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AbstractWe present a neural system for the recognition of objects from realistic images, togetherwith results of tests of face recognition from a large gallery. The system is inherently invariantwith respect to shift, and is robust against many other variations, most notably rotation indepth and deformation. The system is based on Dynamic Link Matching. It consists of animage domain and a model domain, which we tentatively identify with primary visual cortexand infero-temporal cortex. Both domains have the form of neural sheets of hypercolumns,which are composed of simple feature detectors (modeled as Gabor-based wavelets). Eachobject is represented in memory by a separate model sheet, that is, a two-dimensional arrayof features. The match of the image to the models is performed by network self-organization,in which rapid reversible synaptic plasticity of the connections (\dynamic links") between thetwo domains is controlled by signal correlations, which are shaped by �xed inter-columnarconnections and by the dynamic links themselves. The system requires very little genetic orlearned structure, relying essentially on the rules of rapid synaptic plasticity and the a prioriconstraint of preservation of topography to �nd matches. This constraint is encoded withinthe neural sheets with the help of lateral connections, which are excitatory over short rangeand inhibitory over long range.1 IntroductionThe intracortical wiring pattern is a fascinating scienti�c subject, as it seems to hold the key to thefunction of the brain, or the part of it that we are accustomed to take most seriously. That wiringpattern is unnervingly close to being all-to-all. It has been speculated that signals from any cell incortex can reach any other by crossing just three synapses. Although this seems to make sense for asystem in which any two data items may have to contact each other, near-to-complete wiring seemsto leave little room for all the speci�c structure that according to our present view of the brainresides in its connections. The experimental techniques of anatomy and neurophysiology are muchtoo limited to give us more than gross principles of a cortical wiring pattern. These principles are to�also Dept. of Computer Science and Section for Neurobiology, University of Southern California, Los Angeles,CA 90089 1



a very large extent summarized by speaking about receptive �eld structures, columnar organization,regular local interactions of the general type of di�erence-of-Gaussians and topographical connectionpatterns between areae. Beyond that we are in a dark continent, which may, for all we know, bedominated by randomness. More likely, however, it is structured by intricate learned patterns thatare too variable from individual to individual and from place to place to ever become a possiblesubject of experimental enquiry. All we can hope to learn is the principles of organization by whichthey are formed.We are presenting here a model for invariant object recognition, together with tests on humanface recognition from a large gallery. The model may be relevant to the discussion at hand sinceit makes minimal assumptions about genetically generated connection patterns | certainly nonethat go beyond the principles enumerated | and relies largely on rapid reversible synaptic self-organization during the recognition process to create the much more speci�c connections requiredfor a concrete recognition act. The model relies on Dynamic Link Matching (DLM) the qualitativeprinciple of which has been described before (von der Malsburg, 1981; von der Malsburg,1985; Konen and Vorbr�uggen, 1993; Konen et al., 1993). The model described here goesbeyond previously published versions in being more complete in its dynamic formulation, includingmechanisms for autonomous activity blob dynamics, attention dynamics, and dynamic interactionbetween the stored models to implement the actual decision process during recognition.A few words are in order to relate the jargon used in the description of our model to the biologicalbackground (the reader may want to come back to this \dictionary" while reading the next section).The term image refers to a cortical image domain which corresponds to the primary visual cortexV1 and possibly also to other areae up to perhaps V4. The image or image domain has the formof a graph. The nodes of the graph correspond to hypercolumns, that is, to collections of thosefeature speci�c neurons that are activated from one retinal point. In our system we formalize theactivity of the sets of feature cells within hypercolumns as jets. As features we use Gabor-basedwavelets. The links of the image graph correspond to lateral connections between nodes. Animage on the retina selects a subset of the feature cells in the image domain. The selected neuronsare then stochastically activated (these uctuations not being driven by the visual signal). It isimportant that this stochastic activity takes a form that is characterized by temporal short-rangecorrelations. These correlations express the neighborhood relations of visual features in the imageand are produced by the lateral connections within the image domain. In our speci�c system thestochastic signal in the image domain (and also in the model domain) has the form of a localrunning blob of activity that is con�ned to an attention window. Apart from the local correlationsthe details of the activity process are not important, however.The models (see right side of Figure 1) collectively form the model domain. We imagine thisto be identi�ed with some part of inferotemporal cortex. The nodes of the models again have theform of jets and are collections of neurons carrying feature labels. They are laterally connectedmuch like nodes in the image domain. In our system the di�erent models are totally disjoint. Inthe biological case models are likely to have partial overlap, in terms of single nodes or even partialnetworks. The stochastic activity process in the models is similar to that in the image domain,except for the interactions between models, which have the form of local co-operation (correlatingactivity between structurally corresponding points) and global competition between entire models.The image domain and the model domain are bi-directionally connected by dynamic links.These correspond to connections between primary and infero-temporal cortex. These connectionsare assumed to be plastic on a fast time scale (changing radically during a single recognition event),this plasticity being reversible. The strength of a connection between any two nodes in the imageand a model is controlled by the jet similarity between them, which roughly corresponds to the2
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Figure 1: Architecture of the DLM face recognition system. Several models are stored as neurallayers of local features on a 10�10 grid, as indicated by the black dots. A new image is representedby a 16�17 layer of nodes. Initially, the image is connected all-to-all with the models. The taskof DLM is to �nd the correct mapping between the image and the models, providing translationalinvariance and robustness against distortion. Once the correct mapping is found, a simple winner-take-all mechanism can detect the model that is most active and most similar to the image.number of features that are common to the two nodes.2 The System2.1 Architecture and Dynamics | OverviewFigure 1 shows the general architecture of the system. Faces are represented as rectangular graphs bylayers of neurons. Each neuron represents a node and has a jet attached. A jet is a local descriptionof the grey-value distribution based on the Gabor transform (see Lades et al., 1993; Wiskottet al., 1995). Topographical relationships between nodes are encoded by excitatory and inhibitorylateral connections. The model graphs are scaled horizontally and vertically and aligned manually,such that certain nodes of the graphs are placed on the eyes and the mouth (cf. Section 3.1). Modellayers (10�10 neurons) are smaller than the image layer (16�17 neurons). Since the face in theimage may be arbitrarily translated, the connectivity between model and image domain has to beall-to-all initially. The connectivity matrices are initialized using the similarities between the jetsof the connected neurons. DLM serves as a process to restructure the connectivity matrices and to�nd the correct mapping between the models and the image (see Figure 2). The models cooperatewith the image depending on their similarity. A simple winner-take-all mechanism sequentiallyrules out the least active and least similar models, and the best-�tting one eventually survives.The dynamics on each layer is such that it produces a running blob of activity which movescontinuously over the whole layer. An activity blob can easily be generated from noise by local3
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Figure 2: Initial and �nal connectivity for DLM. Image and model are represented by layers of 16�17and 10�10 nodes respectively. Each node is labeled with a local feature indicated by small texturepatterns. Initially, the image layer and the model layer are connected all-to-all with synaptic weightsdepending on the feature similarities of the connected nodes, indicated by arrows of di�erent linewidths. The task of DLM is to select the correct links and establish a regular one-to-one mapping.We see here the initial connectivity at t = 0 and the �nal one at t = 10000. Since the connectivitybetween a model and the image is a four-dimensional matrix, it is di�cult to visualize it in anintuitive way. If the rows of each layer are concatenated to a vector, top row �rst, the connectivitymatrix becomes two-dimensional. The model index increases from left to right, the image index fromtop to bottom. High similarity values are indicated by black squares. A second way to illustratethe connectivity is the net display shown at the right. The image layer serves as a canvas on whichthe model layer is drawn as a net. Each node corresponds to a model neuron, neighboring neuronsare connected by an edge. The location of the nodes indicate the center of gravity of the projective�eld of the model neurons considering synaptic weights as physical mass. In order to favor stronglinks, the masses are taken to the power of three. (see Figure 5 for connectivity development intime)
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excitation and global inhibition. It is caused to move by delayed self-inhibition, which also servesas a memory for the locations where the blob has recently been. Since the models are alignedwith each other, it is reasonable to enforce alignment between their running blobs by excitatoryconnections between neurons representing the same facial location. The blobs on the image and themodel layers cooperate through the connection matrices; they tend to align and induce correlationsbetween corresponding neurons. Then, fast synaptic plasticity and a normalization rule coherentlymodify the synaptic weights, and the correct connectivities between models and image layer candevelop. Since the models get di�erent input from the image, they di�er in their total activity. Themodel with strongest connections from the image is the most active one. The models compete onthe basis of their total activity. After a while the winner-take-all mechanism suppresses the leastcompetitive models, and eventually only the best model survives. Since the image layer may besigni�cantly larger than the model layers, we introduce an attention window in form of a large blob.It interacts with the running blob, restricts its region of motion, and can be shifted by it to theactual face position.The equations of the system are given in Table 1; the respective symbols are listed in Table 2. Inthe following sections, we will explain the system step by step: blob formation, blob mobilization,interaction between two layers, link dynamics, attention dynamics, and recognition dynamics; inorder to make the description clearer, parts of the equations in Table 1 corresponding to thesefunctions will be repeated.2.2 Blob FormationBlob formation on a layer of neurons can easily be achieved by local cooperation and global inhibition(Amari, 1977). Local cooperation generates clusters of activity, and global inhibition lets theclusters compete against each other. The strongest one will �nally suppress all others and grow toan equilibrium size determined by the strengths of cooperation and inhibition. The correspondingequations are (cf. Equations 1, 3, and 4):_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0); (8)gi�i0 = exp �(i� i0)22�2g ! ; (9)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � : (10)The internal state of the neurons is denoted by hi, where i is a two-dimensional Cartesiancoordinate for the location of the neuron. The neurons are arranged on a regular square latticewith spacing 1, i.e., i = (0; 0); (0; 1); (0; 2); :::; (1; 0); (1; 1); :::. The neural activity (which can beinterpreted as a mean �ring rate) is determined by the squashing function �(h) of the neuron'sinternal state h. The neurons are connected excitatorily through the Gaussian interaction kernelg. The strength of global inhibition is controlled by �h. It is obvious that a blob can only arise if�h < g0 = 1 (imagine only one neuron is active), and that the blob is larger for smaller �h. In�nitegrowth of h is prevented by the decay term �h, because it is linear, while the blob formationterms saturate due to the squashing function �(h). The special shape of �(h) is motivated bythree factors. Firstly, � vanishes for negative values to suppress oscillations in the simulations5



Layer dynamics:hpi (t0) = 0_hpi (t) = �hpi +Xi0 maxp0 �gi�i0�(hp0i0 )�� �hXi0 �(hpi0)� �hsspi (1)+�hhmaxqj �W pqij �(hqj)�+ �ha (�(api )� �ac)� ���(r� � rp)spi (t0) = 0_spi (t) = ��(hpi � spi ) (2)gi�i0 = exp �(i� i0)22�2g ! (3)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � (4)Attention dynamics:api (t0) = �NN (J pi )_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! (5)Link dynamics:W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S�_W pqij (t) = �W ��(hpi )�(hqj)� ��maxj0 (W pqij0=Spqij0)� 1��W pqij (6)Recognition dynamics:rp(t0) = 1_rp(t) = �rrp �F p �maxp0 (rp0F p0)� (7)F p(t) = Xi �(hpi )Table 1: Formulas of the DLM face recognition system
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Variables: h internal state of the layer neuronss self-inhibitiona attentionW synaptic weights between neurons of two layersr recognition variableF �tness, i.e., total activity of each layerIndices:(p; p0; q; q0) layer indices, 0 indicates image layer, 1; :::;M indicatemodel layers= (0; 0; 1; :::;M ; 1; :::;M) if formulas describe image layer dynamics= (1; :::;M ; 1; :::;M ; 0; 0) if formulas describe model layers dynamics(i; i0; j; j0) two-dimensional indices for the individual neurons in lay-ers (p; p0; q; q0) respectivelyFunctions:gi�i0 Gaussian interaction kernel�(h) nonlinear squashing function�(�) Heavyside functionN (J ) saliency of feature jet JS�(J ;J 0) similarity between feature jets J and J 0Parameters:�h = 0:2 strength of global inhibition�a = 0:02 strength of global inhibition for attention blob�ac = 1 strength of global inhibition compensating the attentionblob�� = 1 global inhibition for model suppression�hs = 1 strength of self-inhibition�hh = 1:2 strength of interaction between image and model layers�ha = 0:7 e�ect of the attention blob on the running blob�ah = 3 e�ect of the running blob on the attention blob�� decay constant for delayed self-inhibition= �+ = 0:2 if h� s > 0= �� = 0:004 if h� s � 0�a = 0:3 time constant for the attention dynamics�W = 0:05 time constant for the link dynamics�r = 0:02 time constant for the recognition dynamics�N = 0:001 parameter for attention blob initialization�S = 0:1 minimal weight� = 2 slope radius of squashing function�g = 1 Gauss width of excitatory interaction kernelr� = 0:5 threshold for model suppressionTable 2: Variables and parameters of the DLM face recognition system
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by preventing undershooting. Secondly, the high slope for small arguments stabilizes small blobsand makes blob formation from low noise easier, because for small values of h the interaction termsdominate over the decay term. Thirdly, the �nite slope region between low and high argument valuesallows the system to distinguish between the inner and outer parts of the blobs by making neuronsin the center of a blob more active than at its periphery. Additional multiplicative parameters ofthe decay or cooperation terms would only change time and activity scale, respectively, and do notgenerate qualitatively new behavior. In this sense the parameter set is complete and minimal.2.3 Blob MobilizationGenerating a running blob can be achieved by delayed self-inhibition, which drives the blob awayfrom its current location; the blob generates new self-inhibition at the new location. This mechanismproduces a continuously moving blob (see Figure 3). The driving force and the recollection timeas to where the blob has been can be independently controlled by their respective time constants.The corresponding equations are (cf. Equations 1 and 2):_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0)� �hssi; (11)_si(t) = ��(hi � si): (12)The self-inhibition s is realized by a leaky integrator with decay constant ��. The decay constanthas two di�erent values depending on whether h� s is positive or negative. This accounts for thetwo di�erent functions of the self-inhibition. The �rst function is to drive the blob forward. In thiscase h > s and a high decay constant �+ is appropriate. The second function is to indicate wherethe blob has recently been, i.e., to serve as a memory and to repel the blob from regions recentlyvisited. In this case h < s and a low decay constant �� is appropriate. For small layers, �� shouldbe larger than for large ones, because the blob visits each location more frequently. The speed ofthe blob is controlled by �+ and the coupling parameter �hs. They may also change the shape ofthe blob. Small values such as those used in our simulations allow the blob to keep its equilibriumshape and drive it slowly; large values produce a fast-moving blob distorted to a kidney-shape.2.4 Layer Interaction and SynchronizationIn the same way as the running blob is repelled by its self-inhibitory tail, it can also be attracted byexcitatory input from another layer, as conveyed by a connection matrix. Imagine two layers of thesame size mutually connected by the identity matrix, i.e., each neuron in one layer is connected onlywith the one corresponding neuron in the other layer having the same index value. The input thenis a copy of the blob of the other layer. This favors alignment between the blobs, because then theycan cooperate and stabilize each other. This synchronization principle holds also in the presenceof the noisy connection matrices generated by real image data (see Figure 4). The correspondingequation is (cf. Equation 1):_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)� ; (13)_spi (t) = ��(hpi � spi ): (14)8
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Figure 3: A sequence of layer states as simulated with Equations 11 and 12. The activity blob hshown in the middle row has a size of approximately six active nodes and moves continuously overthe whole layer. Its course is shown in the upper diagram. The delayed self-inhibition s, shownin the bottom row, follows the running blob and drives it forward. One can see the self-inhibitorytail that repels the blob from regions just visited. Sometimes the blob runs into a trap (cf. columnthree) and has no way to escape from the self-inhibition. It then disappears and reappears againsomewhere else on the layer. (The temporal increment between two successive frames is 20 timeunits.)
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Figure 4: Synchronization between two running blobs as simulated with Equations 13 and 14. Layerinput as well as the internal layer state h is shown at an early stage, in which the blobs of twolayers are not yet aligned, left, and at a later state, right, when they are aligned. The two layersare of di�erent size, and the region in layer 1 that correctly maps to layer 2 is indicated by a squarede�ned by the dashed line. In the early non-aligned case one can see that the blobs are smaller andnot at the location of maximal input. The locations of maximal input indicate where the actualcorresponding neurons of the blob of the other layer are. In the aligned case the blobs are largerand at the locations of high layer input.The two layers are indicated by the indices p and q. The synaptic weights of the connectionsare W , and the strength of mutual interaction is controlled by the parameter �hh. (The reason whywe use the maximum function instead of the usual sum will be discussed in Section 2.10.)2.5 Link DynamicsOne principle of DLM is that the links between two layers can be cleaned up and structured onthe basis of correlations between pairs of neurons (see Figure 5 and Movie 1). The correlationsresult from the layer synchronization described in the previous section. The link dynamics typicallyconsists of a growing term and a normalization term. The former lets the weights grow according tothe correlation between the connected neurons. The latter prevents the links from growing in�nitelyand induces competition such that only one link per neuron survives which suppresses all others.The corresponding equations are (cf. Equations 6):W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S� ;_W pqij (t) = �W ��(hpi )�(hqj)���maxj0 (W pqij0=Spqij0)� 1��W pqij : (15)Links are initialized by the similarity S� between the jets J of connected nodes (see Wiskott,1995). The parameter �S guarantees a minimal positive synaptic weight, permitting each linkto suppress others, even if the similarity between the connected neurons is small. This can beuseful to obtain a continuous mapping if a link has a neighborhood of strong links inducing highcorrelations between the pre- and postsynaptic neurons of the weak link. The synaptic weightsgrow exponentially, controlled by the correlation between connected neurons de�ned as the product10
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5 000 10 000Figure 5: Connectivity and correlations developing in time. It can be seen how the correlationsdevelop faster and are cleaner than the connectivity. Both are iteratively re�ned on the basis of theother.of their activities �(hpi )�(hqj). The learning rate is additionally controlled by �W . Due to theHeavyside-function �, normalization takes place only if links grow beyond their initial value. Then,the link dynamics is dominated by the normalization term, with a common negative contributionfor all links converging to the same neuron. Notice that the growth term, based on the correlation,is di�erent for di�erent links. Thus the link with the highest average correlation will eventuallysuppress all others converging to the same neuron. Since the similarities S� cannot be larger than1, the synaptic weights W are restricted to the interval [0; :::; 1].Movie 1: Connectivity and correlations developing in time as in Figure 5 (//http:...., 350 kB).2.6 Attention DynamicsThe alignment between the running blobs depends very much on the constraints, i.e., on the sizeand format of the layer on which they are running. This causes a problem, since the image andthe models have di�erent sizes. We have therefore introduced an attention blob which restricts themovement of the running blob on the image layer to a region of about the same size as that of themodel layers. Each of the model layers also has the same attention blob to keep the conditionsfor their running blobs similar to that in the image layer. This is important for the alignment.The attention blob restricts the region for the running blob, but it can be shifted by the latterinto a region where input is especially large and favors activity. The attention blob thereforeautomatically aligns with the actual face position (see Figures 6, 7 and Movie 2). The attentionblob layer is initialized with a primitive segmentation cue, in this case the norm of the respectivejets (see Wiskott, 1995), since the norm indicates the presence of textures of high contrast. Thecorresponding equations are (cf. Equations 1 and 5):11



_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �ac) ; (16)_spi (t) = ��(hpi � spi ); (17)api (t0) = �NN (J pi );_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! : (18)The equations show that the attention blob a is generated by the same dynamics as was discussedin Section 2.2 for the formation of the running blob without delayed self-inhibition, though sincethe attention blob is to be larger than the running blob, �a has to be smaller than �h. The attentionblob restricts the region for the running blob via the term �ha (�(api )� �ac), which is an excitatoryblob �(api ) compensating the constant inhibition �ac. The attention blob on the other hand getsexcitatory input �ah�(hpi ) from the running blob. By this means the running blob can slowly shiftthe attention blob into its favored region. The dynamics of the attention blob has to be slower thanthat of the running blob; this is controlled by a value �a < 1. N is the norm of the jets, and �Ndetermines the initialization strength.2.7 Recognition DynamicsEach model cooperates with the image depending on its similarity. The most similar model coop-erates most successfully and is the most active one. Hence, the total activity of the model layersindicates which is the correct one. We have derived a winner-take-all mechanism from Eigen's(1978) evolution equation and applied it to detect the best model and suppress all others. Thecorresponding equations are (cf. Equations 1 and 7):_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi (19)+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �ac)� ���(r� � rp);_spi (t) = ��(hpi � spi ); (20)rp(t0) = 1;_rp(t) = �rrp �F p �maxp0 (rp0F p0)� ; (21)F p(t) = Xi �(hpi ):The total layer activity is considered as a �tness F p, di�erent for each model p. The modi�edevolution equation can be easily analyzed if the F p are assumed to be constant in time and therecognition variables rp are initialized to 1. For the model layer pb with the highest �tness, theequation simpli�es to _rpb(t) = �rrpb(1� rpb)F pb with a stable �xed point at rpb = 1. For all othermodels the equation then simpli�es to _rp(t) = �rrp(F p�F pb), which results in an exponential decay12
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Figure 6: Schematic of the attention blob's function. The attention blob restricts the region inwhich the running blob can move. The attention blob, on the other hand, receives input from therunning blob. That input will be strong in regions where the blobs in both layers cooperate andweak where they do not (see Figure 4). Due to this interaction the attention blob slowly moves tothe correct region indicated by the square made of dashed lines. The attention blob in the modellayer is required to keep the conditions for the running blobs symmetrical.
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t = 25

t = 150

t = 500

t = 1000

attention blob attention blobrunning blob running blob

image layer model layerFigure 7: Function of the attention blob, using an extreme example of an initial attention blobmanually misplaced for demonstration. At t = 150 the two running blobs ran synchronously for awhile, and the attention blob has a long tail. The blobs then lost alignment again. From t = 500on, the running blobs remained synchronous, and eventually the attention blob aligned with thecorrect face position, indicated by a square made of dashed lines. The attention blob moves slowlycompared to the small running blob, as it is not driven by self-inhibition (cf. Movie 2). Without anattention blob the two running blobs may synchronize sooner, but the alignment will never becomestable (see Movie 3).
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Movie 2: Attention blob dynamics as in Figure 7. Shown are the running blob (black), the delayedself-inhibition (red), and the attention blob (blue) on image and model layer (//http:...., 336 kB).Movie 3: Blob dynamics as in Movie 2, but without attention blobs, demonstrating that alignmentdoes not get stable (//http:...., 196 kB).of the rp for all p 6= pb. When a recognition variable rp drops below the suppression threshold r�,the activity on layer p is suppressed by the term ����(r� � rp). The time scale of the recognitiondynamics can be controlled by �r.2.8 Bidirectional ConnectionsThe connectivity between two layers is bidirectional and not unidirectional as in the previous system(Konen and Vorbr�uggen, 1993). This is necessary for two reasons: Firstly, by this means therunning blobs of the two connected layers can more easily align. With unidirectional connectionsone blob would systematically run behind the other. Secondly, connections in both directions arenecessary for a recognition system. The connections from model to image layer are necessary toallow the models to move the attention blob in the image into a region that �ts the models well.The connections from the image to the model layers are necessary to provide a discrimination cue asto which model best �ts the image. Otherwise, each model would exhibit the same level of activity.2.9 Blob Alignment in the Model DomainSince faces have a common general structure, it is advantageous to align the blobs in the modeldomain to insure that they are always at the same position in the faces, either all at the left eyeor all at the chin etc. This is achieved by connections between the layers and leads to the term+Pi0 maxp0 �gi�i0�(hp0i0 )� instead of +Pi0 (gi�i0�(hpi0)) in Equation 1. If the model blobs were to runindependently, the image layer would get input from all face parts at the same time, and the blobthere would have a hard time to align with a model blob, and it would be very uncertain whether itwould be the correct one. The cooperation between the models and the image would depend moreon accidental alignment than on the similarity between the models and the image, and it wouldthen be very likely that the wrong model was picked up as the recognition result. One alternative isto let the models inhibit each other such that only one model can have a blob at a time. The modelsthen would share time to match onto the image, and the best �tting one would get most of thetime. This would probably be the appropriate setup if the models were very di�erent and withouta common structure, as it is for general objects. The disadvantage is that the system needs muchmore time to decide which model to accept, because the relative layer activities in the beginningdepend much more on chance than in the other setup.2.10 Maximum Versus Sum NeuronsThe model neurons used here use the maximum over all input signals instead of the sum. Thereason is that the sum would mix up many di�erent signals, while only one can be the correct one,i.e., the total input would be the result of one correct signal and many misleading ones. Hence thesignal-to-noise ratio would be very low. We have observed an example where even a model identicalto the image was not picked up as the correct one, because the sum over all the accidental inputsignals favored a completely di�erent-looking person. For that reason we introduced the maximuminput function, which is reasonable since the correct signal is likely to be the strongest one. The15



maximum rule has the additional advantage that the dynamic range of the input into a singlecell does not vary much when the connectivity develops, whereas the signal sum would decreasesigni�cantly during synaptic re-organization and let the blobs loose their alignment.3 Experiments3.1 Data BaseAs a face data base we used galleries of 111 di�erent persons. Of most persons there is one neutralfrontal view, one frontal view of di�erent facial expression, and two views rotated in depth by 15and 30 degrees respectively. The neutral frontal views serve as a model gallery, and the other threeare used as test images for recognition. The models, i.e., the neutral frontal views, are representedby layers of size 10�10 (see Figure 1). Though the grids are rectangular and regular, i.e., thespacing between the nodes is constant for each dimension, the graphs are scaled horizontally in thex- and vertically in the y-direction and are aligned manually: The left eye is always represented bythe node in the fourth column from the left and the third row from the top, the mouth lies on thefourth row from the bottom, etc. The x-spacing ranges from 6.6 to 9.3 pixels with a mean value of8.2 and a standard deviation of 0.5. The y-spacing ranges from 5.5 to 8.8 pixels with a mean valueof 7.3 and a standard deviation of 0.6. An input image of a face to be recognized is represented bya 16�17 layer with an x-spacing of 8 pixels and a y-spacing of 7 pixels. The image graphs are notaligned, since that would already require recognition. The variations of up to a factor of 1.5 in thex- and y-spacings must be compensated for by the DLM process.3.2 Technical AspectsDLM in the form presented here is computationally expensive. We have performed single recognitiontasks with the complete system, but for the experiments referred to in Table 3 we have modi�edthe system in several respects to achieve a reasonable speed. We split up the simulation into twophases. The only purpose of the �rst phase is to let the attention blob become aligned with the facein the input image. No modi�cation of the connectivity was applied in this phase, and only oneaverage model was simulated. Its connectivity W a was derived by taking the maximum synapticweight over all real models for each link:W aij(t0) = maxpq W pqij (t0);_W aij(t) = 0: (22)This attention period takes 1000 time steps. Then the complete system, including the attentionblob, is simulated, and the individual connection matrices are subjected to DLM. Neurons in themodel layers are not connected to all neurons in the image layer, but only to an 8� 8 patch. Thesepatches are evenly distributed over the image layer with the same spatial arrangement as the modelneurons themselves. This still preserves full translational invariance. Full rotational invariance islost, but the jets used are not rotationally invariant in any case. The link dynamics is not simulatedat each time step, but only after 200 simulation steps or 100 time units. During this time a runningblob moves about once over all of its layer, and the correlation is integrated continuously. Thesimulation of the link dynamics is then based on these integrated correlations, and since the blobshave moved over all of the layers, all synaptic weights are modi�ed. For further increase in speed,models that are ruled out by the winner-take-all mechanism are no longer simulated; they are just16



set to zero and ignored from then on (�� = 1). The CPU time needed for the recognition of oneface against a gallery of 111 models is approximately 10{15 minutes on a Sun SPARCstation 10-512with a 50 MHz processor.In order to avoid border e�ects, the image layer has a frame with a width of 2 neurons withoutany features or connections to the model layers. The additional frame of neurons helps the attentionblob to move to the border of the image layer. Otherwise, it would have a strong tendency to stayin the center.3.3 ResultsFigure 8 shows two recognition examples, one using a test face rotated in depth and the other usinga face with very di�erent expression. In both cases the gallery contains �ve models. Due to thetight connections between the models, the layer activities show the same variations and di�er onlyvery little in intensity. This small di�erence is averaged over time and ampli�ed by the recognitiondynamics that rules out one model after the other until the correct one survives. The exampleswere monitored for 2000 units of simulation time. An attention phase of 1000 time units had beenapplied before, but is not shown here. The second recognition task was obviously harder than the�rst. The sum over the links of the connectivity matrices was even higher for the fourth model thanfor the correct one. This is a case where the DLM is actually required to stabilize the running blobalignment and recognize the correct model. In many other cases the correct face can be recognizedwithout modifying the connectivity matrix.Recognition rates for galleries of 20, 50, and 111 models are given in Table 3. As is alreadyknown from previous work (Lades et al., 1993), recognition of depth-rotated faces is in general lessreliable than, for instance, recognition of faces with an altered expression (the examples in Figure 8are not typical in this respect). It is interesting to consider recognition times. Although they varysigni�cantly, a general tendency is noticeable: Firstly, more di�cult tasks take more time, i.e.,recognition time is correlated with error rate. This is also known from psychophysical experiments(see for example Bruce et al., 1987; Kalocsai et al., 1994). Secondly, incorrect recognition takesmuch more time than correct recognition. Recognition time does not depend very much on the sizeof the gallery.4 DiscussionThe model for visual object recognition we are presenting here marks the extreme end of a scale,relying minimally on pre-existing structure. In fact, all it needs is some natural intracortical con-nection patterns, one stored example for each object to be recognized, and a simple mechanismof on-line self-organization in the form of rapid reversible synaptic plasticity. This distinguishes itfrom many alternative neural models for object recognition, which require extensive control struc-tures (Anderson and Van Essen, 1987) or speci�c feature hierarchies, to be created by training(Fukushima et al., 1983; LeCun et al., 1989), before the �rst object can be recognized. Thelateral connections within the image domain and the model domain of our system encode the apriori constraint of conservation of spatial continuity during the match. The match itself is real-ized with the help of the rapid self-organization of the synaptic connections between image andmodels. This self-organization is controlled by signal correlations and by feature similarity betweenimage points and model points. For each object to be recognized just a single model needs to bestored, which can be done with the help of simple mechanisms of associative memory (von derMalsburg, 1988). (For the accommodation of substantial rotation in depth the object needs to17
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Figure 8: Simulation examples of DLM recognition. The test images are shown on the left with16�17 neurons indicated by black dots. The models have 10�10 neurons and are aligned witheach other. The respective total layer activities, i.e., the sum over all neurons of one model, areshown in the upper graphs. The most similar model is usually slightly more active than the others.On that basis the models compete against each other, and eventually the correct one survives, asindicated by the recognition variable. The sum over all links of each connection matrix is shownin the lower graphs. It gives an impression of the extent to which the matrices self-organize beforethe recognition decision is made.
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Gallery Correct Recognition Time forSize Test Images Recognition Correct Incorrect# Rate % Recognition Recognition111 rotated faces (15 degrees) 106 95.5 310 � 400 5120 �357020 110 rotated faces (30 degrees) 91 82.7 950 �1970 4070 �4810109 frontal views (grimace) 102 93.6 310 � 420 4870 �6010111 rotated faces (15 degrees) 104 93.7 370 � 450 8530 �580050 110 rotated faces (30 degrees) 83 75.5 820 � 740 5410 �7270109 frontal views (grimace) 95 87.2 440 �1000 2670 �1660111 rotated faces (15 degrees) 102 91.9 450 � 590 2540 �2000111 110 rotated faces (30 degrees) 73 66.4 1180 �1430 4400 �4820109 frontal views (grimace) 93 85.3 480 � 720 3440 �2830Table 3: Recognition results against a gallery of 20, 50, and 111 neutral frontal views. Recognitiontime (with two iterations of the di�erential equations per time unit) is the time required until allbut one models are ruled out by the winner-take-all mechanism.be inspected from many angles and the resulting models need to be fused into one model graph,a principle demonstrated by Reiser (1991).) From these properties of our system results a veryclear-cut message concerning the issue of intracortical connections: visual object recognition canbe understood on the basis of simple connectivity structures and mechanisms of plasticity that arealready known today or at least are well within the reach of existing experimental techniques!Our model leaves open a number of questions regarding the structure of lateral connections,especially in the model domain. The global interaction between models (our \recognition dynam-ics") could be realized with the help of a single cardinal cell per model, or it could take the formof a distributed set of connections between model neurons (as formulated in von der Malsburg,1988). More work is required to decide this issue. The anatomy of the local interaction betweenmodels, second term on the right-hand side of Equation 1, can only be discussed after the relativeanatomical placement of di�erent models has become clear. Also, the extent and the nature of theoverlap between models in terms of common neurons and common connections must be clari�ed�rst. Two extreme versions are imaginable, i) models are laid down in mutual register in terms ofinternal position, and ii) there is a �xed spatial array of feature types in infero-temporal cortex (forwhich there is faint experimental evidence (Tanaka, 1993)), and laying down a model consists inselecting appropriate feature cells and connecting these as required by the inner structure of themodel. In the �rst case, the lateral model connections would be tidy and local within the corticaltissue (at least their excitatory part), in the second they would form a di�use �ber plexus with-out any apparent anatomical structure. A further aspect of intracortical connectivity that we aretotally ignoring in the present system concerns intra-hypercolumnar connectivity. This is implic-itly present, being required to organize the necessary feature speci�city, and probably also for theevaluation of the feature similarity between a pair of hypercolumns (\nodes") in image and model.Last, and by no means least, we have given short shrift to the issue of inter-areal organizationof connections, by lumping all primary areae into one image domain and all infero-temporal areaeinto one model domain. Within the image domain, two extreme views could be taken. i) Thedi�erent areae (V1, V2, V4, for instance) represent di�erent mixtures of feature speci�cities and aretied together by rigid retinotopically organized connections. In that case areal structure could be19



ignored for the purposes of our present system, and neurons in di�erent areae but subserving thesame retinal point could just be lumped together into one \hyper-hypercolumn." ii) The synapticprojection systems between areae are substantially reorganized during the recognition process, areaeperhaps forming sequential layers connecting V1 indirectly with IT, as proposed in (Anderson andVan Essen, 1987). Perhaps such an indirect connectivity scheme can reduce the enormous numberof �bers required by our system for connecting any pair of points in image and models.There is one apparent mismatch between our system and the reality of object recognition inthe brain of adults: the time taken by the process. There are reports that objects of di�erent typecan be distinguished by human subjects in less than a tenth of a second (Subramaniam et al.,1995). In contrast, our system requires for the process many hundred sequential steps. It is noteasy to interpret these sequential steps in terms of biological real time. The essential parameterseems, however, to be the temporal resolution with which signal correlations can be evaluated in ourbrain. This issue is at present under heated discussion (Softky, 1995; Shadlen and Newsome,1995), but there is little hope that this resolution is better than one or a few milliseconds. Inthis case the hundreds of sequential steps required by our system translate into many hundredmilliseconds, which is unrealistically long. Dynamic Link Matching needs this time to reduce theenormous ambiguity in the feature similarities between image and object points to a sparse set ofconnections between corresponding points. If this ambiguity could be decisively reduced with thehelp of highly speci�c feature types (which in an extreme case were private to one object type),recognition time could be cut drastically. The feature types we are using, Gabor-based wavelets,are very general and unspeci�c. It is likely that highly speci�c features can only be generated by alearning mechanism. It is our view that the basic mechanism of our system is used by the younganimal to store and recognize objects early in its life. At �rst, each recognition process may takeseconds, but the mechanism can be the basis for very e�cient learning of speci�c feature types, aprocess that due to the Dynamic Link Mechanism is not hampered by confusion between di�erentobjects.The most encouraging aspect of our system is its evident capability to solve the invariant objectrecognition problem in spite of all the di�culties and adversities posed by real images and in spiteof large numbers and great structural overlap of objects to be distinguished. This puts it in sharpcontrast to proposed recognition mechanisms that work only on simple toy examples. We thereforefeel that this system is a foot in the door, and its remaining di�culties can be solved gradually.What is important in the context of the present book is the light our system sheds on the functionalrole of lateral connections in visual cortex.AcknowledgementsThis work has been funded by grants from the German Federal Ministry of Science and Technology(413-5839-01 IN 101 B/9) and from AFOSR (F49620-93-1- 0109). The computer simulations havebeen made using NSL (Neural Simulation Language) developed by Alfredo Weitzenfeld.ReferencesAmari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural �elds. BiologicalCybernetics, 27:77{87.Anderson, C. H. and Essen, D. C. V. (1987). Shifter circuits: A computational strategy fordynamic aspects of visual processing. Proc Natl. Acad. Sci. USA, 84:6297{6301.20
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