
Proceedings of the Intern. Workshop on Automatic Face- and Gesture-Recognition,1995, Z�urich, pages 92-97Face Recognition and Gender Determination�Laurenz Wiskott y, Jean-Marc Fellous z, Norbert Kr�uger y, Christoph von der Malsburg yzyRuhr Universit�at BochumInstitut f�ur NeuroinformatikD-44780 Bochum, GermanyWWW: http://www.neuroinformatik.ruhr-uni-bochum.deE-mail: laurenz@neuroinformatik.ruhr-uni-bochum.dezUniversity of Southern CaliforniaDept. of Computer Science and Section for NeurobiologyLos Angeles, CA 90089, USAAbstractThe system presented here is a specialized ver-sion of a general object recognition system. Im-ages of faces are represented as graphs, labeledwith topographical information and local tem-plates. Di�erent poses are represented by di�er-ent graphs. New graphs of faces are generated byan elastic graph matching procedure comparingthe new face with a set of precomputed graphs:the \general face knowledge". The �nal phaseof the matching process can be used to gener-ate composite images of faces and to determinecertain features represented in the general faceknowledge, such as gender or the presence ofglasses or a beard. The graphs can be comparedby a similarity function which makes the systeme�cient in recognizing faces.1 IntroductionFace recognition systems can be subdivided intotwo main categories [1] depending on the natureof the coding of an input picture and its process-ing. Schemes that use pixels (grey-level values)as the basis for their coding and various formsof statistical analysis for the processing are of-ten referred to as template-based approaches [2,3]. Procedures that utilize various properties ofa face (such as facial topology, hair color, ...) astheir code for the face are, on the other hand, re-ferred to as feature-based [4]. In general, each ofthese two classes of systems bear advantages anddrawbacks regarding database size, the uncon-trolled nature of the input stimuli (head orien-tation, illumination di�erences or partial occlu-sions for example), variable picture quality (sig-nal/noise), to cite only a few. It is likely that a�Supported by grants from the German FederalMinistry for Science and Technology (413-5839-01IN 101 B9) and from the US Army Research Lab(01/93/K-0109).

robust and e�cient system achieving face recog-nition will require a hybrid approach.The work presented below uses labeled graphsof two-dimensional views as a hybrid representa-tion of faces. The nodes are labeled with jets, aspecial class of local templates built on the basisof wavelet transforms. The edges are labeled withdistance vectors similar to the geometric featuresin [1]. More abstract features like gender are de-termined from the local templates.A small set of manually controlled modelgraphs serve as a \general face knowledge". Itrepresents the face space and is used to generategraphs of new faces by elastic graph matching.By this means large sets of model graphs (calledgalleries) can be generated automatically. Thegallery is distinct from the general face knowl-edge since the former represents a set of indi-vidual persons to be recognized while the latterrepresents the face space in general and mightcontain much fewer samples than the gallery.Recognizing a new face is done in three stages.In a preprocessing stage the location and size ofthe face is estimated and the image is rescaledaccordingly. In a second stage the general faceknowledge is matched to the image by maximiz-ing a similarity function. By this means faciallandmarks (termed hereafter �ducial points) arelocated and an image graph is generated. In thelast stage the generated graph is compared to allindividual model graphs of the gallery. The mostsimilar model is taken to be the correct one.Matching of the general face knowledge alsoprovides information on the basis of which a com-posite or phantom face can be generated and highlevel features such as gender can be determined.Once the general face knowledge is generated un-der manual control, no further user interventionis needed for storing and recognizing new indi-viduals. New image graphs are generated by thematching process and compared with a simple1



similarity function.The system is an extended algorithmic versionof a fully neural system for robust object recog-nition [5, 6, 7]. The advantage of the approachis its simplicity and exibility. Only few modi�-cations are required to apply the system to dif-ferent tasks, such as object recognition in clut-tered scenes with signi�cant mutual occlusion [8],face recognition [3], in cases where input imagesare scaled and rotated in the image plane [9], orthe determination of face features such as gen-der. The main goal of this work is not to builda specialized, highly optimized system for facerecognition, but to contribute to the larger e�ortof creating a robust and exible general purposesystem that can be used to solve di�erent visualtasks.2 Face RepresentationWe use graphs G with an underlying two-dimensional topography. The nodes are labeledwith jets Jn and the edges are labeled with dis-tance vectors �~xe. In the simplest case the graphhas the form of a rectangular grid with constantspacing between nodes.The jets are based on a wavelet transform,which is de�ned as a convolution with a familyof complex Gabor kernels j(~x) = k2j�2 exp��k2jx22�2 �hexp(i~kj~x)� exp���22 �i ;providing at each location ~x the coe�cientsJj(~x) = Z I(~x0) j(~x� ~x0)d2~x0given the image grey level distribution I(~x).This preprocessing was chosen for its theoret-ical properties and its biological relevance, sincethe receptive �elds of simple cells in the primaryvisual cortex are of similar shape as the Gaborkernels [10, 11]. They are localized in both spaceand frequency domains and have the shape ofplane waves of a wave vector ~kj restricted by aGaussian envelope function of width �=k with� = 2�. In addition the kernels are correctedfor their DC value, i.e., the integral R  j(~x)d2~xvanishes. All kernels are similar in the sense thatthey can be generated from one kernel simplyby dilation and rotation. We use kernels of �vedi�erent sizes, index � 2 f0; : : : ; 4g, and eightorientations, index � 2 f0; : : : ; 7g. Each kernelresponds best at the frequency given by the char-acteristic wave vector~kj = �k� cos��k� sin���; k� = 2��+22 �; �� = ��8 ;

with index j = �+ 8�.The full wavelet transform provides 40 com-plex coe�cients at each pixel (5 frequencies, 8orientations). We will refer to this array of coef-�cients at one pixel as the jet J(~x), see �gure 1.The complex jet coe�cients Jj can be writtenas Jj(~x) = aj(~x) exp(i�j(~x)) with a smoothlychanging magnitude aj(~x) and a phase �j(~x)spatially varying with approximately the char-acteristic frequency of the respective Gabor ker-nel. Due to this variation one cannot comparethe jets directly, because small spatial displace-ments change the individual coe�cients drasti-cally. One can therefore use either the magni-tudes only or one has to compensate explicitly forthe phase shifts due to a possible displacement.The two corresponding similarity functions areSa(J; J 0) = Pj aja0jrPj a2jPj a02jand S�(J; J 0) = Pj aja0j cos(�j � �0j � ~d~kj)rPj a2jPj a02j :where ~kj is the characteristic wave vector of therespective Gabor kernel and ~d is an estimateddisplacement vector which compensates for therapid phase shifts. ~d is determined by maximiz-ing S� in its Taylor expansion around ~d = 0 [12],which is a constraint �t of the two-dimensional ~dto the 40 phase di�erences �j � �0j .The jets and the similarity functions are robustagainst changes in lighting conditions in two re-spects. Firstly, since the kernels are DC free,the jets are invariant with respect to general o�-sets in the image grey values. Secondly, since thesimilarity functions S are normalized, they areinvariant with respect to contrast variations.3 Elastic Graph MatchingIn order to generate a new image graph GI ofa face, a procedure is applied which matches astack of existing model graphs (the general faceknowledge) with the image. In this section weconsider only one model graph GM . The exten-sion to a stack of model graphs is described inthe next section.Let us assume that the model graph has Nnodes labeled with jets Jn and E edges labeled2
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Figure 1: The graph representation of a face is based on a wavelet transform, a convolution withGabor kernels of di�erent size and orientation. The phase varies according to the main frequency ofthe kernels (see imaginary part) while the magnitude varies smoothly. The set of coe�cients of thetransform at one picture location is referred to as a jet and is computed on the basis of a small patchof grey values. A sparse set of such jets together with some topographic information constitutes animage graph representing an object, such as a face.with distance vectors �~xe. A generated imagegraph must have the same structure, i.e., thesame number of nodes and the same pairs ofnodes connected by an edge. The nodes shouldalso be located at corresponding \�ducial points"in the faces, e.g., the left eye or the tip of thenose. (In case of the rectangular graphs, onlyfew nodes are located on speci�c points, the twoeyes and the line between the two lips. The oth-ers are located according to the regular structureof the grids, but they also refer to roughly thesame location for all faces.) The labels J and�~x may di�er, depending on the individual face.The latter are the distance vectors between thepixel coordinates from which the image jets weretaken.The similarity between the image graph anda model graph will depend on the jet similari-ties and the geometrical distortion between im-age and model graph. As the overall graph simi-larity we de�neSm(GM ; GI) = 1N Xn S�(JMn ; JIn)� �EXe (�~xMe ��~xIe)2where � is a parameter controlling the relativeimportance of template and topographical simi-larities.In the matching process a sequence of modi�-cations to the image graph is chosen under theconstraint that a change is accepted only if thegraph similarity increases relative to the previ-ous one. Doing this in a hierarchical, coarse-to-�ne manner leads to a good approximation of theoptimal image graph in a reasonable amount of

time, see �gure 2.In order to �nd the correct pixel positions asprecisely as possible we use the jet similarityfunction with phase and we only allow deforma-tions of the graph towards pixels in the imagethat give an estimated displacement ~d in S� ofless than one pixel, i.e., jdj < 1.
Model ImageFigure 2: A model graph matched with a newimage of the same person. The matching processattempts to �nd the image graph that is mostsimilar to the model graph, i.e., the one withthe most similar local templates and the mini-mal graph distortions.4 General Face KnowledgeJets extracted from di�erent faces can vary sig-ni�cantly. Hence one cannot expect to reliably�nd the �ducial points by matching one modelto the image of a di�erent person. We solve thisproblem by using a set of di�erent model graphs,3



the \general face knowledge", which covers theface space.In the general face knowledge all model graphshave the same structure, with nodes referring tothe same �ducial points. All the nodes referringto the same �ducial point are bound together andrepresent various instances of this local face re-gion. The edge labels are averaged over the wholegeneral face knowledge, thus leading to an aver-age geometry.The cost function de�ned above changes aseach node of the image graph can be comparedwith the corresponding node of any of the mod-els in the stack. When matching, we check all ofthem and use the one �tting best, see �gure 3.We assume that for each new face and for each�ducial point we have an 'expert' jet in the gen-eral face knowledge, su�ciently similar to the jetof the new face at that location, to determinethe precise position of the �ducial point. Be-side yielding an image graph, the matching pro-cess also provides information about which modelis most similar to the new face at any �ducialpoint. Such information is important for gen-erating phantom faces and for determining facefeatures.5 Phantom Faces andDetermining Face FeaturesWhat can we say about the new face if we dis-card all of its template information, i.e., the orig-inal image jets, just keeping the geometry of thematched image graph and the identity of the ex-pert jet for each node?First we are going to reconstruct the face im-age on the basis of the match results; we build acomposite or phantom face resembling the orig-inal. For each node of the graph we copy thelocal grey level distribution of the respective ex-pert model and apply a smooth transient to thepatches of the neighboring nodes. This very sim-ple method gives a good reconstruction of theoriginal, see �gure 4. Such a phantom face istypically composed of patches from about ten totwenty di�erent models.The very simple and general idea to determineface features now is the following: If the expertjets are taken mostly from female models, onecan expect that the phantom face will look fe-male and consequently that the original face wasprobably a female as well. This also holds forother features, such as facial hair or glasses. Ifthe expert models for the lower half of the im-age graph are mostly bearded, then the original

face was probably bearded as well, and similarlyfor glasses. One only has to label all models inthe model stack with their respective features,decide which region of the face is relevant for acertain feature, and then compare which featurewas most often provided by the expert models inthat region.
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Figure 4: Shown is the original and the phan-tom face for three di�erent persons. Notice thatthe phantom image was generated only on thebasis of information provided by the match withthe general face knowledge; no information fromthe original image was used. That is the reasonwhy certain details, such as the reections on theglasses or the precise shape of the lips of the topimage are not reproduced accurately. The �eldsof labels on the right side indicate the featuresof the models that were used as experts for theindividual nodes; m: male, f: female, b: bearded,g: glasses.In our test runs we used a gallery of 112 neu-tral frontal views, 65% of which were male, 19%were bearded, and 28% had glasses. Each of the112 faces was analyzed while the remaining 111models served as the general face knowledge. The112 model graphs of 7� 4 rectangularly arrayednodes were positioned by hand; the image graphswere generated automatically. The relevant re-4
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Figure 3: The stack structure of the general face knowledge. Here, we show how the individual nodesof an image graph will �t best to di�erent model graphs. Each model graph is labeled with knownfeatures, on the basis of which the features of the new face can be determined.gions were chosen by hand for all three features:All nodes were considered to be relevant for gen-der determination, while we used only the lowerthree rows for the beard feature and the upperfour rows for the glasses feature. If the num-ber of relevant nodes labeled with a certain fea-ture is above chance level, the system decided onthis feature for the image face. For example, ifmore than 65% nodes were labeled male, the facewas determined to be male. Results of this pro-cedure were 90.2% correct gender classi�cation,92.9% correct beard detection, and 90.2% correctglasses detection. In order to show that the per-formance on gender determination is not due tofacial hair, we tested it on a reduced general faceknowledge and test set of 91 beardless faces with57% males. The result was 91.3% correct genderclassi�cation. The di�erence is not signi�cant;in general performance increases with the size ofthe general face knowledge.The evaluation of the node labels can be con-sidered naive and requires the choice of the rel-evant nodes by hand, but it shows the princi-ple. We have tested a Bayesian approach as welland got an improvement of 1{3%. The Bayes ap-proach also determines the relative reliability ofthe nodes. For beard and glasses, the lower andthe upper rows, respectively, were more reliable,as expected. For gender determination there wasa slight emphasis on the lower rows, even if onlybeardless faces were considered. The classi�ca-tion performance relies on what is represented inthe general face knowledge. One cannot expectthat with a Caucasian general face knowledge thesystem performs very well on Asian people, for

example. We assume, however, that with an ap-propriate general face knowledge, other featureslike age, ethnic group, or facial expression couldbe detected.The performance of the system is comparableto others. Brunelli and Poggio [13] traineda hyper basis function network on automaticallyextracted geometrical features. They achieveda correct gender classi�cation rate of 87.5%.Golomb et al. [14] used a template-based ap-proach. They trained a back-propagation net-work on a compressed representation (40 units)of low resolution face images of 30�30 pixels andachieved a performance of 91.9%. They used lim-ited hair information and aligned the faces undermanual control.6 Rotation in Depth, ObjectAdapted Graphs, and FaceRecognitionThe system as described so far relies on one two-dimensional view only. The elastic graph match-ing provides robustness against rotation in depthup to about 20 degrees. More drastic rotationshave to be handled by a new two-dimensionalview of that di�erent pose. For a reasonablecomparison of jets one has to de�ne grids of �du-cial points adapted to the speci�c object. Thefrontal view graph and half pro�le graph con-sequently have di�erent structure and geometry,but for most of the nodes in one pose there isa corresponding node in the other pose, refer-ring to the same �ducial point. The structureof these graphs and the links between the nodesbelonging to the same �ducial point are de�ned5



by hand. Once a minimal general face knowl-edge for both poses is established, the very samematching process as described above is appliedand further model graphs can be generated au-tomatically. We used a basic general face knowl-edge of 70 manually checked models per pose tobuild larger galleries automatically.The linear scale of the faces in the original im-ages varied by about a factor three. A prepro-cessing phase was necessary to rescale the faces toa normalized size. Di�erent general face knowl-edges with a few models of small, middle, or largefaces were matched to the original images. Thematch with the highest similarity value was eval-uated. The distance between top and bottomnode leads to an appropriate scaling factor andthe center of the graph serves as center for therescaled image. For this preprocessing, graphswith a di�erent grid structure were used. Nodeswere positioned at points easy to �nd but notnecessarily reliabe for recognition, e.g., the out-line of the head, see �gure 5. The pose of thefaces was known a priori and needed not to bedetermined automatically.

Figure 5: Object adapted graphs for frontal andhalf pro�le view. The nodes are positioned au-tomatically by elastic graph matching. The twotop images show two original images with largesize variation and grids for preprocessing withmany nodes on the outline. The two bottom im-ages are already rescaled to normal size. Thosegrids have more nodes on the face, which is moreappropriate for recognition. For the recognitionresults given below grids with 48 and 46 nodeswere used.

Once an image graph is generated by graphmatching with the general face knowledge, it canbe compared to individual model graphs of agallery without further distortion, just by point-wise comparison of jets. The topographical in-formation is not used. Hence for the recognitiontask the similarity of two graphs is simply de�nedas the average similarity between their jets:Sr(GM ; GI) = 1N Xn Sa(JMn ; JIn)Here jet similarities Sa based only on the magni-tudes turned out to be more discriminative thanthe similarities S�, which include phase.We tested the system on the ARPA/ARLFERET database by comparing frontal againstfrontal views and half pro�le against frontalviews. The two frontal views di�ered in facialexpression and the half pro�le pose was rotatedby about 40 to 70 degrees, in some cases turn-ing almost to pro�le view. In the �rst test wecompared 300 frontal views against 300 di�erentfrontal views of the same persons and achieveda recognition rate of 97.3%. 99.0% were amongthe �rst 15 best matches. In a second test wecompared 300 half pro�les against 300 frontalviews of the same persons with a recognition rateof 13.3%. 44.0% were among the �rst 15 bestmatches.The performance is high on frontal views andit was shown that the system is robust with re-spect to rotations in depth up to 20 degrees [3].The results are poor for faces of very di�erentpose, which is known to be a much more di�-cult task for human subjects as well [15]. Never-theless, using di�erent two-dimensional views fordi�erent poses plus the information which nodesin the di�erent views belong to the same �ducialpoint makes it possible to apply more sophisti-cated methods to deal with the rotation transfor-mation, as shown in another contribution [16].7 ConclusionsBased on the system described in [3] we havemade three major modi�cations of which onlythe last one is restricted to the in-class recogni-tion task, i.e., a task in which objects belongingto one known class have to be recognized.Phase information was used for a more ac-curate positioning of the nodes at the �ducialpoints.Object adapted graphs were introduced to dealwith di�erent views. The nodes then are relatedto �ducial object points and the graph geometry6



changes depending on the 3D structure of theobject.The general face knowledge is the only newconcept tailored to face recognition or rather in-class recognition. By combining jets of a rel-atively small set of model graphs, a large facespace can be covered.The modi�ed system has several advantages.Firstly the previous system [3] matched eachmodel of the gallery separately to the face im-age. By introducing the general face knowledgeand by using phase information, image graphscan be generated with no model knowledge aboutthe individual persons. This allows separatingthe graph generation phase from the recognitionphase, which makes the system much faster bygenerating an image graph only once and not foreach model repeatedly.Secondly the object adapted graphs providemeans to deal with a set of di�erent poses. Nodescan refer to the same �ducial points regardless ofviewing direction. It also becomes possible to fo-cus on points of special interest or reliability.Thirdly the use of phase information providesrelatively precise node locations that can poten-tially be used as an additional recognition orfeature determination cue. So far only the jetsare evaluated. Previously the localization of thenodes was very rough and of little use for therecognition.The system requires some manual control whengenerating a general face knowledge. Apart fromthis, no training is required to build a gallery ofnew faces to recognize. The models are generatedautomatically, stored, and compared by a simplesimilarity function. Only one model per person isrequired. Nevertheless, di�erent kinds of learningcan be introduced. Experiments have been madewith jet transformations to account for rotationin depth [16] and with local weights to emphasizereliable nodes [17].AcknowledgmentsWe wish to thank Irving Biederman, LadanShams, Michael Lyons, and Thomas Maurer forvery fruitful discussions and their help in evalu-ating the performance of the system. Portionsof the research in this paper use the FERETdatabase of facial images collected under theARPA/ARL FERET program.References[1] R. Brunelli and T. Poggio. Face recognition:Features versus templates. IEEE Transac-
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