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Face Recognition by Dynamic Link Matching�Laurenz Wiskottyand Christoph von der MalsburgzInstitut f�ur NeuroinformatikRuhr Universit�at BochumD-44780 Bochum, Germanyhttp://www.neuroinformatik.ruhr-uni-bochum.deAbstractWe present here a system for invariant and robust recognition of objects from camera images. Thesystem aspires both to be a model for biological object vision (at least an ontogenetically early form ofit) and to be at the cutting edge of technological achievement. Our model is based on the principles oftemporal feature binding and dynamic link matching. Objects are stored in the form of two-dimensionalaspects. These are competitively matched against current images. During the matching process, completematrices of dynamic links between the image and all models are re�ned by a process of rapid self-organization, the �nal state connecting only corresponding points in image and object models. As dataformat for representing images we use local sets (\jets") of Gabor-based wavelets. We have tested theperformance of our system by having it recognize human faces against data bases of more than onehundred images. The system is invariant with respect to retinal position, and it is robust with respectto head rotation, scale, facial deformation and illumination.The source code for this model is available by anonymous ftp1 and respective simulation instructionsare given in this report.Keywords: neural networks, dynamic link matching, face recognition, translation invariance, windowof attention.1 IntroductionFor the theoretical biologist, the greatest challenge posed by the brain is its tremendous power to generalizefrom one situation to others. This ability is probably most concretely epitomized in terms of invariantobject recognition | the capability of the visual system to pick up the image of an object and recognizethat object later in spite of variations in retinal location (as well as other important changes such as size,orientation, changed perspective and background, deformation, illumination and noise). This capability hasbeen demonstrated by ashing the image of novel objects briey at one foveal position, upon which subjectswere able to recognize the objects in a di�erent foveal position (and under rotation in depth) (Biederman& Gerhardstein 1993).The conceptual grandfather of many of the neural models of invariant object recognition is Rosenblatt'sfour-layer perceptron (Rosenblatt 1961). It's �rst layer is the sensory or retinal surface. Its secondlayer contains detectors of local features (that is, small patterns) in the input layers. Each one of theseis characterized by a feature type � and a position x. The third layer contains position-invariant featuredetectors, each of which characterized by a feature type � and is to respond to appearance of its feature typeanywhere on the input layer. It is enabled to do so by a full set of connections from all of the cells of the�This work has been funded by grants from the German Federal Ministry of Science and Technology (413-5839-01 IN 101B/9), from AFOSR (F49620-93-1-0109), from the EU (ERBCHRX{CT{930097), and a grant by the Human Frontier ScienceProgramycurrently at the Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, CA 92186-5800, http://www.cnl.salk.edu/CNL, wiskott@salk.eduzalso Dept. of Computer Science and Section for Neurobiology, University of Southern California, Los Angeles, CA 900891see Acknowledgement 1



same feature type in the second layer. Thus, the appearance of a pattern in any position of the input layerleads to the activation of the same set of cells in the third layer. Layer four now contains linear decisionunits which detect the appearance of certain sets of active cells in the third layer and thus of certain objectsimaged into the input layer. A decision unit contains an implicit model of an object in the form of a weightedlist of third-layer features to be present or absent.The four-layer perceptron has to contend with the di�culty that a set of feature types has to be found onthe basis of which the presence or absence of a given pattern becomes linearly separable on the basis of theun-ordered feature lists displayed by the third layer. If the feature types employed are too indistinct, thereis the danger that di�erent patterns lead to identical third-layer activity, just because the only di�erencebetween the patterns is a di�erent spatial arrangement of their features. The danger can be reduced oravoided with the help of feature types of su�cient complexity. However, this is a problematic route itself,since highly complex features are either very numerous (and therefore costly to install) or they are veryspeci�c to a given pattern domain (and have to be laboriously trained or hand-designed into the system andlimit the system's applicability to the pattern domain). The di�culty arises from the fact, that on the wayfrom layer two to layer three position information is discarded for each feature individually (as is requiredby the condition of position invariance), such that also information on relative position of the features is lost(which creates the potential confusion).In the study presented here we are solving the indicated problem using a double strategy. Firstly, weemploy highly complex features which are constructed during presentation of individual patterns (and whichare stored individually for each pattern later to be recognized), and secondly, we employ a data format anda pattern matching procedure (between our equivalent of Rosenblatt's layers two and three) which representand preserve relative position information for features.The features we employ are constructed from image data in a two-step process. First, elementary featuresin the form of Gabor-based wavelets of a number of scales and a number of orientations are extracted fromthe image (Daugman 1988), giving a set of response values for each point of the image, then the vectorof those response values for a given point are treated as a complex feature, which we call a jet. Jets areextracted from an array of sample points in the image (the approach is described in detail in (Lades et al.1993)).Our system is explicit in its representation of analogs for layers two and three, which we call \imagedomain" and \model domain," respectively. The image domain is an array of (16�17) nodes, each nodebeing labeled by a jet when an image is presented. The model domain is actually a composite of a largenumber (more than one hundred in some of our simulations) of layers (\models") composed of arrays of(10�10) nodes. To store the image of an object (e.g., a human face) a new model is created in the modeldomain and its nodes are labeled by copying an array of jets from the appropriate part of the image domain.To recognize an object, the system attempts to competitively match all stored object models against thejet array in the image domain, a process which we call \Dynamic Link Matching." The winning model isidenti�ed as the object recognized. The two domains are coupled by a full matrix of connections betweennodes, which is initialized with similarity values between image jets and model jets. (This can be seen asour version of Rosenblatt's feature-preserving connections.) The matching process is formulated in termsof dynamical activity variables for the image and model layers (forming localized blobs of activity in bothdomains), for the momentary strengths of connections between the domains (we assume that synaptic weightschange rapidly and reversibly during the recognition process), and for the relative recognition status of eachmodel. The matching process enforces the condition that neighboring nodes in the image layer link up withneighboring nodes in a model layer. In this way the system suppresses the feature rearrangement ambiguityof the Rosenblatt scheme.Our model cannot be implemented (at least not in any obvious way) in conventional neural networks. Itsimplementation is, however, easily possible if two particular features are assumed to be realized in the nervoussystem, temporal feature binding and rapid reversible synaptic plasticity. Both features have been proposedas fundamental components of neural architecture in (von der Malsburg 1981). Temporal feature bindinghas in the mean time been widely discussed in the neuroscience literature and has received some experimentalbasis (K�onig & Engel 1995). Although rapid synaptic weight changes have been discussed (Crick 1982)and reported in the literature (Zucker 1989), the quasi-Hebbian control and the time course for rapidreversible plasticity that is implied and required here must still wait for experimental validation.2
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5 000 10 000Figure 1: DLM between image and model. The nodes are indicated by black dots, and their local featuresare symbolized by di�erent textures. The synaptic weights of the initial all-to-all connectivity are indicatedby arrows of di�erent line widths. The net displays below show how correlations and connectivity co-developin time. The image layer serves as a canvas on which the model layer is drawn as a net. Each node correspondsto a model neuron, neighboring neurons are connected by an edge. The nodes are located at the centers ofgravity of the projective �eld of the model neurons, considering synaptic weights as physical mass. In orderto favor strong links, the masses are taken to the power of three. The correlations are displayed in the sameway, using averaged correlations instead of synaptic weights. It can be seen that the correlations developfaster and are cleaner than the connectivity. The rotation in depth causes a typical distortion pattern; themapping is stretched on one side and compressed on the other.2 The System2.1 Principle of Dynamic Link MatchingIn Dynamic Link Matching (DLM), the image and all models are represented by layers of neurons, whichare labeled by jets as local features (see Figure 1). Jets are vectors of Gabor wavelet components (seeLades et al. 1993; Wiskott et al. 1995) and a robust description of the local gray value distribution. Theinitial connectivity is all-to-all with synaptic weights depending on the similarities between the jets. In eachlayer, neural activity dynamics generates one small moving blob of activity (the blob can be interpreted ascovert attention scanning the image or model). If a model is similar in feature distribution to the image, itsinitial connectivity matrix contains a strong regular component, connecting corresponding points (which byde�nition have high feature similarity), plus noise in the form of accidental similarities. Hence the blobs inthe image and that model tend to align and synchronize in the sense of simultaneously activating, and thusgenerating correlations, between corresponding regions. These correlations are used, in a process of rapidreversible synaptic plasticity, to restructure the connectivity matrix. The mapping implicit in the signalcorrelations is more regularly structured than the connectivity itself, and correlation-controlled plasticitythus improves the connectivity matrix. Iteration of this game rapidly leads to a neighborhood preservingone-to-one mapping connecting neurons with similar features, thus providing translation invariance as wellas robustness against distortions. 3
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Figure 2: Architecture of the DLMface recognition system. Image andmodels are represented as neural lay-ers of local features, as indicated by theblack dots. DLM establishes a regu-lar one-to-one mapping between the ini-tially all-to-all connected layers, con-necting corresponding neurons. Thus,DLM provides translation invarianceand robustness against distortion. Oncethe correct mappings are found, a sim-ple winner-take-all mechanism can de-tect the model that is most active andmost similar to the image.For recognition purposes, DLM has to be applied in parallel to many models. The best �tting model,i.e. the model most similar to the image, will �nally have the strongest connections to the image and willhave attracted the greatest share of blob activity. A simple integrating winner-take-all mechanism detectsthe correct model (see Figure 2).The equations of the system are given in Table 1; the respective symbols are listed in Table 2. In thefollowing sections, we will explain the system step by step: blob formation, blob mobilization, interactionbetween two layers, link dynamics, attention dynamics, and recognition dynamics.2.2 Blob FormationBlob formation on a layer of neurons can easily be achieved by local excitation and global inhibition (considerEquations 1, 3, and 4 with �hs = �hh = �ha = �� = 0; cf. also Amari 1977). Local excitation is conveyedby the Gaussian interaction kernel g and generates clusters of activity. Global inhibition, controlled by �h,lets the clusters compete against each other. The strongest one will �nally suppress all others and grow toan equilibrium size determined by the strengths of global inhibition.Simulation2: Compile the program with [prompt> nsl link DLM.c DLMwin.c]. In �le DLM.c the vari-able SMALL LAYER must be de�ned, i.e. #define SMALL LAYER instead of //#define SMALL LAYER. Startthe simulation with [prompt> nsl; nsl> load DLMB; nsl> run], and observe how a blob arises. Restartthe simulation with di�erent initial conditions [Ctrl-C; nsl> init; mouse clicks with left button on layerh1; nsl> cont]. Vary also �h, e.g. [Ctrl-C; nsl> set data value beta h 0.1; nsl> cont]. What is areasonable range for �h?2.3 Blob MobilizationGenerating a running blob can be achieved by delayed self-inhibition s, which drives the blob away fromits current location to a neighboring one, where the blob generates new self-inhibition. This mechanismproduces a continuously moving blob (consider Equations 1 and 2 with �hh = �ha = �� = 0; see alsoFigure 3). In addition, the self-inhibition serves as a memory and repels the blob from regions recentlyvisited. The driving force and the recollection time as to where the blob has been can be independentlycontrolled by the time constants �+ and ��, respectively.2see Acknowledgement on how to get the source code 4



Layer dynamics:hpi (t0) = 0_hpi (t) = �hpi +Xi0 maxp0 �gi�i0�(hp0i0 )�� �hXi0 �(hpi0 )� �hsspi (1)+�hhmaxqj �W pqij �(hqj )�+ �ha (�(api )� �ac)� ���(r� � rp)spi (t0) = 0_spi (t) = ��(hpi � spi ) (2)gi�i0 = exp�� (i� i0)22�2g � (3)�(h) = 8<: 0 : h � 0ph=� : 0 < h < �1 : h � � (4)Attention dynamics:api (t0) = �NN (J pi )_api (t) = �a �api +Xi0 gi�i0�(api0 )� �aXi0 �(api0 ) + �ah�(hpi )! (5)Link dynamics:W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S�_W pqij (t) = �W ��(hpi )�(hqj )���maxj0 (W pqij0=Spqij0 )� 1��W pqij (6)Recognition dynamics:rp(t0) = 1_rp(t) = �rrp �F p �maxp0 (rp0F p0)� (7)F p(t) = Xi �(hpi )Table 1: Formulas of the DLM face recognition system
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Variables: h internal state of the layer neuronss delayed self-inhibitiona attentionW synaptic weights between neurons of two layersr recognition variableF �tness, i.e. total activity of each layerIndices:(p; p0; q; q0) layer indices, 0 indicates image layer, 1; :::;M indicate model layers= (0; 0; 1; :::;M ; 1; :::;M) if formulas describe image layer dynamics= (1; :::;M ; 1; :::;M ; 0; 0) if formulas describe model layers dynamics(i; i0; j; j0) two-dimensional indices for the individual neurons in layers(p; p0; q; q0) respectivelyFunctions: gi�i0 Gaussian interaction kernel�(h) nonlinear squashing function�(�) Heavyside functionN (J ) norm of feature jet JS�(J ;J 0) similarity between feature jets J and J 0Parameters:�h = 0:2 strength of global inhibition�a = 0:02 strength of global inhibition for attention blob�ac = 1 strength of global inhibition compensating for the attention blob�� = 1 global inhibition for model suppression�hs = 1 strength of self-inhibition�hh = 1:2 strength of interaction between image and model layers�ha = 0:7 e�ect of the attention blob on the running blob�ah = 3 e�ect of the running blob on the attention blob�� decay constant for delayed self-inhibition= �+ = 0:2 if h� s > 0= �� = 0:004 if h� s � 0�a = 0:3 time constant for the attention dynamics�W = 0:05 time constant for the link dynamics�r = 0:02 time constant for the recognition dynamics�N = 0:001 parameter for attention blob initialization�S = 0:1 minimal weight� = 2 slope radius of squashing function�g = 1 Gauss width of excitatory interaction kernelr� = 0:5 threshold for model suppressionTable 2: Variables and parameters of the DLM face recognition system
6
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Figure 3: A sequence of layer states. The activity blob h shown in the middle row has a size of approximatelysix active nodes and moves continuously over the whole layer. Its course is shown in the upper diagram. Thedelayed self-inhibition s, shown in the bottom row, follows the running blob and drives it forward. One cansee the self-inhibitory tail that repels the blob from regions just visited. Sometimes the blob runs into a trap(cf. column three) and has no way to escape from the self-inhibition. It then disappears and reappears againsomewhere else on the layer. (The temporal increment between two successive frames is 20 time units.)Simulation: Start the simulation with [nsl> load DLMR; nsl> run], and observe how a blob arisesand moves over the layer. Vary �+, ��, and �hs (lambda p, lambda m, kappa hs), e.g. [Ctrl-C; nsl>set data value lambda m 0.001; nsl> cont]. Why should �� be larger for smaller layers? Is the shapeof the blob speed-dependent?2.4 Layer Interaction and SynchronizationIn the same way as the running blob is repelled by its self-inhibitory tail, it can also be attracted by excitatoryinput from another layer, as conveyed by the connection matrix W (consider Equation 1 with �ha = �� = 0).Imagine two layers of the same size mutually connected by the identity matrix, i.e. each neuron in one layeris connected only with the one corresponding neuron in the other layer having the same index value. Theinput then is a copy of the blob of the other layer. This favors alignment between the blobs, because thenthey can cooperate and stabilize each other. This synchronization principle holds also in the presence ofthe noisy connection matrices generated by real image data (see Figure 4). (The reason why we use themaximum function instead of the usual sum will be discussed in Section 2.10.)Simulation: Start the simulation with [nsl> load DLMS; nsl> run], and observe how the two blobssynchronize and align with each other. Try di�erent runs (for each run a new object is selected randomlyand some synchronize easier than others) and use di�erent object galleries [edit the �le DLMobjects andexchange the *pose1 (= 15 degrees rotated faces) block with the*pose2 (= 30 degrees rotated faces) or*pose3 (= di�erent facial expression) block]. Vary �hh (kappa hh). What happens if �hh is too large or toosmall?2.5 Link DynamicsLinks are initialized by the similarity S� between the jets J of connected nodes (see Wiskott 1995), witha guaranteed minimal synaptic weight of �S . Then, they become cleaned up and structured on the basisof correlations between pairs of neurons (consider Equation 6; see also Figure 1). The correlations, de�ned7
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Figure 4: Synchronization between two running blobs. Layer input as well as the internal layer state h isshown at an early stage, in which the blobs of two layers are not yet aligned, left, and at a later state, right,when they are aligned. The two layers are of di�erent size, and the region in Layer 1 which correctly mapsto Layer 2 is indicated by a square de�ned by the dashed line. In the early non-aligned case one can see thatthe blobs are smaller and not at the location of maximal input. The locations of maximal input indicatewhere the actual corresponding neurons of the blob of the other layer are. In the aligned case the blobs arelarger and at the locations of high layer input.as �(hpi )�(hqj ), result from the layer synchronization described in the previous section. The link dynamicstypically consists of a growth term and a normalization term. The former lets the weights grow accordingto the correlation between the connected neurons. The latter prevents the links from growing in�nitely andinduces competition such that only one link per neuron survives, suppressing all others.Simulation: Start the simulation with [nsl> load DLMM; nsl> run], and observe how the connectivitydevelops in time. Vary �W (lambda W). What happens if �W is too large?2.6 Attention DynamicsThe alignment between the running blobs depends very much on the constraints, i.e. on the size and formatof the layer on which they are running. This causes a problem, since the image and the models have di�erentsizes. We have therefore introduced an attention blob a which restricts the movement of the running blob onthe image layer to a region of about the same size as that of the model layers (consider Equations 1 and 5 with�� = 0). The basic dynamics of the attention blob is the same as for the running blob, except there is no self-inhibition. Each of the model layers also has the same attention blob to keep the conditions for their runningblobs similar to that in the image layer. This is important for the alignment. The attention blob restrictsthe region for the running blob via the term �ha (�(api )� �ac), with the excitatory blob �(api ) compensatingthe constant inhibition �ac. The attention blob on the other hand gets excitatory input �ah�(hpi ) from therunning blob and can thus be shifted into a region where input is especially large and favors activity. Theattention blob therefore automatically aligns with the actual face position (see Figure 5). The attentionblob layer is initialized with a primitive segmentation cue, in this case the norm of the respective jets (seeWiskott 1995), following the idea that this norm indicates the presence of high contrast texture.Simulation: Recompile the program with the SMALL LAYER and SMALL PATCHES de�nitions commentedout, e.g. //#define SMALL LAYER instead of #define SMALL LAYER. Start the simulation with [nsl> loadDLMR; nsl> load DLMA; nsl> run], and observe how an attention blob arises and restricts the region inwhich the small blob is allowed to move. Vary �ah and �ha (kappa ah, kappa ha). Now restart thesimulation with [nsl> load DLMS; nsl> run] and see whether the two blobs on the layers of di�erent sizecan synchronize without an attention blob. Then add the attention blob [Ctrl-C; nsl> load DLMA; nsl>8
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Figure 5: Function of the atten-tion blob, using an extreme example ofan initial attention blob manually mis-placed for demonstration. At t = 150the two running blobs ran synchronouslyfor a while, and the attention blob has along tail. The blobs then lost alignmentagain. From t = 500 on, the runningblobs remained synchronous, and even-tually the attention blob aligned withthe correct face position, indicated by asquare made of dashed lines. The atten-tion blob moves slowly compared to thesmall running blob, as it is not drivenby self-inhibition. Without an attentionblob the two running blobs may synchro-nize sooner, but the alignment will neverbecome stable.run] and see how the alignment between the blobs can become more stable (notice that for each run anew object is selected randomly, you can suppress that by [nsl> set data value ObjectSelectionMode1] in which case always the object indicated by preferredObject is used; with [nsl> set data valueObjectSelectionMode 3] objects are selected randomly again). You can also experiment with the attentionblob misplaced in the beginning [Ctrl-C; nsl> init; mouse clicks with the left button near the border onlayer a1; nsl> cont]. Vary again �ah and �ha.2.7 Recognition DynamicsWe have derived a winner-take-all mechanism from Eigen's (1978) evolution equation and applied it todetect the best model and suppress all others (see Equations 1 and 7). Each model cooperates with theimage depending on its similarity. The most similar model cooperates most successfully and is the mostactive one. We consider the total activity of the model layer p as a �tness F p. The layer with the highest�tness suppresses all others (as can easily be seen if the F p are assumed to be constant in time and therecognition variables rp are initialized to 1). When a recognition variable rp drops below the suppressionthreshold r�, the activity on layer p is suppressed by the term ����(r� � rp).Simulation: Recompile the program with the SMALL LAYER de�nition commented out but theSMALL PATCHES de�nition valid, i.e. //#define SMALL LAYER and #define SMALL PATCHES. Start the sim-ulation with [nsl> load DLMG; nsl> load DLMA; nsl> run], and observe the recognition process. In the�rst 1000 time units only the average layer with index 0 is simulated. The correct model has index 1. Shownare, for all models, the total layer activity, the recognition variable and the sum over all synaptic weights(cf. also Figure 6). The connectivity and the layer 2 internal state as well as its input is shown only for thecurrently most active layer. The time, the index of the most active layer, and the values of the recognitionparameters are given as usual output. Asterisks indicate layers which have been ruled out.2.8 Bidirectional ConnectionsThe connectivity between two layers is bidirectional and not unidirectional as in the previous system (Konen& Vorbr�uggen 1993). This is necessary for two reasons: Firstly, by this means the running blobs of the9



two connected layers can more easily align. With unidirectional connections one blob would systematicallyrun behind the other. Secondly, connections in both directions are necessary for a recognition system. Theconnections from model to image layer are necessary to allow the models to move the attention blob inthe image into a region that �ts the models well. The connections from the image to the model layers arenecessary to provide a discrimination cue as to which model best �ts the image. Otherwise, each modelwould exhibit the same level of activity.2.9 Blob Alignment in the Model DomainSince faces have a common general structure, it is advantageous to align the blobs in the model domain toinsure that they are always at the same position in the faces, either all at the left eye or all at the chinetc. This is achieved by connections between the layers, expressed by the term +Pi0 maxp0 �gi�i0�(hp0i0 )�,instead of +Pi0 (gi�i0�(hpi0)) in Equation 1. If the model blobs were to run independently, the image layerwould get input from all face parts at the same time, and the blob there would have a hard time to alignwith a model blob, and it would be uncertain whether it would be the correct one. The cooperation betweenthe models and the image would depend more on accidental alignment than on the similarity between themodels and the image, and it would then be likely that the wrong model was picked up as the recognitionresult. One alternative is to let the models inhibit each other such that only one model would have a blobat a time. The models then would share time to match onto the image, and the best �tting one would getmost of the time. This would probably be the appropriate setup if the models were of di�erent structure, asis the case for arbitrary objects.2.10 Maximum Versus Sum NeuronsThe model neurons used here use the maximum over all input signals instead of their sum. The reason isthat the sum would mix up many di�erent signals, while only one can be correct, i.e. the total input wouldbe the result of one correct signal mixed with many distractions. Hence the signal-to-noise ratio would below. We have observed an example where even a model identical to the image was not picked as the correctone, because the sum over all the accidental input signals favored a completely di�erent-looking person. Forthat reason we introduced the maximum input function, which is reasonable since the correct signal is likelyto be the strongest one. The maximum rule has the additional advantage that the dynamic range of theinput into a single cell does not vary much when the connectivity develops, whereas the signal sum woulddecrease signi�cantly during synaptic re-organization and let the blobs loose their alignment.3 Experiments3.1 Data BaseAs a face data base we used galleries of 111 di�erent persons. For most persons there is one neutral frontalview, one frontal view of di�erent facial expression, and two views rotated in depth by 15 and 30 degreesrespectively. The neutral frontal views serve as model gallery, and the other three are used as test images forrecognition. The models, i.e. the neutral frontal views, are represented by layers of size 10�10 (see Figure 2).Though the grids are rectangular and regular, i.e. the spacing between the nodes is constant within eachdimension, the graphs are scaled horizontally and vertically and are aligned manually: The left eye is alwaysrepresented by the node in the fourth column from the left and the third row from the top, the mouth lieson the fourth row from the bottom, etc. The x- (that is, horizontal) spacing ranges from 6.6 to 9.3 pixelswith a mean value of 8.2 and a standard deviation of 0.5. The y-spacing ranges from 5.5 to 8.8 pixels with amean value of 7.3 and a standard deviation of 0.6. An input image of a face to be recognized is representedby a 16�17 layer with an x-spacing of 8 pixels and a y-spacing of 7 pixels. The image graphs are not aligned,since that would already require recognition. The variations of up to a factor of 1.5 in the x- and y-spacingsmust be compensated for by the DLM process.
10



3.2 Technical AspectsDLM in the form presented here is computationally expensive. We have performed single recognition taskswith the complete system, but for the experiments referred to in Table 3 we have modi�ed the systemin several respects to achieve a reasonable speed. We split up the simulation into two phases. The onlypurpose of the �rst phase is to let the attention blob become aligned with the face in the input image.No modi�cation of the connectivity was applied in this phase, and only one average model was simulated.Its connectivity was derived by taking the maximum synaptic weight over all real models for each link:W aij(t0) = maxpq W pqij (t0). This attention period takes 1000 time steps. Then the complete system, includingthe attention blob, is simulated, and the individual connection matrices are subjected to DLM. Neurons inthe model layers are not connected to all neurons in the image layer, but only to an 8�8 patch. Thesepatches are evenly distributed over the image layer with the same spatial arrangement as the model neuronsthemselves. This still preserves full translation invariance. Full rotation invariance is lost, but the jets usedare not rotation invariant anyway. The link dynamics is not simulated at each time step, but only after200 simulation steps or 100 time units. During this time a running blob moves about once over all of itslayer, and the correlation is integrated continuously. The simulation of the link dynamics is then based onthese integrated correlations, and since the blobs have moved over all of the layers, all synaptic weights aremodi�ed. For further increase in speed, models which are ruled out by the winner-take-all mechanism areno longer simulated; they are just set to zero and ignored from then on (�� = 1). The CPU time neededfor the recognition of one face against a gallery of 111 models is approximately 10{15 minutes on a SunSPARCstation 10-512 with a 50 MHz processor.In order to avoid border e�ects, the image layer has a frame with a width of 2 neurons without anyfeatures or connections to the model layers. The additional frame of neurons helps the attention blob tomove to the border of the image layer. Otherwise, it would have a tendency to stay in the center.3.3 ResultsFigure 6 shows a sample recognition process using a test face strongly di�ering in expression from the model.The gallery contains �ve models. Due to the tight connections between the models, the layer activitiesshow the same variations and di�er only little in intensity. This small di�erence is averaged over time andampli�ed by the recognition dynamics that rules out one model after the other until the correct one survives.The example was monitored for 2000 units of simulation time. An attention phase of 1000 time units hadbeen applied before, but is not shown here. We selected a sample run which had exceptional di�culty todecide between models. The sum over the links of the connectivity matrices was even higher for the fourthmodel than for the correct one. This is a case where the DLM is actually required to stabilize the runningblob alignment and recognize the correct model. In some other cases the correct face can be recognizedwithout modifying the connectivity matrix.Recognition rates for galleries of 20, 50, and 111 models are given in Table 3. As is already knownfrom previous work (Lades et al. 1993), recognition of depth-rotated faces is in general less reliable than,for instance, recognition of faces with an altered expression. It is interesting to consider recognition times(measured in arbitrary units). Although they vary signi�cantly, a general tendency is noticeable: Firstly,more di�cult tasks take more time, i.e. recognition time is correlated with error rate. This is also knownfrom psychophysical experiments (see for example Bruce et al. 1987; Kalocsai et al. 1994). Secondly,incorrect recognition takes much more time than correct recognition. Recognition time does not dependvery much on the size of the gallery.4 DiscussionThe model presented here deviates in some very fundamental ways from other biological and neural modelsof vision or of the brain. Foremost among these is its extensive exploitation of rapid reversible synapticplasticity and temporal feature binding. Since these features, although �rst presented a decade and a halfago (von der Malsburg 1981), have not received wide acceptance in the community yet, we have expendedgreat e�ort to demonstrate the functional superiority of the dynamic link architecture over more conventional11
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Figure 6: DLM recognition: A sample run. The test image is shown on the left, with 16�17 neuronsindicated as black dots. The models have 10�10 neurons and are aligned with each other. The correspondingtotal layer activities, i.e. the sum over all neurons of one model, are shown in the upper graph. The mostsimilar model is usually slightly more active than the others. On that basis the models compete against eachother, and eventually the correct one survives, as indicated by the recognition variable. The sum over alllinks of each connection matrix is shown in the lower graphs. It gives an impression of the extent to whichthe matrices self-organize before the recognition decision is made.
Gallery Correct Recognition Time forSize Test Images Recognition Correct Incorrect# Rate % Recognition Recognition111 rotated faces (15 degrees) 106 95.5 310 � 400 5120 �357020 110 rotated faces (30 degrees) 91 82.7 950 �1970 4070 �4810109 frontal views (grimace) 102 93.6 310 � 420 4870 �6010111 rotated faces (15 degrees) 104 93.7 370 � 450 8530 �580050 110 rotated faces (30 degrees) 83 75.5 820 � 740 5410 �7270109 frontal views (grimace) 95 87.2 440 �1000 2670 �1660111 rotated faces (15 degrees) 102 91.9 450 � 590 2540 �2000111 110 rotated faces (30 degrees) 73 66.4 1180 �1430 4400 �4820109 frontal views (grimace) 93 85.3 480 � 720 3440 �2830Table 3: Recognition results against a gallery of 20, 50, and 111 neutral frontal views. Recognition time(with two iterations of the di�erential equations per time unit) is the time required until all but one modelsare ruled out by the winner-take-all mechanism. 12



neural models by using it to solve a real-world problem, object recognition. We are presenting here our bestachievement so far in this venture.The model presented here is closely related to a more technically oriented system (the \algorithmicsystem" in contrast to the \dynamical system" described here). It has also been developed in our group andis described in (Lades et al. 1993;Wiskott et al. 1995). Essential features are common to the two systems,among them the use of jets composed of Gabor-based wavelet features, and of dynamic links to establish amapping between the image domain and individual models.Our model for object recognition is successful in emulating the performance and operational character-istics of our visual system in some important aspects. As in the biological case, the exible recognitionof new objects can be installed simply by showing them once. Our system works with a type of standardfeature detector, wavelets, which dominates much of the early visual cortical areae (Jones & Palmer 1987).The sensitivity of our system to changes in the stimulus, as for instance head rotation and change in facialexpression, is strongly correlated with that of human subjects (Kalocsai et al. 1994; this study involved aversion of our algorithmic system). And, above all, our model is superior in its object discrimination abilityto all biologically motivated models known to us, and is at least one of the top competitors among technicalsystems for face recognition (in a blind test of face recognition against large galleries, performed by theAmerican Army Research Lab, our algorithmic system came out as one of the top competitors, if not thetop competitor). Moreover, our system goes beyond mere recognition of objects, providing the basis for adetailed back-labeling of the image with interpretations in terms of explicit object or pattern models whichare linked to the image by dynamic links and temporal feature binding.In spite of this success, there are still some di�culties and discrepancies. One concern is processing time.The reorganization of the connectivity matrix between the image domain and the model domain requiresthat the two domains be covered at least twice by the running blob. The speed of this blob is limited by thetime taken by signal transmission between the domains and by the temporal resolution with which signalcoincidence can be evaluated by dendritic membranes and rapidly plastic synapses. Assuming a characteristictime of a few milliseconds we estimate that our model would need at least one second to create a synapticmapping. This is much too long compared to the adult's speed of pattern recognition (Subramaniam et al.1995). We therefore see our system as a model for processes that require the establishment of mappingsbetween the image and object models. This is often the case whenever the absolute or relative placementof parts within a �gure is important, and is very likely to be also required when a model for a new objectis to be laid down in memory. The actual inspection times required by subjects in such cases are muchlonger than those required for mere object recognition and can easily be accommodated by our model. Webelieve that mere recognition can be speeded up by short-cuts. Potential for this we see in two directions,a reduction of the ambiguity of spatial feature arrangement with the help of trained combination-codingfeatures, and a more e�cient way (than our running activity blobs) of installing topographically structuredsynaptic mappings between the image domain and the model domain. A possible scheme for this wouldbe the switching of whole arrays of synapses with the help of specialized control neurons and presynapticterminals (Anderson & Van Essen 1987).Another as yet weak point of our model is the internal organization of the model domain and the stillsemi-manual mode in which models are laid down. It is unrealistic to assume completely disjoint models,for several reasons, not the least of which economy in terms of numbers of neurons required. Also, it isunrealistic to see the recognition process as a competition between the dozens of thousands of objects thatan adult human may be able to distinguish. Rather, pattern similarities within large object classes shouldbe exploited to give the recognition process hierarchical structure and to support generalization to newobjects with familiar traits. The existence of such hierarchies is well supported by neurological observations(Damasio & Damasio 1992) and is implicit in psychophysical results (Biederman 1987) showing thatmany objects are recognized as simple arrays of shape primitives which are universally applicable. In asystem closely related to the one presented here (von der Malsburg & Reiser 1995), a model domainwas dynamically constructed as one comprehensive fusion graph containing as sub-graphs models for di�erentobjects, and in fact for di�erent aspects of these objects, with di�erent models sharing many nodes. Furtherresearch is required in this direction.Another limitation of the present system is its inability to deal with alterations of size and orientationof the object image beyond a few percent and beyond a few degrees. For this it would be necessary thatthe connections between the image domain and the model domain linked also features of di�erent size13



and orientation. Size and orientation invariance has been successfully demonstrated in the context of thealgorithmic system (Buhmann et al. 1990; Lades 1995). Direct implementation in the present model would,however, make the DLM process slower and much more di�cult or perhaps even impossible, because thesystem would have to start with a connectivity matrix with many more non-zero entries. The problem mayhave to be solved with the help of a two-step DLM process, the �rst step installing an expectation as tosize and orientation of the image, specializing the dynamic links accordingly, the second step organizing thematch as described here. In many cases, estimates of size and orientation of an object's image can be derivedfrom available cues, one of which being the object's outline as found by a segmentation mechanism.In the set of simulations presented here we simpli�ed the recognition problem by presenting the objects tobe recognized against a homogeneous background. More di�cult scenes may require separate segmentationmechanisms that �rst identify an image region or regions as candidates for recognition (although a version ofthe algorithmic system was able to recognize known objects in spite of a dense background of other objectsand of partial occlusion (Wiskott & von der Malsburg 1993)). Our model is ideally suited to implementimage segmentation mechanisms based on temporal feature binding, as proposed in (von der Malsburg1981), implemented in (von der Malsburg & Buhmann 1992; Vorbr�uggen 1995) and supported byexperimental data as reviewed in (K�onig & Engel 1995). According to that idea, all neurons activated bya given object synchronize their temporally structured signals to express the fact that they are part of onesegment. This coherent signal, suitably identi�ed with our attention variable api , Equation 5, could focusthe recognition process on segments.In summary, we feel that in spite of some remaining di�culties and discrepancies we may have, with ourmodel, a foot in the door to understanding important functional aspects of the human visual system.AcknowledgementThe model has been simulated with the C++ class library NSL (Neural simulation Language) devel-oped by Alfredo Weizenfeld et al. The source code for the model is available by anonymous ftp fromftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/manuscripts/IRINI/irini96-05/irini96-05-src.tar.gz. Information on NSL, for instance how to get it, can be obtained via WWWfrom http://www-hbp.usc.edu:8376/HBP/models/index.html or via email from Webmaster<hbp@rana.usc.edu>.ReferencesAmari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural �elds. Biological Cyber-netics, 27:77{87.Anderson, C. H. and Essen, D. C. V. (1987). Shifter circuits: A computational strategy for dynamicaspects of visual processing. Proc Natl. Acad. Sci. USA, 84:6297{6301.Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. PsychologicalReview, 94:115{147. basic level object classi�cations can be made in 100 msec.Biederman, I. and Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence andconditions for three-dimensional viewpoint invariance. J. Exp. Psychology, 19:1162{1182.Bruce, V., Valentine, T., and Baddeley, A. (1987). The basis of the 3/4 view advantage in facerecognition. Applied Cognitive Psychology, 1:109{120.Buhmann, J., Lades, M., and von der Malsburg, C. (1990). Size and distortion invariant objectrecognition by hierarchical graph matching. In Proceedings of the IJCNN International Joint Conferenceon Neural Networks, pages II 411{416, San Diego. IEEE.Crick, F. (1982). Do dendritic spines twitch? Trends in Neurobiology, February:44{46.Damasio, A. R. and Damasio, H. (1992). Cortical systems underlying knowledge retrieval: Evidencefrom human lesion studies. In Neurobiology of Neocortex. John Wiley.14
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