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Abstract

The system presented here is a specialized ver-
sion of a general object recognition system. Im-
ages of faces are represented as graphs, labeled
with topographical information and local tem-
plates. Different poses are represented by differ-
ent graphs. New graphs of faces are generated by
an elastic graph matching procedure comparing
the new face with a set of precomputed graphs:
the “general face knowledge”. The final phase
of the matching process can be used to gener-
ate composite images of faces and to determine
certain features represented in the general face
knowledge, such as gender or the presence of
glasses or a beard. The graphs can be compared
by a similarity function which makes the system
efficient in recognizing faces.

1 Introduction

Face recognition systems can be subdivided into
two main categories [1] depending on the nature
of the coding of an input picture and its process-
ing. Schemes that use pixels (grey-level values)
as the basis for their coding and various forms
of statistical analysis for the processing are of-
ten referred to as template-based approaches [2,
3]. Procedures that utilize various properties of
a face (such as facial topology, hair color, ...) as
their code for the face are, on the other hand, re-
ferred to as feature-based [4]. In general, each of
these two classes of systems bear advantages and
drawbacks regarding database size, the uncon-
trolled nature of the input stimuli (head orien-
tation, illumination differences or partial occlu-
sions for example), variable picture quality (sig-
nal/noise), to cite only a few. It is likely that a
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robust and efficient system achieving face recog-
nition will require a hybrid approach.

The work presented below uses labeled graphs
of two-dimensional views as a hybrid representa-
tion of faces. The nodes are labeled with jets, a
special class of local templates built on the basis
of wavelet transforms. The edges are labeled with
distance vectors similar to the geometric features
in [1]. More abstract features like gender are de-
termined from the local templates.

A small set of manually controlled model
graphs serve as a “general face knowledge”. It
represents the face space and is used to generate
graphs of new faces by elastic graph matching.
By this means large sets of model graphs (called
galleries) can be generated automatically. The
gallery is distinct from the general face knowl-
edge since the former represents a set of indi-
vidual persons to be recognized while the latter
represents the face space in general and might
contain much fewer samples than the gallery.

Recognizing a new face is done in three stages.
In a preprocessing stage the location and size of
the face is estimated and the image is rescaled
accordingly. In a second stage the general face
knowledge is matched to the image by maximiz-
ing a similarity function. By this means facial
landmarks (termed hereafter fiducial points) are
located and an image graph is generated. In the
last stage the generated graph is compared to all
individual model graphs of the gallery. The most
similar model is taken to be the correct one.

Matching of the general face knowledge also
provides information on the basis of which a com-
posite or phantom face can be generated and high
level features such as gender can be determined.
Once the general face knowledge is generated un-
der manual control, no further user intervention
is needed for storing and recognizing new indi-
viduals. New image graphs are generated by the
matching process and compared with a simple



similarity function.

The system is an extended algorithmic version
of a fully neural system for robust object recog-
nition [5, 6, 7]. The advantage of the approach
is its simplicity and flexibility. Only few modifi-
cations are required to apply the system to dif-
ferent tasks, such as object recognition in clut-
tered scenes with significant mutual occlusion [8],
face recognition [3], in cases where input images
are scaled and rotated in the image plane [9], or
the determination of face features such as gen-
der. The main goal of this work is not to build
a specialized, highly optimized system for face
recognition, but to contribute to the larger effort
of creating a robust and flexible general purpose
system that can be used to solve different visual
tasks.

2 Face Representation

We use graphs G with an underlying two-
dimensional topography. The nodes are labeled
with jets J, and the edges are labeled with dis-
tance vectors AZ,. In the simplest case the graph
has the form of a rectangular grid with constant

spacing between nodes.

The jets are based on a wavelet transform,
which is defined as a convolution with a family
of complex Gabor kernels
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This preprocessing was chosen for its theoret-
ical properties and its biological relevance, since
the receptive fields of simple cells in the primary
visual cortex are of similar shape as the Gabor
kernels [10, 11]. They are localized in both space
and frequency domains and have the shape of
plane waves of a wave vector Ej restricted by a
Gaussian envelope function of width o/k with
o = 2m. In addition the kernels are corrected
for their DC value, i.e., the integral [);(Z)d*Z
vanishes. All kernels are similar in the sense that
they can be generated from one kernel simply
by dilation and rotation. We use kernels of five
different sizes, index v € {0,...,4}, and eight
orientations, index u € {0,...,7}. Each kernel
responds best at the frequency given by the char-
acteristic wave vector
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The full wavelet transform provides 40 com-
plex coefficients at each pixel (5 frequencies, 8
orientations). We will refer to this array of coef-
ficients at one pixel as the jet J(&), see figure 1.

The complex jet coefficients J; can be written
as J;(&) = a;j(Z)exp(ig;(Z)) with a smoothly
changing magnitude a;(#) and a phase ¢;(Z)
spatially varying with approximately the char-
acteristic frequency of the respective Gabor ker-
nel. Due to this variation one cannot compare
the jets directly, because small spatial displace-
ments change the individual coefficients drasti-
cally. One can therefore use either the magni-
tudes only or one has to compensate explicitly for
the phase shifts due to a possible displacement.
The two corresponding similarity functions are
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where k; is the characteristic wave vector of the
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respective Gabor kernel and d is an estimated
displacement vector which compensates for the
rapid phase shifts. d is determined by maximiz-
ing Sy in its Taylor expansion around d=0 [12],
which is a constraint fit of the two-dimensional d
to the 40 phase differences ¢; — (;53-.

The jets and the similarity functions are robust
against changes in lighting conditions in two re-
spects. Firstly, since the kernels are DC free,
the jets are invariant with respect to general off-
sets in the image grey values. Secondly, since the
similarity functions S are normalized, they are
invariant with respect to contrast variations.

3 Elastic Graph Matching

In order to generate a new image graph G! of
a face, a procedure is applied which matches a
stack of existing model graphs (the general face
knowledge) with the image. In this section we
consider only one model graph GM. The exten-
sion to a stack of model graphs is described in
the next section.

Let us assume that the model graph has N
nodes labeled with jets J, and E edges labeled
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Figure 1: The graph representation of a face is based on a wavelet transform, a convolution with
Gabor kernels of different size and orientation. The phase varies according to the main frequency of
the kernels (see imaginary part) while the magnitude varies smoothly. The set of coefficients of the
transform at one picture location is referred to as a jet and is computed on the basis of a small patch
of grey values. A sparse set of such jets together with some topographic information constitutes an

image graph representing an object, such as a face.

with distance vectors AZ.. A generated image
graph must have the same structure, i.e., the
same number of nodes and the same pairs of
nodes connected by an edge. The nodes should
also be located at corresponding “fiducial points”
in the faces, e.g., the left eye or the tip of the
nose. (In case of the rectangular graphs, only
few nodes are located on specific points, the two
eyes and the line between the two lips. The oth-
ers are located according to the regular structure
of the grids, but they also refer to roughly the
same location for all faces.) The labels J and
AZ may differ, depending on the individual face.
The latter are the distance vectors between the
pixel coordinates from which the image jets were

taken. = = )
The similarity between the image graph and

a model graph will depend on the jet similari-
ties and the geometrical distortion between im-
age and model graph. As the overall graph simi-
larity we define
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where A is a parameter controlling the relative
importance of template and topographical simi-
larities.

In the matching process a sequence of modifi-
cations to the image graph is chosen under the
constraint that a change is accepted only if the
graph similarity increases relative to the previ-
ous one. Doing this in a hierarchical, coarse-to-
fine manner leads to a good approximation of the
optimal image graph in a reasonable amount of

time, see figure 2.

In order to find the correct pixel positions as
precisely as possible we use the jet similarity
function with phase and we only allow deforma-
tions of the graph towards pixels in the image
that give an estimated displacement d in Sy of
less than one pixel, i.e., |d] < 1.

Model Image

Figure 2: A model graph matched with a new
image of the same person. The matching process
attempts to find the image graph that is most
similar to the model graph, i.e., the one with
the most similar local templates and the mini-
mal graph distortions.

4 General Face Knowledge

Jets extracted from different faces can vary sig-
nificantly. Hence one cannot expect to reliably
find the fiducial points by matching one model
to the image of a different person. We solve this
problem by using a set of different model graphs,



the “general face knowledge”, which covers the
face space.

In the general face knowledge all model graphs
have the same structure, with nodes referring to
the same fiducial points. All the nodes referring
to the same fiducial point are bound together and
represent various instances of this local face re-
gion. The edge labels are averaged over the whole
general face knowledge, thus leading to an aver-
age geometry.

The cost function defined above changes as
each node of the image graph can be compared
with the corresponding node of any of the mod-
els in the stack. When matching, we check all of
them and use the one fitting best, see figure 3.
We assume that for each new face and for each
fiducial point we have an ’expert’ jet in the gen-
eral face knowledge, sufficiently similar to the jet
of the new face at that location, to determine
the precise position of the fiducial point. Be-
side yielding an image graph, the matching pro-
cess also provides information about which model
is most similar to the new face at any fiducial
point. Such information is important for gen-
erating phantom faces and for determining face
features.

5 Phantom Faces and
Determining Face Features

What can we say about the new face if we dis-
card all of its template information, i.e., the orig-
inal image jets, just keeping the geometry of the
matched image graph and the identity of the ex-
pert jet for each node?

First we are going to reconstruct the face im-
age on the basis of the match results; we build a
composite or phantom face resembling the orig-
inal. For each node of the graph we copy the
local grey level distribution of the respective ex-
pert model and apply a smooth transient to the
patches of the neighboring nodes. This very sim-
ple method gives a good reconstruction of the
original, see figure 4. Such a phantom face is
typically composed of patches from about ten to
twenty different models.

The very simple and general idea to determine
face features now is the following: If the expert
jets are taken mostly from female models, one
can expect that the phantom face will look fe-
male and consequently that the original face was
probably a female as well. This also holds for
other features, such as facial hair or glasses. If
the expert models for the lower half of the im-
age graph are mostly bearded, then the original

face was probably bearded as well, and similarly
for glasses. One only has to label all models in
the model stack with their respective features,
decide which region of the face is relevant for a
certain feature, and then compare which feature
was most often provided by the expert models in
that region.
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Figure 4: Shown is the original and the phan-
tom face for three different persons. Notice that
the phantom image was generated only on the
basis of information provided by the match with
the general face knowledge; no information from
the original image was used. That is the reason
why certain details, such as the reflections on the
glasses or the precise shape of the lips of the top
image are not reproduced accurately. The fields
of labels on the right side indicate the features
of the models that were used as experts for the
individual nodes; m: male, f: female, b: bearded,
g: glasses.

In our test runs we used a gallery of 112 neu-
tral frontal views, 65% of which were male, 19%
were bearded, and 28% had glasses. Each of the
112 faces was analyzed while the remaining 111
models served as the general face knowledge. The
112 model graphs of 7 x 4 rectangularly arrayed
nodes were positioned by hand; the image graphs
were generated automatically. The relevant re-



m=male, f=female,
g=wearing glasses,
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Figure 3: The stack structure of the general face knowledge. Here, we show how the individual nodes
of an image graph will fit best to different model graphs. Each model graph is labeled with known
features, on the basis of which the features of the new face can be determined.

gions were chosen by hand for all three features:
All nodes were considered to be relevant for gen-
der determination, while we used only the lower
three rows for the beard feature and the upper
four rows for the glasses feature. If the num-
ber of relevant nodes labeled with a certain fea-
ture is above chance level, the system decided on
this feature for the image face. For example, if
more than 65% nodes were labeled male, the face
was determined to be male. Results of this pro-
cedure were 90.2% correct gender classification,
92.9% correct beard detection, and 90.2% correct
glasses detection. In order to show that the per-
formance on gender determination is not due to
facial hair, we tested it on a reduced general face
knowledge and test set of 91 beardless faces with
57% males. The result was 91.3% correct gender
classification. The difference is not significant;
in general performance increases with the size of
the general face knowledge.

The evaluation of the node labels can be con-
sidered naive and requires the choice of the rel-
evant nodes by hand, but it shows the princi-
ple. We have tested a Bayesian approach as well
and got an improvement of 1-3%. The Bayes ap-
proach also determines the relative reliability of
the nodes. For beard and glasses, the lower and
the upper rows, respectively, were more reliable,
as expected. For gender determination there was
a slight emphasis on the lower rows, even if only
beardless faces were considered. The classifica-
tion performance relies on what is represented in
the general face knowledge. One cannot expect
that with a Caucasian general face knowledge the
system performs very well on Asian people, for

example. We assume, however, that with an ap-
propriate general face knowledge, other features
like age, ethnic group, or facial expression could
be detected.

The performance of the system is comparable
to others. BRUNELLI and P0GGIO [13] trained
a hyper basis function network on automatically
extracted geometrical features. They achieved
a correct gender classification rate of 87.5%.
GOLOMB et al. [14] used a template-based ap-
proach. They trained a back-propagation net-
work on a compressed representation (40 units)
of low resolution face images of 30 x 30 pixels and
achieved a performance of 91.9%. They used lim-
ited hair information and aligned the faces under
manual control.

6 Rotation in Depth, Object
Adapted Graphs, and Face
Recognition

The system as described so far relies on one two-
dimensional view only. The elastic graph match-
ing provides robustness against rotation in depth
up to about 20 degrees. More drastic rotations
have to be handled by a new two-dimensional
view of that different pose. For a reasonable
comparison of jets one has to define grids of fidu-
cial points adapted to the specific object. The
frontal view graph and half profile graph con-
sequently have different structure and geometry,
but for most of the nodes in one pose there is
a corresponding node in the other pose, refer-
ring to the same fiducial point. The structure
of these graphs and the links between the nodes
belonging to the same fiducial point are defined



by hand. Once a minimal general face knowl-
edge for both poses is established, the very same
matching process as described above is applied
and further model graphs can be generated au-
tomatically. We used a basic general face knowl-
edge of 70 manually checked models per pose to
build larger galleries automatically.

The linear scale of the faces in the original im-
ages varied by about a factor three. A prepro-
cessing phase was necessary to rescale the faces to
a normalized size. Different general face knowl-
edges with a few models of small, middle, or large
faces were matched to the original images. The
match with the highest similarity value was eval-
uated. The distance between top and bottom
node leads to an appropriate scaling factor and
the center of the graph serves as center for the
rescaled image. For this preprocessing, graphs
with a different grid structure were used. Nodes
were positioned at points easy to find but not
necessarily reliabe for recognition, e.g., the out-
line of the head, see figure 5. The pose of the
faces was known a priori and needed not to be
determined automatically.

Figure 5: Object adapted graphs for frontal and
half profile view. The nodes are positioned au-
tomatically by elastic graph matching. The two
top images show two original images with large
size variation and grids for preprocessing with
many nodes on the outline. The two bottom im-
ages are already rescaled to normal size. Those
grids have more nodes on the face, which is more
appropriate for recognition. For the recognition
results given below grids with 48 and 46 nodes
were used.

Once an image graph is generated by graph
matching with the general face knowledge, it can
be compared to individual model graphs of a
gallery without further distortion, just by point-
wise comparison of jets. The topographical in-
formation is not used. Hence for the recognition
task the similarity of two graphs is simply defined
as the average similarity between their jets:

ZS (I, Th)

Here jet similarities S, based only on the magni-
tudes turned out to be more discriminative than
the similarities Sg, which include phase.

We tested the system on the ARPA/ARL
FERET database by comparing frontal against
frontal views and half profile against frontal
views. The two frontal views differed in facial
expression and the half profile pose was rotated
by about 40 to 70 degrees, in some cases turn-
ing almost to profile view. In the first test we
compared 300 frontal views against 300 different
frontal views of the same persons and achieved
a recognition rate of 97.3%. 99.0% were among
the first 15 best matches. In a second test we
compared 300 half profiles against 300 frontal
views of the same persons with a recognition rate
of 13.3%. 44.0% were among the first 15 best
matches.

The performance is high on frontal views and
it was shown that the system is robust with re-
spect to rotations in depth up to 20 degrees [3].
The results are poor for faces of very different
pose, which is known to be a much more diffi-
cult task for human subjects as well [15]. Never-
theless, using different two-dimensional views for
different poses plus the information which nodes
in the different views belong to the same fiducial
point makes it possible to apply more sophisti-
cated methods to deal with the rotation transfor-
mation, as shown in another contribution [16].
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7 Conclusions

Based on the system described in [3] we have
made three major modifications of which only
the last one is restricted to the in-class recogni-
tion task, i.e., a task in which objects belonging
to one known class have to be recognized.

Phase information was used for a more ac-
curate positioning of the nodes at the fiducial
points.

Object adapted graphs were introduced to deal
with different views. The nodes then are related
to fiducial object points and the graph geometry



changes depending on the 3D structure of the
object.

The general face knowledge is the only new
concept tailored to face recognition or rather in-
class recognition. By combining jets of a rel-
atively small set of model graphs, a large face
space can be covered.

The modified system has several advantages.
Firstly the previous system [3] matched each
model of the gallery separately to the face im-
age. By introducing the general face knowledge
and by using phase information, image graphs
can be generated with no model knowledge about
the individual persons. This allows separating
the graph generation phase from the recognition
phase, which makes the system much faster by
generating an image graph only once and not for
each model repeatedly.

Secondly the object adapted graphs provide
means to deal with a set of different poses. Nodes
can refer to the same fiducial points regardless of
viewing direction. It also becomes possible to fo-
cus on points of special interest or reliability.

Thirdly the use of phase information provides
relatively precise node locations that can poten-
tially be used as an additional recognition or
feature determination cue. So far only the jets
are evaluated. Previously the localization of the
nodes was very rough and of little use for the
recognition.

The system requires some manual control when
generating a general face knowledge. Apart from
this, no training is required to build a gallery of
new faces to recognize. The models are generated
automatically, stored, and compared by a simple
similarity function. Only one model per person is
required. Nevertheless, different kinds of learning
can be introduced. Experiments have been made
with jet transformations to account for rotation
in depth [16] and with local weights to emphasize
reliable nodes [17].
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