear term is equal to zero (i.e., f = 0), the problem can be solved easily (see the exercises). In the
following we consider the more general case where f # 0. If the problem were unconstrained, we would
simply look for points where the gradient vanishes, i.e. where Vg(x) = 0. To incorporate the constraint
x"x = r? into the objective function we use a Lagrange formulation to find the necessary conditions

for the extremum:

O x'x =r? (5.2)
and ¢ V[g(x) — AxTx/2] =0 (5.3)
O = Hx+f—- X x=0 (5.4)
O = AMx —Hx =f (5.5)
O = x=MN-H)"'f, (5.6)

where we inserted the factor 1/2 for mathematical convenience.

It can be shown that, if an x that satisfies Equation (5.6) is a solution to (5.1), then (\I — H)
is positive semidefinite, i.e. all eigenvalues are greater or equal to 0 (Fortin, 2000, Theorem 3.1). This
imposes a tight lower bound on the range of possible values for \. Note that the matrix (A\I — H)
has the same eigenvectors v; as H with eigenvalues (A — ;). For (A — H) to be positive semidefinite all
eigenvalues must be nonnegative, and thus A must be greater than the largest eigenvalue uq,

O p1 <A (5.7)

Proving the abovementioned theorem is beyond the scope of this lecture, but one can get an intuitive
understanding of it by considering a quadratic form with a Hesse matrix with identical eigenvalues. ...

An upper bound for A can be found by considering an upper bound for the norm of x. First we
note that matrix (AI — H)™! is symmetric and has the same eigenvectors as H with eigenvalues 1/(\ — ;).
We also know that ||Av| < [|A||||v|| for every matrix A and vector v. ||A|| is here the spectral norm of A,
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which for symmetric matrices is simply the largest absolute eigenvalue. With this we find an upper bound
for A:

O r=|x|| (5.8)
o T - H) e (5.9)
% < T =H)7H[I£] (5.10)
1
O = m;ax{‘)\ _— } 1]l (5.11)
en 1
= f 12
0 el (5.12)
O = A< I£] + (5.13)

S
The optimization problem (5.1) is thus reduced to a search over A on the interval [ul, (@ + ul)}

until x defined by (5.6) fulfills the constraint ||x|| = 7 (Eq. 5.2). Vector x and norm |/x|| can be
efficiently computed for each ) using the eigenvalue decomposition of f:

O xEOI-H)'f (5.14)

O =QAI-H)' ) vi(v/f) (5.15)

O =) (MI-H)v;(v[f) (5.16)
1

0 =d 5 Vi (vif) (5.17)

and

9l x@(Z A_lmvmv;ff)) > v (D (5.18)

0 = 1, : - (vi£) (v} ) (viv)) (5.19)

o -y (A ! M>2 (T2, (5.20)

i

where the terms v!f and (v!f)? are constant for each quadratic form and can be computed in
advance. The last equation also shows that the norm of x is monotonically decreasing in the
considered interval, so that there is exactly one solution and the search can be efficiently performed by a
bisection method. x~ can be found in the same way by maximizing the negative of g.

If the matrix H is negative definite (i.e., all its eigenvalues are negative) there is a global maximum that may
not lie on the sphere, which might be used in substitution for x* if it lies in a region of the input space that
has a high probability of being reached (the criterion is quite arbitrary, but the region could be chosen to
include, for example, 75% of the input data with highest density). The gradient of the function disappears
at the global extremum such that it can be found by solving a simple linear equation system:

Vg(x)=Hx+f=0 (5.21)
— x = -H"'f. (5.22)
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In the same way a positive definite matrix H has a negative global minimum, which might be used in
substitution for x~.

Note that although x7 is the stimulus that elicits the strongest response in the function, it doesn’t necessarily
mean that it is representative of the class of stimuli that give the most important contribution to its output.
This depends on the distribution of the input vectors: If x lies in a low-density region of the input space, it
is possible that other kinds of stimuli drive the function more often. In that case they might be considered
more relevant than x™ to characterize the function. Symptomatic for this effect would be if the output of a
function when applied to its optimal stimulus would lie far outside the range of normal activity. This means
that xT can be an atypical, artificial input that pushes the function in an uncommon state. However, the
optimal stimuli remain extremely informative in practice.
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