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Computational models of neural map formation can be considered on
at least three different levels of abstraction: detailed models including
neural activity dynamics, weight dynamics that abstract from the neural
activity dynamics by an adiabatic approximation, and constrained opti-
mization from which equations governing weight dynamics can be de-
rived. Constrained optimization uses an objective function, from which
a weight growth rule can be derived as a gradient �ow, and some con-
straints, from which normalization rules are derived. In this article, we
present an example of how an optimization problem can be derived from
detailed nonlinear neural dynamics. A systematic investigation reveals
how different weight dynamics introduced previously can be derived
from two types of objective function terms and two types of constraints.
This includes dynamic link matching as a special case of neural map for-
mation. We focus in particular on the role of coordinate transformations to
derive different weight dynamics from the same optimization problem.
Several examples illustrate how the constrained optimization framework
can help in understanding, generating, and comparing different models
of neural map formation. The techniques used in this analysis may also
be useful in investigating other types of neural dynamics.

1 Introduction

Neural maps are an important motif in the structural organization of the
brain. The best-studied maps are those in the early visual system. For exam-
ple, the retinotectal map connects a two-dimensional array of ganglion cells
in the retina to a corresponding map of the visual �eld in the optic tectum
of vertebrates in a neighborhood-preserving fashion. These are called to-
pographic maps. The map from the lateral geniculate nucleus (LGN) to the
primary visual cortex (V1) is more complex because the inputs coming from
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Figure 1: Goal of neural map formation: The initially random all-to-all connec-
tivity self-organizes into an orderly connectivity that appropriately re�ects the
correlations within the input stimuli and the induced correlations within the
output layer. The output correlations also depend on the connectivity within
the output layer.

LGN include signals from both eyes and are unoriented, but most cells in
V1 are tuned for orientation, an emergent property. Neurons with preferred
orientation and ocular dominance in area V1 form a columnar structure,
where neurons responding to the same eye or the same orientation tend
to be neighbors. Other neural maps are formed in the somatosensory, the
auditory, and the motor systems. All neural maps connect an input layer,
possibly divided into different parts (e.g., left and right eye), to an output
layer. Each neuron in the output layer can potentially receive input from
all neurons in the input layer (here we ignore the limits imposed by re-
stricted axonal arborization and dendritic extension). However, particular
receptive �elds develop due to a combination of genetically determined and
activity-driven mechanisms for self-organization. Although cortical maps
have many feedback projections (for example, from area V1 back to the
LGN), these are disregarded in most models of map formation and will not
be considered here.

The goal of neural map formation is to self-organize from an initial ran-
dom all-to-all connectivity a regular pattern of connectivity, as in Figure 1,
for the purpose of producing a representation of the input on the output
layer that is of further use to the system. The development of the structure
depends on the architecture, the lateral connectivity, the initial conditions,
and the weight dynamics, including growth rule and normalization rules.

The �rst model of map formation, introduced by von der Malsburg
(1973), was for a small patch of retina stimulated with bars of different
orientation. The model self-organized orientation columns, with neighbor-
ing neurons having receptive �elds tuned to similar orientation. This model
already included all the crucial ingredients important for map formation:
(1) characteristic correlations within the stimulus patterns, (2) lateral inter-
actions within the output layer, inducing characteristic correlations there
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as well, (3) Hebbian weight modi�cation, and (4) competition between
synapses by weight normalization. Many similar models have been pro-
posed since then for different types of map formation (see Erwin, Ober-
mayer, & Schulten, 1995; Swindale, 1996; and Table 2 for examples). We
do not consider models that are based on chemical markers (e.g., von der
Malsburg & Willshaw, 1977). Although they may be conceptionally similar
to those based on neural activities, they can differ signi�cantly in the de-
tailed mathematical formulation. Nor do we consider in detail models that
treat the input layer as a low-dimensional space, say two-dimensional for
the retina, from which input vectors are drawn (e.g., Kohonen, 1982, but see
section 6.8). The output neurons then receive only two synapses per neuron,
one for each input dimension.

The dynamic linkmatching model (e.g., Bienenstock & von der Malsburg,
1987; Konen, Maurer, & von der Malsburg, 1994) is a form of neural map
formation that has been developed for pattern recognition. It is mathemati-
cally similar to the self-organization of retinotectal projections; in addition,
each neuron has a visual feature attached, so that a neural layer can be
considered as a labeled graph representing a visual pattern. Each synapse
has associated with it an individual value, which affects the dynamics and
expresses the similarity between the features of connected neurons. The
self-organization process then not only tends to generate a neighborhood
preserving map, it also tends to connect neurons having similar features.
If the two layers represent similar patterns, the map formation dynamics
�nds the correct feature correspondences and connects the corresponding
neurons.

Models of map formationhave been investigated by analysis (e.g., Amari,
1980; Häussler & von der Malsburg, 1983) and computer simulations. An
important tool for both methods is the objective function (or energy func-
tion) from which the dynamics can be generated as a gradient �ow. The
objective value (or energy) can be used to estimate which weight con�g-
urations would be more likely to arise from the dynamics (e.g., MacKay
& Miller, 1990). In computer simulations, the objective function is maxi-
mized (or the energy function is minimized) numerically in order to �nd
stable solutions of the dynamics (e.g., Linsker, 1986; Bienenstock & von der
Malsburg, 1987).

Objective functions, which can also serve as a Lyapunov function, have
many advantages. First, the existence of an objective function guarantees
that the dynamics does not have limit cycles or chaotic attractors as solu-
tions. Second, an objective function often provides more direct and intuitive
insight into the behavior of a dynamics, and the effects of each term can
be understood more easily. Third, an objective function allows additional
mathematical tools to be used to analyze the system, such as methods from
statistical physics. Finally, an objective function provides connections to
more abstract models, such as spin systems, which have been studied in
depth.
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Although objective functions have been used before in the context of
neural map formation, they have not yet been investigated systematically.
The goal of this article is to derive objective functions for a wide variety of
models. Although growth rules can be derived from objective functions as
gradient �ows, normalization rules are derived from constraints by various
methods. Thus, objective functions and constraints have to be considered
in conjunction and form a constrained optimization problem. We show that
although two models may differ in the formulation of their dynamics, they
may be derived from the same constrained optimization problem, thus pro-
viding a unifying framework for the two models. The equivalence between
different dynamics is revealed by coordinate transformations. A major fo-
cus of this article is therefore on the effects of coordinate transformations
on weight growth rules and normalization rules.

1.1 Model Architecture. The general architecture considered here con-
sists of two layers of neurons, an input and an output layer, as in Figure 2.
(We use the term layer for a population of neurons without assuming a
particular geometry.) Input neurons are indicated by ½ (retina) and output
neurons by ¿ (tectum); the index º can indicate a neuron in either layer.
Neural activities are indicated by a. Input neurons are connected all-to-all
to output neurons, but there are no connections back to the input layer.
Thus, the dynamics in the input layer is completely independent of the
output layer and can be described by mean activities ha½ i and correlations
ha½; a½0 i. Effective lateral connections within a layer are denoted by D½½ 0 and
D¿ ¿ 0 ; connections projecting from the input to the output layer are denoted
by w¿½ . The second index always indicates the presynaptic neuron and the
�rst index the postsynaptic neuron. The lateral connections de�ned here are
called effective, because they need not correspond to physical connections.
For example, in the input layer, the effective lateral connections represent
the correlations between input neurons regardless of what induced the cor-
relations, D½½ 0 D ha½ ; a½ 0 i. In the example below, the output layer has short-
term excitatory and long-term inhibitory connections; the effective lateral
connections, however, are only excitatory. The effective lateral connections
thus represent functional properties of the lateral interactions and not the
anatomical connectivity itself.

To make the notation simpler, we use the de�nitions i D f½; ¿ g, j D
f½ 0; ¿ 0g, Aij D D¿¿ 0 A½0 D D¿¿ 0 ha½0 i, and Dij D D¿¿ 0 D½½0 D D¿¿ 0 ha½; a½0 i in
section 3 and later. We assume symmetric matrices Aij D Aji and Dij D Dji,
which requires some homogeneity of the architecture, that is, ha½i D ha½ 0 i,
ha½; a½0 i D ha½ 0 ; a½ i, and D¿¿ 0 D D¿ 0¿ .

In the next section, a simple model is used to demonstrate the basic
procedure for deriving a constrained optimization problem from detailed
neural dynamics. This procedure has three steps. First, the neural dynamics
is transformed into a weight dynamics, where the induced correlations are
expressed directly in terms of the synaptic weights, thus eliminating neu-
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Figure 2: General architecture: Neurons in the input layer are connected all-to-
all to neurons in the output layer. Each layer has effective lateral connections
D representing functional aspects of the lateral connectivity (e.g., characteristic
correlations). As an example, a path through which activity can propagate from
neuron ½ to neuron ¿ is shown by solid arrows. Other connections are shown
as dashed arrows.

ral activities from the dynamics by an adiabatic approximation. Second, an
objective function is constructed, which can generate the dynamics of the
growth rule as a gradient �ow. Third, the normalization rules need to be
considered and, if possible, derived from constraint functions. The last two
steps depend on each other insofar as growth rule, as well as normaliza-
tion rules, must be inferred under the same coordinate transformation. The
three important aspects of this example—deriving correlations, construct-
ing objective functions, and considering the constraints—are then discussed
in greater detail in the following three sections, respectively. Readers may
skip section 2 and continue directly with these more abstract considerations
beginning in section 3. In section 6, several examples are given for how the
constrained optimization framework can be used to understand, generate,
and compare models of neural map formation.

2 Prototypical System

As a concrete example, consider a slightly modi�ed version of the dynamics
proposedby Willshaw and von der Malsburg (1976) for the self-organization
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of a retinotectal map, where the input and output layer correspond to retina
and tectum, respectively. The dynamics is qualitatively described by the
following set of differential equations:

Neural activity dynamics

Pm½ D ¡m½ C .k ¤ a½0 /½ (2.1)

Pm¿ D ¡m¿ C .k ¤ a¿ 0 /¿ C
X

½0

w¿½0 a½0 (2.2)

Weight growth rule

Pw¿½ D a¿ a½ (2.3)

Weight normalization rules

if w¿½ < 0:w¿½ D 0 (2.4)

if
X

½0

w¿½ 0 > 1:w¿½ D Qw¿½ C
1

M¿

Á
1 ¡

X

½0

Qw¿½0

!
for all ½ (2.5)

if
X

¿ 0

w¿ 0½ > 1:w¿½ D Qw¿½ C
1

M½

Á
1 ¡

X

¿ 0

Qw¿ 0½

!
for all ¿ (2.6)

where m denotes the membrane potential, aº D ¾ .mº/ is the mean �ring
rate determined by a nonlinear input-output function ¾ , .k ¤ aº 0 / indicates
a convolution of the neural activities with the kernel k representing lat-
eral connections with local excitation and global inhibition, Qw¿½ indicates
weights as obtained by integrating the differential equations for one time
step, that is, Qw¿½.tC1t/ D w¿½.t/C1t Pw¿½.t/, M¿ is the number of links termi-
nating on output neuron ¿ , and M½ is the number of links originating from
input neuron ½. Equations 2.1 and 2.2 govern the neural activity dynamics
on the two layers, equation 2.3 is the growth rule for the synaptic weights,
and equations 2.4–2.6 are the normalization rules that keep the sums over
synaptic weights originating from an input neuron or terminating on an
output neuron equal to 1 and prevent the weights from becoming negative.
Notice that since the discussion is qualitative, we included only the basic
terms and discarded some parameters required to make the system work
properly. One difference from the original model is that subtractive instead
of multiplicative normalization rules are used.

2.1 Correlations. The dynamics within the neural layers is well under-
stood (Amari, 1977; Konen et al., 1994). Local excitation and global inhibition
lead to the development of a local patch of activity, called a blob. The shape
and size of the blob depend on the kernel k and other parameters of the
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system and can be described by B½ 0½0 if centered on input neuron ½0 and
B¿ 0¿0 if centered on output neuron ¿0. The location of the blob depends on
the input, which is assumed to be weak enough that it does not change
the shape of the blob. Assume the input layer receives noise such that the
blob arises with equal probability p.½0/ D 1=R centered on any of the input
neurons, where R is the number of input neurons. For simplicity we assume
cyclic boundary conditions to avoid boundary effects. The location of the
blob in the output layer, on the other hand, is affected by the input,

i¿ 0 .½0/ D
X

½ 0

w¿ 0½ 0 B½0½0 ; (2.7)

received from the input layer and therefore depends on the position ½0 of
the blob in the input layer. Only one blob can occur in each layer, and the
two layers need to be reset before new blobs can arise. A sequence of blobs
is required to induce the appropriate correlations.

Konen et al. (1994) have shown that without noise, blobs in the output
layer will arise at location ¿0 with the largest overlap between input i¿ 0 .½0/

and the �nal blob pro�le B¿ 0¿0 , that is, the location for which
P

¿ 0 B¿ 0¿0 i¿ 0 .½0/

is maximal. This winner-take-all behavior makes it dif�cult to analyze the
system. We therefore make the assumption that in contrast to this determin-
istic dynamics, the blob arises at location ¿0 with a probability equal to the
overlap between the input and blob activity,

p.¿0 |½0/ D
X

¿ 0

B¿ 0¿0 i¿ 0 .½0/ D
X

¿ 0½ 0

B¿ 0¿0w¿ 0½0 B½ 0½0 : (2.8)

Assume the blobs are normalized such that
P

½ 0 B½ 0½0 D 1 and
P

¿0
B¿ 0¿0 D 1

and that the connectivity is normalized such that
P

¿ 0 w¿ 0½0 D 1, which is
the case for the system above if the input layer does not have more neurons
than the output layer. This implies

P
¿ 0 i¿ 0 .½0/ D 1 and

P
¿0

p.¿0 |½0/ D 1 and
justi�es the interpretation of p.¿0 |½0/ as a probability.

Although it is plausible that such a probabilistic blob location could be
approximatedby noise in the output layer, it is dif�cult to develop a concrete
model. For a similar but morealgorithmic activity model (Obermayer, Ritter,
& Schulten, 1990), an exact noise model for the probabilistic blob location
can be formulated (see the appendix). With equation 3.8 the probability for
a particular combination of blob locations is

p.¿0; ½0/ D p.¿0 |½0/p.½0/ D
X

¿ 0½ 0

B¿ 0¿0w¿ 0½ 0 B½0½0

1
R

; (2.9)

and the correlation between two neurons de�ned as the average product of
their activities is

ha¿ a½ i D
X

¿0½0

p.¿0; ½0/B¿¿0 B½½0 (2.10)
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D
X

¿0½0

X

¿ 0½ 0

B¿ 0¿0 w¿ 0½0 B½ 0½0

1
R

B¿¿0B½½0 (2.11)

D
1
R

X

¿ 0½0

Á
X

¿0

B¿ 0¿0 B¿¿0

!
w¿ 0½ 0

Á
X

½0

B½0½0B½½0

!
(2.12)

D
1
R

X

¿ 0½0

NB¿¿ 0 w¿ 0½ 0 NB½0½ ; with NBº0º D
X

º0

Bº 0º0 Bºº0 ; (2.13)

where the brackets h¢i indicate the ensemble average over a large number
of blob presentations. 1

R
NB½ 0½ and NB¿¿ 0 are the effective lateral connectivities

of the input and the output layer, respectively, and are symmetrical even if
the individual blobs B½½0 and B¿¿0 are not, that is, D½ 0½ D 1

R
NB½ 0½ , D¿¿ 0 D NB¿¿ 0 ,

and Dij D Dji D D¿ ¿ 0 D½ 0½ D 1
R

NB¿¿ 0 NB½0½ . Notice the linear relation between
the weights w¿ 0½ 0 and the correlations ha¿ a½i in the probabilistic blob model
(see equation 2.13).

Substituting the correlation into equation 2.3 for the weight dynamics
leads to:

h Pw¿½ i D ha¿ a½i D
1
R

X

¿ 0½ 0

NB¿¿ 0 w¿ 0½0 NB½ 0½ : (2.14)

The same normalization rules given above (equations 2.4–2.6) apply to this
dynamics. Since there is little danger of confusion, we neglect the averaging
brackets for h Pw¿½ i in subsequent equations and simply write Pw¿½ D ha¿ ; a½ i.

Although we did not give a mathematical model of the mechanism by
which the probabilistic blob location as given in equation 2.8 could be imple-
mented, it may be interesting to note that the probabilistic approach can be
generalized to other activity patterns, such as stripe patterns or hexagons,
which can be generated by Mexican hat interaction functions (local excita-
tion, �nite-range inhibition) (von der Malsburg, 1973; Ermentrout & Cowan,
1979). If the probability for a stripe pattern’s arising in the output layer is
linear in its overlap with the input, the same derivation follows, though the
indices ½0 and ¿0 will then refer to phase and orientation of the patterns
rather than location of the blobs.

Using the probabilistic blob location in the output layer instead of the
deterministic one is analogous to the soft competitive learning proposed
by Nowlan (1990) as an alternative to hard (or winner-take-all) competitive
learning. Nowlan demonstrated superior performance of soft competition
over hard competition for a radial basis function network tested on recog-
nition of handwritten characters and spoken vowels, and suggested there
might be a similar advantage for neural map formation. The probabilistic
blob location induced by noise might help improve neural map formation
by avoiding local optima.
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2.2 Objective Function. The next step is to �nd an objective function
that generates the dynamics as a gradient �ow. For the above example, a
suitable objective function is

H.w/ D
1

2R

X

¿½¿ 0½ 0

w¿½
NB½½ 0 NB¿¿ 0 w¿ 0½0 ; (2.15)

since it yields equation 2.14 from Pw¿½ D @H.w/
@w¿½

, taking into account that
NBºº0 D NBº0º .

2.3 Constraints. The normalizationrules given above ensure that synap-
tic weights do not become negative and that the sums over synaptic weights
originating from an input neuron or terminating on an output neuron do
not become larger than 1. This can be written in the form of inequalities for
constraint functions g:

g¿½.w/ D w¿½ ¸ 0; (2.16)

g¿ .w/ D 1 ¡
X

½ 0

w¿½0 ¸ 0; (2.17)

g½.w/ D 1 ¡
X

¿ 0

w¿ 0½ ¸ 0: (2.18)

These constraints de�ne a region within which the objective function is to
be maximized by steepest ascent. While the constraints follow uniquely
from the normalization rules, the converse is not true. In general, there are
various normalization rules that would enforce or at least approximate the
constraints, but only some of them are compatible with the constrained
optimization framework. As shown in section 5.2.1, compatible normaliza-
tion rules can be obtained by the method of Lagrangian multipliers. If a
constraint gx; x 2 f¿½; ¿; ½g is violated, a normalization rule of the form

if gx.w̃/ < 0 : w¿½ D Qw¿½ C ¸x
@gx

@ Qw¿½

for all ¿½; (2.19)

has to be applied, where ¸x is a Lagrangian multiplier and determined such
that gx.w/ D 0. This method actually leads to equations 2.4–2.6, which are
therefore a compatible set of normalization rules for the constraints above.
This is necessary to make the formulation as a constrained optimization
problem (see equations 2.15–2.18) an appropriate description of the original
dynamics (see equations 2.3–2.6).

This example illustrates the general scheme by which a detailed model
dynamics for neural map formation can be transformed into a constrained
optimization problem. The correlations, objective functions, and constraints
are discussed in greater detail and for a wide variety of models below.
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3 Correlations

In the above example, correlations in a highly nonlinear dynamics led to a
linear relationship between synaptic weights and the induced correlations.
We derived effective lateral connections in the input as well as the output
layer mediating these correlations. Corresponding equations for the cor-
relations have been derived for other, mostly linear activity models (e.g.,
Linsker, 1986; Miller, 1990; von der Malsburg, 1995), as summarized here.

Assume the dynamics in the input layer is described by neural activities
a½.t/ 2 R, which yield mean activities ha½ i and correlations ha½; a½ 0 i. The
input received by the output layer is assumed to be a linear superposition
of the activities of the input neurons:

i¿ 0 D
X

½ 0

w¿ 0½ 0 a½ 0 : (3.1)

This input then produces activity in the output layer through effective lateral
connections in a linear fashion:

a¿ D
X

¿ 0

D¿¿ 0 i¿ 0 D
X

¿ 0½ 0

D¿¿ 0 w¿ 0½ 0 a½ 0 : (3.2)

As seen in the above example, this linear behavior could be generated by
a nonlinear model. Thus, the neurons need not be linear, only the effective
behavior of the correlations (cf. Sejnowski, 1976; Ginzburg & Sompolinsky,
1994). The mean activity of output neurons is

ha¿ i D
X

¿ 0½0

D¿¿ 0 w¿ 0½0 ha½ 0 i D
X

j

Aijwj: (3.3)

Assuming a linear correlation function (ha½ ; ®.a½0 C a½ 00 /i D ®ha½ ; a½ 0 i C
®ha½ ; a½00 i with a real constant ®) such as the average product or the covari-
ance (Sejnowski, 1977), the correlation between input and output neurons
is

ha¿ ; a½i D
X

¿ 0½0

D¿¿ 0 w¿ 0½0 ha½ 0 ; a½ i D
X

j

Dijwj: (3.4)

Note that i D f½; ¿ g, j D f½0; ¿ 0g, Aij D Aji D D¿¿ 0 A½ 0 D D¿¿ 0 ha½0 i, and Dij D
Dji D D¿¿ 0 D½ 0½ D D¿¿ 0 ha½ 0 ; a½i. Since the right-hand sides of equations 3.3
and 3.4 are formally equivalent, we will consider only the latter one in the
further analysis, bearing in mind that equation 3.3 is included as a special
case.

In this linear correlation model, all variables may assume negative val-
ues. This may not be plausible for the neural activities a½ and a¿ . However,



Neural Map Formation 681

equation 3.4 can be derived also for nonnegative activities, and a similar
equation as equation 3.3 can be derived if the mean activities ha½i are pos-
itive. The difference for the latter would be an additional constant, which
can always be compensated for in the growth rule.

The correlation model in Linsker (1986) differs from the linear one intro-
duced here in two respects. The input (see equation 3.1) has an additional
constant term, and correlations are de�ned by subtracting positive constants
from the activities. However, it can be shown that correlations in the model
in Linsker (1986) are a linear combination of a constant and the terms of
equations 3.3 and 3.4.

4 Objective Functions

In general, there is no systematic way of �nding an objective function for a
particular dynamical system, but it is possible to determine whether there
exists an objective function. The necessary and suf�cient condition is that
the �ow �eld of the dynamics be curl free. If there exists an objective function
H.w/ with continuous partial derivatives of order two that generates the
dynamics Pwi D @H.w/=@wi, then

@ Pwi

@wj
D

@2H.w/

@wj@wi
D

@2H.w/

@wi@wj
D

@ Pwj

@wi
: (4.1)

The existence of an objective function is thus equivalent to @ Pwi=@wj D
@ Pwj=@wi, which can be checked easily. For the dynamics given by

Pwi D
X

j

Dijwj (4.2)

(cf. equation 2.14), for example, @ Pwi=@wj D Dij D @ Pwj=@wi, which shows that
it can be generated as a gradient �ow. A suitable objective function is

H.w/ D
1
2

X

ij

wiDijwj (4.3)

(cf. equation 2.15), since it yields Pwi D @H.w/=@wi.
A dynamics that cannot be generated by an objective function directly is

Pwi D wi

X

j

Dijwj; (4.4)

as used in Häussler and von der Malsburg (1983), since for i 6D j we obtain
@ Pwi=@wj D wiDij 6D wjDji D @ Pwj=@wi , and Pwi is not curl free. However, it is
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sometimes possible to convert a dynamics with curl into a curl-free dynam-
ics by a coordinate transformation. Applying the transformation wi D 1

4 v2
i

( C w) to equation 4.4 yields

Pvi D
dvi

dwi
Pwi D

p
wi

X

j

Dijwj D
1
2

vi

X

j

Dij
1
4

v2
j ; (4.5)

which is curl free, since @ Pvi=@vj D 1
2viDij

1
2 vj D @ Pvj=@vi . Thus, the dynamics

of Pvi in the new coordinate system V w can be generated as a gradient �ow.
A suitable objective function is

H.v/ D
1
2

X

ij

1
4

v2
i Dij

1
4

v2
j ; (4.6)

since it yields Pvi D @H.v/=@vi. Transforming the dynamics of v back into
the original coordinate system W , of course, yields the original dynamics
in equation 4.4:

Pwi D
dwi

dvi
Pvi D

1
4

v2
i

X

j

Dij
1
4

v2
j D wi

X

j

Dijwj: (4.7)

Coordinate transformations thus can provide objective functions for dy-
namics that are not curl free. Notice that H.v/ is the same objective function
as H.w/ (see equation 4.3) evaluated in V w instead of W . Thus H.v/ D
H.w.v// and H is a Lyapunov function for both dynamics.

More generally, for an objective function H and a coordinate transforma-
tion wi D wi.vi/,

Pwi D
d
dt

[wi.vi/] D
dwi

dvi
Pvi D

dwi

dvi

@H
@vi

D
³

dwi

dvi

´2
@H
@wi

; (4.8)

which implies that the coordinate transformation simply adds a factor
.dwi=dvi/

2 to the original growth term obtained in the original coordinate
system W . For the dynamics in equation 4.4 derived under the coordinate
transformation wi D 1

4 v2
i ( C w) relative to the dynamics of equation 4.2, we

verify that .dwi=dvi/
2 D wi. Equation 4.8 also shows that �xed points are

preserved under the coordinate transformation in the region where dwi=dvi
is de�ned and �nite but that additional �xed points may be introduced if
dwi=dvi D 0.

This effect of coordinate transformations is known from the general the-
ory of relativity and tensor analysis (e.g., Dirac, 1996). The gradient of a
potential (or objective function) is a covariant vector, which adds the factor
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w22

w1

1= v + v 2H(v)1= 2 wH(w)  + w 2 v2 = w 2

v1 = 2 w 1

Figure 3: The effect of coordinate transformations on the induced dynamics. The
�gure shows a simple objective function H in the original coordinate system W
(left) and the new coordinate system V (right) with w1 D v1=2 and w2 D v2 .
The gradient induced in W (dashed arrow) and the gradient induced in V and
then backtransformed into W (solid arrows) have the same component in the
w2 direction but differ by a factor of four in the w1 direction (cf. equation 4.8).
Notice that the two dynamics differ in amplitude and direction, but that H is a
Lyapunov function for both.

dwi=dvi through the transformation from W to V . Since Pv as a kinematic
description of the trajectory is a contravariant vector, this adds another fac-
tor dwi=dvi through the transformation back from V to W . If both vectors
were either covariant or contravariant, the back-and-forth transformation
between the different coordinate systems would have no effect. The same
argument holds for the constraints in section 5.2. In some cases, it may also
be useful to consider more general coordinate transformations wi D wi.v/

where each weight wi may depend on all variables vj, as is common in the
general theory of relativity and tensor analysis. Equation 4.8 would have to
be modi�ed correspondingly. In Figure 3, the effect of coordinate transfor-
mations is illustrated by a simple example.

Table 1 shows two objective functions and the corresponding dynam-
ics terms they induce under different coordinate transformations. The �rst
objective function, L, is linear in the weights and induces constant weight
growth (or decay) under coordinate transformation C 1. The growth of one
weight does not depend on other weights. This term can be useful for dy-
namic link matching to introduce a bias for each weight depending on the
similarity of the connected neurons. The second objective function, Q, is
a quadratic form. The induced growth rule for one weight includes other
weights and is usually based on correlations between input and output
neurons, ha¿ a½i D

P
j Dijwj, and possibly also the mean activities of out-
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put neurons, ha¿ i D
P

j Aijwj. This term is, for instance, important to form
topographic maps. Functional aspects of term Q are discussed in section 6.3.

5 Constraints

A constraint is either an inequality describing a surface (of dimensionality
RT ¡ 1 if RT is the number of weights) between valid and invalid region or
an equality describing the valid region as a surface. A normalization rule
is a particular prescription for how the constraint has to be enforced. Thus,
constraints can be uniquely derived from normalization rules but not vice
versa.

5.1 Orthogonal Versus Nonorthogonal Normalization Rules. Normal-
ization rules can be divided into two classes: those that enforce the con-
straints orthogonal to the constraint surface, that is, along the gradient of
the constraint function, and those that also have a component tangential to
the constraint surface (see Figure 4). We refer to the former ones as orthogonal
and to the latter ones as nonorthogonal.

Only the orthogonal normalization rules are compatible with an objec-
tive function, as is illustrated in Figure 5. For a dynamics induced as an
ascending gradient �ow of an objective function, the value of the objective
function constantly increases as long as the weights change. If the weights
cross a constraint surface, a normalization rule has to be applied iteratively
to the growth rule. Starting from the constraint surface at point w 0, the gra-
dient ascent causes a step to point w̃ in the invalid region, where w̃ ¡ w 0

is in general nonorthogonal to the constraint surface. A normalization rule
causes a step back to w on the constraint surface. If the normalization rule
is orthogonal, that is, w ¡ w̃ is orthogonal to the constraint surface, w ¡ w̃
is shorter than or equal to w̃ ¡ w 0 and the cosine of the angle between the
combined step w ¡ w 0 and the gradient w̃ ¡ w 0 is nonnegative, that is, the
value of the objective function does not decrease. This cannot be guaranteed
for nonorthogonal normalization rules, in which case the objective function
of the unconstrained dynamics may not even be a Lyapunov function for
the combined system, including weight dynamics and normalization rules.
Thus, only orthogonal normalization rules can be used in the constrained
optimization framework.

The term orthogonal is not well de�ned away from the constraint surface.
However, the constraints used in this article are rather simple, and a nat-
ural orthogonal direction is usually available for all weight vectors. Thus,
the term orthogonal will also be used for normalization rules that do not
project back exactly onto the constraint surface but keep the weights close
to the surface and affect the weights orthogonal to it. For more complicated
constraint surfaces, more careful considerations may be required.
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wjwj

gn gn

= 0gj

gi= 0

wiwi

1

2 3

4

5

= 0 = 0

valid region

invalid region

Figure 4: Different constraints and different ways in which constraints can be
violated and enforced. The constraints along the axes are given by gi D wi ¸ 0
and gj D wj ¸ 0, which keep the weights wi and wj nonnegative. The constraint
gn D 1 ¡ .wi C wj/ ¸ 0 keeps the sum of the two weights smaller or equal to
1. Black dots indicate points in state-space that may have been reached by the
growth rule. Dot 1: None of the constraints is violated, and no normalization rule
is applied. Dot 2: gn ¸ 0 is violated, and an orthogonal subtractive normalization
rule is applied. Dot 3: gn ¸ 0 is violated, and a nonorthogonal multiplicative
normalization rule is applied. Notice that the normalization does not follow the
gradient of gn; it is not perpendicular to the line gn D 0. Dot 4: Two constraints are
violated, and the respective normalization rules must beappliedsimultaneously.
Dot 5: gn ¸ 0 is violated, but the respective normalization rule violates gj ¸ 0.
Again both rules must be applied simultaneously. The dotted circles indicate
regions considered in greater detail in Figure 5.

Whether a normalization rule is orthogonal depends on the coordinate
system in which it is applied. This is illustrated in Figure 6 and discussed in
greater detail below. The same rule can be nonorthogonal in one coordinate
system but orthogonal in another. It is important to �nd the coordinate sys-
tem in which an objective function can be derived and the normalization
rules are orthogonal. This then is the coordinate system in which the model
can be most conveniently analyzed. Not all nonorthogonal normalization
rules can be transformed into orthogonal ones. In Wiskott and von der Mals-
burg (1996), for example, a normalization rule is used that affects a group
of weights if single weights grow beyond their limits. Since the constraint
surface depends on only one weight, only that weight can be affected by
an orthogonal normalization rule. Thus, this normalization rule cannot be
made orthogonal.

5.2 Constraints Can Be Enforced in Different Ways. For a given con-
straint, orthogonal normalization rules can be derived using various meth-
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w~

w~

w’
w w

w’

Figure 5: The effect of orthogonal versus nonorthogonal normalization rules.
The two circled regions are taken from Figure 4. The effect of the orthogonal
subtractive rule is shown on the left, and the nonorthogonal multiplicative rule
is shown on the right. The growth dynamics is assumed to be induced by an
objective function, the equipotential curves of which are shown as dashed lines.
The objective function increases to the upper right. The growth rule (dotted ar-
rows) and normalization rule (dashed arrows) are applied iteratively. The net
effect is different in the two cases. For the orthogonal normalization rule, the dy-
namics increases the value of the objective function, while for the nonorthogonal
normalization, the value decreases and the objective function that generates the
growth rule is not even a Lyapunov function for the combined system.

ods. These include the method of Lagrangian multipliers, the inclusion of
penalty terms, and normalization rules that are integrated into the weight
dynamics without necessarily having any objective function. The former
two methods are common in optimization theory. The latter is more spe-
ci�c to a model of neural map formation. It is also possible to substitute a
constraint by a coordinate transformation.

5.2.1 Method of Lagrangian Multipliers. Lagrangian multipliers can be
used to derive explicit normalization rules, such as equations 2.4–2.6. If the
constraint gn.w/ ¸ 0 is violated for w̃ as obtained after one integration step
of the learning rule, Qwi.t C 1t/ D wi.t/ C 1t Pwi.t/, the weight vector has
to be corrected along the gradient of the constraint function gn, which is
orthogonal to the constraint surface gn.w/ D 0,

if gn.w̃/ < 0 : wi D Qwi C ¸n
@gn

@ Qwi
for all i; (5.1)

where .@gn=@ Qwi/ D .@gn=@wi/ at w D w̃ and ¸n D ¸n.w̃/ is a Lagrangian
multiplier and determined such that gn.w/ D 0 is obtained. If no constraint
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w i

w j vj

vi

gn

gn

= 0

= 0

Figure 6: The effect of a coordinate transformation on a normalization rule. The
constraint function is gn D 1 ¡ .wi C wj/ ¸ 0, and the coordinate transformation
is wi D 1

4 v2
i ; wj D 1

4 v2
j . In the new coordinate system V w (right), the constraint

becomes gn D 1 ¡ 1
4 .v2

i C v2
j / ¸ 0 and leads there to an orthogonal multiplicative

normalization rule. Transforming back into W (left) then yields a nonorthogonal
multiplicative normalization rule.

is violated, the weights are simply taken to be wi D Qwi. The constraints that
must be taken into account, either because they are violated or because they
become violated if a violated one is enforced, are called operative. All others
are called inoperative and do not need to be considered for that integration
step. If there is more than one operative constraint, the normalization rule
becomes

if gn.w̃/ < 0 : wi D Qwi C
X

n2NO

¸n
@gn

@ Qwi
for all i; (5.2)

where NO denotes the set of operative constraints. The Lagrangian multi-
pliers ¸n are determined such that gn0 .w/ D 0 for all n0 2 NO (cf. Figure 4).
Computational models of neural map formation usually take another strat-
egy and simply iterate the normalization rules (see equation 5.1) for the
operative constraints individually, which is in general not accurate but may
be suf�cient for most practical purposes. It should also be mentioned that
in the standard method of Lagrangian multipliers as usually applied in
physics or optimization theory, the two steps, weight growth and normal-
ization, are combined in one dynamical equation such that w remains on the
constraint surface. The steps were split here to obtain explicit normalization
rules independent of growth rules.
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Consider now the effect of coordinate transformations on the normaliza-
tion rules derived by the method of Lagrangian multipliers. The constraint
in equation 2.17 can be written as gn.w/ D µn ¡

P
i2In wi ¸ 0 and leads to a

subtractive normalization rule as in the example above (see equation 2.5).
Under the coordinate transformation C w (wi D 1

4 v2
i ), the constraint becomes

gn.v/ D µn ¡
P

i2In

1
4v2

i ¸ 0, and in the coordinate system V w, the normal-
ization rule is:

if gn.ṽ/ < 0 : vi D Qvi ¡ 2

0

@
p

µnqP
j2In

1
4 Qv2

j

¡ 1

1

A
³

¡
1
2

Qvi

´
(5.3)

D
p

µn QviqP
j2In

1
4 Qv2

j

for all i 2 In: (5.4)

Taking the square on both sides and applying the backtransformation from
V w to W leads to

if gn.w̃/ < 0 : wi D
µn QwiP
j2In

Qwj
for all i 2 In: (5.5)

This is a multiplicative normalization rule in contrast to the subtractive
one obtained in the coordinate system W (see also Figure 6). It is listed
as normalization rule Nw

¸ in Table 1 (or Nw
D for constraint g.w/ D 0). This

multiplicative rule is commonly found in the literature (cf. Table 2), but it is
not orthogonal in W , though it is in V w.

For a moregeneral coordinate transformation wi D wi.vi/and a constraint
function g.w/, an orthogonal normalization rule can be derived in V with
the method of Lagrangian multipliers and transformed back into W , which
results in general in a nonorthogonal normalization rule:

if constraint is violated: wi D Qwi C ¸

³
dwi

d Qvi

´2
@g
@ Qwi

C O.¸2/: (5.6)

The ¸ actually would have to be calculated in V , but since ¸ / 1t, second-
and higher-order terms can be neglected for small 1t and ¸ calculated such
that g.w/ D 0. Notice the similar effect of the coordinate transformation on
the growth rules (see equation 4.8), as well as on the normalization rules (see
equation 5.6). In both cases, a factor .dwi=dvi/

2 is added to the modi�cation
rate. As for gradient �ows derived from objective functions, for a more
general coordinate transformation wi D wi.v/, equation 5.6 would have to
be modi�ed accordingly.

We indicate these normalization rules by a subscript D (for an equality)
and ¸ (for an inequality), because the constraints are enforced immediately
and exactly.
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5.2.2 Integrated Normalization Without Objective Function. Growth rule
and explicit normalization rule as derived by the method of Lagrangian
multipliers can be combined in one dynamical equation. As an example,
consider the growth rule Pwi D fi, that is, Qwi.t C 1t/ D wi.t/ C 1tfi.t/, where
fi is an arbitrary function inw and can be interpreted as a �tness of a synapse.
Together with the normalization rule Nw

D (see equation 5.5) and assumingP
j2I wj.t/ D µ , it follows that (von der Malsburg & Willshaw, 1981):

wi.t C 1t/ D
µ

£
wi.t/ C 1tfi.t/

¤
P

j2I

£
wj.t/ C 1tfj.t/

¤ (5.7)

D wi.t/ C 1tfi.t/ ¡ 1t
wi.t/

µ

X

j2I

fj.t/ C O.1t2/ (5.8)

H) Pwi.t/ D fi.t/ ¡ wi.t/
µ

X

j2I

fj.t/; (5.9)

and with W.t/ D
P

i2I wi.t/

PW.t/ D
³

1 ¡ W.t/
µ

´ X

j2I

fj.t/; (5.10)

which shows that W D µ is indeed a stable �xed point under the dynamics
of equation 5.9. However, this is not always the case. The same growth rule
combined with the subtractive normalization rule N1

D (see equation 2.5)
would yield a dynamics that provides only a neutrally stable �xed point for
W D µ . An additional term .µ ¡

P
j2I wj.t// would have to be added to make

the �xed point stable. This is the reason that this type of normalization rule
is listed in Table 1 only for C w. We indicate these kinds of normalization
rules by the subscript ’ because the dynamics smoothly approaches the
constraint surface and will stay there exactly.

Notice that this method differs from the standard method of Lagrangian
multipliers, which also yields a dynamics such that w remains on the con-
straint surface. The latter applies only to the dynamics at g.w/ D 0 and
always produces neutrally stable �xed points because

P
i Pwi.t/

@g
@wi

D 0 is
required by de�nition. If applied to a weight vector outside the constraint
surface, the standard method of Lagrangian multipliers yields g.w/ D const
6D 0.

An advantage of this method is that it provides one dynamics for the
growth rule as well as the normalization rule and that the constraint is
enforced exactly. However, dif�culties arise when interfering constraints are
combined; that is, different constraints affect the same weights. This type of
formulation is required for certain types ofanalyses (e.g., Häussler & von der
Malsburg, 1983). A disadvantage is that in general there no longer exists an
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objective function for the dynamics, though the growth term itself without
the normalization term still has an objective function that is a Lyapunov
function for the combined dynamics.

5.2.3 Penalty Terms. Another method of enforcing the constraints is to
add penalty terms to the objective function (e.g., Bienenstock & von der
Malsburg). For instance, if the constraint is formulated as an equality g.w/ D
0, then add ¡1

2 g2.w/; if the constraint is formulated as an inequality g.w/ · 0
or g.w/ ¸ 0, then add ln |g.w/|. Other penalty functions, such as g4 and 1=g,
are possible as well, but those used here induce the required terms as used
in the literature.

The effect of coordinate transformations is the same as in the case of
objective functions. Consider, for example, the simple constraint gi.w/ D
wi ¸ 0 (I¸ in Table 1), which keeps weights wi nonnegative. The respective
penalty term is ln |wi | (I>) and the induced dynamics under the four different
transformations considered in Table 1 are 1

wi
, ®i

wi
, 1, and ®i.

An advantage of this approach is that a coherent objective function, as
well as a weight dynamics, is available, including growth rules and normal-
ization rules. A disadvantage may be that the constraints are only approxi-
mate and not enforced strictly, so that g.w/ ¼ 0 and g.w/ < 0 or g.w/ > 0.
We therefore indicate these kinds of normalization rules by subscripts ¼ and
>. However, the approximation can be made arbitrarily precise by weight-
ing the penalty terms accordingly.

5.2.4 Constraints Introduced by Coordinate Transformations. An entirely
different way by which constraints can be enforced is by means of a coordi-
nate transformation. Consider, for example, the coordinate transformation
C w (wi D 1

4 v2
i ). Negative weights are not reachable under this coordinate

transformation because the factor .dwi=dvi/
2 D wi added to the growth rules

(see equation 4.8) as well as to the normalization rules (see equation 5.6) al-
lows the weight dynamics of weight wi to slow down as it approaches zero,
so that positive weights always stay positive (This can be generalized to pos-
itive and negative weights by the coordinate transformation wi D 1

4 vi |vi |.)
Thus the coordinate transformation C w (and also C ®w) implicitly introduces
limitation constraint I>. This is interesting because it shows that a coordi-
nate transformation can substitute for a constraint, which is well known in
optimization theory.

The choice of whether to enforce the constraints by explicit normaliza-
tion, an integrated dynamics without an objective function, penalty terms,
or even implicitly a coordinate transformation depends on the system as
well as the methods applied to analyze it. Table 1 shows several constraint
functions and their corresponding normalization rules as derived in differ-
ent coordinate systems and by the three different methods discussed above.
Not shown is normalization implicit in a coordinate transformation. It is
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interesting that there are only two types of constraints. All variations arise
from using different coordinate systems and different methods by which
the normalization rules are implemented. The �rst type is a limitation con-
straint I, which limits the range of individual weights. The second type is
a normalization constraint N, which affects a group of weights, usually the
sum, very rarely the sum of squares as indicated by Z. In the next section
we show how to use Table 1 for analyzing models of neural map formation
and give some examples from the literature.

6 Examples and Applications

6.1 How to Use Table 1. The aim of Table 1 is to provide an overview
of the different objective functions and derived growth terms as well as the
constraint functions and derived normalization rules and terms discussed
in this article. The terms and rules are ordered in columns belonging to a
particular coordinate transformation C . Only entries in the same column
may be combined to obtain a consistent, constrained optimization formu-
lation for a system. However, some terms can be derived under different
coordinate transformations. For instance, the normalization rule ID is the
same for all coordinate transformations, and term L®w with ¯i D 1=®i is the
same as term Lw with ¯i D 1.

To analyze a model of neural map formation, �rst identify possible can-
didates in Table 1 representing the different terms of the desired dynam-
ics. Notice that the average activity of output neurons is represented by
ha¿ i D

P
j Aijwj and that the correlation between input and output neurons

is represented by ha¿ ; a½i D
P

j Dijwj. Usually both terms will be only an
approximation of the actual mean activities and correlations of the system
under consideration (cf. section 2.1). Notice also that normalization rules
Nw

D , N®w
D , Z1

D , and Z®
D are actually multiplicative normalization rules and

not subtractive ones, as might be suggested by the special form in which
they are written in Table 1.

Next identify the column in which all terms of the weight dynamics
can be represented. This gives the coordinate transformation under which
the model can be analyzed through the objective functions and constraint
or penalty functions listed on the left side of the table. Equivalent mod-
els (cf. section 6.4) can be derived by moving from one column to another
and by using normalization rules derived by a different method. Thus, Ta-
ble 1 provides a convenient tool for checking whether a system can be an-
alyzed within the constrained optimization framework presented here and
for identifying the equivalent models. The function of each term can be co-
herently interpreted with respect to the objective, constraint, and penalty
functions on the left side. The table can be extended with respect to ad-
ditional objective, constraint, and penalty functions, as well as additional
coordinate transformations. Although the table is compact, it suf�ces to
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explain a wide range of representative examples from the literature, as dis-
cussed in the next section.

6.2 Examples from the Literature. Table 2 shows representative models
from the literature. The original equations are listed, as well as the classi-
�cation in terms of growth rules and normalization rules listed in Table 1.
Detailed comments for these models and the model in Amari (1980) follow
below. The latter is not listed in Table 2 because it cannot be interpreted
within our constrained optimization framework. The dynamics of the in-
troductory example of section 2 can be classi�ed as Q1 (see equation 2.3), I1

¸
(see equation 2.4), and N1

¸ (see equations 2.5 and 2.6).
The models are discussed here mainly with respect to whether they can

be consistently described within the constrained optimization framework,
that is, whether growth rules and normalization rules can be derived from
objective functions and constraint functions under one coordinate transfor-
mation (that does not imply anything about the quality of a model). An-
other important issue is whether the linear correlation model introduced
in section 3 is an appropriate description for the activity dynamics of these
models. It is an accurate description for some of them, but others are based
on nonlinear models, and the approximations discussed in section 2.1 and
appendix A have to be made.

Models typically contain three components: the quadratic term Q to
induce neighborhood-preserving maps, a limitation constraint I to keep
synaptic weights positive, and a normalization constraint N (or Z) to induce
competition between weights and to keep weights limited. The limitation
constraint can be waived for systems with positive weights and multiplica-
tive normalization rules (Konen & von der Malsburg, 1993; Obermayer et
al., 1990; von der Malsburg, 1973) (cf. section 5.2.4). A presynaptic nor-
malization rule can be introduced implicitly by the activity dynamics (cf.
section A.2 in the appendix). In that case, it may be necessary to use an ex-
plicit presynaptic normalization constraint in the constrained optimization
formulation. Otherwise the system may have a tendency to collapse on the
input layer (see section 6.3), a tendency it does not have in the original for-
mulation as a dynamical system. Only few systems contain the linear term
L, which can be used for dynamic link matching. In Häussler and von der
Malsburg (1983) the linear term was introduced for analytical convenience
and does not differentiate between different links. The two models of dy-
namic link matching (Bienenstock & von der Malsburg, 1987; Konen & von
der Malsburg, 1993) introduce similarity values implicitly and not through
the linear term. The models are now discussed individually in chronological
order.

von der Malsburg (1973): The activity dynamics of this model is nonlin-
ear and based on hexagon patterns in the output layer. Thus, the applicabil-
ity of the linear correlation model is not certain (cf. section 2.1). The weight
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dynamics is inconsistent in its original formulation. However, Miller and
MacKay (1994) have shown that constraints Nw

D and Z1
D have a very sim-

ilar effect on the dynamics, so that the weight dynamics could be made
consistent by using Z1

D instead of Nw
D . No limitation constraint is necessary

because neither the growth rule nor the multiplicative normalization rule
can lead to negative weights, and the normalization rule limits the growth
of positive weights.

Amari (1980): This is a particularly interesting model not listed in Ta-
ble 2. It is based on a blob dynamics, but no explicit normalization rules
are applied, so that the derivation of correlations and mean activities as
discussed in section 3 cannot be used. Weights are prevented from growing
in�nitely by a simple decay term, which is possible because correlations in-
duced by the blob model are �nite and do not grow with the total strength of
the synapses. Additional inhibitory inputs received by the output neurons
from a constantly active neuron ensure that the average activity is evenly
distributed in the output layer, which also leads to expanding maps. In this
respect, the architecture deviates from Figure 2. Thus, this model cannot be
formulated within our framework.

Whitelaw and Cowan (1981): The activity dynamics is nonlinear and
based on blobs. Thus, the linear correlation model is only an approxima-
tion (cf. section 2.1). The weight dynamics is dif�cult to interpret in the
constrained optimization framework. The normalization rule is not spec-
i�ed precisely, but it is probably multiplicative because a subtractive one
would lead to negative weights and possibly in�nite weight growth. The
quadratic term ¡Q1 is based on mean activities and would lead by itself
to zero weights. The Ä term was introduced only to test the stability of the
system.

Häusslerand von der Malsburg (1983):This model isdirectly formulated
in terms of weight dynamics; thus, the linear correlation model is accurate.
The weight dynamics is consistent; however, as argued in section 5.2.2,
there is usually no objective function for the normalization rule Nw

’, but by
replacing Nw

’ by Nw
D or Nw

¼, the system can be expressed as a constrained
optimization problem without qualitatively changing the model behavior.
The limitation term Iw

> and the linear term Lw are induced by the constant
® and were introduced for analytical reasons. The former is meant to allow
weights to grow from zero strength, and the latter limits this growth. ® needs
to be small for neural map formation, and for a stable one-to-one mapping,
® strictly should be zero. Thus, these two terms could be discarded if all
weights would be initially larger than zero. Notice that the linear term does
not differentiate between different links and thus does not have a function
as suggested for dynamic link matching (cf. sections 4 and 6.5).

Linsker (1986): This model is also directly formulated in terms of weight
dynamics; thus, the linear correlation model is accurate. The weight dy-
namics is consistent. Since the model uses negative and positive weights
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and weights have a lower and an upper bound, no normalization rule is
necessary. The weights converge to their upper or lower limit.

Bienenstock and von der Malsburg (1987): This is a model of dynamic
link matching and was originally formulated in terms of an energy function.
Thus the classi�cation is accurate. The energy function does not include the
linear term. The features are binary, black versus white, and the similarity
values are therefore 0 and 1 and do not enter the dynamics as continuous
similarity values. The T¿½ in the constraint I1

¸ represent the stored patterns
in the associative memory, not similarity values.

Miller et al. (1989): This model is directly formulated in terms of weight
dynamics; thus, the linear correlation model is accurate. One inconsistent
part in the weight dynamics is the multiplicative normalization rule Nw

D,
which is applied when subtractive normalization leads to negative weights.
But it is only an algorithmic shortcut to solve the problem of interfering
constraints (limitation and subtractive normalization). A more systematic
treatment of the normalization rules could replace this inconsistent rule (cf.
section 5.2.1). Another inconsistency is that weights that reach their upper
or lower limit become frozen, or �xed at the limit value. With some ex-
ception, this seems to have little effect on the resulting maps (Miller et al.,
1989, n. 23). Thus, this model has only two minor inconsistencies, which
could be modi�ed to make the system consistent. Limitation constraints en-
ter the weight dynamics in two forms, I®

¼ and I®
¸. The former tends to keep

wL
¿½ D ¡ ²

°
®¿½ while the latter keeps wL

¿½ 2 [0; 8®¿½], which can unnecessarily
introduce con�icts. However, ° D ² D 0, so that only the latter constraint
applies and the I®

¼ term is discarded in later publications. In principle, the
system can be simpli�ed by using coordinate transformation C 1 instead of
C ® , thereby eliminating ®¿½ in the growth rule Q® as well as in the normal-
ization rule N®

D, but not in the normalization rule I®
¸. This is different from

setting ®¿½ to a constant in a certain region. Using coordinate transformation
C 1 would result in the same set of stable solutions, though the trajectories
would differ. Changing ®¿½ generates a different set of solutions. However,
the original formulation using C ® is more intuitive and generates the “cor-
rect” trajectories—those that correspond to the intuitive interpretation of
the model.

Obermayer et al. (1990): This model is based on an algorithmic blob
model and the linear correlation model is only an approximation (cf. the
appendix). The weight dynamics is consistent. It employs the rarely used
normalization constraint Z, which induces a multiplicative normalization
rule under the coordinate transformation C 1. No limitation constraint is nec-
essary because neither the growth rule nor the multiplicative normalization
rule can lead to negative weights, and positive weights are limited by the
normalization rule.

Tanaka (1990):This model uses a nonlinear input-output function for the
neurons, which makes a clear distinction between membrane potential and
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�ring rate. However, this nonlinearity does not seem to play a speci�c func-
tional role and is partially eliminated by linear approximations. Thus, the
linear correlationmodel seems to be justi�ed. The weight dynamics includes
parameters ¯½ 0 ( fSP in the original notation), which make it inconsistent. The
penalty term N®w

¼ , which induces the �rst terms of the weight dynamics, is
¡ 1

2·1

P
¿ 0 .·0 ¡·1

P
½ 0 ¯½ 0 w¿ 0½0 /2, which has to be evaluated under the coordi-

nate transformation C ®w with ®¿½ D 1=¯½ . Later in the article, the parameters
¯½ 0 are set to 1, so that the system becomes consistent. Tanaka gives an objec-
tive function for the dynamics, employing a coordinate transformation for
this purpose. The objective function is not listed here because it is derived
under a different set of assumptions, including the nonlinear input-output
function of the output neurons and a mean �eld approximation.

Goodhill (1993): This model is based on an algorithmic blob model and
the linear correlation model is only an approximation (cf. the appendix).
Like the model in Miller et al. (1989), this model uses an inconsistent nor-
malization rule as a backup, and it freezes weights that reach their upper
or lower limit. In addition, it uses an inconsistent normalization rule for
the input neurons. But since this inconsistent multiplicative normalization
for the input neurons is applied after a consistent subtractive normaliza-
tion for the output neurons, its effect is relatively weak, and substituting
it by a subtractive one would make little difference (G. J. Goodhill, per-
sonal communication). To avoid dead units (neurons in the output layer
that never become active), Goodhill (1993) divides each output activity by
the number of times each output neuron has won the competition for the
blob in the output layer. This guarantees a roughly equal average activity
of the output neurons. With the probabilistic blob model (cf. the appendix),
dead units do not occur as long as output neurons have any input connec-
tions. The speci�c parameter setting of the model even guarantees a roughly
equal average activity of the output neurons under the probabilistic blob
model because the sum over the weights converging on an output neuron
is roughly the same for all neurons in the output layer. Thus, despite some
inconsistencies, this model can probably be well approximated within the
constrained optimization framework.

Konen and von der Malsburg (1993): The activity dynamics is nonlinear
and based on blobs. Thus the linear correlation model is only an approxi-
mation (cf. section 2.1). The weight dynamics is consistent. Although this
is a model of dynamic link matching, it does not contain the linear term
to bias the links. It introduces the similarity values in the constraints and
through the coordinate transformation C ®w (see section 6.4). No limitation
constraint is necessary because neither the growth rule nor the multiplica-
tive normalization rule can lead to negative weights, and positive weights
are limited by the normalization rule.

6.3 Some Functional Aspects of Term Q. So far the focus of the consid-
erations has been only on formal aspects of models of neural map formation.
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In this section some remarks on functional aspects of the quadratic term Q
are made.

Assume the effective lateral connectivities in the output layer, and in
the input layer are sums of positive and/or negative contributions. Each
contribution can be either a constant, C, or a centered gaussian-like func-
tion, G, which depends on only the distance of the neurons, for example,
D½½ 0 D D |½¡½ 0 | if ½ is a spatial coordinate. The contributions can be indi-
cated by subscripts to the objective function Q. First index indicates the
lateral connectivity of the input layer, the second index the one of the out-
put layer. A negative gaussian (constant) would have to be indicated by
¡G (¡C). Q

.¡C/G, for instance, would indicate a negative constant D½½0 and
a positive gaussian D¿¿ 0 . QG.G¡G0/

would indicate a positive gaussian D½½0

and a D¿¿ 0 that is a difference of gaussians. Notice that negative signs can
cancel each other, for example Q

.G¡C/G = ¡Q
.C¡G/G = ¡Q

.G¡C/.¡G/
. We thus

discuss the terms only in their simplest form: ¡QCG instead of Q
.¡C/G. All

feedforward weights are assumed to be positive. Assuming all weights to
be negative would lead to equivalent results because Q does not change if
all weights change their sign. The situation becomes more complex if some
weights were positive and others negative. A term Q is called positive if
it can be written in a form where it has a positive sign and only positive
contributions; for example, ¡Q

.¡C/G = QCG is positive, while Q
.G¡C/G is not.

Since Q is symmetrical with respect to D½½0 and D¿¿ 0 , a term such as Q
.G¡C/G

has the same effect as QG.G¡C/
with the role of input layer and output layer

exchanged. A complicated term can be analyzed most easily by splitting
it into its elementary components. For instance, the term QG.G¡C/

can be
split into QGG¡QGC and analyzed as a combination of these two simpler
terms.

Some elementary terms are now discussed in greater detail. The effect
of the terms is considered under two types of constraints. In constraint A,
the total sum of weights is constrained,

P
½ 0¿ 0 w½ 0¿ 0 D 1. In constraint B,

the sums of weights originating from an input neuron,
P

¿ 0 w½¿ 0 D 1=R, or
terminating on an output neuron,

P
½0 w½ 0¿ D 1=T, are constrained, where R

and T denote the number of input and output neurons, respectively. Without
further constraints, a positive term always leads to in�nite weight growth
and a negative term to weight decay.

Terms §QCC simplify to §QCCD §D½½D¿¿ .
P

½ 0¿ 0 w½ 0¿ 0 /2 and depend on
only the sum of weights. Thus, neither term has any effect under constraints
A or B.

Term +QCG takes its maximum value under constraint A if all links ter-
minate on one output neuron. The map has the tendency to collapse. This
is because the lateral connections in the output layer are higher for smaller
distances and maximal for zero distance between connected neurons. Under
the constraint

P
¿ 0 w½¿ 0 · 1;

P
½0 w½0¿ · 1, for instance, the resulting map

connects the input layer to a region in the output layer that is of the size of the
input layer even if the output layer is much larger. No topography is taken
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into account because D½½0 is constant and does not differentiate between
different input neurons. Thus, this term has no effect under constraint B.

Term ¡QCG has the opposite effect of +QCG. Consider the induced growth
term Pw½¿ D ¡D½½

P
¿ 0 D¿¿ 0

P
½0 w¿ 0½ 0 . This is a convolution of D¿¿ 0 withP

½ 0 w¿ 0½ 0 and induces the largest decay in regions where the weighted sum
over terminating links is maximal. A stable solution would require equal
decay for all weights because constraint A can compensate only for equal
decay. Thus, the convolution of D¿¿ 0 with

P
½ 0 w¿ 0½0 must be a constant. Since

D¿ ¿ 0 is a gaussian, this is possible only if
P

½ 0 w¿ 0½ 0 is a constant, as can be
easily seen in Fourier space. Thus, the map expands over the output layer,
and each output neuron receives the same sum of weights. Constraint A
could be substituted by a constant growth term L, in which case the expan-
sion effect could be obtained without any explicit constraint. As +QCG, this
term has no effect under constraint B.

Term +QGG takes its maximum value under constraint A if all but one
weight are zero. The map collapses on the input and the output layer. Un-
der constraint B, the map becomes topographic because links that originate
from neighboring neurons (high D½½0 value) favorably terminate on neigh-
boring neurons (high D¿¿ 0 value). A more rigorous argument would require
a de�nition of topography, but as argued in section 6.7, the term +QGG can
be directly taken as a generalized measure for topography.

Term ¡QGG has the opposite effect of +QGG. Thus, it leads under con-
straint A to a map that is expanded over input and output layer. In addition,
the map becomes antitopographic. Further analytical or numerical inves-
tigations are required to show whether the expansion is as even as for the
term ¡QCG and how an antitopographic map may look. Constraint B also
leads to an antitopographic map.

6.4 Equivalent Models. The effect of coordinate transformations has
been considered so far only for single growth terms and normalization rules.
Coordinate transformations can be used to generate different models that
are equivalent in terms of their constrained optimization problem. Consider
the system in Konen and von der Malsburg (1993). Its objective function and
constraint function are Q and N¸,

H.w/ D
1
2

X

ij

wiDijwj; gn.w/ D 1 ¡
X

j2In

wj

®j
D 0; (6.1)

which must be evaluated under the coordinate transformation C ®w to induce
the original weight dynamics Q®w and N®w

¸ ,

Pwi D ®iwi

X

j

Dijwj; wi D
Qwi

P
j2In

Qwj

®j

: (6.2)
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If evaluated directly (i.e., under the coordinate transformation C 1), one
would obtain

Pwi D
X

j

Dijwj; wi D Qwi C
1

P
j2In

®¡2
j

0

@1 ¡
X

j2In

Qwj

®j

1

A 1
®i

: (6.3)

As argued in section 5.2.4, an additional limitation constraint I1
> (or I1

¸) has
to be added to this system to account for the limitation constraint implicitly
introduced by the coordinate transformation C ®w for the dynamics above
(see equation 6.2).

It follows from equation 4.8 that the �ow �elds of the weight dynamics in
equations 6.2 and 6.3 differ, but since dwi=dvi 6D 0 for positive weights, the
�xed points are the same. That means that the resulting maps to which the
two systems converge, possibly from different initial states, are the same.
In this sense, these two dynamics are equivalent.

This also holds for other coordinate transformations within the de�ned
region as long as dwi=dvi is �nite (dwi=dvi D 0 may introduce additional
�xed points). Thus, this method of generating equivalent models makes
it possible to abstract the objective function from the dynamics. Different
equivalent dynamics may have different convergence properties, their at-
tractor basins may differ, and some regions in state space may not be reach-
able under a particular coordinate transformation. In any case, within the
reachable state space, the �xed points are the same. Thus, coordinate trans-
formations make it possible to optimize the dynamics without changing its
objective function.

Normalization rules derived by different methods can substitute each
other without changing the qualitative behavior of a system. For instance,
ID can be replaced by I¼, or N¸ can be replaced by N> under any coordinate
transformation. These replacements will also generate equivalent systems
in a practical sense.

6.5 Dynamic Link Matching. In the previous section, the similarity val-
ues ®i entered the weight dynamics in two places. In equation 6.2, the dif-
ferential effect of ®i enters only the growth rule, while in equation 6.3, it
enters only the normalization rule. Growth and normalization rules can, to
some extent, be interchangeably used to incorporate feature information in
dynamic link matching. However, the objective function (see equation 6.1)
shows that the similarity values are introduced through the constraints and
that they are transferred to the growth rule only by the coordinate trans-
formation C ®w. Similarity values can enter the growth rule more directly
through the linear term L. An alternative objective function for dynamic
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link matching is

H.w/ D
X

i
¯iwi C

1
2

X

ij

wiDijwj; gn.w/ D 1 ¡
X

j2In

wj D 0; (6.4)

with ¯i D ®i. The �rst term now directly favors links with high similarity
values. This may be advantageous because it allows better control over the
in�uence of the topography versus the feature similarity term. Furthermore,
this objective function is more closely related to the similarity function of
elastic graph matching in Lades et al. (1993), which has been developed as
an algorithmic abstraction of dynamic link matching (see section 6.7).

6.6 Soft versus Hard Competitive Normalization. Miller and MacKay
(1994) have analyzed the role of normalization rules for neural map forma-
tion. They consider a linear Hebbian growth rule Q1 and investigate the
dynamics under a subtractive normalization rule N1

D (S1 in their notation)
and two types of multiplicative normalization rules, Nw

D and Z1
D (M1 and

M2 in their notation, respectively). They show that when considering an iso-
lated output neuron with the multiplicative normalization rules, the weight
vector tends to the principal eigenvector of the matrix D, which means that
many weights can maintain some �nite value. Under the subtractive nor-
malization rule, a winner-take-all behavior occurs, and the weight vector
tends to saturate with each single weight having either its minimal or max-
imal value producing a more compact receptive �eld. If no upper bound is
imposed on individual weights, only one weight survives, corresponding
to a point receptive �eld.

von der Malsburg and Willshaw (1981) have performed a similar, though
less comprehensive, analysis using a different approach. Instead of modify-
ing the normalization rule, they considered different growth rules with the
same multiplicative normalization rule Nw

’. They also found two qualita-
tively different behaviors: a highly competitive case in which only one link
survives (or several if single weights are limited in growth by individual
bounds) (case ¹=1 or ¹=2 in their notation) and a less competitive case in
which each weight is eventually proportional to the correlation between
pre- and postsynaptic neuron (case ¹=0).

Hence, one can either change the normalization rule and keep the growth
rule or, vice versa, modify the growth rule and keep the normalization rule
the same. Either choice generates the two different behaviors. As shown
above, by changing both the growth and normalization rules consistently
by a coordinate transformation, it is possible to obtain two different weight
dynamics with qualitatively the same behavior. More precisely, the system
(Qw, Nw) is equivalent to (Q1, N1, I1) and has the same �xed points; the
former one uses a multiplicative normalization rule, and the latter uses a
subtractive one. This also explains why changing the growth rule or chang-
ing the normalization rule can be equivalent.
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It may therefore be misleading to refer to the different cases by the speci�c
normalization rules (subtractive versus multiplicative), because that is valid
only for the linear Hebbian growth rule Q1. We suggest using a more gen-
erally applicable nomenclature that refers to the different behaviors rather
than the speci�c mathematical formulation. Following the terminology of
Nowlan (1990) in a similar context, the term hard competitive normalization
could be used to denote the case where only one link survives (or a set of
saturated links, which are limited by upper bounds); the term soft compet-
itive normalization could be used to denote the case where each link has
some strength proportional to its �tness.

6.7 RelatedObjective Functions. Objective functions also providemeans
for comparing weight dynamics with other algorithms or dynamics of a dif-
ferent origin for which an objective function exists.

First, maximizing the objective functions L and Q under linear con-
straints I and N is the quadratic programming problem, and �nding an
optimal one-to-one mapping between two layers of same size for objective
function Q is the quadratic assignment problem.These problems are known
to be NP-complete. However, there is a large literature on algorithms that
ef�ciently solve special cases or �nd good approximate solutions in poly-
nomial time (e.g., Horst, Pandalos, & Thoai, 1995).

Many related objective functions are de�ned only for maps for which
each input neuron terminates on exactly one output neuron with weight 1,
which makes the index ¿ D ¿ .½/ a function of index ½. An objective function
of this kind may have the form

H D
X

½½ 0

G¿½¿ 0½ 0 ; (6.5)

where G encodes how well a pair of links from ½ to ¿ .½/ and from ½ 0 to
¿ 0.½ 0/ preserves topography. A pair of parallel links, for instance, would
yield high G values, while others would yield lower values. Now de�ne a
particular family of weights w that realize one-to-one connectivities:

Nw¿½ D
»

1 if ¿ D ¿ .½/

0 otherwise.
(6.6)

Nw is a subset of w with Nw¿½ 2 f0; 1g as opposed to w¿½ 2 [0; 1]. It indicates that
an objective function was originallyde�ned fora one-to-one map rather than
the more general case of an all-to-all connectivity. Then objective functions
of one-to-one maps can be written as

H. Nw/ D
X

¿½¿ 0½ 0

Nw¿½G¿½¿ 0½0 Nw¿ 0½ 0 D
X

ij

NwiGij Nwj; (6.7)
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with i D f½; ¿ g; j D f½ 0; ¿ 0g as de�ned above. Simply replacing Nw by w
then yields a generalization of the original objective function to all-to-all
connectivities.

Goodhill, Finch, and Sejnowski (1996) have compared 10 different ob-
jective functions for topographic maps and have proposed another, the C
measure. They show that for the case of an equal number of neurons in
the input and the output layer, most other objective functions can be ei-
ther reduced to the C measure, or they represent a closely related objective
function. This suggests that the C measure is a good unifying measure for
topography. The C measure is equivalent to our objective function Q with
Nw instead of w. Adapted to the notation of this article the C measure has
the form

C. Nw/ D
X

ij

NwiGij Nwj; (6.8)

with a separable Gij, that is, Gij D G½¿½ 0¿ 0 D G¿¿ 0 G½½ 0 . Thus, the objective
function Q is the typical term for topographic maps in other contexts as
well.

Elastic graph matching is an algorithmic counterpart to dynamic link
matching and has been used for applications such as object and face recog-
nition (Lades et al., 1993). It is based on a similarity function that in its
simplest version is

H. Nw/ D
X

i
¯i Nwi C

1
2

X

ij

NwiGij Nwj; (6.9)

where Gij D ¡[.p½ ¡ p½0 / ¡ .p¿ ¡ p¿ 0 /]2, and p½ and p¿ are two-dimensional
position vectors in the image plane. This similarity function corresponds
formally to the objective function in equation 6.4. The main difference be-
tween these two functions is hidden in G and D. The latter ought to be
separable into two factors D½¿½ 0¿ 0 D D½½ 0 D¿¿ 0 while the former is clearly not.
G actually favors a metric map, which tends to preserve not only neighbor-
hood relations but also distances, whereas with D, the maps always tend to
collapse.

6.8 Self-Organizing Map Algorithm. Models of the self-organizing
map (SOM) algorithm can be high-dimensional or low-dimensional, and
two different learning rules, which we have called weight dynamics, are
commonly used. The validity of the probabilistic blob model for the high-
dimensional models is discussed in the appendix. A classi�cation of the
high-dimensional model by Obermayer et al. (1990) is given in Table 2. The
low-dimensional models do not fall into the class of one-to-one mappings
considered in the previous section, because the input layer is represented
as a continuous space and not as a discrete set of neurons.
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One learning rule for the high-dimensional SOM algorithm is given by

Qw¿½.t/ D w¿½.t ¡ 1/ C ²B¿¿0B½½0 (6.10)

w¿½.t/ D
Qw¿½.t/qP
½0 Qw2

¿½0 .t/
; (6.11)

as used, for example, in Obermayer et al. (1990). B¿¿0 denotes the neigh-
borhood function (commonly indicated by h) and B½½0 denotes the stimulus
pattern (sometimes indicated by x) with index ½0. B½½0 does not need to have
a blob shape, so that ½0 may be an arbitrary index. Output neuron ¿0 is the
winner neuron in response to stimulus pattern ½0. This learning rule is a
consistent combination of growth rule Q1 and normalization rule Z1

D and
an objective function exists, which is a good approximation to the extent
that the probabilistic blob model is valid.

The second type of learning rule is given by

w¿½.t C 1/ D w¿½.t/ C ²B¿¿0.B½½0 ¡ w¿½.t//; (6.12)

as used, for example, in Bauer, Brockmann, and Geisel (1997). For this learn-
ing rule, the weights and the input stimuli are assumed to be sum nor-
malized:

P
½ w¿½ D 1 and

P
½ B½½0 D 1. For small ² this learning rule is

equivalent to

Qw¿½.t/ D w¿½.t ¡ 1/ C ²B¿¿0B½½0 (6.13)

w¿½.t/ D
Qw¿½.t/P

½ 0 Qw¿½ 0 .t/
; (6.14)

which shows that it is a combination of growth rule Q1 and normalization
rule Nw

D . Thus, this system is inconsistent, and to formulate it within our
constrained optimization framework Nw

D would have to be approximated
by Z1

D , which leads back to the learning rule in equations 6.10 and 6.11.
There are two ways of going from these high-dimensional models to the

low-dimensional models. The �rst is simply to use fewer input neurons (e.g.,
two). A low-dimensional input vector is then represented by the activities
of these few neurons. However, since the low-dimensional input vectors are
usually not normalized to homogeneous mean activity of the input neurons
and since the receptive and projective�elds of the neurons do not codevelop
in a homogeneous way, the probabilistic blob model is usually not valid.

A second way of going from a high-dimensional model to a low-dimen-
sional model isby considering the low-dimensional inputvectorsand weight
vectorsas abstract representatives of the high-dimensional ones (Ritter,Mar-
tinetz, & Schulten, 1991; Behrmann, 1993). Consider, for example, the weight
dynamics in equation 6.12 and a two-dimensional input layer. Let p½ be a
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position vector of input neuron ½. The center of the receptive �eld of neuron
¿ can be de�ned as

m¿ .w/ D
X

½

p½w¿½ ; (6.15)

and the center of the input blob can be de�ned similarly,

x.B½0 / D
X

½

p½B½½0 : (6.16)

Notice that the input blobs as well as the weights are normalized, that is,P
½ B½½0 D 1 and

P
½ w¿½ D 1. Using these de�nitions and given a pair of

blobs at locations ½0 and ¿0, the high-dimensional learning rule (see equa-
tion 6.12) yields the low-dimensional learning rule

m¿ .w.t C 1// D
X

½

p½

¡
w¿½.t/ C ²B¿¿0 .B½½0 ¡ w¿½.t//

¢
(6.17)

D m¿ .w.t// C ²B¿¿0

¡
x.B½0/ ¡ m¿ .w.t//

¢
(6.18)

() m¿ .t C 1/ D m¿ .t/ C ²B¿ ¿0

¡
x½0 ¡ m¿ .t/

¢
: (6.19)

One can �rst calculate the centers of the receptive �elds of the high-dimen-
sional model and then apply the low-dimensional learning rule, or one can
�rst apply the high-dimensional learning rule and then calculate the centers
of the receptive�elds; the result is the same. Notice that the low-dimensional
learning rule is even formally equivalent to the high-dimensional one and
that it is the rule commonly used in low-dimensional models (Kohonen,
1990). Even though the high- and the low-dimensional learning rules are
equivalent for a given pair of blobs, the overall behavior of the models is
not. This is because the positioning of the output blobs is different in the two
models (Behrmann, 1993). It is clear that many different high-dimensional
weight con�gurations having different output blob positioning can lead
to the same low-dimensional weight con�guration. However, for a high-
dimensional model that self-organizes a topographic map with point re-
ceptive �elds, the positioning may be similar for the high- and the low-
dimensional models, so that the stable maps may be similar as well.

These considerations show that only the high-dimensional model in
equations 6.10 and 6.11 can be consistently described within our constrained
optimization framework. The high-dimensional model of equation 6.12 is
inconsistent. The probabilistic blob model in general is not applicable to
low-dimensional models, because some assumptions required for its deriva-
tion are not valid. The simple relation between the high- and the low-
dimensional model sketched above holds only for the learning step but
not for the blob positioning, though the positioning and thus the resulting
maps may be very similar for topographic maps with point receptive �elds.
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7 Conclusions and Future Perspectives

The results presented here can be summarized:

� A probabilistic nonlinear blob model can behave like a linear corre-
lation model under fairly general conditions (see section 2.1 and the
appendix). This clari�es the relationship between deterministic non-
linear blob models and linear correlation models and provides an ap-
proximation of the former by the latter.

� Coordinate transformations can transform dynamics with curl into
curl-free dynamics, allowing the otherwise impossible formulation of
an objective function (see section 4). A similar effect exists for normal-
ization rules. Coordinate transformations can transform nonorthogo-
nal normalization rules into orthogonal ones, allowing the normaliza-
tion rule to be formulated as a constraint (see section 5.1).

� Growth rules and normalization rules must have a special relationship
in order to make a formulation of the system dynamics as a constrained
optimization problem possible: the growth rule must be a gradient
�ow, and the normalization rules must be orthogonal under the same
coordinate transformation (see section 5.1).

� Constraints can be enforced by various types of normalization rules
(see section 5.2), and they can even be implicitly introduced by coor-
dinate transformations (see section 5.2.4) or the activity dynamics (see
section A.2).

� Many all-to-all connected models from the literature can be classi�ed
within our constrained optimization framework based on only four
terms: L, Q, I, and N (Z) (see section 6.2). The linear term L has rarely
been used, but it can have a speci�c function that may be useful in
future models (see section 6.5).

� Models may differ considerably in their weight dynamics and still
solve the same optimization problem. This can be revealed by coor-
dinate transformations and by comparing the different but possibly
equivalent types of normalization rules (see section 6.4). Coordinate
transformations make it in particular possible to optimize the dynam-
ics without changing the stable �xed points.

� The constrained optimization framework provides a convenient for-
malism to analyze functional aspects of the models (see sections 6.3,
6.5, and 6.6).

� The constrained optimization framework for all-to-all connected mod-
els presented here is closely related to approaches for �nding optimal
one-to-one maps (see section 6.7) but is not easily adapted to the self-
organizing map algorithm (see section 6.8).
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� Models of neural map formation formulated as constrained optimiza-
tion problems provide a unifying framework. It abstracts from arbi-
trary differences in the design of models and leaves only those dif-
ferences that are likely to be crucial for the different structures that
emerge by self-organization.

It is important to note that our constrained optimization framework is
unifying in the sense that it provides a canonical formulation independent
of most arbitrary design decisions, for example, due to different coordi-
nate transformations or different types of normalization rules. This does
not mean that most models are actually equivalent. But with the canonical
formulation of the models as constrained optimization problems, it should
be possible to focus on the crucial differences and to understand better what
the essentials of neural map formation are.

Based on the constrained optimization framework presented here, a next
step would be to consider speci�c architectures with particular effective lat-
eral connectivities and to investigate the structures that emerge. The role of
parameters and effective lateral connectivities might be investigated ana-
lytically for a variety of models by means of objective functions, similar to
the approach sketched in section 6.3 or the one taken in MacKay and Miller
(1990).

We have considered here only three levels of abstraction: detailed neural
dynamics, abstract weight dynamics, and constrained optimization. There
are even higher levels of abstraction, and the relationship between our con-
strained optimization framework and these more abstract models should be
explored. For example, in section 6.7 our objective functions were compared
with other objective functions de�ned only for one-to-one connectivities.
Another possible link is with Bienenstock and von der Malsburg (1987) and
Tanaka (1990), who have proposed spin models for neural map formation.
An interesting approach is that taken by Linsker (1986), who analyzed the
receptive �elds of the output neurons, which were oriented edge �lters of
arbitrary orientation. He derived an energy function to evaluate how the
different orientations would be arranged in the output layer due to lateral
interactions. The only variables of this energy function were the orientations
of the receptive �elds, an abstraction from the connectivity. Similar models
were proposed earlier in Swindale (1980), though not derived from a recep-
tive �eld model, and more recently in Tanaka (1991). These approaches and
their relationships to our constrained optimization framework need to be
investigated more systematically.

A neural map formation model of Amari (1980) could not be formu-
lated within the constrained optimization framework presented here (cf.
section 6.2). The weight growth in this model is limited by weight de-
cay rather than explicit normalization rules, which is possible because the
blob dynamics provides only limited correlation values even if the weights
would grow large. This model is particularly elegant with respect to the
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way it indirectly introduces constraints and should be investigated further.
Our discussion in section 6.3 indicates that the system L+Q might also show
map expansion and weight limitation without any explicit constraints, but
further analysis is needed to con�rm this.

The objective functions listed in Table 1 have a tendency to produce
either collapsing or expanding maps. It is unlikely that the terms can be
counterbalanced such that they have the tendency to preserve distances
directly, independent of normalization rules and the size of the layers, as
does the algorithmic objective function in equation 6.9. A solution to this
problem might be found by examining propagating activity patterns in the
input as well as the output layer, such as traveling waves (Triesch, 1995)
or running blobs (Wiskott & von der Malsburg, 1996). Waves and blobs
of activity have been observed in the developing retina (Meister, Wong,
Baylor, & Shatz, 1991). If the waves or blobs have the same intrinsic velocity
in the two layers, they would tend to generate metric maps, regardless of the
scaling factor induced by the normalization rules. It would be interesting to
investigate this idea further and derive correlations for this class of models.

Another limitation of the framework discussed here is that it is con�ned
to second-order correlations. As von der Malsburg (1995) has pointed out,
this is appropriate only for a subset of phenomena of neural map forma-
tion, such as retinotopy and ocular dominance. Although orientation tun-
ing can arise by spontaneous symmetry breaking (e.g., Linsker, 1986), a full
understanding of the self-organization of orientation selectivity and other
phenomena may require taking higher-order correlations into account. It
would be interesting as a next step to consider third-order terms in the ob-
jective function and the conditions under which they can be derived from
detailed neural dynamics. There may also be an interesting relationship to
recent advances in algorithms for independent component analysis (Bell &
Sejnowski, 1995), which can be derived from a maximum entropy method
and is dominated by higher-order correlations.

Finally, it may be interesting to investigate the extent to which the tech-
niques used in the analysis presented here can be applied to other types of
neural dynamics, such as learning rules. The existence of objective functions
for dynamics with curl may make it possible to formulate more learning
rules within the constrained optimization framework, which could lead to
new insights. Optimizing the dynamics of a learning rule without changing
the set of stable �xed points may be an interesting application for coordinate
transformations.

Appendix: Probabilistic Blob Model

A.1 Noise Model. Consider the activity modelofObermayer et al. (1990)
as an abstraction of the neural activity dynamics in section 2.1 (see equa-
tions 2.1 and 2.2). Obermayer et al. use a high-dimensional version of the
self-organizing map algorithm (Kohonen, 1982). A blob B½ 0½0 is located at
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a random position ½0 in the input layer, and the input i¿ 0 .½0/ received by
the output neurons is calculated as in equation 2.7. A blob NB¿ 0¿0 in the out-
put layer is located at the position ¿0 of highest input, that is, i¿0 .½0/ D
max¿ 0 i¿ 0 .½0/. Only the latter step differs in its outcome from the dynamics
in section 2, the maximal input instead of the maximal overlap determining
the location of the output blob.

The transition to the probabilistic blob location can be done by assuming
that the blob NB¿ 0¿0 in the output layer is located at ¿0 with probability

p.¿0 |½0/ D i¿0 .½0/ D
X

½ 0

w¿0½0 B½ 0½0 : (A.1)

For the following considerations, the same normalization assumptions as
in section 2.1 are made, which leads to

P
¿ 0 i¿ 0 .½0/ D 1 and

P
¿0

p.¿0 |½0/ D
1 and justi�es the interpretation of p.¿0 |½0/ as a probability. The effect of
different normalization rules, like those used by Obermayer et al. (1990), is
discussed in the next section. The probabilistic blob location can be achieved
by multiplicative noise ´¿ with the cumulative density function f .´/ D
exp .¡1=´/, which leads to a modi�ed input l¿ D ´¿ i¿ with a cumulative
density function

f¿ .l¿ / D exp
³

¡ i¿ .½0/

l¿

´
; (A.2)

and a probability density function

p¿ .l¿ / D
@ f¿
@l¿

D
i¿ .½0/

l2¿
exp

³
¡ i¿ .½0/

l¿

´
: (A.3)

Notice that the noise is different for each output neuron but always from
the same distribution. The probability of neuron ¿0 having larger input l¿0

than all other neurons ¿ 0, that is, the probability of the output blob being
located at ¿0, is

p.¿0 |½0/ D p.l¿0 > l¿ 0 8¿ 0 6D ¿0/ (A.4)

D
Z 1

0
p¿0 .l¿0 /

Y

¿ 0 6D¿0

f¿ 0 .l¿0 / dl¿0 (A.5)

D

1Z

0

i¿0.½0/

l2¿0

exp

Á
¡

1
l¿0

X

¿ 0

i¿ 0 .½0/

!
dl¿0 (A.6)

D
i¿0 .½0/P

¿ 0
i¿ 0 .½0/

(A.7)

D i¿0 .½0/

Á
since

X

¿ 0

i¿ 0 .½0/ D 1

!
; (A.8)
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which is the desired result. Thus, the model by Obermayer et al. (1990)
can be modi�ed by multiplicative noise to yield the probabilistic blob loca-
tion behavior. A problem is that the modi�ed input l¿ has an in�nite mean
value, but this can be corrected by consistently transforming the cumulative
density functions by the substitution l¿ D k2

¿ , yielding

f¿ .k¿ / D exp
³

¡ i¿ .½0/

k2
¿

´
(A.9)

for the new modi�ed inputs k¿ , the means of which are �nite. Due to the
nonlinear transformation l¿ D k2

¿ , the modi�ed inputs k¿ are no longer a
product of the original input i¿ with noise, whose distribution is the same
for all neurons, but each input i¿ generates a modi�ed input k¿ with a nonlin-
early distorted version of the cumulative density function in equation A.2.

The probability for a particular combination of blob locations is

p.¿0; ½0/ D p.¿0 |½0/p.½0/ D
X

½ 0

w¿0½0 B½ 0½0

1
R

; (A.10)

and the correlation between two neurons de�ned as the average product of
their activities is

ha¿ a½ i D
X

¿0½0

p.¿0; ½0/ NB¿¿0 B½½0 (A.11)

D
X

¿0½0

X

½0

w¿0½ 0 B½0½0

1
R

NB¿¿0 B½½0 (A.12)

D
1
R

X

¿ 0½ 0

NB¿¿ 0 w¿ 0½0

Á
X

½0

B½ 0½0 B½½0

!
(A.13)

D
1
R

X

¿ 0½ 0

NB¿¿ 0 w¿ 0½0 NB½ 0½ ; with NB½ 0½ D
X

½0

B½ 0½0 B½½0 ; (A.14)

where the brackets h¢i indicate the ensemble average over a large number of
blob presentations. This is equivalent to equation 2.13 if NB¿ 0¿ D

P
¿0

B¿ 0¿0B¿¿0 .
Thus, the two probabilistic dynamics are equivalent, though the blobs in the
output layer must be different.

A.2 Different Normalization Rules. The derivation of correlations in
the probabilistic blob model given above assumes explicit presynaptic nor-
malization of the form

P
¿ 0 w¿ 0½0 D 1. This assumption is not valid for some

models that use only postsynaptic normalization (e.g., von der Malsburg,
1973). The model by Obermayer et al. (1990) postsynaptically normalizes
the square sum,

P
½ 0 w2

¿ 0½ 0 D 1, instead of the sum, which may make the
applicability of the probabilistic blob model even more questionable.
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To investigate the effect of these different normalization rules on the
probabilistic blob model, assume that the projective (or receptive) �elds of
the input (or output) neurons codevelop in such a way that, at any given
moment, all neurons in a layer have the same weight histogram. Neuron
½, for instance, would have the weight histogram w¿ 0½ taken over ¿ 0 , and
it would be the same as those of the other neurons ½ 0 . Two neurons of
same weight histogram have the same number of nonzero weights, and the
square sums over their weights differ from the sums by the same factor c,
for example,

P
¿ 0 w2

¿ 0½0 D c
P

¿ 0 w¿ 0½0 D 1 for all ½ 0 with c · 1. The weight
histogram, and with it the factor c, may change over time. For instance,
if point receptive �elds develop from an initial all-to-all connectivity, the
histogram has a single peak at 1=T in the beginning and has a peak at 0 and
one entry at 1 at the end of the self-organization process, and c.t/ grows
from 1=T up to 1, where T is the number of output neurons.

Consider �rst the effect of the square sum normalization under the as-
sumptionofhomogeneous codevelopmentofreceptiveand projective�elds.
The square sum normalization differs from the sum normalization by a fac-
tor c.t/ common to all neurons in the layer. Since the nonlinear blob model
is insensitive to such a factor, the derived correlations and the learning rule
are off by this factor c. Since this factor is common to all weights, the trajec-
tories of the weight dynamics are identical, though the time scales differ by
c between the two types of normalization.

Consider now the effect of pure postsynaptic normalization under the
assumption of homogeneous codevelopment of receptive and projective
�elds. Assume a pair of blobs is located at ½0 and ¿0. With a linear growth
rule, the sum over weights originating from an input neuron would change
according to

PW½ D
X

¿

Pw¿½ D
X

¿

B¿¿0 B½½0 D B½½0 ; (A.15)

since the blob B¿¿0 is normalized to one. Averaging over all input blob po-
sitions yields an average change of

h PW½ i D
1
R

X

½0

B½½0 D
1
R

; (A.16)

since we assume a homogeneous average activity in the input layer, that is,P
½0

B½½0 D 1. A similar expression follows for the postsynaptic sum:

h PW¿ i D
X

½0¿0

p.¿0; ½0/
X

½

B¿¿0 B½½0 (A.17)

D
X

½0¿0

Á
1
R

X

¿ 0½ 0

B¿ 0¿0w¿ 0½ 0 B½ 0½0

!
X

½

B¿¿0B½½0 (A.18)
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D
1
R

X

¿0

B¿¿0

X

¿ 0

B¿ 0¿0

X

½0

w¿ 0½ 0

X

½0

B½0½0

X

½

B½½0 (A.19)

D
1
T

; (A.20)

where
P

½0 w¿ 0½0 D R=T is assumed due to the postsynaptic normalization
rule and the blobs are normalized with respect to both of their indices. R
and T are the number of neurons in the input and output layer, respec-
tively. This equation shows that each output neuron has to normalize its
sum of weights by the same amount, and it has to do that by a subtractive
normalization rule if the system is consistent. The amount by which each
single weight w¿½ is changed depends on the number of nonzero weights
an output neuron receives. Since we assume the weight histograms are the
same, each output neuron has the same number of nonzero weights, and
each weight gets corrected by the same amount. Since we also assume same
weight histograms for the projective �elds, the sum over all weights origi-
nating from an input neuron is corrected by the same amount for each input
neuron, namely, by 1=R per time unit. Thus, the postsynaptic normalization
rule preserves presynaptic normalization.

It can even be argued that a postsynaptic normalization rule stabilizes
presynaptic normalization. Assume that an input neuron has a larger (or
smaller) sum over its weights than the other input neurons. Then this neu-
ron is likely to have more (fewer) nonzero weights than the other input
neurons. This results in a larger (smaller) negative compensation by the
postsynaptic normalization rule, since each weight is corrected by the same
amount. This then reduces the difference between the input neuron under
consideration and the others. It is important to notice that this effect of sta-
bilizing the presynaptic normalization is not preserved in the constrained
optimization formulation. It may be necessary to use explicit presynaptic
normalization in the constrained optimization formulation to account for
the implicit presynaptic normalization in the blob model.

If the postsynaptic constraint isbased on the square sum, then the normal-
ization rule is multiplicative, and the projective �elds of the input neurons
need not have the same weight histograms. The system would still preserve
the presynaptic normalization. Notice that the derivation given above does
not hold for a nonlinear Hebbian rule, for example, Pw¿½ D w¿½a¿ a½ .

These considerations show that the probabilistic blob model may be a
good approximation even if the constraints are based on the square sum
instead of the sum and if only the postsynaptic neurons are constrained
and not the presynaptic neurons, as was required in the derivation of the
probabilistic blob model above. The homogeneous codevelopment of re-
ceptive and projective �elds is probably a reasonable assumption for high-
dimensional models with a homogeneous architecture. For low-dimensional
models, such as the low-dimensional self-organizing map algorithm (Ko-
honen, 1982), the assumption is less likely to be valid. However, numerical
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simulations or more detailed analytical considerations are needed to verify
the assumption for any given concrete model.

Acknowledgments

We are grateful to Geoffrey J. Goodhill, Thomas Maurer, Jozsef Fiser, and
two anonymous referees for carefully reading the manuscript and offering
useful comments. L. W. has been supported by a Feodor-Lynen fellowship
by the Alexander von Humboldt-Foundation, Bonn, Germany.

References

Amari, S. (1977).Dynamics of pattern formation in lateral-inhibition type neural
�elds. Biol. Cybern., 27, 77–87.

Amari, S. (1980). Topographic organization of nerve �elds. Bulletin of Mathemat-
ical Biology, 42, 339–364.

Bauer, H.-U., Brockmann, D., & Geisel, T. (1997). Analysis of ocular dominance
pattern formation in a high-dimensional self-organizing-map model. Net-
work: Computation in Neural Systems, 8(1), 17–33.

Behrmann, K. (1993).Leistungsuntersuchungendes “DynamischenLink-Matchings”
und Vergleich mit dem Kohonen-Algorithmus (Internal Rep. No. IR-INI 93–05).
Bochum: Institut für Neuroinformatik, Ruhr-Universität Bochum.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.

Bienenstock, E., & von der Malsburg, C. (1987). A neural network for invariant
pattern recognition. Europhysics Letters, 4(1), 121–126.

Dirac, P. A. M. (1996). General theory of relativity. Princeton, NJ: Princeton Uni-
versity Press.

Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hal-
lucination patterns. Biological Cybernetics, 34(3), 137–150.

Erwin, E., Obermayer, K., & Schulten, K. (1995). Models of orientation and oc-
ular dominance columns in the visual cortex: A critical comparison. Neural
Computation, 7, 425–468.

Ginzburg, I., & Sompolinsky, H. (1994).Theory of correlations in stochastic neu-
ral networks. Physical Review E, 50(4), 3171–3191.

Goodhill, G. J. (1993). Topography and ocular dominance: A model exploring
positive correlations. Biol. Cybern., 69, 109–118.

Goodhill, G. J., Finch, S., & Sejnowski, T. J. (1996).Optimizing cortical mappings.
In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural informa-
tion processing systems (Vol. 8, pp. 330–336). Cambridge, MA: MIT Press.
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