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Temporal slowness is a learning principle that allows learning of invari-
ant representations by extracting slowly varying features from quickly
varying input signals. Slow feature analysis (SFA) is an ef�cient algo-
rithm based on this principle and has been applied to the learning of
translation, scale, and other invariances in a simple model of the visual
system. Here, a theoretical analysis of the optimization problem solved
by SFA is presented, which provides a deeper understanding of the sim-
ulation results obtained in previous studies.

1 Introduction

Temporal slowness as a learning principle is based on the observation that
the environment, primary sensory signals, and internal representations of
the environment change on different timescales. Our environment (e.g. the
objects we see around us) changes usually on a slow time scale of several
seconds. Primary sensory signals, on the other hand, such as the responses
of single receptors in the retina, change on a faster timescale, because even a
small eye movement or shift of a textured object may lead to a rapid change
of light intensity received by a receptor neuron. The internal representation
of the environment, �nally, should vary on a similar timescale as the en-
vironment itself—on a slow timescale. The sensory system has access not
to the environment but only to the primary sensory signal. The learning
principle now assumes that if we succeed in extracting slowly varying fea-
tures from the quickly varying sensory signal in a nontrivial way, then it is
likely that we obtain a useful representation of the environment, which is
in addition invariant or at least robust to frequent transformations of the
sensory input, such as visual translation, scaling, rotation, or zoom.

This approach to unsupervised learning of invariant representations has
been taken by a number of researchers since the early 1990s (Földiák, 1991;
Mitchison, 1991; Becker & Hinton, 1992; O’Reilly & Johnson, 1994; Stone
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& Bray, 1995; Wallis & Rolls, 1997; Peng, Sha, Gan, & Wei, 1998; Kayser,
Einhäuser, Dümmer, & König, 2001; Wiskott & Sejnowski, 2002) and an
earlier description of the principle can be found in Hinton (1989). Compu-
tational models based on the principleof temporal slowness have been quite
successful in learning invariances in a number of contexts (see references
above) and in reproducing receptive �eld properties of the primary visual
cortex (Kayser et al., 2001; Berkes & Wiskott, 2002). However, there have
been no attempts to also investigate the learning principle analytically in
order to determine what kind of responses one might ideally expect from
such a system. This article is a direct supplement to Wiskott and Sejnowski
(2002) and attempts to understand analytically some of the results that have
been found numerically.

The article is structured as follows. First, the learning problem is stated
in its full complexity as an optimization problem of variational calculus.
Then a simpli�ed optimization problem is derived that is more amenable to
analytical treatment. A direct variational calculus approach for �nding op-
timal solutions of the simpli�ed optimization problem is given in section 4.
Section 5 presents an alternative algebraic approach. In section 6, optimal
responses are derived for a number of different boundary conditions. This
includes a fairly detailed analysis of the results obtained in Wiskott and
Sejnowski (2002, Examples 4, 5). The article concludes with section 7.

2 The Full Optimization Problem

The problem of extracting slow features from a quickly varying input signal
can be formally stated as follows:

Optimization Problem 1. Given an I-dimensional input signal Ex.t/ D
.x1.t/; : : : ; xI.t//T with time t 2 [tA; tB] and . : : : /T indicating the transpose,
�nd an input-output function Eg.Ex/ D .g1.Ex/; : : : ; gJ.Ex//T generating the J-
dimensional output signal Ey.t/ D .y1.t/; : : : ; yJ.t//T with y j.t/ :D g j.Ex.t//
such that for each j 2 f1; : : : ; Jg

1 j :D 1.yj/ :D hPy2
j i is minimal (2.1)

under the constraints

hy ji D 0 (zero mean); (2.2)

hy2
j i D 1 (unit variance); (2.3)

8k < j : hyk y ji D 0 (decorrelation); (2.4)

where the dot in Py j indicates the temporal derivative and angle brackets
indicate temporal averaging: h f i :D 1

tB¡tA

R tB

tA
f .t/ dt.
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Equation 2.1 expresses the primary objective of temporal slowness by
minimizing the temporal variation of the output signal. Constraints 2.2
and 2.3 help avoid the trivial solution yj.t/ D const. Constraint 2.4 guar-
antees that different output signal components carry different information
and do not simply reproduce each other. It also induces an order, so that
y1.t/ is the optimal output signal component, while y2.t/ is a less optimal
one, since it obeys the additional constraint hy1 y2i D 0. Thus, 1.yk/ · 1.yj/

if k < j.

3 The Simpli�ed Optimization Problem

Optimization problem 1 is too dif�cult to solve analytically in most practical
cases. To simplify the problem, we will now ignore the input signal and
determine the optimal free output signal. The term free shall indicate the
lack of constraints from an input signal or a class of input-output functions,
but it permits constraints on the output signal itself, such as cyclic boundary
conditions. Thereby, we can investigate theoretically how the system would
respond under idealized conditions. We formulate a simpler problem:

Optimization Problem 2. Find a J-dimensional output signal Ey.t/ D
.y1.t/; : : : ; yJ.t//T with t 2 [tA; tB] such that for each j 2 f1; : : : ; Jg;

1j :D 1.y j/ :D hPy2
j i is minimal (3.1)

under the constraints

hy ji D 0 (zero mean); (3.2)

hy2
j i D 1 (unit variance); (3.3)

8 k < j : hyk y ji D 0 (decorrelation); (3.4)

and possibly some boundary conditions, such as

y j.tA/ D y jA; (3.5)

y j.tB/ D y jB: (3.6)

This problem can be analyzed with different methods. We will �rst ap-
ply standard variational calculus and then develop an alternative algebraic
approach. In the following, the term response will be used as a synonym
for the term output signal component for brevity. In the context of theoreti-
cal considerations, responses are continuous functions, while in computer
simulations, they are discretely sampled.

4 Variational Calculus Approach

The direct and most general approach is variational calculus. From objec-
tive 3.1 and constraints 3.2 through 3.4, we derive the Lagrangian function
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for y j:

L.t; yj; Pyj; ¸ j0; ¸ jj; ¸jk/ :D
1
2

Py2
j .t/ C ¸j0y j.t/ C ¸ jj

1
2

y2
j .t/

C
X

k<j

¸ jky j.t/yk.t/; (4.1)

where objective 3.1 and constraint 3.3 have been multipliedby a factor of 1/2
for mathematical convenience without loss of generality. The corresponding
Euler-Lagrange equation is

@

@y j
L ¡

d
dt

@

@ Py j
L D ¸j0 C ¸ jjy j.t/ C

X

k<j

¸jkyk.t/ ¡ Ryj.t/ D 0: (4.2)

Any solutionof optimizationproblem 2 solves this differential equation. The
free parameters ¸ j0, ¸jj and ¸ jk have to be chosen such that the constraints
and boundary conditions are ful�lled. If no boundary conditions are given,
they have to be varied to �nd the optimal solution. Notice that there may be
solutions to equation 4.2 that are not solutions of optimization problem 2,
because the Euler-Lagrange equation is only a necessary condition but not
a suf�cient one. If several solutions of the Euler-Lagrange equation exist,
the optimal one has to be selected by additional considerations. The family
of functions solving the Euler-Lagrange equation is given by:

Theorem 1. The optimal free responses for optimization problem 2 have the form

y j.t/ D
X

k<j

d jkyk.t/

C

8
><

>:

¡cj=¸jj C aj sin.
p

¡¸ jj t/ C bj cos.
p

¡¸jj t/ if ¸jj < 0

cj t2=2 C aj C b j t if ¸jj D 0
¡cj=¸jj C aj exp.C

p
¸ jj t/C bj exp.¡

p
¸ jj t/ if ¸jj > 0

(4.3)

with cj :D .¸j0¡
P

k<j d jk¸k0/ and djk chosen such that
¡
¸ jjd jk C ¸ jk

¢
D

P
l<j d jl¸lk

for all k < j.

Proof. First we notice that the Euler-Lagrange equation, 4.2, is an inho-
mogeneous linear differential equation with constant coef�cients. Thus, its
general solution yj is the sum of a particular solution ypj of the inhomoge-
neous equation and the general solution ygj of the corresponding homoge-
neous equation—y j.t/ D ypj.t/ C ygj.t/. Since the Euler-Lagrange equation
is of second order, the general solution ygj of the homogeneous equation is
an arbitrary linear combination of two linearly independent functions. ygj
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is easy to �nd and has the same form for all j:

ygj.t/ :D

8
><

>:

a j sin.
p

¡¸jj t/ C b j cos.
p

¡¸ jj t/ if ¸ jj < 0

a j C bj t if ¸ jj D 0

a j exp.C
p

¸jj t/C bj exp.¡
p

¸jj t/ if ¸ jj > 0.
(4.4)

Which of these three types of solutions is the correct one depends on the
boundary conditions y j.tA/ D y jA and y j.tB/ D y jB. Numerical analysis of
several examples indicates that in general, the exponential solution is the
correct one if one or both of the boundary values y jA and y jB are large in
magnitude and that the oscillatorysolution is the correctone if the boundary
values are close to zero or can be optimized freely. If at least one boundary
value yjA or y jB is large, the unit variance constraint requires the response
to quickly go close to zero and stay there most of the time, which leads to
the exponential solution. If none of the boundary values is constrained to
be large, the oscillatory solution is preferable, because then the steep sec-
tions of the response, which are expensive in terms of the primary objective
of slowness, are near zero, where they are most ef�cient in increasing the
variance of the signal to ful�ll the unit variance constraint. The linear solu-
tion marks the transition between these two cases. These are only intuitive
arguments, of course, but since later we will use this variational calculus
approach merely in a suggestive way to guess the right solutions, a more
rigorous treatment of this issue is not necessary here. In this article, the
boundary values are usually either close to zero or free to be optimized, so
that the oscillatory solution is the common one.

The particular solutions ypj can be derived by mathematical induction.
Part 1 (basis of induction): For j D 1 it is easy to show that

yp1.t/ :D
(

¡ ¸10
¸11

if ¸11 6D 0
¸10
2 t2 if ¸11 D 0

(4.5)

is a particular solution of the Euler-Lagrange equation (4.2).1

Part 2 (inductive step): Assume theorem 1 is true for all yk with k < j. It
can then be shown that a particular solution of the Euler-Lagrange equation,

1 For j D 1, there is no k < j, and the Euler-Lagrange equation, 4.2, for yp1 simpli�es to

¸10 C ¸11yp1.t/ ¡ Ryp1.t/ D 0:

Inserting yp1 and its second derivative,

Ryp1.t/ D
»

0 if ¸11 6D 0
¸10 if ¸11 D 0;
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4.2, for j is given by

ypj.t/ :D
X

k<j

d jkyk.t/ C
(

¡cj=¸jj if ¸ jj 6D 0

cj t2=2 if ¸ jj D 0,
(4.6)

if the parameters cj and d jk are chosen according to theorem 1.2 Adding the
particular solution ypj to the general solution ygj de�ned by equation 4.4
yields yj as de�ned by equation 4.3.

yields the true statements

¸10 C ¸11

±
¡ ¸10

¸11

²
¡ 0 D 0 if ¸11 6D 0;

¸10 C ¸11|{z}
D0

¸10

2
t2 ¡ ¸10 D 0 if ¸11 D 0:

2 Inserting ypj and its second derivative,

Rypj.t/ D
X

k< j

djk Ryk.t/ C
»

0 if ¸jj 6D 0
cj if ¸jj D 0

into the Euler-Lagrange equation, 4.2, yields

¸j0 C ¸jjypj.t/ C
X

k< j

¸jkyk.t/ ¡ Rypj.t/

D ¸j0 ¡ c j C
X

k< j

¡
¸jjdjk C ¸jk

¢
yk.t/ ¡

X

k< j

d jk Ryk.t/

(this holds for ¸jj D 0 and ¸jj 6D 0)

D
X

k< j

djk¸k0 C
X

k< j

¡
¸jjd jk C ¸jk

¢
yk.t/ ¡

X

k< j

djk Ryk.t/

(since cj :D .¸j0 ¡
P

k< j d jk¸k0/)

D
X

k< j

djk¸k0 C
X

k< j

X

l< j

djl¸lkyk.t/ ¡
X

k< j

djk Ryk.t/

(since we chose d jk such that
¡
¸jjdjk C ¸jk

¢
D

P
l< j djl¸lk for all k < j)

D
X

k< j

djk¸k0 C
X

l< j

X

k·l

djl¸lkyk.t/ ¡
X

k< j

djk Ryk.t/

(since ¸lk D 0 for all l < k)

D
X

k< j

djk¸k0 C
X

k< j

d jk

X

l·k

¸klyl.t/ ¡
X

k< j

djk Ryk.t/
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This variational calculus approach shows that the optimal free responses
are typically oscillatory (or exponential, if the boundary values are large in
magnitude). However, this kind of analysis is dif�cult for later responses
with higher index j and more complex boundary conditions, for example, if
the solutionhas to be constant over a certain time interval. In the next section,
we take a different approach that turns out to be simpler and morepowerful.

5 Algebraic Approach

In the variational calculus approach, the goal was to �nd optimal responses
within an in�nite-dimensional function space. In the algebraic approach,
we con�ne our analysis to a �nite-dimensional space with dimensionality
N. This is not a serious limitation, since in computer simulations, the output
signals have a �nite dimensionality in any case and the dimensionality ofour
analysis can be arbitrarily high. Furthermore, we assume that the responses
are continuous functions (to exclude steps), piecewise differentiable, and
of L2 (so that we may de�ne an inner product of the form

R
a.t/b.t/ dt).

For simplicity, we also assume that the responses we are looking for span
the whole N-dimensional signal space, which implies J D N. This is again
no real limitation, since earlier responses are not affected in any way by
later ones and we can always discard later ones if we are not interested in
that many responses. These restrictions permit a much more elegant and
powerful analysis with algebraic methods following closely the logic of the
SFA-Algorithm (Wiskott & Sejnowski, 2002).

Assume the J-dimensional space of responses we consider is given by a
basis of linearly independent functions a1.t/; : : : ; aJ.t/ with zero mean. From
such a basis, we can always derive an orthonormal basis b1.t/; : : : ; bJ.t/ with
the inner product de�ned by habi :D 1

tB¡tA

R tB

tA
a.t/b.t/ dt. Let C denote the

covariance matrix with Cmn :D hbmbni and PC denote the matrix of the inner
products of the time derivatives with PCmn :D hPbm Pbni. PC, like C, has full rank,
because the Pbm are linearly independent, since they are derived from the
linearly independent bm by an invertible linear transformation. Notice also

D
X

k< j

djk

Á
¸k0 C ¸kkyk.t/ C

X

l<k

¸klyl.t/ ¡ Ryk.t/

!

| {z }
D0

D 0 (4.7)

(since each yk solves its corresponding Euler-Lagrange equation, 4.2).

To determine the .J ¡ 1/ free parameters djk , a linear system of .J ¡ 1/ equations must be
solved. For such a system, a solution always exists. If the equations are not all linearly
independent, the solution may not be unique. Thus, ypj may not be uniquely determined.
However, this is not a problem since we need only one particular solution to the Euler-
Lagrange equation 4.2.
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that PC is not a covariance matrix of the time derivatives, because the latter do
not necessarily have zero mean. Since the functions bm are orthonormal, they
have notonlyzero mean but also unit variance, and are mutually orthogonal,
that is, uncorrelated, so that C D 1, with 1 indicating the unit matrix. The
orientation of the orthonormal basis in space, however, is arbitrary.

Any valid response yj is a linear combination of the basis functions—
y j.t/ D

P
m w jmbm.t/, with weight vector Ew j D .wj1; : : : ; wjJ/

T . For a com-
plete set of weight vectors Ew j; j 2 f1; : : : ; Jg, optimization problem 2 simpli-
�es as follows:

minimize 1 j D h Py2
j i D

X

mn
w jmh Pbm

Pbniwjn D EwT
j

PC Ewj (5.1)

under the constraints

hyji D
X

m
w jm hbmi|{z}

D0

D 0 (zero mean); (5.2)

hy2
j i D

X

mn
w jmhbmbniwjn

D EwT
j C|{z}

D1

Ewj D EwT
j Ew j D 1 (unit variance); (5.3)

8 k < j : hyk yji D
X

mn
w jmhbmbniwkn

D EwT
j C|{z}

D1

Ewk D EwT
j Ewk D 0 (decorrelation): (5.4)

Constraint 5.2 is ful�lled automatically, since the basis functions have zero
mean. Constraints 5.3 and 5.4 are ful�lled if and only if the weight vec-
tors are orthonormal. 11 is obviously minimal, if the (normalized) weight
vector Ew1 is the eigenvector of PC with smallest eigenvalue. Ew2 has to be cho-
sen to correspond to the eigenvector with the second smallest eigenvalue
(assuming nondegenerate eigenvalues), in order to yield a minimal value
for 12 under the decorrelation constraint, equation 5.4. Similar arguments
also hold for all other weight vectors, so that setting the weight vectors
to the normalized eigenvectors of matrix PC ordered by increasing eigen-
value yields the (in general) unique solution of optimization problem 2 for
a �nite-dimensional space of responses. The 1-values correspond to the
eigenvalues, since

1 j D EwT
j

PC Ew j D ¸j EwT
j Ewj D ¸j: (5.5)

Notice that also the mixed inner products of the time derivatives of the
responses vanish, which means that the time derivatives are mutually or-
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thogonal, since

8 k 6D j : h Pyk Py ji D
X

mn
w jmh Pbm

Pbniwkn D EwT
j

PC Ewk D ¸k EwT
j Ewk D 0: (5.6)

This is a curious observation. Orthogonality of the time derivatives is even a
suf�cient criterion for a solution of optimization problem 2 under the given
constraints, because only a set of eigenvectors of matrix PC yields functions
with orthogonal time derivatives. As a consequence, any orthogonal set of
functions with zero mean and unit variance for which the time derivatives
also are mutually orthogonal forms a solution of optimization problem 2
within the space of responses spanned by these functions. This �nding is so
important that we state it as a theorem:

Theorem 2. A set of functions y j with the properties

hyji D 0 (zero mean) (5.7)

hy2
j i D 1 (unit variance) (5.8)

hy jyki D 0 (decorrelation) (5.9)

h Py j Pyki D 0 (orthogonal time derivatives) (5.10)

j · k ) 1 j · 1k (order by slowness) (5.11)

is a solution of optimization problem 2 within the space Y spanned by these functions
y j. Such a function set is called 1-optimal.

Notice that it is equivalent to say that two functions y j and yk are uncor-
related or that they are orthogonal, because the functions have zero mean.
This is not true for the time derivatives, which must be orthogonal but not
necessarily uncorrelated, because they may not have zero mean.

As mentioned above, the 1-optimal set of functions y j is unique (except
for the signs) only if the eigenvalues of matrix PC are all different. If there are
several orthonormal eigenvectors (weight vectors Ew j) with identical eigen-
values (1-values 1j), these eigenvectors de�ne a subspace within which
any other set of orthonormal vectors (weight vectors Ew0

j) is an equally valid
set of eigenvectors. Thus, if we replace Ewj by Ew0

j, we obtain again a 1-optimal
set. Since the argument holds for any subset of weight vectors with identical
1-value and since for a speci�c 1-value the new weight vectors Ew0

j can be
written as orthogonal linear combinations of the old weight vectors Ew j, we
can state the following corollary:

Corollary 1. Let fy j j j D 1; : : : ; Jg be a 1-optimal set of functions with 1-
values 1 j. If U is an orthogonal J £ J matrix with a block structure such that
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U jp D 0 if 1j 6D 1p, then the transformed set of functions fy0
j j j D 1; : : : ; Jg with

y0
j.t/ D

P
p U jpyp.t/ is also 1-optimal with the same 1-values as fyjg.

It is easy to prove this corollary in a direct fashion.3 Another trivial but
useful consequence of theorem 2 is:

Corollary 2. Given are two 1-optimal function sets fyjg and fy0
kg spanning the

spaces Y and Y0. If all functions in Y are orthogonal to all functions in Y0, that is,
hyjy0

ki D 0 8 j; k, and the same holds true for the time derivatives, h Pyj Py0
ki D 0 8 j; k,

then the union of fyjg and fy0
kg ordered by its 1-values forms a 1-optimal set of the

union of the spaces Y and Y0.

This corollary justi�es to consider odd and even functions separately, since
these as well as their time derivatives are mutually orthogonal for symmetry
reasons.

In the following, we will consider some 1-optimal sets of functions for
different boundary conditions.

3 We know that
P

p U jpUkp D ±jk , since U is orthogonal, and Ujp1p D Ujp1j, since
Ujp D 0 if 1j 6D 1p. Thus,

hy0
ji D

*
X

p

Ujpyp

+
D

X

p

U jp hypi|{z}
D0

D 0;

hy0
jy

0
ki D

*Á
X

p

Ujpyp

! Á
X

q

Ukqyq

!+

D
X

pq

UjpUkq hypyqi| {z }
D±pq

D
X

p

U jpUkp D ±jk;

h Py0
j Py

0
ki D

*Á
X

p

Ujp Pyp

! Á
X

q

Ukq Pyq

!+

D
X

pq

UjpUkq h Pyp Pyqi| {z }
D±pq1p

D
X

p

U jpUkp1p

D
X

p

UjpUkp1 j D 1 j

X

p

UjpUkp

| {z }
± jk

D 1j±jk ;

and the set fy0
jg is 1-optimal according to theorem 2 with the same 1-values as fyjg.
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6 Optimal Free Responses

Before considering sets of 1-optimal free responses, it is useful to introduce
a measure of invariance that has a more intuitive interpretation than the
1-value. We use here the index ´ (Wiskott & Sejnowski, 2002) de�ned by

´.y/ :D D
2¼

p
1.y/ (6.1)

if t 2 [tA; tA C D]. For a pure sine wave y.t/ :D
p

2 sin.n 2¼ t=D/ with
an integer number of oscillations n, the index ´.y/ is just the number of
oscillations—´ D n. Thus, the index ´ of an arbitrary signal indicates what
the number of oscillations would be for a pure sine wave of same 1-value,
at least for integer values of ´. We also de�ne ´ j :D ´.y j/.

We will now consider some examples of 1-optimal sets of responses. The
considerations are mainly based on theorem 2.

6.1 Cyclic Boundary Condition. What is the 1-optimal set of responses
with cyclic boundary condition on the interval [tA; tB]? We know from
Fourier analysis that any continuous function with cyclic boundary con-
dition on this interval can be written as a sum of sine and cosine functions
sin.n2¼ t¡tA

D / and cos.n2¼ t¡tA
D / with integers n and D :D tB ¡ tA. We also

know that these functions as well as their time derivatives are mutually or-
thogonal (which does not mean that the functions are orthogonal to the time
derivatives). Thus, the set of all sine and cosine functions up to a maximum
frequency,

y j.t/ D
( p

2 sin
¡
. j C 1/¼ t¡tA

D

¢
if j odd

p
2 cos

¡
j¼ t¡tA

D

¢
if j even

t 2 [tA; tB]; (6.2)

´j D
(

.j C 1/=2 if j odd

j=2 if j even
; (6.3)

forms a 1-optimal set, with . j C 1/=2 and j=2 full oscillations for odd and
even j, respectively, resulting in the corresponding ´-values (see Figure 1).
This set is not unique, however, since successive pairs of functions have
identical ´-values.

6.2 Free Boundary Conditions. Consider now the more general case of
all continuous functions on the interval [tA; tB] without any further bound-
ary condition. What is the corresponding 1-optimal set? Assume [tA; tB] D
[0; ¼] for simplicity and without loss of generality. Any function with free
boundary condition on the interval [0; ¼ ] can be considered one-half of a
corresponding even function on the interval [¡¼; ¼ ]. Since we know from
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h hhh = 1 = 1 = 2321 4= 2

y 4
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)
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Figure 1: First four 1-optimal responses for the cyclic boundary condition. t-
axes range from tA to tB; y-axes range from ¡4 to C4.
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y 1
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2= 1
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Figure 2: First four 1-optimal responses for the free boundary condition. t-axes
range from tA to tB; y-axes range from ¡4 to C4.

Fourier analysis that the cosine functions cos.nt/ with integers n span the
space of even functions on [¡¼; ¼ ], they also span the space of any functions
on [0; ¼]. For symmetry reasons,

Z 0

¡¼

cos.jt/ cos.kt/ dt D
Z C¼

0
cos. jt/ cos.kt/ dt:

Thus, since these functions are orthogonal on the interval [¡¼; ¼], they are
also orthogonal on the interval [0; ¼ ]. Similar arguments hold for the time
derivatives. Generalizing these considerations to the interval [tA; tB] leads
to the 1-optimal set:

yj.t/ D
p

2 cos
³

j¼
t ¡ tA

D

´
t 2 [tA; tB]; (6.4)

´ j D j=2: (6.5)

This set is unique (except for the signs), since each function has a different
´-value. The �rst four functions are shown in Figure 2.

6.3 One Pattern. After the simple cases of cyclic and free boundary con-
ditions, which give a �rst intuition of the nature of typical 1-optimal sets, we



Slow Feature Analysis 2159

willnow deriveresults for examples 4 and 5 in Wiskott and Sejnowski (2002).
In these examples, a hierarchical network performing SFA was considered
as a simple model of the visual system. The network had a one-dimensional
retina as an input layer and nine units in the output layer, extracting the
�rst nine responses yj . The network was trained with several patterns that
were presented one by one to the retina for a certain amount of time and
with intermissions of no pattern presentation in between. The patterns were
either moved translationally across the retina or they changed according to
some other transformation (scale, 1D-rotation angle, contrast, illumination)
or a combination of them. Here we relate only to simulation results ob-
tained for translation and scale invariance; cf. (Wiskott & Sejnowski, 2002,
Figs. 11, 21) and Figure 10. A boundary condition that this training sched-
ule imposes on the output signal and that we can consider in our current
analysis is that the responses have the same constant values during all the
time intervals where no pattern is presented to the network. In case of size
invariance, due to the symmetry of the training with patterns increasing and
decreasing in size, there is the additional constraint that the responses to
single patterns must be even. Thus, odd responses must be disregarded in a
comparison with the size invariance simulations of Wiskott and Sejnowski
(2002).

First, consider the simplest case of one pattern presentation. Let [tA; tB]
be the total time interval considered and [ta; tb] ½ [tA; tB] the shorter time
interval during which the pattern is presented to the network. The bound-
ary condition requires y j.t/ D cj; 8t 2 [tA; tB]n[ta; tb] with suit-
able constants cj . What is the corresponding 1-optimal set of
responses?

Consider �rst an approximation by taking the limit .tB ¡ tA/ ! 1.
In that case, cj ! 0 due to the zero-mean constraint and any average
value of y j within the interval [ta; tb] can be compensated for by an in-
�nitesimally small value of cj . Assuming cj D 0 and without the need to
respect the zero-mean constraint within the interval [ta; tb], one can guess
in analogy to the previous examples that a 1-optimal set is approximately
given by

y j.t/ D
( p

2D=d sin
¡
j¼ t¡ta

d

¢
if t 2 [ta; tb]

0 otherwise,
(6.6)

´j D jD=.2d/; (6.7)

with D :D tB ¡ tA and d :D tb ¡ ta. The �rst four responses of this set are
shown in Figure 3.

For an intuitive understanding of this set, assume, without loss of gen-
erality, ta D ¡¼ and tb D C¼ . The functions with even index j can then be
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Figure 3: First four approximate 1-optimal responses for the single pattern
boundary condition. D D 150 and d D 85; t-axes range from tA to tB; y-axes
range from ¡4 to C4. y1 and y3 do not have zero mean, while y2 and y4 have.
Notice also that ´1 has an unrealistically low value, because the lowest possible
´-value under the weaker cyclic boundary condition is 1 (cf. equation 6.3 and
Figure 1).

written as y j.t/ D
p

D=¼ .¡1/
j
2 sin.

j
2 t/.4 These are full sine waves with an

integer number of oscillations within the interval [¡¼; C¼ ]. Thus, they are
odd functions and therefore have zero mean exactly even for �nite D, they
are mutually orthogonal, and their timederivatives are mutually orthogonal
too. Hence, this set of odd functions (with even index) forms a 1-optimal
set, and from Fourier analysis it is known that they span the space of all
continuous odd functions with boundary condition y.¡¼/ D y.C¼/ D 0
(up to a certain frequency if j is limited).

The functions with odd index j can be written as y j.t/ D
p

D=¼ .¡1/
j¡1
2

£ cos. j
2 t/.5 These are cosine waves with an integer number of oscillations

minus half an oscillation within the interval [¡¼; C¼ ]. Thus, they are even
functions, and for symmetry reasons, they as well as their time deriva-
tives are orthogonal to each other (following an argumentation similar to

4 For even j,

yj.t/ D
p

2D=.2¼/ sin
±

j¼
t ¡ .¡¼/

2¼

²
D

p
D=¼ sin

± j
2

t C
j
2

¼

²

D
p

D=¼ .¡1/
j
2 sin

± j
2

t
²

:

5 For odd j,

yj.t/ D
p

2D=.2¼/ sin
±

j¼
t ¡ .¡¼/

2¼

²
D

p
D=¼ sin

± j
2

t C
j ¡ 1

2
¼ C 1

2
¼

²

D
p

D=¼ .¡1/
j¡1
2 cos

± j
2

t
²

:
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that in section 6.2; a mathematical proof is given below). However, their
mean value does not vanish for �nite D, which means that they ful�ll the
requirements of a 1-optimal set exactly only in the limit D ! 1 and ap-
proximately for �nite D. From Fourier analysis, it can be inferred that they
span the space of all continuous even functions with boundary condition
y.¡¼/ D y.C¼/ D 0 (up to a certain frequency if j is limited). This can be
seen as follows. We know from section 6.2 that the set fcos.

j
2 t/g spans the

space of all continuous functions with free boundary conditions on the in-
terval [0; 2¼]. Taking only the functions with odd index value yields a set
that spans the space of all functions with an odd symmetry with respect
to the reference point C¼ and free boundary conditions on the interval
[0; 2¼ ]. For symmetry reasons, this same set also spans the space of all func-
tions with boundary condition y.C¼/ D 0 on the interval [0; C¼ ] and the
space of all even functions (with reference point 0) with boundary condi-
tion y.¡¼/ D y.C¼/ D 0 on the interval [¡¼; C¼ ]. The latter is the required
result.

Taking together odd and even functions of equation 6.6, they span the
space ofall continuous functions with boundary condition y.¡¼/ D y.C¼/ D
0 on the interval [¡¼; C¼ ]. It can also be shown more formally that equa-
tion 6.6 de�nes a 1-optimal set in the limit D ! 1 and that it ful�lls the
conditions for a 1-optimal set approximately for �nite D. 6 Unfortunately,

6 With equation 6.6 we can verify that

hyji D 1
D

tBZ

tA

yj.t/ dt D

p
2D=d

D

tbZ

ta

sin
±

j¼
t ¡ ta

d

²
dt

D

r
2

Dd

j¼Z

0

sin.t0/
d
j¼

dt0

D

r
2d
D

1
j¼

.1 ¡ cos.j¼//

D

(q
2d
D

2
j¼ for odd j

0 for even j

H) lim
D!1

hyji D 0;

hyjyki D 1
D

tBZ

tA

yj.t/yk.t/ dt D 2D=d
D

tbZ

ta

sin
±

j¼
t ¡ ta

d

²
sin

±
k¼

t ¡ ta

d

²
dt

D
2
d

¼Z

0

sin.jt0/ sin.kt0/
d
¼

dt0 D
1
¼

C¼Z

¡¼

sin.jt0/ sin.kt0/ dt0 D
»

0 if j 6D k
1 if j D k :
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the latter is only suggestive and does not necessarily imply that the given
y j are an approximation of the true 1-optimal set for �nite D. However, it
can be veri�ed numerically that this is indeed the case. Notice also that the
conditions for a 1-optimal set are ful�lled exactly by the set of odd func-
tions yj (with even index j) because they have zero mean within the interval
[ta; tb], which means that at least they form a 1-optimal set for �nite D, but
they span only part of the interesting function space.

To determine at least the �rst 1-optimal even function exactly for the
single pattern boundary condition, we can take the variational calculus
approach. To simplify the analysis and without loss of generality, assume
tA D ¡tB and ta D ¡tb. We infer from section 4 that the �rst 1-optimal
even function is of the form y1.t/ D ¡¸10=¸11 C b1 cos.

p
¡¸11 t/, since (1) the

solution with ¸11 < 0 is selected because the boundary value c1 can be
optimized freely, (2) there are no terms with constants d1k because no k < 1
exist, and (3) a1 D 0 because the solution has to be even. The constants
¸10; ¸11, and b1 have to be chosen such that y1 ful�lls the constraints 3.2 and
3.3 and optimizes the 1-value 3.1. I have found numerically with standard
optimization techniques that the optimal ¸10 is close to zero for all valid
values of tB; tA; tb, and ta. Assuming vanishing ¸10, setting a1 D b1 and
! D

p
¡¸11, generalizing to arbitrary values of ta and tb, and taking into

The second last step is valid, because sin.jt0/ and sin.kt0/ are odd functions and the product
sin.jt0/ sin.kt0/ therefore an even function. Thus, the integral over [0; C¼] can be replaced
by the integral over [¡¼; C¼ ] divided by 2. The last step is valid, because sine waves
with different but integer numbers of oscillations are orthogonal (case j 6D k) and becauseR C¼

¡¼
sin2.jt0/ dt0 D ¼ (case j D k).

For the time derivatives Py j we �nd similarly

h Pyj Pyki D
1
D

tBZ

tA

Py j.t/ Pyk.t/ dt

D 2D=d
D

jk¼ 2

d2

tbZ

ta

cos
±

j¼
t ¡ ta

d

²
cos

±
k¼

t ¡ ta

d

²
dt

D
2jk¼ 2

d3

¼Z

0

cos.jt0/ cos.kt0/
d
¼

dt0 D
jk¼

d2

C¼Z

¡¼

cos.jt0/ cos.kt0/ dt0

D
»

0 for j 6D k
j2¼2

d2 for j D k

´j D D
2¼

q
h Py2

j i D
Dj
2d

:

Notice that the conditions hyjyki D ±jk and h Py j Pyki D ±jk1 j are ful�lled exactly even for
�nite D.
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account the zero mean and unit variance constraints, we have7 for j D 1

y j.t/ D
(

a j cos
±
! j

2t¡.taCtb/
d

²
if t 2 [ta; tb]

aj cos.! j/ otherwise
; (6.8)

with

tan.! j/

! j
D ¡.D=d ¡ 1/ and ! j 2 .j¼=2; .j C 1/¼=2]; (6.9)

aj D
q

2=
¡
1C

¡
1¡d=D

¢
cos.2! j/C.d=D/ sin.2! j/=.2! j/

¢
; (6.10)

7 Assuming ta D ¡tb for simplicity and without loss of generality and dropping index
j D 1 for notational convenience, we have

y.t/ D
»

a cos
¡
! 2t

d

¢
if t 2 [¡tb; tb]

a cos.!/ otherwise

.with ! 2 .¼=2; ¼] and a > 0/

0
!D hyi D

0

BBB@
.D ¡ d/a cos.!/ C a

Z tb

¡tb

cos
±

!
2t
d

²
dt

| {z }
d sin.!/=!

1

CCCA

.
D

()
tan.!/

!
D ¡.D=d ¡ 1/ .since cos.!/ 6D 0/

1
!D hy2i D

0

BBB@
.D ¡ d/a2 cos.!/2

| {z }
.1Ccos.2!//=2

C a2

Z tb

¡tb

cos
±

!
2t
d

²2

dt

| {z }
.dCd sin.2!/=.2!//=2

1

CCCA

.
D

D
¡
.D ¡ d/a2=2 C .D ¡ d/a2 cos.2!/=2

C a2d=2 C a2d sin.2!/=.2!/=2
¢

=D

D a2
¡
1 C .1 ¡ d=D/ cos.2!/ C .d=D/ sin.2!/=.2!/

¢
=2

() a D
q

2=
¡
1 C .1 ¡ d=D/ cos.2!/ C .d=D/ sin.2!/=.2!/

¢

.since a > 0/

h Py2i D a2
±

!
2
d

²2
Z tb

¡tb

sin
±

!
2t
d

²2
dt

| {z }
.d¡d sin.2!/=.2!//=2

.
D

D a2!.1=dD/.2! ¡ sin.2!//

() ´ D D
2¼

p
h Py2i D a

2¼

p
!.D=d/.2! ¡ sin.2!//:
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´j D
aj

2¼

q
!j.D=d/

¡
2! j ¡ sin.2! j/

¢
: (6.11)

If D and d are given, the optimal frequency ! j can be determined with
equation 6.9 and the optimal amplitude with equation 6.10. Equation 6.9
de�nes ! j only implicitly. Thus, it is helpful to draw the graphs of .D=d¡1/! j
and ¡ tan.! j/ in a common diagram and take their �rst nonzero intersection
as the solution. Such a graph is shown in Figure 4. It illustrates that ! j lies
between ¼=2 and ¼ . The intersection between 1:5¼ and 2¼ is suboptimal,
since it results in a larger ´-value (see equation 6.11). (It is also an illustrative
exercise to consider ! j as given and determine D as a function of d with
equation 6.9.)

Interestingly, it can be shown8 that the solutions belonging to different
intersections are mutually orthogonal and that also their timederivatives are

8 First we show that the inner product between y j and yk vanishes, again assuming
ta D ¡tb for simplicity and without loss of generality:

0
?D hy jyki D

³
.D ¡ d/a j cos.!j/ak cos.!k/

C ajak

Z tb

¡tr

cos
±

! j
2t
d

²
cos

±
!k

2t
d

²
dt

´ .
D

() 0 D .D ¡ d/ cos.! j/ cos.!k/

C
Z tb

¡tr

1
2

±
cos

±
.! j ¡ !k/

2t
d

²
C cos

±
.!j C !k/

2t
d

²²
dt

D .D ¡ d/ cos.! j/ cos.!k/ C
d sin.!j ¡ !k/

2.!j ¡ !k/

C
d sin.! j C !k/

2.!j C !k/
(since ! j 6D !k)

() 0 D .! j ¡ !k/.!j C !k/.D=d ¡ 1/ cos.!j/ cos.!k/

C .!j C !k/ sin.!j ¡ !k/=2 C .! j ¡ !k/ sin.!j C !k/=2

D .!2
j ¡ !2

k /.D=d ¡ 1/ cos.! j/ cos.!k/

C .!j C !k/.sin.! j/ cos.!k/ ¡ cos.!j/ sin.!k//=2

C .!j ¡ !k/.sin.! j/ cos.!k/ C cos.!j/ sin.!k//=2

D .!2
j ¡ !2

k /.D=d ¡ 1/ cos.! j/ cos.!k/

C !j sin.! j/ cos.!k/ ¡ !k cos.!j/ sin.!k/

() 0 D
.!2

j ¡ !2
k /

!2
j !

2
k

.D=d ¡ 1/ C 1

!2
k

sin.! j/

!j cos.! j/
¡ 1

!2
j

sin.!k/

!k cos.!k/

(since !2
j !

2
k cos.!j/ cos.!k/ 6D 0)

D

Á
1

!2
k

¡ 1

!2
j

!
.D=d ¡ 1/ ¡ 1

!2
k

.D=d ¡ 1/ C 1

!2
j

.D=d ¡ 1/
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orthogonal, so that they ful�ll the conditions of theorem 2 and therefore form
a 1-optimal set of responses. Thus, equations 6.8 through 6.11 can be taken
for all odd indices j up to some arbitrary limit (the exact responses for even
index j are still given by equations 6.6 and 6.7). However, it is not as clear as
in the previous sections that these responses actually span the space of all
continuous functions up to a certain frequency, because the term frequency
is not well de�ned here and we cannot resort to Fourier theory that easily.

To investigate this issue further, consider the limiting cases D D d and
D ! 1 for odd j. For D D d, we �nd ! j D . j C 1/¼=2 and aj D

p
2 so that y j

are equal to y.jC1/ for the cyclic boundary condition in section 6.1. If we let D
go to in�nity, we obtain limD!1 ! j D j¼=2. Taking the analytical limes of aj
is dif�cult since ! j is given only implicitly, but it is intuitively clear and can
be con�rmed numerically, that aj grows to large values. In this latter case,
the y j become equal to their approximate counterparts of equation 6.6. This
also holds for �nite D if j goes to in�nity.

Thus, in the limiting cases D D d and D ! 1 (or j ! 1), the responses
given by equations (6.8–6.10) converge to complete sets of all even functions
up to a certain frequency in the sense of Fourier theory. This at least suggests
that the exact 1-optimal set for one pattern (equation 6.6 for even index and
equations 6.8–6.10 for odd index j) is also complete up to a certain frequency.
The �rst four exact 1-optimal responses for the single pattern case are shown
in Figure 5.

(since
tan.! j/

! j
D ¡.D=d ¡ 1/ (6.9))

D 0

Then we show that also the time derivatives are orthogonal:

0
?D hPyj Pyki D ajak

±
!j

2
d

² ±
!k

2
d

² Z tb

¡tr

sin
±

! j
2t
d

²
sin

±
!k

2t
d

²
dt

.
D

() 0 D
Z tb

¡tr

1
2

±
cos

±
.! j ¡ !k/

2t
d

²
¡ cos

±
.! j C !k/

2t
d

²²
dt

D
d sin.!j ¡ !k/

2.! j ¡ !k/
¡

d sin.! j C !k/

2.! j C !k/
(since ! j 6D !k)

() 0 D .! j C !k/ sin.!j ¡ !k/=2 ¡ .!j ¡ !k/ sin.! j C !k/=2

D .! j C !k/
¡
sin.!j/ cos.!k/ ¡ cos.!j/ sin.!k/

¢
=2

¡ .! j ¡ !k/
¡
sin.!j/ cos.!k/ C cos.!j/ sin.!k/

¢
=2

D !k sin.!j/ cos.!k/ ¡ !j cos.! j/ sin.!k/

() 0 D
sin.! j/

!j cos.! j/
¡ sin.!k/

!k cos.!k/
(since !j!k cos.! j/ cos.!k/ 6D 0)

D 0 (since
tan.! j/

! j
D ¡.D=d ¡ 1/ (6.9))
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Figure 4: Illustration of the equation tan.!j/=! j D ¡.D=d¡1/ (see equation 6.9),
which implicitly de�nes !j. Shown are four branches of ¡ tan.!j/ and the line
.D=d ¡ 1/!j. The �rst intersection corresponding to !1 can lie on the section
drawn with a thick line. Thus, it is obvious that ¼=2 < !1 · ¼ . Frequencies
for higher odd indices are given by the other intersections with !j 2 . j¼=2; . j C
1/¼=2].

y
(t

)
4y
(t

)
2 y
(t

)
3

h = 1.191 h = 1.762 h3= 2.79 = 3.534h

tt tt

y 1
(t

)

Figure 5: The �rst four exact 1-optimal responses for the single pattern bound-
ary condition. D D 150 and d D 85; t-axes range from tA to tB ; y-axes range from
¡4 to C4. Notice that in contrast to Figure 3, ´1 now has a realistic value greater
than 1.

6.4 Multiple Patterns. Assume now that not only one but P different
patterns are presented to the network at different nonoverlapping time in-
tervals. The responses must then be functions that may vary within the
different time intervals in which a pattern is visible and are constant other-
wise. What is the 1-optimal set under these boundary conditions?

If we accept that the function set (6.6) is suf�ciently exact, the answer
is relatively simple. Since the time intervals of the different patterns are
nonoverlapping and the constant response is zero, it is obvious that the
functions of the 1-optimal sets of the different patterns, or different time
intervals, are all mutually orthogonal and that also their time derivatives
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are. Thus, according to corollary 2, a 1-optimal set for the multiple pattern
case is simply the union of the 1-optimal sets of all the single patterns, with
the functions ordered by their ´-values (see Figure 6).

If the time intervals of the patterns differ, the ´-values differ correspond-
ingly according to equation 6.6, and the 1-optimal set of functions is in
general unique. If the time intervals are of similar but not identical length,
the �rst unit responds with half a sine wave to the pattern visible within
the longest interval, the second unit to the pattern visible within the second
longest interval, and so forth. Then comeunits with full sine wave responses,
�rst to the pattern visible within the longest interval, then to the pattern vis-
ible within the second longest interval, and so forth. The picture would be
similar to Figure 6 but with slightly different intervals and ´-values. If one
pattern is presented for a much longer time interval than the others, leading
to overall smaller ´-values, the �rst few units may respond to this pattern,
the �rst unit with half a sine wave, the second unit with a full sine wave,
and so forth. Notice also that the response amplitude would be smaller for
patterns presented for longer times. In simulations like those shown in Fig-
ure 10 but with patterns of different size (15–30 units) and therefore different
presentation times (70–85 time steps), neither of these two effects was sig-
ni�cant. There was no clear tendency to represent large patterns only with
early components, and there was no negative correlation between pattern
size and response strength. Instead the representation of each pattern was
distributed over several output signal components as discussed in the next
section. This indicates that the computational power of the network was
not suf�cient to reproduce this theoretically predicted behavior.

6.4.1 Patterns of Same Duration. Consider now the case where the time
intervals have identical length, so that for P time intervals, there are P re-
sponses y j with identical ´-value, each one coming from a different pattern
and therefore varying only in one interval and not the others, as in Figure 6.
Focus on the responses with lowest ´-value, which have the shape of half
a sine wave, like y1 in equation 6.6. Let y j.tp/ be the value of response yj at
some reference point of time interval p—in other words, the response of unit
j to pattern p at a certain location or size with j; p 2 f1; : : : ; Pg—and assume
the responses are ordered such that unit j responds if p D j. The reference
points are the same for all intervals, and thus the response is the same for all
patterns (in their respective interval) and denoted by r. The responses y j.tp/

then form a P£P diagonal matrix Y with all diagonal elements equal r. The
responses of the P units to a single pattern p at the reference location form a
response vector .y1.tp/; : : : ; yP.tp//T , which is the pth column vector of ma-
trix Y. Since Y is a diagonal matrix, the response vectors for all P patterns
are mutually orthogonal, which is convenient if one wants to recognize the
patterns based on the responses.

We have seen above that since the ´-values of the responses y j; j D
1; : : : ; P are identical, they are not unique. Any orthogonal transforma-
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Figure 6: Approximate 1-optimal set of responses for three patterns. Each col-
umn p forms a 1-optimal set fyp;kg for a single pattern. United, they form a
1-optimal set fyjg for the corresponding three-pattern case. However, this set is
not unique, since the ´-values in each row are identical (cf. Figure 7). D D 150
and d D 85; t-axes cover an interval of length 3D; y-axes range from ¡4 to C4.

tion, written as an orthogonal P £P matrix U, on the vector of these re-
sponses would yield an equally valid 1-optimal set y0

j.t/ D
PP

pD1 Ujpyp.t/
for j D f1; : : : ; Pg (see Figure 7). The matrix of response vectors would
change correspondingly and yield Y0 D UY. In general, each unit would
then respond to each pattern to some extent, but still with half sine waves.
However, the column vectors of Y0 are still orthogonal. Thus, the response
vectors would still permit recognition of patterns equally well.

From another point of view, one can also argue that the decorrelation con-
straint causes the row vectors of Y0 to be orthogonal and the unit-variance
constraint causes them to have identical norm, so that the column vectors
are orthogonal and the patterns can be recognized well. Thus, the decorre-
lation constraint causes the system to generate different representations for
different patterns.

In the simulation experiments (Wiskott & Sejnowski, 2002), if trained on
a few patterns only, the response vectors were in fact close to orthogonal.
For more training patterns, the network did not produce as many half sine
wave responses as there were training patterns. Thus, the response vectors
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Figure 7: Approximate 1-optimal set of responses for three patterns. Functions
with identical ´-value can be mixed by any orthogonal transformation and still
form a 1-optimalset. Notice that eachof the three subsets belonging to a different
´-value has been mixed with a different orthogonal transformation. D D 150 and
d D 85; t-axes cover an interval of length 3D; y-axes range from ¡4 to C4.

could not all be mutually orthogonal. I found that in this situation, the
angle between any pair of response vectors would rarely be greater than
90 degrees, indicating that the response vectors mostly lie within a cone of
a 90 degree opening angle or possibly within a rotated hyperquadrant. This
also holds for testing patterns.

6.4.2 Where-Responses. The analysis given in the previous section is
based onthe assumption that the constant response during the intermissions
is zero. This corresponds to the approximation made in section 6.3 and holds
for D=d ! 1. The basic result is that in general, all of the �rst P units should
respond to all patterns with half a sine wave, but with different signs and
amplitudes, so that the responses are uncorrelated and the response vectors
are orthogonal. However, it is worth considering one particular response
that appears often in simulations in more detail, namely, the one that is (al-
most) identical for all patterns (see y1 of Figure 10). Such a response does
not differentiate between different patterns and provides information only
about their location or size. Thus, it can be referred to as a where-response.
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The others, which differentiate between different patterns, are correspond-
ingly referred to as what-responses. Notice that a what-response may still
convey some where-information.

Since a half sine wave where-response is identical for all patterns, the
optimal response is the one of the single pattern case simply duplicated P
times and the corresponding ´-value is multiplied by P. Thus, we can use
the exact function given by equation 6.8 (which is in fact not exactly half a
sine wave). As one can infer in the limit D ! d and can verify numerically,
the ´-value of such a response is in general higher than those with a zero
constant response.

If we accept that such a half sine wave where-response is always gen-
erated, because it has a different ´-value from the half sine wave what-
responses, it is easy to see that the decorrelation constraint guarantees that
the latter have zero mean exactly,9 although we have used the approxima-
tive form (6.6). Thus the constraints are ful�lled not only approximately but
exactly, which may be taken as an a posteriori justi�cation of the assumption
of zero constant response. The �rst row in Figure 8 shows an example of
these responses.

A where-response can also occur among the full sine wave responses.
However, since it has the same ´-value as the others, it should theoreti-
cally occur only by accident (see y5 in the second row in Figure 8). Taking
together the �rst two where-responses provides a unique representation of
location (remember that in case of size there are no full sine wave responses
in the simulations for symmetry reasons, but the half sine wave response is
suf�cient to uniquely represent the size of a pattern). Even if these where-
responses should not emerge explicitly, the corresponding information is
usually still there and can be extracted by an appropriate orthogonal trans-
formation.

6.4.3 Comparison with Simulation Results. To compare the theoretical re-
sults with simulation results, we need to take into account that the sim-
ulations have the additional constraint that the responses are computed
with some nonlinear functions from a given input signal. This causes the
responses to be more irregular than predicted by the theory, which causes
a shift of the ´-values upward. The amount of shift varies, however.

9 The inner product between the �rst where-response (y3 in Figure 8) and any of the �rst
what-responses (y1 and y2 in Figure 8) has no contribution from the intermissions, because
there the what-responses are zero. Since during the individual pattern presentations, the
where-responses are identical and the what-responses differ only in amplitude but not in
shape, the respective overall contribution can be written as a sum over the amplitudes
of the what-responses times an integral over the where-response and a standard what-
response. Due to the decorrelation constraint and since the integral is not zero, the sum
over the amplitudes and therefore also the mean over the what-responses must vanish.
Thus, the zero-mean constraint is ful�lled exactly.
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Figure 8: 1-optimal set of responses for three patterns with two where-
responses, y3 and y5. Notice that y3 differs from y1 and y2 in its ´-value and
should therefore always occur as the third response. A response like y5 occurs
theoretically only by accident and could be any of the responses y4, y5, or y6 .
D D 150 and d D 85; t-axes cover an interval of length 3D; y-axes range from ¡4
to C4.

In the simulation for learning size invariance (Wiskott & Sejnowski, 2002,
Fig. 21), the predicted ´-value of the �rst what-responses is 10.08 and of the
�rst where-response 12.99 (for 10 patterns with D D 119 and d D 59). The
´-values of the �rst four simulation responses are in the range 10:3–11:31,
indicating that the shift of ´-values is small. Thus, it is reasonable that the
�rst responses are all what-responses, as predicted by theory.

In the simulation for learning translation invariance (see Figure 10) the
predicted ´-value for the �rst what-responses is 2.65, for the �rst where-
response 3.57, and for all full sine wave responses (of where- as well as
what-type) 5.29 (for three patterns with D D 150 and d D 85). Comparison
with the �rst four simulation responses (cf. Figure 10) indicates that the
what-responses y2 and y4 suffer a signi�cantly greater shift than the where-
responses y1 and y3, presumably because the latter are easier to generate
smoothly under pattern translation. As a consequence, the half sine wave
where-response comes �rst and the full sine wave where-response, like y5 in
Figure 8, does occur systematically and not only by accident, because it is
now distinguished by its low ´-value. However, it is not clear why it did
not mix with half sine wave what-responses, like y1 and y2 in Figure 8.

With this, we can also understand why “for some parameter regimes,
such as fewer patterns or smaller distances between patterns, no explicit
where-components emerge” (Wiskott & Sejnowski, 2002, p. 743). Fewer pat-
terns permit the system to generate smoother what-responses with cor-
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Figure 9: Four theoretically predicted responses arranged like the simulation
results shown in Figure 10. ´-values are estimated. D D 150 and d D 85 match
the values in Figure 10. t-axes cover an interval of length 3D; y-axes range from
¡4 to C4.

respondingly smaller ´-values. Smaller distances between patterns cause
shorter intermissions and a relative increase of the ´-value of the half sine
wave where-response. In both cases, the half sine wave where-response is no
longer distinguished by its low ´-value and can mix with the half sine wave
what-responses.

Figure 9 (top row) shows four theoretically predicted responses similar
in shape to and in the same order as those found in Wiskott and Sejnowski
(2002, Fig. 11). Below are shown trajectory plots to provide a picture of the
response vectors in phase space. Figure 10 shows corresponding simulation
results from Wiskott and Sejnowski (2002, Fig. 11) for comparison.

The qualitative agreement between the theoretically predicted responses
and those obtained in the simulations is excellent. The simulation results
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Figure 10: Simulation results from Wiskott and Sejnowski (2002, Example 4,
Fig. 11). Shown are the results on the training data. D D 150 and d D 85. (In
Wiskott and Sejnowski, 2002, Fig. 11, patterns were presented for 84 time steps.
After linear interpolation between these sample points, the response may devi-
ate from the constant response within a time interval of length 85. Thus, d D 85
and not 84.) t-axes cover an interval of length 3D; y-axes range from ¡4 to C4.
The graphs show the response to only 3 out of 20 patterns; thus, the visible
part of the responses does not ful�ll the constraints (zero mean, unit variance,
and decorrelation) exactly. Before computing the ´-values, the responses were
normalized exactly.

are, of course, noisier, and there are differences due to the arbitrary signs and
amplitudes of responses to individual patterns. Another important differ-
ence is that the number of half sine wave responses the simulated network
generated was much lower than the number of patterns (D 20) presented
during training, which is a consequence of the limited computational ca-
pacity of the network.
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7 Discussion

Slow feature analysis is in general a dif�cult variational calculus problem.
We have seen that it can be idealized and simpli�ed signi�cantly if one
abstracts from the input-output function and considers only the free output
signal under some boundary conditions. This led to optimization problem 2.
Solving this simpli�ed optimization problem provides information about
what the best solution is that the system can obtain at all, regardless of
the detailed constraints given by the input and the class of input-output
functions. We were able to con�rm several simulation results theoretically.
General �ndings are:

² The responses tend to be sections of sine waves (see equations 4.3, 6.2,
6.4, and 6.6 and Figures 9 and 10).

² ´-values usually increase linearly with the response index (see equa-
tions 6.3, 6.5, and 6.7). This also holds for the multiple pattern case,
where the ´-values of groups of responses increase linearly (see Fig-
ure 6). The ´-values are even comparable in magnitude to those of the
single pattern case. For instance, the ´-values in the third column of
Figure 6 all coincide with the values of ´3, ´6, and ´9 for the single pat-
tern case (see equation 6.7). Only the ´-values of the �rst two columns
are greater. This generally linear increase of the ´-values has also been
observed in simulation experiments (see Wiskott & Sejnowski, 2002,
Figures 5, 6, 7). However, the slope was much greater in these cases,
because of the additional constraints given by the input signals and
the class of input-output functions.

For the multiple pattern cases simulated in Wiskott and Sejnowski, 2002,
Examples 4, 5 and investigated here in section 6.4, we �nd:

² The most invariant responses are not piecewise constant responses but
half (or full) sine waves, since these have a less abrupt onset and offset
(see Figures 9 and 10 and Wiskott & Sejnowski, 2002, p. 742).

² While individual what-responses vary like half sine waves and are
therefore not truly invariant to translation or scale, the direction of the
response vector, which is the vector of several responses at a given
time, tends to be invariant over the pattern presentation (see Figures 9
and 10, trajectory plots y2 vs. y1, y4 vs. y1, and y4 vs. y2).

² Where- as well as what-information is always extracted. If the ´-values
are suf�ciently different, where-responses emerge explicitly (see Fig-
ures 9 and 10, (y1 and y3)). There are potentially many more what-
responses than where-responses.

² Response vectors of different patterns tend to be orthogonal (see sec-
tion 6.4.1). This was also found in simulation experiments. If there were
more patterns than what-responses, the response vectors were rarely
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more than 90 degrees apart, indicating that they stay within a cone of
90 degrees or a rotated hyperquadrant.

² If the duration of presentation is the same for all patterns, the rep-
resentation of a particular pattern is in general distributed over all
what-responses (see Figures 9 and 10, y2 and y4; Wiskott & Sejnowski,
2002, Fig. 21 all y j). There is no tendency to generate a sparse repre-
sentation. A representation in which only one unit responds at a time
is even suppressed, because of the likely emergence of the �rst what-
response, which enforces other units to respond with different signs to
at least two patterns (see section 6.4.1). However, this suppression is
not strong, and in the approximate analysis, a representation in which
only one unit responds at a time is possible (see Figure 6, y1, y2, and y3).
Thus, there may be room for an additional objective favoring sparse
representations.

Furthermore, the theory would predict:

² If patterns are presented for different amounts of time, those seen
longer are represented �rst (see section 6.4). This would lead natu-
rally to a sparse representation.
However, this tendency was not observed in simulation experiments,
indicating that it may be a weak effect or dif�cult to achieve in the
network model considered here.

It is somewhat suspicious that the simulation results of Figure 10 could
be reproduced so well without considering the input signal and the input-
output function. However, this does not mean that the input is ignored or
irrelevant. It rather indicates that the system has the tendency to generate
the theoretically predicted responses if the input signal and the potential
input-output functions allow it to do so. The response can always be pro-
duced only based on the input signal. But the theory leaves some room for
adaptation to the input, because the responses of same type, half or full sine
waves, can be mixed by any orthogonal transformation. A perfect �t of the
simulation results with the theoretical responses, however, would clearly
indicate over�tting. This is the case if only few training patterns are used,
such as three or four. With 20 training patterns, as in the simulation results
considered here, the effect of over�tting is weak and the system generalizes
fairly well (cf. Wiskott & Sejnowski, 2002, Fig. 23). On the other hand, the
�t is not perfect anymore. As indicated in section 6.4.3, the simulation re-
sponses become noisier, have an unexpected order, and there are fewer than
the expected 20 responses of the half sine wave type. Thus, the simulations
reproduce only part of the theoretically predicted output signal, but what
they reproduce can be well understood theoretically.

Another issue we have touched on only brie�y is the question to what
extent the learned representation is useful for recognition. There are two dif-
ferent aspects to discuss: the particular shape of individual response compo-
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nents, half and full sine waves, and the population aspect of the response,
such as questions of sparseness and orthogonality. As argued already in
Wiskott and Sejnowski (2002), the half sine wave responses have the advan-
tage over the more obvious piecewise constant responses that they avoid the
abrupt onsets and offsets as a pattern moves into or out of the visual �eld.
The full sine wave responses convey important where-information but do
not seem to provide additional what-information. Thus, in the simulations
of Wiskott and Sejnowski (2002), only the full sine wave where-response was
included in the analysis of results. On the population level, the tendency to
produce orthogonal response vectors for different patterns is very useful for
invariant pattern recognition. The overall orientation of the response vec-
tors in space and with it the sparseness of the representation is theoretically
very dependent on the exact training procedure. However, this effect was
not observed in the simulations considered here. Experiments with more
realistic input sequences are required for a more thorough evaluation.

In summary, the analysis presented here shows a way that simulation
results obtained based on the principle of temporal slowness can be ana-
lyzed and understood theoretically. We have gained some general insights
and a good understanding of responses obtained in Wiskott and Sejnowski,
2002, Examples 4, 5. The analysis also shows that the learned representation
depends strongly on the particular training procedure. For instance, it po-
tentially makes a great difference whether patterns are presented for equal
or different amounts of time.
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