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AbstratIn many neural net appliations visual data are represented as vetors, although it isknown that this form of representation laks syntatial struture. Labeled graphs havebeen proposed as a data format whih provides the missing relational information. Thepresent work argues that labeled graphs of pereptual patterns an be generated andproessed based on simple priniples. Complex and exible objet representations anbe derived from single examples by graph mathing.Dynami Link Mathing has been developed as a biologially-motivated neural meh-anism for graph mathing. This work disusses the priniples as well as the advantagesand drawbaks of Dynami Link Mathing ompared to other neural systems. A om-plete fae reognition system based on Dynami Link Mathing is developed. In ontrastto previous systems, the dynamis is autonomous, and mathing between graphs of dif-ferent size is made possible by an attention window. The performane is demonstratedfor faes of di�erent perspetive or faial expressions against a gallery of 111 neutralfrontal views.For more tehnial appliations, Elasti Graph Mathing has been developed as analgorithmi ounterpart to Dynami Link Mathing. In this work the system is devel-oped further in several aspets: objet-adapted graphs allow omparisons between verydi�erent views, eÆieny has been inreased signi�antly by separating graph genera-tion from reognition, and phase information of the Gabor transform is used to inreasemathing auray. The key role is played by a newly introdued graph struture, alledGeneral Fae Knowledge. It is based on a olletion of individual sample faes, but italso represents faes that an be obtained by ombining subparts of the samples. By thismeans, new faes an be proessed without having a referene model of the individualperson. Reognition results on galleries of 300 faes are presented.The determination of faial attributes serves as a seond demonstration. GeneralFae Knowledge an be used to generate omposite or phantom faes very similar to theoriginal. If faial attributes suh as gender or the presene of a beard are known for thesample faes of the General Fae Knowledge, these attributes an be transfered to thephantom fae. On that basis the faial attributes of the original fae an be determinedin a very simple and general way.And �nally, Elasti Graph Mathing is applied to the reognition of oluded objetsin luttered senes. Two di�erent algorithms are presented. The �rst allows reognitionof known objets between and behind unknown distrators. The seond one requiresthat all objets in the sene are known to the system. It proesses the sene from frontto bak and in addition determines the order of the objets in depth.
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PrefaeIt is not the intention of this thesis to present one single monolithi model of objetreognition, but rather several models, emphasizing di�erent aspets of a larger onep-tual framework. I have therefore tried to keep the di�erent hapters independent of eahother, making it possible to selet single hapters without having read the preedingones. The abstrats at the beginning of eah hapter will help to provide an overview.Keywords referred to in the index are printed in italis.The �rst hapters introdue the oneptual framework. In Chapter 2, I argue forlabeled graphs as a data struture for objet representation. In Chapter 3, the priniplesof Dynami Link Mathing as a neural system for proessing labeled graphs are explained.The four subsequent hapters present four onrete models for di�erent visual taskson two di�erent levels of abstration. Chapter 4 deals with Dynami Link Mathingas applied to fae reognition. The same task is solved in Chapter 5, but in a moretehnial system with Elasti Graph Mathing, whih is an algorithmi abstration ofDynami Link Mathing. Closely related is Chapter 6, whih is onerned with thedetermination of faial attributes suh as gender, the presene of a beard or glasses. Avery di�erent appliation of Elasti Graph Mathing, the analysis of luttered senes, isthen presented in Chapter 7. (This hapter is in part a modi�ed reprint of (Wiskott &von der Malsburg, 1993) World Sienti� Publishing Co. Pte. Ltd., with the kindpermission of the publisher.) All appliations here use the Gabor wavelet transform asa visual preproessing providing loal features (see Appendix A).I have been fortunate to be able to work with Professor von der Malsburg's groupat the Institut f�ur Neuroinformatik of the Ruhr-Universit�at Bohum, Germany and tovisit several times his group in the Department of Computer Siene and the Setionfor Neurobiology at the University of Southern California, Los Angeles, U.S.A. I enjoyedideal working onditions and great freedom to develop my own interests and ideas. Iam espeially obliged to my advisor, Professor von der Malsburg, who has taught mein the ourse of many invaluable disussions what kind of questions are worth raisingand what priniples might lead to answers. I am also grateful to Professor Biederman atUSC, who taught me many things about psyhophysis. I thank Professor Wunner forproviding the seond report. Sinere thanks go also to my olleagues in Bohum and atthe USC: Jean{Mar Fellous, Norbert Kr�uger, and Thomas Maurer, with whom I sharedexiting ooperation within the fae reognition projet at USC; Martin Lades for hissofware ontribution to the luttered senes projet; Norbert Kr�uger, Thomas Maurer,Mihael P�otzsh, and Andreas Shwarz for their ritial remarks on the manusript ofthis thesis; Jozsef Fiser, Bernd Fritzke, Wolfgang Konen, Jan Vorbr�uggen, Rolf W�urtz,and all those mentioned above, for many fruitful disussions and an enjoyable time inBohum and at the USC. I thank Mihael Neef for providing us with a well maintainediii
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Chapter 1IntrodutionVisual images are usually represented as pixel arrays, a square lattie of real numbers.Two indies, the x- and y-oordinates, denote the position, and the real number repre-sents the loal grey value. This is an appropriate representation for raw images, and itis omplete within the limits of given spatial and brightness resolution. Conventionalneural net appliations tend to ignore the spatial relations impliit in the x- and y-oordinates. They simply use the indies as a unique address for the individual pixels orthe respetive input neurons. An image is then represented as a vetor with distint o-eÆients without further spatial relations. One ould for example onsistently permutethe vetor oeÆients in all training and test patterns, and the network would performas well as before.Charater reognition is a frequently used example to demonstrate the performane ofa neural system. It was already used in the early years of modelling neural nets. Widrow& Hoff (1960), Blok (1962), as well as Kohonen (1972) used harater reognitionfor demonstration purposes. In all three ases the input units had no further relationalstruture, i.e. the input patterns had no topology. The onsequene is demonstratedin Figure 1.1. On the left and on the right are shown two patterns that we assumehave been learned by a neural net or stored by an assoiative memory. In the middle isshown a pattern that serves as an input and is supposed to be reognized or assoiatedwith one of the stored patterns. Whih of the stored patterns is the orret one? Thenatural answer seems to be: the right one. But then one has used a metri whihtakes relational information into aount. The neural nets mentioned above onsider thepatterns as vetors and use a di�erent metri. The Hamming distane, for example, leadsto the result that the left pattern is more similar to the one in the enter, sine the leftpattern di�ers in fewer pixels from the entral one. The same paradigm of treating theinput pixels without any relational struture an be found in more reent appliations(Kohonen, 1987; Kosko, 1987; de Edson et al., 1990).Another example is shown in Figure 1.2. What is the ommon property of the topfour patterns? The same question applies to the bottom four patterns: What is theirommon property? The answer to these questions depends very muh on whether onetakes into aount the spatial struture of the patterns or not. With topology (seetop row) one an already see from one example that it shows symmetry with respetto a diagonal, and this holds for the other patterns in the row as well. Ignoring thetopology an be illustrated by permuting all pixels onsistently, i.e. same permutationfor all patterns (see bottom row). Then one has a hard time and would need many more1



Figure 1.1: Visual patterns as used for training and testing onventional neural nets.Is the pattern in the enter more similar to the left or to the right pattern?

Figure 1.2: Patterns with seond order orrelations. What is the ommon property ofthe patterns in the top row? And what is the ommon property of the patterns in thebottom row? (The bottom patterns have been generated from symmetrial patterns bya onstant permutation of the pixel positions.)examples to notie that many pairs of ells are perfetly orrelated. Sejnowski et al.(1986) have used this example. They applied a Bolzmann learning algorithm to thedetetion of di�erent symmetries. For a 10�10 layer the algorithm needed about 40,000presentations of training examples in order to reah a suess level of 85%. The hiddenunits had to reveal through statistis that ertain pairs of neurons were orrelated, aproperty ompletely independent of the spatial arrangement of the orrelated pairs. Itis evident that the notion of symmetry an be inferred from few examples if the spatialstruture of the patterns is taken into aount. This was demonstrated by Konen &von der Malsburg (1992, 1993). In fae reognition the most prominent example ofrepresenting visual patterns as vetors without any topologial struture is the PrinipalComponent Analysis diretly applied to fae images (see for exampleKirby & Sirovih,1990; Turk & Pentland, 1991; O'Toole et al., 1993).2



Two di�erent solutions are used to overome this drawbak of the onventional neu-ral net paradigm. The �rst one is to ompensate for the translation sensitivity of thevetor representation by preproessing the input images to get a normalized version ofthem, whih is entered and possibly resaled (Kidder & Seligson, 1993; Aviitzhaket al., 1995). This is frequently done in a rather tehnial way and is then not partof the neural system. A more neural system for translation orreting preproessing isthe translation-invariant network (Widrow et al., 1988; Mao & Kuo, 1992). But allthese preproessing systems require presegmented patterns and do usually not aountfor distortions. A seond solution was demonstrated by Fukushima et al. (1983). TheirNeoognitron is a multilayer feed-forward network with reeptive �elds that are restritedto a small region of the respetive input layer. By this means some topologial informa-tion is introdued, sine neighboring neurons in the input layer usually belong to the samereeptive �elds. Within the reeptive �elds no further spatial relations are enoded. Thisonnetivity repeats over several stages. When the Neoognitron is trained, the neuronsdevelop into more and more omplex and more and more translation-invariant featuredetetors as one asends the hierarhy. Translation invariane is ahieved by low-pass �l-tering and subsampling the neural responses at eah stage. Thus positional informationthat might be important for disrimination is lost and the performane of the systempotentially degrades. In addition, the degree of possible low-pass �ltering is tightly ou-pled to the omplexity of the features, and translation invariane is therefore limited. Afurther disadvantage of this system is that it requires a very areful arhitetural designand seletion of training patterns; training e�ort is very high. A more reent appliationof the Neoognitron an be found in (Ting & Chuang, 1993). Related to the Neoog-nitron is the weight-sharing bak-propagation network (LeCun et al., 1989; Martin,1993). These systems show only very little translation invariane. They are also veryexpensive in terms of training samples. However, they seem to be more robust in termsof arhitetural design, and they do not require training of eah layer separately, as isneessary for the Neoognitron.These examples illustrate the lak of strutural information in the vetor represen-tation (f. von der Malsburg, 1981; von der Malsburg, 1986; Bienenstok &Doursat, 1991). This thesis is onerned with an alternative representation of visualpatterns, the labeled graph. It ombines feature information with the required struturalinformation. The advantages of labeled graphs will be disussed in Chapter 2 and thendemonstrated in di�erent appliations, for fae reognition (Chapter 5), gender deter-mination (Chapter 6), and sene analysis (Chapter 7). Although labeled gaphs are avery natural representation for visual patterns, they do not quite �t into the traditionalonept of neural nets with a �xed onnetivity, subjet only to a slow learning pro-ess. von der Malsburg (1981) therefore proposed the Dynami Link Arhiteture,in whih he enrihed onventional neural nets with the onepts of temporal binding andfast synapti plastiity. Based on these ideas Bienenstok & von der Malsburg(1987) developed Dynami Link Mathing, in whih temporal struture of neural sig-nals odes for relations between nodes by orrelations. Fast synapti plastiity admitsdynami mathing between di�erent layers depending on the represented patterns. Theonnetivity is no longer �xed, but subjet to a omplex self-organization proess. Dy-nami Link Mathing will be disussed in Chapter 3 and applied to fae reognition inChapter 4. 3
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Chapter 2Labeled Graphs forObjet RepresentationAbstrat: Sensory patterns an be appropriately represented by labeled graphs. Nodes arelabeled with loal features; edges are labeled with relational features. It is argued that theselabeled graphs an be generated on the basis of simple grouping priniples: proximity in featuretype, in spae, or in time. They an be mathed onto eah other if they are similar in featuresand struture. Fusion graphs an be generated for graphs with signi�ant overlap. Labeledgraphs provide a means to learn and generalize from single examples and might serve as a basisfor more abstrat proesses suh as �nding analogies.2.1 IntrodutionIn the introdutory hapter it was argued that the typial data struture used in arti�ialneural nets, the vetor, laks relational information. In this hapter I desribe labeledgraphs as a uniform data format for sensory patterns providing the struture needed. Asimple example of labeled graphs and graph mathing is shown in Figure 2.1.Labeled graphs for objet representation have been widely used in the �eld of arti�ialintelligene (f. Fu, 1982), but for neural nets they were probably �rst proposed by vonder Malsburg (1981, 1983). He also developed Dynami Link Mathing as a neuralmehanism to proess labeled graphs in a neural arhiteture (see next hapter). Severalonrete models based on these onepts will be presented in the subsequent hapters.A �nal onlusion will be given in Chapter 8.2.2 Representation of Sensory PatternsOn a low level, pereption begins with a strutured enoding of the sensory input. Prim-itive segmentation and grouping mehanisms are neessary to provide higher levels witha useful representation of objets. I am now going to disuss briey the general stru-ture of sensory patterns and how elementary graph representations of objets an begenerated. 5



a) b) c) d)Figure 2.1: Simple graphs and graph mathing. a) and d) The patterns `2' and `7'are the same as in Figure 1.1, but represented and stored as labeled graphs. The inputpattern to be reognized is a di�erent `7', distorted relative to the stored one. b) The`2'-graph mathed to the input pattern. The urved line and diagonal of the `2' �tsfairly well, but the horizontal foot of the `2' is ompletely ompressed and the horizontalstroke of the `7' is not overed. ) The `7'-graph an be mathed to the input patternwith little distortion (adapted from Bienenstok & Doursat, 1991).2.2.1 Labeled Graphs of Sensory PatternsA labeled graph onsists of a set of nodes and a set of edges onneting pairs of nodes.The nodes are labeled with loal features, and the edges are labeled with relationalfeatures (von der Malsburg, 1986; Bienenstok & von der Malsburg, 1987;Lades et al., 1993; see also Figure 2.2). A loal feature represents absolute informationthat an be extrated from a small path of an image suh as olor, loal texture, orthe orientation of an edge. For aousti signals loal features ould be onset, o�set,or energy in a partiular frequeny hannel. I will refer to the omplete set of loalfeatures for a given modality as the feature spae. The relational features, on the otherhand, an only be extrated from two suh loal pathes. An example is the spatialdistane between two loations. With one exeption (see below) I will refer to the spaefrom whih the relational features are extrated as the sensory spae. Sensory spaedepends on modality, too. For the auditory modality, for instane, the sensory spae isthe frequeny axis. The exeption to this is time. Time also provides relational featuressuh as `sooner' or `later', but nevertheless time needs to be treated separately fromthe sensory spaes for several reasons. First of all, time is ommon to all modalitiesand thus onstitutes the main ue for binding perepts of di�erent modalities. Seondly,time annot be represented in the same way as the other sensory spaes. There is noounterpart to the retina for the time dimension. Further peuliarities of time pereptionhave been disussed by P�oppel (1978). Feature spae, sensory spae, and time an beonsidered as three subspaes in whih sensory patterns are embedded, and we have seenhow labeled graphs an serve as a disrete representation of suh sensory patterns.2.2.2 Graph FormationHow an a graph of a sensory pattern be generated? This proess has two aspets:Firstly, nodes need to be loated, and seondly, they need to be onneted by edges.The sensory input, for example a pixel image, often has a muh higher resolution thanone would like to represent internally, loating a node at eah pixel not being pratial.6



Thus one has to perform a seletion. The appropriate density of nodes depends on theomplexity and spatial extent of the loal features. With omplex features desribingextended pathes of an image, the nodes may be muh sparser than for simpler featuresdesribing only a few pixels around eah node. Two shedules for seleting nodes ina sensory pattern have been used. The �rst is to selet nodes on a regular grid withonstant spaing adapted to the omplexity and extent of the loal features (f.W�urtz,1995). This shedule does not aount at all for the spei� harater of patterns andis determined only by the harateristis of the loal features and the spatial resolutionthat one wants to ahieve. In the seond shedule one attempts to selet partiular pointsin the sensory pattern, so-alled salient points, that are espeially important and arrymaximal information. The problem is that these points have to be seleted withoutobjet knowledge only on the basis of low-level information. Thus, one has to de�nean appropriate salieny measurement that allows one to �nd salient points with highreliability (f. Manjunath et al., 1992). This approah has the advantage that fewernodes are required and that the node positions are objet-adapted, i.e. for the same objetin di�erent images it is likely that the same loations relative to the objet are seleted.It should be mentioned that several nodes may be loated at the same image loation ifdi�erent feature types are used. Thus, for a red dot there might be a node representing`dot' and another node representing `red'. Using several nodes at the same loation mayalso be appropriate for representing transparent objets.When the node positions are seleted, whih nodes should be onneted? This is thequestion of grouping and segmentation, and many mehanisms have been proposed forit (f. the Gestalt priniples in Boff et al., 1986, pp. 36-14{36-23). I onentrate onlyon the law of proximity in three di�erent variations. It may be proximity in sensoryspae (spatial proximity), proximity in feature spae (feature similarity), and proximityin time (temporal proximity). The probability of two nodes being onneted inreaseswith proximity and will be maximal if two nodes oinide in some aspets (see Fig-ure 2.2). Neural models of grouping and segmentation based on spatial proximity andfeature similarity were, for instane, presented by K�onig & Shillen (1991), von derMalsburg & Buhmann (1992), and Vorbr�uggen (1994). It is interesting that inthese models the segmentation result was represented by temporal synhrony of oupledosillators orresponding to the third mehanism, temporal proximity.These are only three basi grouping mehanisms, and many more ould be ited.However, it is unlear to what extent other, more omplex laws of grouping are neessaryunder natural onditions and to what extent they ould be learned from experiene onthe basis of the simple mehanisms ited here (Boff et al., 1986, pp. 36-11{36-14).One elementary node relations are indued by the laws of proximity, sets of nodes areonneted to form a graph. The reasons for whih the nodes were onneted might in partbe irrelevant to the objet itself. For example, ommon motion is a strong segmentationue and will bind together all nodes of one objet, but the motion itself is usually notrelevant for the objet and should not be stored. Therefore the onnetions induedhave to be transferred to all nodes. The result is a highly onneted elementary graph,representing a sensory pattern. This is the basis for all further steps (see Figure 2.3).7
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Figure 2.2: Sensory patterns are embedded in sensory spae (e.g. retinal loation),feature spae (e.g. olor), and in time. Labeled graphs are used to represent sensorypatterns. Nodes are labeled with loal features. Proximity in one of the three subspaesindues relations between nodes, whih are represented by edges. Proximity in sensoryspae is indiated by dashed lines, proximity in feature spae is indiated by solid lines,and proximity in time is indiated by dash-dotted lines. In the left example the leftmostfeature type might, for example, represent ommon motion. In the right example, twonodes are onneted due to proximity in sensory and feature spae. Two other nodes areisolated, sine they are proximate to none of the other nodes.
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Figure 2.3: The edges of the graphs in Figure 2.2 indued by proximity are transferredto all nodes of the graph. Some nodes, suh as those representing motion, are signi�antfor segmentation but are irrelevant for representation of the objet itself and an beremoved. The result is a highly interonneted labeled graph representing the sensorypattern. Connetions expressing temporal progression are indiated by arrows.8
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graph 1 graph 2Figure 2.4: Graph mathing: The task of graph mathing is to onnet graphs andsubgraphs that are similar in features and struture. The math between the graphsis indiated by dotted arrows. The three examples illustrate a) objet reognition, b)�nding partial identity, and ) deteting symmetry.2.3 Graph MathingAs a next step after generating graph representations for sensory patterns, one wouldlike to ompare them. The elementary proess for that is graph mathing and the deter-mination of the similarity between graphs.2.3.1 Pattern ReognitionComparing graphs requires �nding a mapping that onnets nodes of one graph withnodes of another under the onstraints �rstly that the topology is preserved, i.e. neigh-bors are onneted with neighbors, and seondly that the similarity between the featuresof onneted nodes is high. This proess is alled graph mathing (see Figure 2.4, f.also Bienenstok & von der Malsburg, 1987; von der Malsburg, 1988; Ko-nen et al., 1994, and Chapter 4 for neural models of graph mathing). If only parts oftwo graphs are similar, these subgraphs should be mathed onto eah other while theremaining parts remain unonneted (see Reiser, 1991, and Chapter 7). This kind ofgraph and subgraph mathing is in general NP-omplete, but sine the graphs have atopographial struture and are embedded in a low-dimensional sensory spae, the om-plexity is redued signi�antly, and simple mathing shedules �nd good approximationsof the optimal math in a reasonable amount of time (see Buhmann et al., 1989, 1992,and Chapter 5). 9



2.3.2 Finding AnalogiesThe graph mathing desribed above an be used to ompare graphs within the samemodality and result in high similarity if the sensory patterns are similar. What an besaid about two graphs of di�erent modality? What remains omparable? This is �rst ofall, the number of nodes, the presene or absene of onnetions between pairs of nodes,and relational information about temporal order. Seondly, in all sensory spaes twonodes may be lose or distant to eah other. For instane, a dot in a visual pattern maybe loser to a seond one than to a third, orresponding to three sound omponents ofpith C, D, and G in the auditory system. Hene the topology of patterns in di�erentmodalities may be omparable, although this has quite obvious limitations, e.g. a triangleannot be represented on the frequeny axis. Thirdly, intensity as a very general aspetof feature spae may also be omparable between modalities, e.g. brightness, loudness,and pressure in the visual, auditory, and tatile system respetively. Graph mathingbased mainly on relational information an be interpreted as a mehanism for �ndinganalogies (see Figure 2.5). This may be of questionable advantage on the low levelof sensory patterns, but the idea of �nding analogies between graphs on the basis ofstrutural similarities might be interesting if one thinks of abstrat graphs representingmore abstrat patterns suh as trajetories, language, or ideas. A simple system for�nding analogies on the basis of relational struture was presented by Chalmers et al.(1992). Their system ould for example reover the analogy between the strings `ppqrss'and `aamnxx', mapping `pp' to `aa', `qr' to `mn', and `ss' to `xx'. It was based on featuressuh as `�rst', `last', `suessor', and `opposite'.2.4 Fusion GraphsIf one has a method for omparing graphs, one an improve storage of a number ofgraphs by representing idential or similar graphs or subgraphs only one. The resultis a fusion graph (Reiser, 1991; see Figure 2.6). This has the advantage of reduingthe required storage apaity and it possibly helps to generalize. But one possible riskis that the fusion graph will overgeneralize, and that the stored examples annot berealled reliably. There are di�erent mehanisms for avoiding this and obtaining reallof single examples.2.4.1 Long Range ConnetionsLong range onnetions between di�erent parts of a fusion graph an disambiguate thepossible interpretations in order to reall the stored samples reliably (see Figure 2.6.).A onsistent realization of this idea, where all nodes are onneted with all others, waspresented by von der Malsburg (1985, 1988) and von der Malsburg & Bienen-stok (1987). The attrativeness of this approah omes from its homogeneity and thefat that it requires no further nodes and probably little ontrol struture. New graphsan be integrated into the fusion graph very naturally. The disadvantage is that gener-alization apabilities are lost. From a funtional point of view, the system behaves likea olletion of single graphs. 10
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b)a)Figure 2.5: Two analogies between graphs of di�erent modalities. The mathing inthis ase is based on relational patterns rather than feature patterns. In a) the featuresof the nodes are ompletely ignored. It is only the strutural information that leads tothe illustrated mathing. The upper pattern may represent two tones, one going downin pith, the other up. The other pattern may represent the visual analogy, say twodots of di�erent olor, one moving downwards, the other upwards. One an also imaginethat simple features suh as intensity are ompatible between modalities, as shown inb). The upper graph may represent two tones, the lower one two lights. In both graphsone signal beomes more intense and one less.
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a) b) c)Figure 2.6: Fusion graphs: a) Three graphs with similar subpatterns. b) Fused graphrepresenting ommon subpatterns only one. Sine it is not enoded whih subpatternsto ombine, this representation is ambiguous, and ombinations of subpatterns not pre-sented in a) are valid as well. This an be onsidered as a generalization apability. )Ambiguities an be resolved by long range onnetions. Filled arrows indiate that theparts belong together, while un�lled arrows indiate that the parts are unlikely to belongto the same objet.
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a) b)Figure 2.7: Two alternative ways to resolve the ambiguities of the fusion graph inFigure 2.6.b: a) Cardinal ells represent the ommon subpatterns or b) they represententire graphs and point to parts of the fusion graph.2.4.2 Cardinal Cells for SubpatternsAn alternative onept is to represent ommon subpatterns by ardinal ells (see Fig-ure 2.7.a). Eah graph then would onsist of several elementary nodes and possibly someardinal nodes that point to subpatterns. From a funtional point of view this solutionwould again be equivalent to a olletion of single graphs and would lak the potentialfor generalization. Compared to the previous solution, this method requires more nodesand a sophistiated method to determine whih subpatterns are frequent enough to beworth representing by a ardinal node. A further problem would be to ode exatly howa subpattern is to be integrated into the graph (f. Ehrig, 1991).2.4.3 Cardinal Cells for Whole GraphsA more reasonable possibility of ombining generalization abilities and a reliable reallof single examples is the use of ardinal ells for whole graphs (see Figure 2.7.b). Thegreat advantage is that they provide ontrol. If they are all inative, the fusion graphshows full generalization properties. One an ativate one of them and suppress allothers realling only the graph of this one sample. For a reognition task, one an apply13



a winner-take-all mehanism between the ardinal ells, ensuring that the best �ttingsample will win, without allowing spurious states.2.5 Spei� Graph RepresentationsHaving disussed the general onept of labeled graphs for objet reognition, I will nowdesribe the onrete graph strutures that I have used for the di�erent appliationspresented in Chapters 4{7.2.5.1 Fae ReognitionFor fae reognition eah fae is represented by a single graph. A olletion of thesemodel graphs serves as a gallery. For a new image of a fae a new image graph has tobe generated, whih an then be ompared with the gallery. The most similar modelis taken as the orret fae. The image graph formation an be ahieved by mathingany stored model graph to the image. Assume the nodes in the model graph were takenfrom so-alled �duial points, e.g. eyes, tip of the nose, orners of the mouth, et. Ifthe model fae is similar to the image fae, the model nodes are likely to be orretlymathed to the orresponding �duial points in the image. Problems arise if the two faesare not similar, for example, due to a beard or glasses. Beause of the very di�erentappearane of idential �duial points, the image graph formation might fail. Thus,instead of a single model graph one needs a more general representation of faes thatan be mathed to an image in order to �nd the �duial points for di�erent faes reliably.For this purpose I have introdued a general fae knowledge (GFK). Sine all faeshave the same struture, only one graph representing the faial geometry is requiredwith one node at eah �duial point. But sine the individual parts of faes may lookdi�erent, eah node of this graph is onneted with a set of alternative loal desriptionsof the respetive �duial point, e.g. at the eye there are some desriptions for female eyes,others for male eyes, some for losed eyes, some for eyes with glasses, et. Eah node hasits own set, and during the mathing proess, the desription that �ts the �duial pointin the image best is seleted. Due to its ombinatorial power (eah node may selet aloal desription independently of the others), the GFK potentially represents a widerange of di�erent faes (see Chapter 5).2.5.2 Determination of Faial AttributesFor the determination of faial attributes the general fae knowledge has to be enrihedby ontext knowledge. This an be done by ardinal nodes indiating the ontext ofthe fae, for instane male or female, bearded or not, and whether or not the personwears glasses (see Figure 2.8.a). By omparing a new image graph with the GFK, theontext knowledge an be used to determine the faial attributes of the image fae (seeChapter 6).2.5.3 Objets in a SeneThe situation is very di�erent for objet reognition in luttered senes. Objets are ingeneral very di�erent in struture; thus eah objet has to be represented by a di�erent14
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image different modelsa) b)Figure 2.8: a) Faes all have the same general struture, but they di�er in loal features.For a general fae representation it is therefore reasonable to store for eah faial pointa whole set of di�erent loal features that might be appliable alternatively, indiated asdi�erent nodes onneted to one blank node on the left. In addition, ontext knowledgemay group the loal features into lasses, for example male nodes versus female ones.b) In order to interpret the image of a luttered sene, several models have to be mathedto the image and in addition the order in depth has to be determined. Models ompetewith eah other for image spae and ooperate with the image. Models or parts of modelsare deativated due to olusion, as shown by blank features and dashed lines.objet graph, and eah graph is mathed to the image individually. Partiular problemsarise from the fat that objets may olude eah other. As part of the mathing proess,the system has to deide whih regions of an objet are oluded by others and whih arevisible. A further onstraint omes from the fat that objets annot interset. This anbe taken into aount by enforing a de�nite order in depth. If two model graphs overlapin a sene, one has to be ompletely in front of the other. All this leads to a ompliatedinteration between all model graphs mathed to a sene. As shown in Figure 2.8.b, themodels ompete with eah other for image spae, while mutual intersetion is prohibited(see also Chapter 7).The onepts presented in this hapter will be extended and illustrated in the subsequenthapters. First, I will disuss Dynami Link Mathing as a neural mehanism to treatlabeled graphs, and then present several illustrative appliations. A onlusion will begiven in Chapter 8.
15



16



Chapter 3Dynami Link MathingAbstrat: In a neural system, labeled graphs an be represented by layers of neurons. Dy-nami Link Mathing (DLM) is a mehanism to math suh layers onto eah other if theirfeature patterns are similar. Dynami Link Mathing has four basi priniples: the single layerdynamis indues orrelations enoding neighborhood; the dynamis of two layers synhronizewith respet to the ommon feature pattern; this synhrony is robust against noise and a-idental links; fast synapti plastiity rules out all aidental links and establishes a regularonnetivity between the two layers. Layer synhrony and onnetivity improve in an iterativeproess. Along with its potential for graph mathing and objet reognition, invariant undertranslation, rotation, and mirror reetion, Dynami Link Mathing has two major drawbaks:it is slow and it is expensive in terms of onnetivity.3.1 IntrodutionIn Chapter 2 labeled graphs were presented as a uniform data struture for representingpereptual patterns. This Chapter 3 serves as a oneptual disussion of Dynami LinkMathing (DLM), whih is a neural dynamis for mathing labeled graphs. A onretemodel of DLM is presented in Chapter 4.Sine onventional neural nets allow the synapti weights to hange only on theslower time sale of learning and not during a reognition task, they do not seem tobe a natural arhiteture to deal with graphs, whih require dynami binding on afast time sale in order to aount for the relational information. They are muh moreappropriate for vetors. DLM is one of very few attempts to overome this restrition andto math patterns represented as graphs. Suh a system has to be at least translationinvariant. In addition, it is rotation invariant and robust against distortion. Saleinvariane an in priniple be ahieved in a multisale representation, but this has notyet been demonstrated. Before I desribe the task and priniples of DLM I would like�rst to give a short historial overview of the development of DLM.3.1.1 HistoryRelated to the problem of graph mathing is the question of how a retinotopi projetionan self-organize during the weeks or months of ontogenesis. In both ases a regularmap-ping between two domains has to be established whih preserves neighborhood relations,17



i.e. neighbors are onneted with neighbors. A model for the ontogenesis of retinotopiprojetions was proposed by Willshaw & von der Malsburg (1976). This model isformulated in terms of neural ativity. The very same priniple, but formulated in termsof hemial markers, was demonstrated in (von der Malsburg & Willshaw, 1977;Willshaw & von der Malsburg, 1979).From these models Kohonen (1982) derived his algorithm for the self-organizationof topographial feature maps. Amari (1980, 1989) did a thorough analytial treatmentof layer dynamis and formation of topographial maps. H�aussler & von der Mals-burg (1983) derived autonomous equations for the link dynamis independent of thespei� layer dynamis.Regular projetion patterns an also self-organize between other than two-dimensional domains. Di�erent and more ompliated strutures are possible as well.The self-organization of hyperolumns of orientation seletive ells develops a mappingbetween a irular one-dimensional pattern spae and a ortial struture of two di-mensions (von der Malsburg, 1973). In ase of oular dominane stripes, two two-dimensional strutures, the left and right eye, ompete with eah other for one two-dimensional struture in the ortex (von der Malsburg, 1979). In both ases theonit in topography leads to pattern formation: hyperolumns or oular dominanestripes.Von der Malsburg (1981, 1983, 1986) generalized the ideas of the retinotopy-related models and proposed to apply the same priniples to visual reognition tasks.He introdued labeled graphs and formulated the idea of DLM as the neural realizationof graph mathing. The main di�erenes between the retinotopy model and DLM is thatthe latter proess is guided by features and their similarities, while the former has onlythe onstraint of preserving neighborhood relations. A seond di�erene is that DLMhas to take plae on a muh faster time sale| a fration of a seond | while the othermay take weeks.Von der Malsburg and Bienenstok presented �rst model simulations for theretrieval of stored graph strutures (von der Malsburg, 1985; Bienenstok & vonder Malsburg, 1987) and for pattern reognition by DLM (Bienenstok & vonder Malsburg, 1987; von der Malsburg, 1988). In the pattern reognition appli-ations three di�erent patterns with arti�ial features were distinguished. Konen & vonder Malsburg (1992, 1993) applied DLM to symmetry detetion, and its ability tolearn and generalize from single examples was demonstrated. Supplementary analytialonsiderations and a fast version of DLM an be found in (Konen et al., 1994).Wang et al. (1990) were probably the �rst who applied DLM to a reognition taskon real world images, images of few faes as a gallery and a fae with di�erent expres-sion as input. They also used running blobs instead of the stationary ones used in allmodels before. More reently a model for fae reognition was developed by Konen &Vorbr�uggen (1993) . 18



3.2 Abstrat Model3.2.1 TaskDLM was proposed to serve as an elementary proess to math and ompare labeledgraphs in a neural system. The nodes of the graphs are represented by model neurons,and eah neuron has attahed feature information. The graph topography is expressed bylateral onnetions between neurons of one graph. They are usually exitatory betweenneighbors and inhibitory for distant nodes. We assume two layers representing similarpatterns. Figure 3.1, for example, shows two graphs representing two di�erent images ofthe same fae.The task of DLM is to establish a onnetivity between the two graphs that onnetsonly orresponding neurons. Two neurons orrespond to eah other if they representthe same part of the objet. This de�nition is obviously useless in a system that issupposed to �nd these orrespondenes only on the basis of image information. A moreoperational de�nition is the following: two neurons orrespond to eah other if they havea similar feature and if they have ommon neighbors (i.e. neighbors should be onnetedwith neighbors). The seond onstraint of neighborhood preservation leads to ontinuousand regular mappings, but the mapping may still ontain mirror reetion, translation,rotation, saling, and distortion to a ertain degree. From all these possible mappingsthe �rst onstraint of feature similarity distinguishes one as the best, and that one hasto be found.In order to make all regular mappings possible, eah neuron in one layer has to bepotentially onneted to eah neuron in the other layer (all-to-all onnetivity). Andsine preferably neurons with similar features should be onneted, it is reasonable toinitialize the synapti weights of the links with the similarity between the features. Thisis indiated in Figure 3.1 by arrows of di�erent line width. DLM has to rule out mostof them, ending up with an approximate one-to-one mapping.3.2.2 PriniplesDLM is a dynami proess that an be modeled in many di�erent ways. A system usinga running blob dynamis will be presented in the following hapter. In this setionI will try to illustrate four basi priniples of DLM that are important for a modelbased on neural ativities. In the formulation of hemial markers several terms wouldhave to be replaed, but the prinipal ideas would be the same. In the formulation ofautonomous link dynamis the following four priniples would have to be replaed bytwo more abstrat ones.Correlation Enodes NeighborhoodSine topography plays a ruial role, the �rst priniple of DLM is that the dynamis onone layer enodes neighborhood relations through orrelation in the neural ativities (seeFigure 3.2). The orrelation between neurons is high if they are adjaent and dereaseswith distane. Conversely, knowing the temporal signals of two neurons one an tell fromthe types of orrelation whether they are neighbors or not. This an be ahieved by manydi�erent dynamis generating lustered ativities. In most models so far, stationary blobs19
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Figure 3.1: Initial and �nal onnetivity for DLM. Image and model are representedby layers of 16�17 and 10�10 nodes, respetively, indiated by blak dots. Eah nodeis labeled with a loal feature indiated by small texture patterns. Initially, the imagelayer and the model layer are onneted all-to-all with synapti weights depending onthe feature similarities of the onneted nodes, indiated by arrows of di�erent linewidths. The task of DLM is to selet the orret links and establish a regular one-to-onemapping. We see here the initial onnetivity at t = 0 and the �nal one at t = 10 000.Sine the onnetivity between a model and the image is a four-dimensional matrix, it isdiÆult to visualize it in an intuitive way. If the rows of eah layer are onatenated to avetor, top row �rst, the onnetivity matrix beomes two-dimensional as shown at theleft. The model index inreases from left to right, the image index from top to bottom.High similarity values are indiated by blak squares. A seond way to illustrate theonnetivity is the net display shown at the right. The image layer serves as a anvason whih the model layer is drawn as a net. Eah node orresponds to a model neuron,neighboring neurons are onneted by an edge. The loation of the nodes indiates theenter of gravity of the projetive �eld of the model neurons, onsidering synapti weightsas physial mass. In order to favor strong links, the masses are taken to the power ofthree. (See Figure 3.6 for onnetivity development in time.)
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Figure 3.2: First priniple of DLM. Neighborhood relations in eah layer are enoded bysignal orrelation. As an example the dynamis is shown as a running blob of ativity.From the temporal signals shown on the right one an tell that neurons 1 and 2 areneighbors while neurons 2 and 3 are not.of ativity have been used. In Setion 4.2.3 a dynamis with running blobs is presented.Waves of di�erent orientation are being investigated in our institute as well (Shwarz,1995), and one ould also think of osillatory modes of di�erent frequeny suh as in amembrane or a layer of oupled haoti osillators.Layer Dynamis SynhronizeThe seond priniple of DLM is that of layer synhronization (see Figure 3.3). Assum-ing two layers of the same size are onneted by a perfet one-to-one mapping, thenthe ativity dynamis of both layers have to synhronize suh that after a short whileorresponding neurons of the two layers are well-orrelated, and via versa: you an inferfrom the temporal signals of neurons of two di�erent layers whether they orrespond toeah other or not. This is typially ahieved by ooperation through the mutual onne-tions. As a side e�et of the ooperation the blobs beome larger and the layer ativitiesstronger.Synhrony is Robust Against NoiseThe third priniple of DLM is robustness against noise (see Figure 3.4). Usually the initialonnetivity between two layers is not perfet but given only by the feature similarities ofthe neurons. Hene many aidental links are present and orret links may be missingif the patterns are not idential. Distortion may ause the orret mapping not to beone-to-one. If one pattern is partially oluded only the remaining part an be mathed.Robustness against noise is ahieved by ooperation between neighboring links. Twolinks are neighboring if both the soure nodes and the destination nodes are neighbors.Sine eah link tends to synhronize the onneted nodes, and sine neighboring nodesare synhronized through the layer dynamis, groups of neighboring links an ooperateand are more suessful than aidental links, even if the latter are stronger. Groupsof neighboring links emerge if whole pathes of loal features are similar, i.e. if at leastsubgraphs an be mathed. The ooperation between neighboring links is illustrated inFigure 3.5. 21
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Figure 3.3: Seond priniple of DLM. Layer ativity dynamis synhronize, and orre-lation of neurons of di�erent layers enode orrespondene. Initially the blobs move indi�erent diretions. Sine the input into one layer is a opy of the ativity of the otherlayer, the two blobs tend to synhronize and run aligned with eah other from then on.The orrespondene between neurons of di�erent layers an then be read o� their timesignals as shown in the bottom graphs. As a side e�et of the ooperation the blobsbeome larger.
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Figure 3.4: Third priniple of DLM. Layer ativity dynamis synhronize despite pres-ene of noise, i.e. aidental links, missing links, distortion, and olusion. Sine theblobs over a neighborhood of ells, links an ooperate if they have same neighbors inboth layers. This redues the inuene of aidental links, whih are usually isolated(see also Figure 3.5). 22
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3Figure 3.5: Fourth priniple of DLM. The initial onnetivity is re�ned on the basisof orrelations between orresponding neurons. Sine the layer dynamis synhronizedespite noise in the initial onnetivity, aidental links an be suppressed by other linksonneting better orrelated neurons. The �nal state is shown on the right. On the leftthe ooperation between links is illustrated. We see here two links onverging onto neuron2. One is weaker than the other but it an ooperate with the two diretly neighboringlinks. That favors the weak one, whih will eventually survive the link dynamis.Synhrony Strutures ConnetivityThe �rst three priniples indue orrelations between neighboring neurons or those or-responding to eah other if they belong to di�erent layers. This synhrony is robustagainst noise and usually leaner than the initial onnetivity. As a fourth priniple onean therefore apply fast synapti plastiity to modify the links on the basis of induedsynhrony between neural ativities (see Figure 3.5). It typially onsists of a Hebbian-like growth rule, but on a fast time sale, and a normalization rule. The growth rulefavors links between synhronized neurons, while the normalization rule supresses linksbetween less synhronized neurons. This priniple works iteratively, i.e. synhrony im-proves with the development of a regular onnetivity and the onnetivity is re�ned bythe establishing synhrony. Figure 3.6 shows onnetivity and orrelations developing intime. One an see that at a given time the orrelations are leaner than the onnetivityand that both improve together.3.3 Disussion3.3.1 CritiqueIn Chapter 2 it was argued that labeled graphs are a promising basis for a uniformtheory of pereption. The problem with graphs is that they do not seem to �t intoneural arhiteture. So far DLM is the only serious approah for proessing graphs inneural nets, and we have seen its priniples. Despite its potential, DLM is not able toaount for the performane of the mature visual system for the two following reasons:23
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5 000 10 000Figure 3.6: Connetivity and orrelations developing in time. It an be seen how theorrelations develop faster and are leaner than the onnetivity. Both are iterativelyre�ned on the basis of the other. (Based on simulations as desribed in Chapter 4.)DLM is Too SlowSo far DLM has been applied only to visual tasks. Psyhophysial experiments bySubramaniam et al. (1995) show that our visual system is extremely exible and quik.Subjets are able to reognize line drawings of objets from a sequene in whih eahobjet is shown only for 72 ms. Neurobiologial experiments show that highly objet-spei� ells in the anterior superior temporal polysensory area (STPa) respond with adelay of only 70 ms to the stimulus (Oram & Perrett, 1994). If one assumes 10 msfor the interation between two neurons, one would have only 7 iterations left for onereognition. That is de�nitely too few for DLM in the urrent formulation.There are several ways to speed up DLM under ertain onditions. For example ifthe outline of the objet is given by reliable segmentation ues, planar waves ould beindued running twie over the objet in di�erent diretions. By this, the onnetivityan in priniple be indued very quikly. DLM with running waves has reently beeninvestigated by Shwarz (1995) .von der Malsburg (1994) suggested that DLM in its pure form is used only inthe infant, and that later shortuts are developed with experiene to ahieve the highperformane of the adult. On diÆult visual tasks the shortuts fail, and then even theadult system has to revert to the slow proess of DLM.It is interesting to ompare the speed of DLM with other neural models of pereption.It is obvious that feed-forward nets suh as bak-propagation perform muh faster onreognition tasks one they are trained. But in terms of training e�ort it has beenshown that DLM is muh faster (Bienenstok & Doursat, 1991; Konen & von derMalsburg, 1992, 1993). Due to the mathing proess, DLM an take full advantage of24



single examples. While typial neural nets have to learn invariane or robustness againsttransformations suh as translation, rotation, and distortion, DLM is already endowedwith these abilities.A performane omparison of DLM with Kohonen's algorithm has been done byBehrmann (1993). The Kohonen-algorithm, whih has been derived from DLM, iswidely used in tehnial appliations, and one should assume that it is muh more eÆientthan the original model. But it has turned out that both models are omparable interms of speed. DLM has the additional advantage of being less sensitive to parametervariations.DLM is Too Expensive in Terms of ConnetivityAs seen above, DLM initially requires links from all neurons in one layer to all neuronsin the other in order to obtain full invariane against translation, rotation, et. It it learthat our visual system annot a�ord all-to-all onnetivity from V1 to all stored modelsin our memory. Somehow the huge number of required onnetions has to be redued.The only solution to this problem is to introdue hierarhy. This an be done intwo ways. Firstly, a asade of restrited mappings approximates the general one withmuh less onnetivity. This priniple was very well demonstrated in (Anderson &van Essen, 1993; van Essen et al., 1994; Olshausen, 1994).Seondly, the mapping an start with oarse resolution and then be re�ned to a higherresolution level. Rinne (1995) has applied DLM in this way to grey value images. Insteadof a full initial onnetivity he used a sparse onnetivity of superlinks, eah superlinkrepresenting a subarray of normal links. After ruling out most of the superlinks by DLM,he replaed the remaining ones by the respetive bunhes of normal links and ontinuedre�ning the mapping by DLM. He thus was able to math 128�128 layers of neuronswith eah other. A similar tehnique has been used by W�urtz (1995) for a hierahialDLM on a wavelet multisale representation. These two hierarhial DLM models arestill biologially implausible, sine in them links of one type get diretly replaed orinitialized by links of another type.3.3.2 Comparison with Other ModelsObjet reognition invariant against translation is a very diÆult task for onventionalneural systems with �xed onnetivity. For that reason only few attempts have beenmade to build suh systems.The �rst lass of systems is the Neoognitron of Fukushima et al. (1983) and relatedmodels suh as the weight sharing bak-propagation networks (LeCun et al., 1989), inone dimension also known as time delayed neural networks (TDNN). The Neoognitron isa feed-forward network whih ahieves translation invariane by spatial low-pass �lteringand subsampling of neural responses, by whih also disriminative information gets lost.Translation invariane is limited sine the possible low-pass �ltering and subsamplingdepends on the omplexity of the features. The weight sharing bak-propagation appliesonly subsampling and ahieves very little translation invariane. The training e�ort isvery high for these arhitetures and the Neoognitron in addition requires a very arefuldesign of the network layout highly adapted to the training patterns. Compared to that,DLM ahieves full translation invariane without loss of disriminative apabilities. It25



has a simple and robust arhiteture and is able to learn and generalize from singleexamples. The main advantages of the feed-forward arhitetures is that they are muhfaster in reognition and that they show a feature hierarhy, whih is not yet present inthe DLM models.A very di�erent approah are the neural routing iruits (Anderson & van Essen,1993; van Essen et al., 1994; Olshausen, 1994). The authors have implemented aasade of restrited mappings between neural layers; those an be ontrolled and realizea large range of mappings. This system is restrited to translation and saling. Rotationas well as distortion ould easily be implemented, but if the system gets too manydegrees of freedom the ontrol might beome too expensive. The neural routing iruitsperform a normalization of an input pattern and reognition has to be ahieved by anadditional module suh as an assoiative memory. Their advantage is that they allow thesystem to ontrol the mappings and that the degrees of freedom are reasonably redued.Thus the neural routing iruits an establish the appropriate mapping between imageand model muh faster than DLM. Problems may arise with general distortions, whihannot easily be aounted for by neural routing iruits, sine it would require too muhontrol struture.3.3.3 Future PerspetivesDLM need not be restrited to visual pattern reognition. The potential of labeled graphsgoes muh farther, and the priniples of DLM are more generally appliable. One mighttherefore think about representing more abstrat patterns suh as trajetories, language,or even ideas by means of labeled graphs and about mathing them with DLM. Thenext step would then be to apply DLM to graphs with a more general topography thanjust the two-dimensional one of the visual �eld. Graphs of high dimension and unusualtopography should be treatable by DLM as well.Another diretion of researh would be of a more theoretial nature. So far DLM-models have been built mainly heuristially. Many design deisions are motivated bypratial experiene rather by a solid theoretial basis. I think it would be very helpfulto onsider DLM on the more abstrat level of autonomous link dynamis. The workof H�aussler & von der Malsburg (1983) and Wagner & von der Malsburg(1995) goes in this diretion, but is restrited to the retinotopy problem.Finally it would be very interesting to integrate DLM with the other models disussedabove. Neoognitron and related models, neural routing iruits, and DLM all have theiradvantages and drawbaks, and it might be possible to ombine their apabilities.
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Chapter 4Fae Reognition byDynami Link MathingAbstrat: A omplete system for fae reognition based on Dynami Link Mathing (DLM)is presented. Faes are represented by layers of neurons with jets attahed as loal features. Agallery of model layers is onneted to one image layer, whih is of larger size. The onnetivitybetween models and image is initialized aording to the jet similarities. The layer dynamisgenerates blobs of ativity ontinuously moving over the layers. The blobs interat via theonnetivity matries and align. Based on that, fast synapti plastiity develops a one-to-one mapping between the layers. The model layers have a total ativity dependent on theirsimilarity to the image. A winner-take-all mehanism sequentially rules out the less similarmodels, letting the most similar model survive. Sine the image layer is larger than the modellayers, an attention window is introdued in the form of a large blob restriting the spaeavailable for the small running blob. Due to interations with the running blob, the attentionblob automatially aligns with the orret fae position. Reognition results on galleries of upto 111 faes are presented.4.1 IntrodutionIn the previous hapter I desribed Dynami Link Mathing as a neural proess formathing labeled graphs. DLM systems have reently been developed by Konen & vonder Malsburg (1992, 1993) and Konen & Vorbr�uggen (1993). They all use thefollowing type of dynamis: Noise, loal exitation and global inhibition on the imagelayer indue the development of one stationary blob of ativity. Links transfer thisativity from the image to the model layer, and the same dynamis generates a seondstationary blob there. If the patterns represented on the image and the model layerare similar, the blob on the model layer is likely to appear in a orresponding loation.After both blobs have developed, the weights of the links between the layers are modi�edbased on the o-ativity of image and model neurons. Then all neurons are reset to zeroativity, and the proess starts from the beginning. The blob dynamis an be replaedby algorithmially setting a blob at a random position on the image layer and at theposition in the model layer with maximal input from the image layer (Konen et al.,1994).This stationary blob dynamis for DLM has two oneptual drawbaks: Firstly, the27



whole proess has to be ontrolled in a fairly arti�ial way to realize the sequene ofblobs and weight adaptation steps. One would rather have an autonomous dynamisthat needs no aurate shedule for layer dynamis, weight adaptation, and resetting.Seondly, the information about orrespondene that was obtained with the pair ofblobs is almost ompletely lost for the next pair of blobs. It is only stored in theweight matrix as a small modi�ation. Topography is only onveyed by the overlap ofthe blobs, whih seems to be inherently a slow proess. The �rst intention of the workpresented here was therefore to replae the stationary blob dynamis by a ontinuous andautonomous dynamis to overome the two above-mentioned drawbaks. The solutionthat I hose was to introdue delayed self-inhibition that makes the ativity blob run. Itmoves ontinuously over the whole layer. The blob positions at one partiular momentare used for determining the blob positions at the next moment, i.e. the informationabout orrespondenes is preserved in the layer dynamis. In addition, topography isonveyed by the ontinuous motion of the blobs, whih is potentially faster than the oldmethod. Weight adaptation an take plae on-line, and no sophistiated ontrol sheduleis required. Running blobs for DLM have previously been used by Wang et al. (1990),but they generated them with asymmetrial onvolution kernels, whih has oneptualdrawbaks: For example, sine the speed and diretion of the blobs is �xed, layers musthave wrap-around onditions and thus have to be of equal size.It has always been laimed that DLM is a model for objet reognition. Although itserves as the neural oneptual basis of an already suessful tehnial fae reognitionsystem (Lades et al., 1993; Wiskott et al., 1995; Chapter 5), the DLM reognitionsystems are very limited so far. In most appliations only few models, about three, weredisriminated. The data were often arti�ial, and the detetion of the orret model wasdone in a biologially implausible way, e.g. by onsidering the sum over the weights, ameasure that is not aessible in a real system. It was therefore my seond intention tobuild a DLM system that is atually a omplete reognition system, solving the same taskas the tehnial system for fae reognition, although muh slower. A gallery of 111 faesis stored and new faes on images larger than the models have to be reognized. Thisrequires �nding the fae in the image, mathing it to the model gallery, and reognizingthe orret one among the 111 ompeting alternatives.4.2 The System4.2.1 Arhiteture and Dynamis | OverviewFigure 4.1 shows the general arhiteture of the system. Faes are represented as retan-gular graphs by layers of neurons. Eah neuron represents a node and has a jet attahed.A jet is a loal desription the grey-value distribution (see Appendix A). Topographialrelationships between nodes are enoded by exitatory and inhibitory lateral onnetions.The model graphs are saled horizontally and vertially and aligned manually, suh thatertain nodes of the graphs are plaed on the eyes and the mouth (f. Setion 4.3.1).Model graphs (10�10 nodes) are smaller than the image graph (16�17 nodes). Sinethe fae in the image may be arbitrarily translated, the onnetivity between model andimage domain has to be all-to-all initially. The onnetivity matries are initialized us-ing the similarities between the jets of the onneted nodes. DLM serves as a proess28
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Figure 4.1: Arhiteture of the DLM fae reognition system. Several models are storedas neural layers of loal features on a 10�10 grid, as indiated by the blak dots. A newimage is represented by a 16�17 layer of nodes. Initially, the image is onneted all-to-allwith the models. The task of DLM is to �nd the orret mapping between the imageand the models, thus providing translation invariane and robustness against distortion.One the orret mapping is found, a simple winner-take-all mehanism an detet themodel that is most ative and most similar to the image.to restruture the onnetivity matries and to �nd the orret (one-to-one) mappingbetween the models and the image (see Figure 3.1). The models ooperate with theimage depending on their similarity. A simple winner-take-all mehanism sequentiallyrules out the least ative and least similar models, and the best-�tting one eventuallysurvives.The dynamis on eah layer (graph) of neurons (nodes) is suh that it produes arunning blob of ativity whih moves ontinuously over the whole layer. An ativityblob an easily be generated from noise by loal exitation and global inhibition. It isaused to move by delayed self-inhibition, whih also serves as a memory for the loationswhere the blob has reently been. Sine the models are aligned with eah other, it isreasonable to enfore alignment between their running blobs by exitatory onnetionsbetween neurons representing the same faial loation. The blobs on the image andthe model layers ooperate through the onnetion matries; they tend to align andindue orrelations between orresponding neurons. Then fast synapti plastiity and anormalization rule oherently modify the synapti weights, and the orret onnetivitiesbetween models and image layer an develop. Sine the models get di�erent input fromthe image, they di�er in their total ativity. The model with strongest onnetions fromthe image is the most ative one. The models ompete on the basis of their total ativity.After a while the winner-take-all mehanism suppresses the least ompetitive models,29



Layer dynamis:hpi (t0) = 0_hpi (t) = �hpi +Xi0 maxp0 �gi�i0�(hp0i0 )�� �hXi0 �(hpi0)� �hsspi (4.1)+�hhmaxqj �W pqij �(hqj)�+ �ha (�(api )� �a)� ���(r� � rp)spi (t0) = 0_spi (t) = ��(hpi � spi ) (4.2)gi�i0 = exp �(i� i0)22�2g ! (4.3)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � (4.4)Attention dynamis:api (t0) = �NN (J pi )_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! (4.5)Link dynamis:W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S�_W pqij (t) = �W ��(hpi )�(hqj)���maxj0 (W pqij0=Spqij0)� 1��W pqij (4.6)Reognition dynamis:rp(t0) = 1_rp(t) = �rrp �F p �maxp0 (rp0F p0)� (4.7)F p(t) = Xi �(hpi )Table 4.1: Formulas of the DLM fae reognition systemand eventually only the best one survives. Sine the image layer may be signi�antlylarger than the model layers, I introdue an attention window in form of a large blob.It interats with the running blob, restrits its region of motion, and an be shifted byit to the atual fae position.The equations of the system are given in Table 4.1; the respetive symbols are listedin Table 4.2. In the following setions I will explain the system step by step: blobformation, blob mobilization, interation between two layers, link dynamis, attentiondynamis, and reognition dynamis. (In order to make the desription learer, parts ofthe equations in Table 4.1 orresponding to these funtions will be repeated.)30



Variables: h internal state of the layer neuronss delayed self-inhibitiona attentionW synapti weights between neurons of two layersr reognition variableF �tness, i.e. total ativity of eah layerIndies:(p; p0; q; q0) layer indies, 0 indiates image layer, 1; :::;M indiatemodel layers= (0; 0; 1; :::;M ; 1; :::;M) if formulas desribe image layer dynamis= (1; :::;M ; 1; :::;M ; 0; 0) if formulas desribe model layers dynamis(i; i0; j; j0) two-dimensional indies for the individual neurons in lay-ers (p; p0; q; q0) respetivelyFuntions:gi�i0 Gaussian interation kernel�(h) nonlinear squashing funtion�(�) Heavyside funtionN (J ) salieny of feature jet J (see Equation A.5)S�(J ;J 0) similarity between feature jets J and J 0 (see Equa-tion A.7)Parameters:�h = 0:2 strength of global inhibition�a = 0:02 strength of global inhibition for attention blob�a = 1 strength of global inhibition ompensating for the atten-tion blob�� = 1 global inhibition for model suppression�hs = 1 strength of self-inhibition�hh = 1:2 strength of interation between image and model layers�ha = 0:7 e�et of the attention blob on the running blob�ah = 3 e�et of the running blob on the attention blob�� deay onstant for delayed self-inhibition= �+ = 0:2 if h� s > 0= �� = 0:004 if h� s � 0�a = 0:3 time onstant for the attention dynamis�W = 0:05 time onstant for the link dynamis�r = 0:02 time onstant for the reognition dynamis�N = 0:001 parameter for attention blob initialization�S = 0:1 minimal weight� = 2 slope radius of squashing funtion�g = 1 Gauss width of exitatory interation kernelr� = 0:5 threshold for model suppressionTable 4.2: Variables and parameters of the DLM fae reognition system31



4.2.2 Blob FormationBlob formation on a layer of neurons an easily be ahieved by loal exitation and globalinhibition. Loal exitation generates lusters of ativity, and global inhibition lets thelusters ompete against eah other. The strongest one will �nally suppress all othersand grow to an equilibrium size determined by the strengths of exitation and inhibition.The orresponding equations are (f. Equations 4.1, 4.3, and 4.4):_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0); (4.8)gi�i0 = exp �(i� i0)22�2g ! ; (4.9)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � : (4.10)The internal state of the neurons is denoted by hi, where i is a two-dimensionalCartesian oordinate for the loation of the neuron. The neurons are arranged on aregular square lattie with spaing 1, i.e. i = (0; 0); (0; 1); (0; 2); :::; (1; 0); (1; 1); :::. Theneural ativity (whih an be interpreted as a mean �ring rate) is determined by thesquashing funtion �(h) of the neuron's internal state h. The neurons are onnetedexitatorily through the Gaussian interation kernel g. The strength of global inhibitionis ontrolled by �h. It is obvious that a blob an only arise if �h < g0 = 1 (imagine onlyone neuron is ative), and that the blob is larger for smaller �h. In�nite growth of h isprevented by the deay term �h, beause it is linear, while the blob formation termssaturate due to the squashing funtion �(h). The speial shape of �(h) is motivatedby three fators. Firstly, � vanishes for negative values to suppress osillations in thesimulations by preventing undershooting. Seondly, the high slope for small argumentsstabilizes small blobs and makes blob formation from low noise easier, beause for smallvalues of h the interation terms dominate over the deay term. Thirdly, the �niteslope region between low and high argument values allows the system to distinguishbetween the inner and outer parts of the blobs by making neurons in the enter of a blobmore ative than at its periphery. Additional multipliative parameters of the deayor exitation terms would only hange time and ativity sale, respetively, and do notgenerate qualitatively new behavior. In this sense the parameter set is omplete andminimal. A detailed disussion of this dynamis has been given by Amari (1977), alsoin the ontext of self-organizing topographi mappings (Amari, 1980, 1989).4.2.3 Blob MobilizationGenerating a running blob an be ahieved by delayed self-inhibition, whih drives theblob away from its urrent to a neighboring loation, where the blob generates new self-inhibition. This mehanism produes a ontinuously moving blob (see Figure 4.2). Thedriving fore and the reolletion time as to where the blob has been an be indepen-dently ontrolled by their respetive time onstants. The orresponding equations are(f. Equations 4.1 and 4.2): 32
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Figure 4.2: A sequene of layer states as simulated with Equations 4.11 and 4.12. Theativity blob h shown in the middle row has a size of approximately six ative nodesand moves ontinuously over the whole layer. Its ourse is shown in the upper diagram.The delayed self-inhibition s, shown in the bottom row, follows the running blob anddrives it forward. One an see the self-inhibitory tail that repels the blob from regionsjust visited. Sometimes the blob runs into a trap (f. olumn three) and has no way toesape from the self-inhibition. It then disappears and reappears again somewhere elseon the layer. (The temporal inrement between two suessive frames is 20 time units.)
_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0)� �hssi; (4.11)_si(t) = ��(hi � si): (4.12)The self-inhibition s is realized by a leaky integrator with deay onstant ��. Thedeay onstant has two di�erent values depending on whether h�s is positive or negative.This aounts for the two di�erent funtions of the self-inhibition. The �rst funtion is todrive the blob forward. In this ase h > s and a high deay onstant �+ is appropriate.The seond funtion is to indiate where the blob has reently been, i.e. to serve as amemory and to repel the blob from regions reently visited. In this ase h < s and alow deay onstant �� is appropriate. For small layers, �� should be larger than forlarge ones, beause the blob visits eah loation more frequently. The speed of the blobis ontrolled by �+ and the oupling parameter �hs. They may also hange the shapeof the blob. Small values suh as those used in the simulations presented here allow theblob to keep its equilibrium shape and drive it slowly; large values produe a fast-movingblob distorted to a kidney-shape. 33
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Figure 4.3: Synhronization between two running blobs as simulated with Equa-tions 4.13 and 4.14. Layer input as well as the internal layer state h is shown at anearly stage, in whih the blobs of two layers are not yet aligned, left, and at a laterstate, right, when they are aligned. The two layers are of di�erent size, and the regionin layer 1 that orretly maps to layer 2 is indiated by a square de�ned by the dashedline. In the early non-aligned ase one an see that the blobs are smaller and not at theloation of maximal input. The loations of maximal input indiate where the atualorresponding neurons of the blob of the other layer are. In the aligned ase the blobsare larger and at the loations of high layer input.4.2.4 Layer Interation and SynhronizationIn the same way that the running blob is repelled by its self-inhibitory tail, it an alsobe attrated by exitatory input from another layer as onveyed by a onnetion matrix.Imagine two layers of the same size mutually onneted by the identity matrix, i.e. eahneuron in one layer is onneted only with the one orresponding neuron in the otherlayer having the same index value. The input then is a opy of the blob of the otherlayer. This favors alignment between the blobs, beause then they an ooperate andstabilize eah other. This synhronization priniple holds also in the presene of the noisyonnetion matries generated by real image data (see Figure 4.3). The orrespondingequation is (f. Equation 4.1):_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)� ; (4.13)_spi (t) = ��(hpi � spi ): (4.14)The two layers are indiated by the indies p and q. The synapti weights of theonnetions areW , and the strength of mutual interation is ontrolled by the parameter�hh. (The reason why I use the maximum funtion instead of the usual sum will bedisussed in Setion 4.2.10.) 34



4.2.5 Link DynamisIn Setion 3.2.2 it was demonstrated that the links between two layers an be leanedup and strutured by fast synapti plastiity on the basis of orrelations between pairsof neurons (see Figure 3.6). The orrelations result from the layer synhronization de-sribed in the previous setion. The link dynamis typially onsists of a growth ruleand a normalization term. The former lets the weights grow aording to the orrelationbetween the onneted neurons. The latter prevents the links from growing inde�nitelyand indues ompetition suh that only one link per neuron survives whih suppressesall others. The orresponding equations are (f. Equations 4.6):W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S� ;_W pqij (t) = �W ��(hpi )�(hqj)���maxj0 (W pqij0=Spqij0)� 1��W pqij : (4.15)Links are initialized by the similarity S� between the jets J of onneted nodes (seeEquation A.7). The parameter �S guarantees a minimal positive synapti weight, per-mitting eah link to suppress others, even if the similarity between the onneted neuronsis small. This an be useful to obtain a ontinuous mapping if a link has a neighborhoodof strong links induing high orrelations between the pre- and postsynapti neurons ofthe weak link. The synapti weights grow exponentially, ontrolled by the orrelationbetween onneted neurons de�ned as the produt of their ativities �(hpi )�(hqj). Thelearning rate is additionally ontrolled by �W . Due to the Heavyside-funtion �, normal-ization takes plae only if links grow beyond their initial value. Then the link dynamis isdominated by the normalization term, with a ommon negative ontribution for all linksonverging to the same neuron. Notie that the growth term, based on the orrelation,is di�erent for di�erent links. Thus the link with the highest average orrelation willeventually suppress all others onverging to the same neuron. Sine the similarities S�annot be larger than 1, the synapti weights W are restrited to the interval [0; :::; 1℄.4.2.6 Attention DynamisThe alignment between the running blobs depends very muh on the onstraints, i.e.on the size and format of the layer on whih they are running. This auses a problem,sine the image and the models have di�erent sizes. I have therefore introdued anattention blob whih restrits the movement of the running blob on the image layer toa region of about the same size as that of the model layers. Eah of the model layerslikewise has an attention blob to keep the onditions for their running blobs similar tothat in the image layer; this is important for alignment. The attention blob restritsthe region for the running blob, but it an be shifted by the latter into a region whereinput is espeially large and favors ativity. The attention blob therefore automatiallyaligns with the atual fae position (see Figures 4.4 and 4.5). The attention blob layer isinitialized by a primitive segmentation ue, in this ase the salieny of the respetive jets(see Equation A.5), sine the norm indiates the presene of textures of high ontrast.The orresponding equations are (f. Equations 4.1 and 4.5):35



_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �a) ; (4.16)_spi (t) = ��(hpi � spi ); (4.17)api (t0) = �NN (J pi );_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! : (4.18)The equations show that the attention blob a is generated by the same dynamis aswas disussed in Setion 4.2.2 for the formation of the running blob, without delayedself-inhibition, though sine the attention blob is to be larger than the running blob, �ahas to be smaller than �h. The attention blob restrits the region for the running blob viathe term �ha (�(api )� �a), whih is an exitatory blob �(api ) ompensating the onstantinhibition �a. The attention blob on the other hand gets exitatory input �ah�(hpi ) fromthe running blob. By this means the running blob an slowly shift the attention blobinto its favored region. The dynamis of the attention blob has to be slower than thatof the running blob; this is ontrolled by a value �a < 1. N is the salieny of the jets,and �N determines the initialization strength.4.2.7 Reognition DynamisEah model ooperates with the image depending on its similarity. The most similarmodel ooperates most suessfully and is the most ative one. Hene the total ativityof the model layers indiates whih is the orret one. I have derived a winner-take-allmehanism from Eigen's (1978) evolution equation and applied it to detet the bestmodel and suppress all others. The orresponding equations are (f. Equations 4.1 and4.7): _hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi (4.19)+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �a)� ���(r� � rp);_spi (t) = ��(hpi � spi ); (4.20)rp(t0) = 1;_rp(t) = �rrp �F p �maxp0 (rp0F p0)� ; (4.21)F p(t) = Xi �(hpi ):The total layer ativity is onsidered as a �tness F p, di�erent for eah model p.The modi�ed evolution equation an be easily analyzed if the F p are assumed to beonstant in time and the reognition variables rp are initialized to 1. For the model36
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image layer model layerFigure 4.5: Funtion of the attention blob, using an extreme example of an initialattention blob manually misplaed for demonstration. At t = 150 the two running blobsran synhronously for a while, and the attention blob has a long tail. The blobs thenlost alignment again. From t = 500 on, the running blobs remained synhronous, andeventually the attention blob aligned with the orret fae position, indiated by a squareof dashed lines. The attention blob moves slowly ompared to the small running blob,as it is not driven by self-inhibition. Without an attention blob the two running blobsmay synhronize sooner, but their alignment will never beome stable.38



layer pb with the highest �tness, the equation simpli�es to _rpb(t) = �rrpb(1 � rpb)F pbwith a stable �xed point at rpb = 1. For all other models the equation then simpli�es to_rp(t) = �rrp(F p � F pb), whih results in an exponential deay of the rp for all p 6= pb.When a reognition variable rp drops below the suppression threshold r�, the ativityon layer p is suppressed by the term ����(r� � rp). The time sale of the reognitiondynamis an be ontrolled by �r.4.2.8 Bidiretional ConnetionsThe onnetivity between two layers is bidiretional and not unidiretional as in theprevious system (Konen & Vorbr�uggen 1993). This is neessary for two reasons:Firstly, by this means the running blobs of the two onneted layers an more easilyalign. With unidiretional onnetions one blob would systematially run behind theother. Seondly, onnetions in both diretions are neessary for a reognition system.The onnetions from model to image layer are neessary to allow the models to movethe attention blob in the image into a region that �ts the models well. The onnetionsfrom the image to the model layers are neessary to provide a disrimination ue as towhih model best �ts the image. Otherwise eah model would exhibit the same level ofativity.4.2.9 Blob Alignment in the Model DomainSine faes have a ommon general struture, it is advantageous to align the blobs inthe model domain to insure that they are always at the same position in the faes,either all at the left eye or all at the hin et. This is ahieved by onnetions betweenthe layers and leads to the term +Pi0 maxp0 �gi�i0�(hp0i0 )� instead of +Pi0 (gi�i0�(hpi0))in Equation 4.1. If the model blobs were to run independently, the image layer wouldreeive input from all fae parts at the same time, and the blob there would have a hardtime aligning with a model blob, and it would be very unertain whether it would be theorret one. The ooperation between the models and the image would depend more onaidental alignment than on the similarity between the models and the image, and itwould then be very likely that the wrong model is piked up as the reognition result.One alternative is to let the models inhibit eah other suh that only one model anhave a blob at a time. The models then would share time to math onto the image, andthe best-�tting one would get most of the time. This would probably be the appropriatesetup if the models were very di�erent and without a ommon struture, as it is forgeneral objets. The disadvantage is that the system needs muh more time to deidewhih model to aept, beause the relative layer ativities in the beginning dependmuh more on hane than in the other setup.4.2.10 Maximum Versus Sum NeuronsThe model neurons used here use the maximum over all input signals instead of the sum.The reason is that the sum would mix up many di�erent signals, while only one an bethe orret one, i.e. the total input would be the result of one orret signal and manymisleading ones. Hene the signal-to-noise ratio would be very low. I have observed anexample where even a model idential to the image was not piked up as the orret39



one, beause the sum over all the aidental input signals favored a ompletely di�erent-looking person. For that reason I introdued the maximum input funtion, whih isreasonable sine the orret signal is likely to be the strongest one. The maximum rulehas the additional advantage that the dynami range of the input into a single ell doesnot vary muh when the onnetivity develops, whereas the signal sum would dereaseor inrease signi�antly during synapti re-organization depending on the normaliza-tion rule. Thus the blobs would either loose their alignment or would be driven intosaturation.4.3 Experiments4.3.1 DatabaseAs a fae database I used galleries of 111 di�erent persons. Of most persons there is oneneutral frontal view, one frontal view of di�erent faial expression, and two views rotatedin depth by 15 and 30 degrees respetively. The neutral frontal views serve as a modelgallery, and the other three are used as test images for reognition. The models, i.e. theneutral frontal views, are represented by layers of size 10�10 (see Figure 4.1). Thoughthe grids are retangular and regular, i.e. the spaing between the nodes is onstantfor eah dimension, the graphs are saled horizontally in the x- and vertially in they-diretion and are aligned manually: The left eye is always represented by the nodein the fourth olumn from the left and the third row from the top, the mouth lies onthe fourth row from the bottom, et. The x-spaing ranges from 6.6 to 9.3 pixels witha mean value of 8.2 and a standard deviation of 0.5. The y-spaing ranges from 5.5 to8.8 pixels with a mean value of 7.3 and a standard deviation of 0.6. An input image ofa fae to be reognized is represented by a 16�17 layer with an x-spaing of 8 pixelsand a y-spaing of 7 pixels. The image graphs are not aligned, sine that would alreadyrequire reognition. The size variations of up to a fator of 1.5 in the x- and y-spaingsmust be ompensated for by the DLM proess.4.3.2 Tehnial AspetsDLM in the form presented here is omputationally expensive. I have performed singlereognition tasks with the omplete system, but for the experiments referred to in Ta-ble 4.3 I modi�ed the system in several respets to ahieve a reasonable speed. I splitup the simulation into two phases. The only purpose of the �rst phase is to let theattention blob beome aligned with the fae in the input image. No modi�ation of theonnetivity was applied in this phase, and only one average model was simulated. Itsonnetivity W a was derived by taking the maximum synapti weight over all modelsfor eah link: W aij(t0) = maxpq W pqij (t0);_W aij(t) = 0: (4.22)This attention period takes 1000 time steps. Then the omplete system, inluding theattention blob, is simulated, and the individual onnetion matries are subjeted to40



DLM. Neurons in the model layers are not onneted to all neurons in the image layer,but only to an 8 � 8 path. These pathes are evenly distributed over the image layerwith the same spatial arrangement as the model neurons themselves. This still preservesfull translation invariane. Full rotation invariane is lost, but the jets used are notrotation invariant in any ase. The link dynamis is not simulated at eah time step,but only after 200 simulation steps or 100 time units. During this time a running blobmoves about one over all of its layer, and the orrelation is integrated ontinuously.The simulation of the link dynamis is then based on these integrated orrelations, andsine the blobs have moved over all of the layers, all synapti weights are modi�ed. Forfurther inrease in speed, models that are ruled out by the winner-take-all mehanismare no longer simulated; they are just set to zero and ignored from then on (�� = 1).The CPU time needed for the reognition of one fae against a gallery of 111 models isapproximately 10{15 minutes on a Sun SPARCstation 10-512 with a 50 MHz proessor.In order to avoid border e�ets, the image layer has a frame with a width of 2 neuronswithout any features or onnetions to the model layers. The additional frame of neuronshelps the attention blob to move to the border of the image layer. Otherwise it wouldhave a strong tendeny to stay in the enter.
4.3.3 ResultsFigure 4.6 shows two reognition examples, one using a test fae rotated in depth and theother using a fae with a very di�erent expression. In both ases the gallery ontains �vemodels. Due to the tight onnetions between the models, the layer ativities show thesame variations and di�er only very little in intensity. This small di�erene is averagedover time and ampli�ed by the reognition dynamis that rules out one model after theother until the orret one survives. The examples were monitored for 2000 units ofsimulation time. An attention phase of 1000 time units had been applied before, but isnot shown here. The seond reognition task was obviously harder than the �rst. Thesum over the links of the onnetivity matries was even higher for the fourth modelthan for the orret one. This is a ase where the DLM is atually required to stabilizethe running blob alignment and reognize the orret model. In many other ases theorret fae an be reognized without modifying the onnetivity matrix.Reognition rates for galleries of 20, 50, and 111 models are given in Table 4.3. Asis already known from previous work (Lades et al., 1993), reognition of depth-rotatedfaes is in general less reliable than, for instane, reognition of faes with an alteredexpression (the examples in Figure 4.6 are not typial in this respet). It is interestingto onsider reognition times. Although they vary signi�antly, a general tendeny isnotieable: Firstly, more diÆult tasks take more time, i.e. reognition time is orrelatedwith error rate. This is also known from psyhophysial experiments (see for exampleBrue et al., 1987; Kalosai et al., 1994). Seondly, inorret reognition takes muhmore time than orret reognition. Reognition time does not depend very muh onthe size of the gallery. 41
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Figure 4.6: Simulation examples of DLM reognition. The test images are shown onthe left with 16�17 neurons indiated by blak dots. The models have 10�10 neuronsand are aligned with eah other. The respetive total layer ativities, i.e. the sum over allneurons of one model, are shown in the upper graphs. The most similar model is usuallyslightly more ative than the others. On that basis the models ompete against eahother, and eventually the orret one survives, as indiated by the reognition variable.The sum over all links of eah onnetion matrix is shown in the lower graphs. It givesan impression of the extent to whih the matries self-organize before the reognitiondeision is made.
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Gallery Corret Reognition Time forSize Test Images Reognition Corret Inorret# Rate % Reognition Reognition111 rotated faes (15 degrees) 106 95.5 310 � 400 5120 �357020 110 rotated faes (30 degrees) 91 82.7 950 �1970 4070 �4810109 frontal views (grimae) 102 93.6 310 � 420 4870 �6010111 rotated faes (15 degrees) 104 93.7 370 � 450 8530 �580050 110 rotated faes (30 degrees) 83 75.5 820 � 740 5410 �7270109 frontal views (grimae) 95 87.2 440 �1000 2670 �1660111 rotated faes (15 degrees) 102 91.9 450 � 590 2540 �2000111 110 rotated faes (30 degrees) 73 66.4 1180 �1430 4400 �4820109 frontal views (grimae) 93 85.3 480 � 720 3440 �2830Table 4.3: Reognition results against a gallery of 20, 50, and 111 neutral frontal views.Reognition time (with two iterations of the di�erential equations per time unit) is thetime required until all but one models are ruled out by the winner-take-all mehanism.4.4 DisussionThe two main features of the system presented here ompared to the preeding stationaryblob system are the ontinuous and autonomous dynamis and the fat that the systematually performes fae reognition on a large gallery. This latter is de�nitely a suess.The former seems to be a oneptual step forward as well, but it is worthwhile to disussthe advantages and drawbaks of the two di�erent dynamis more thoroughly. The�rst advantage of the running blob dynamis is obvious: It requires no external ontrolshedule (in the sense of a ertain sequene of phases suh as required for the stationaryblob dynamis, for whih the layer dynamis, the link dynamis, and a omplete reset ofthe layer dynamis iterate). Its seond advantage is that running blobs potentially onveytopography faster and more reliably. Although the blobs may jump, their generallyontinuous motion enfores ontinuity in the mapping muh more than a sequene ofindependent stationary blobs.Nevertheless the running blobs have some disadvantages: Firstly, if the blobs inthe image and the model layer have started at non-orresponding positions, they runindependently of eah other for quite a while and may even ross eah other's path beforethey lok onto eah other and run in alignment from then on. In the stationary blobdynamis, eah new blob in the image layer has the hane of produing a orrespondingblob in the model layer independently of the previous one. Therefore the stationaryblobs may align faster. Seondly, the running blobs have the strong tendeny to movestraight over the whole layer. That auses problems if the layers are of di�erent sizeor format and requires additional ontrol dynamis in form of the attention window.(Though the old system had the problem that if the image was larger than the model,many blobs in the image layer were plaed at loations without any ounterpart in themodel layer. A mehanism like the attention blob would probably have been usefulin that system as well.) Thirdly, the paths of the running blobs are not random butare partially determined by the input from the other layers, whih remains the same43



for a given loation of a blob. Thus ertain paths dominate and topology is enodedinhomogeneously: strongly along typial paths and weakly elsewhere.For these reasons, further researh will have to investigate alternatives to both blobdynamis in order to �nd an optimal dynamis. Some experiments have reently beenmade with layers of oupled Bonhoe�er-van der Pol osillators generating plane runningwaves (Shwarz, 1995). Plane waves are supposed to enode topology muh faster thanthe running blobs, beause in theory only two suessive waves running perpendiularlyto eah other suÆe to determine all loations uniquely. The problem of plane waves isthat they have suh strongly autonomous dynamis that they need a long time to alignand then they have usually passed the layer already. Therefore the running wave modelis still slower than the running blob model.Beside these layer dynamis issues, there are many diretions in whih the systemould be further developed to make it more omplete and realisti: It has not yet beeninvestigated how new models an be added to the gallery in a neural fashion, it will beneessary to introdue hierarhy into the reognition proess, and more ontrol struturefor ontext knowledge is required, to mention only a few aspets.
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Chapter 5Fae Reognition byElasti Graph MathingAbstrat: The fae reognition system presented below is based on Elasti Graph Mathing(EGM) as an algorithmi version of Dynami Link Mathing. Individual faes are representedas labeled graphs. Nodes are labeled with jets; edges are labeled with distane vetors. Thegraphs are objet-adapted, i.e. nodes are loated at �duial points, suh as eyes, tip of thenose, orners of the mouth, et. In order to be able to represent a wide range of di�erent faes,a olletion of individual fae graphs is fused to a General Fae Knowledge (GFK), a graphstruture in whih a set of alternative jets instead of only one is attahed to a node. With theGFK, probe faes an be represented as a nodewise omposition of the known sample faes,whih makes the system more reliable on unknown faes. A similarity funtion is de�ned toompare two graphs, taking into aount the similarities of the individual jets and the relativedistortion of the graphs. New image graphs are generated by maximizing this similarity betweenthe GFK and a sequene of image graphs seleted from an image. This proess is known asElasti Graph Mathing. Di�erent views are represented by graphs or GFKs whih di�er instruture. For mathing and reognition, only jets referring to orresponding �duial pointsare ompared. Reognition results are given for galleries of 300 faes. Performane is goodon frontal views against frontal views but relatively poor on di�erent views, e.g. half-pro�leagainst frontal view.5.1 IntrodutionIn Chapter 4 faes were represented by layers of neurons, and the whole proess ofmathing and reognition was ahieved by neural dynamis. Topography was induedby lateral onnetions and a partiular layer dynamis, mathing was performed bysynhronization and link dynamis, and the reognition dynamis �nally deteted theorret fae. In this hapter, I present an algorithmi version of the very same basi ideas.But topography is here expliitely expressed by edge labels, the mathing is performedby maximizing a similarity funtion, and reognition is based on the resulting similarityvalues, taking the most similar model as the orret fae. This algorithmi formulationis more appropriate for tehnial appliations, sine the mathing is muh faster andmore exible than in the neural formulation.45



labeled graphgridimage

Figure 5.1: Labeled graphs representing faes. Shown here are two faes of di�erentpose (left) and the manually de�ned grids (middle). Nodes are plaed at �duial points,whih are assumed to be important and easy to �nd. On the right a sketh of a graphlabeled with jets is shown shematially.5.2 The System5.2.1 Fae RepresentationIndividual FaesFor faes, a set of �duial points is de�ned, e.g. the pupils, the orners of the mouth,the tip of the nose, the top and bottom of the ears, et. A labeled graph G representinga fae onsists of N nodes on these �duial points at positions ~xn; n = 1; :::; N and Eedges between them. The nodes are labeled with jets Jn. The edges are labeled withdistanes �~xe = ~xn � ~xn0 ; e = 1; :::; E, where edge e onnets node n0 with n. Henethe edge labels are two-dimensional vetors and represent the topography of the graph.This fae or model graph is objet-adapted, sine the nodes are seleted from fae-spei�points (�duial points, see Figure 5.1).Graphs of di�erent views di�er in geometry and loal features. Although the �duialpoints refer to orresponding objet points, some may be oluded, and jets as well asdistanes vary due to rotation in depth. In order to be able to ompare graphs of di�erentviews, pointers have to be de�ned that assoiate nodes of di�erent graphs, referring toorresponding �duial points. This was done manually.46



image graph general face knowledgeFigure 5.2: General Fae Knowledge (GFK) serves as a representation of faes ingeneral. It is designed to over all possible variations in appearane of faes. In order todo so, it has an average grid and a whole set of jets at eah node. An image graph to beompared with the GFK has only one jet per node. In the omparison, the best �ttingjet in the GFK is seleted for eah node independently, indiated as grey jets in rows ofwhite ones.General Fae KnowledgeIn order to deal with new faes, one needs a representation for faes in general ratherthan models of individual faes. This representation should over a wide range of possiblevariations in the appearane of faes, suh as di�erently shaped eyes, mouths, or noses,di�erent types of beards, variations due to gender and age, et. I all this representationGeneral Fae Knowledge or GFK and denote it with K. Notie that no expliit faemodel is employed. Instead, for a given view, M model graphs GKm (m = 1; :::;M) ofidential struture taken from di�erent sample faes are ombined. The nodes of theGFK are labeled with orresponding sets of jets J Kmn ; the edges are labeled with theaveraged distanes �~xKe = P�~xme =M . The GFK represents not only the sample faes,but also all faes that an be obtained by ombining the loal features of di�erent samplefaes: the mouth from one fae, the nose from a seond, parts of the hair from a third,et. Eah �duial point may be represented by a di�erent sample fae (see Figure 5.2).5.2.2 Generating a Fae Representation by Elasti GraphMathingSo far I have only desribed how individual faes and the GFK are represented by labeledgraphs. I am now going to explain how these graphs are generated.The simplest method is to do so manually. For a given image a set of �duial pointshas to be marked and edges between them have to be drawn. The edge labels an beomputed as the di�erenes between the pixel positions. This de�nes a grid, i.e. the47



strutural and metri information about a graph. Finally the Gabor wavelet transformprovides the jets for the nodes. This is atually the method for generating initial graphsfor the system. For eah view one graph has to be de�ned by hand, inluding the pointersindiating whih nodes in di�erent views orrespond to eah other.If the system has a GFK (possibly onsisting of one model only), graphs for newimages an automatially be generated by Elasti Graph Mathing. In the beginning,when the GFK ontains only very few faes, one has to review and orret the resultof the graph mathing, but one the fae knowledge is rih enough (approximately 70graphs) one an rely on the mathing and generate large galleries of faes automatially.Similarity Funtion for MathingThe key role in Elasti Graph Mathing (EGM) is played by a funtion evaluating thegraph similarity between an image graph and the GFK of idential view. It depends onthe jet similarities and the distortion of the image grid relative to the GFK grid. Fora graph GI with nodes n = 1; :::; N and edges e = 1; :::; E and a GFK K with modelgraphs m = 1; :::;M the similarity is de�ned asSK(GI ;K) = 1N Xn maxm �S�(J In ;J Kmn )�� �EXe (�~xIe ��~xKe )2; (5.1)where � determines the relative importane of jets and metri. Jn are the jets at noden and �~xe are the distane vetors used as labels at edges e. Sine the GFK providesseveral jets for eah �duial point, the best one is seleted and used for omparison. Thisbest �tting jet serves as the loal expert for the image fae.Mathing SheduleThe goal of EGM on a probe image is to �nd the �duial points and thus to selet fromall possible graphs in the image the one that maximizes the similarity with the GFK.In pratie one has to apply a heuristi algorithm to �nd a good approximation to theoptimum in a reasonable amount of time. I use a oarse to �ne approah. The mathingshedule has the following stages:Stage 1 Find the fae in the image: Average over the amplitudes of the jets in the GFKand generate an average graph, or alternatively selet one arbitrary graph as arepresentative. Use this as a rigid model (� = 1) and evaluate its similarityat eah loation of a square lattie with a spaing of 4 pixels. At this stage thesimilarity funtion Sa without phase is used instead of S�. Repeat the sanningaround the best �tting position with a spaing of 1 pixel. The best �ttingposition �nally serves as starting point for the next stage.Stage 2 Find the right position and size of the fae: Now the GFK is used withoutaveraging. The GFK grid is varied in position and size. Chek the four di�erentpositions (�3;�3) pixels displaed from the position found in Stage 1, and ateah position hek two di�erent sizes whih have the same enter position, afator of 1:18 smaller or larger than the GFK average size. This is without e�eton the metri similarity, sine the vetors ~xKe are transformed aordingly. I stillkeep � =1. For eah of these eight variations the best �tting jet for eah node48



is seleted and its displaement aording to Equation A.11 is omputed. Thisis done with a fous of 1, i.e. the displaements may be of a magnitude up tohalf the wavelength of the lowest frequeny kernel. The grids are then resaledand repositioned in order to minimize the square sum over the displaements.Stage 3 Find the right size and format of the fae: A similar relaxation proess asdesribed for Stage 2 is applied, relaxing the x- and y-dimension independentlynow. In addition the fous inreases suessively from 1 to 5.Stage 4 Loal distortion: In a pseudo-random sequene the position of eah individualimage node is varied in order to inrease further the similarity to the GFK.Now the metri similarity is taken into aount by setting � = 2 and using thevetors ~xKe as obtained in Stage 3. In this stage only positions are used wherethe estimated displaement vetor is small (d < 1, see Equation A.11). For thisloal distortion the fous again inreases from 1 to 5.The resulting graph is alled the image graph and is stored as a representation forthe individual fae of the image (see Figure 5.3).Normalizing Fae SizeThe original images have a format of 256�384 pixels, and the faes vary in size by abouta fator of 3. In order to ompensate for size variation and transform the images into the128� 128 pixel format that is used in the system, I use a preproessing stage developedby Kr�uger (1994). The preproessing uses the very same EGM as desribed aboveto estimate size and position of a fae, but a GFK with fewer nodes is used, and it issplit into three di�erent size ategories. One the size and position of the fae in theoriginal image is known, an appropriate frame an be seleted and resized to the required128x128 format.5.2.3 ReognitionEGM with the GFK allows us to generate graphs for probe faes automatially. By thismeans one an build up large galleries of model graphs without further need for mathingor distortion if one ompares faes with eah other. A gallery is distint from the GFK,sine the former represents a set of individual faes to be reognized, while the latterrepresents what the system knows about faes in general and is used to generate graphs.In addition I distinguish between image graphs/galleries and model graphs/galleries.The latter represent the stored faes known to the system, while the former representthe probe faes to be reognized by omparison with the models.For omparing graphs, I use a very simple similarity funtion simply averaging overthe similarities between the orresponding jets, ignoring the distortions reated by ro-tation in depth. If image graph and model graph are of di�erent view, one has to takeare that only jets belonging to the orresponding �duial point are ompared with eahother. Assume the image graph GI has N nodes of whih N 0 have a orresponding nodein model graph GM. n0 runs over nodes with a ounterpart, e.g. n0 = 1; ::; 7; 9; 11; ::; N�1if nodes 8, 10, and N have no ounterpart. Node nn0 in the model graph orresponds to49



frontal view half profile profile

Figure 5.3: Sample grids as generated automatially by EGM against the GFK. Onean see that in general the mathing �nds the �duial points quite aurately. Butmismathes ourred for example for the fae in the enter. The hin was not foundaurately, beause of the beard. The leftmost node and the node below it should be atthe top and the bottom of the ear respetivly. See the model above for a orret math.The graphs used in Setion 5.3.2 had about 14 additional nodes whih are not shownhere for simpliity.
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node n0 in the image graph. I then de�ne graph similarity as:SG(GI ;GM) = 1N 0 Xn0 Sa(J In0;JMnn0 ): (5.2)Here the jet similarity funtion without phase turned out to be more disriminative.Reognition with Con�deneGiven one image graph GI and a gallery of model graphs fGMm jm = 1; :::;Mg onsiderthe distribution of the similarities Sm = SG(GI ;GMm ): (5.3)In this the orret model usually stands out with a signi�antly higher value than allothers. To quantify this, I have adopted the on�dene riterion of (Lades et al., 1993).Assume that the models are ordered suh that Sm > Sm+1. The on�dene C is de�nedas C(GI ; fGMm g) = S1 � S2s ; (5.4)where s is the standard deviation of set fSmjm = 2; :::;Mg. A fae is onsidered tobe reognized with on�dene if C(GI ; fGMm g) is larger or equal to a ertain thresholdC�. This riterion is relative in the sense that a global shift and a global saling ofthe similarity distribution do not matter. These global variations might be due to adi�erent pose of the fae in the image or variations in the set of jets or oeÆientsused for the omparison. Nevertheless this riterion is rather heuristi, and a moretheoretially motivated on�dene riterion would be valuable. The main disadvantageof the riterion is that it depends on the gallery size and that it is not diretly appliableto mixed galleries, i.e. galleries ontaining models of di�erent views.With a on�dene riterion, the reognition samples fall into four lasses:First rank model First rank modelis aepted is rejetedC(GI ; fGMm g) � C� C(GI ; fGMm g) < C�First rank model is orret true positives false negativesFirst rank model is not orret false positives true negativesThe goal of the fae reognition system without on�dene riterion is to maximizethe raw reognition rate, i.e. to minimize the false ases. Given the raw reognition rate,the purpose of the on�dene riterion is to disriminate the false ases from the trueases, i.e. to minimize false negatives and false positives while maximizing true positivesand true negatives. The threshold C� determines the distribution over the lasses. Ahigh threshold will provide high reliability on rejeting false positives, a low thresholdwill provide high reliability on aepting orret models.51



profilefrontal views A and B half profilequarter view

Figure 5.4: Sample faes from the ARPA/ARL FERET database: frontal views A andB, quarter views, half-pro�le, and pro�le. The images shown here are already resaledto a normal size by the preproessing stage. Notie the variation in the rotation anglefor the quarter views and half-pro�les.5.3 Experiments5.3.1 DatabaseThe galleries of images are taken from the ARPA/ARL FERET database provided bythe US Army Researh Laboratory. For the test I used four di�erent views: frontal view,quarter view (about 20 degrees rotated), half-pro�le (about 40-70 degrees rotated), andpro�le (see Figure 5.4). Some are rotated to the left and others to the right. Theviews are known to the system. As the simplest invariane transformation I ip all rightviews to left views, assuming that sine faes are suÆiently symmetrial, this is a usefulmanipulation to reognize half-left pro�le against half-right pro�le. For most faes thereare two frontal views with di�erent faial expression. Apart from a few exeptions thepersons have no disguise or variations in hairstyle or lothing. The bakground is alwayshomogeneous, exept for smoothly varying shadows, and sometimes light and sometimesgrey. The size of the faes varies by about a fator of three, but is onstant for eahindividual. I therefore resaled all faes (see `Normalizing fae size' in Setion 5.2.2).The format of the original images is 256x384 pixels.52
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Figure 5.5: Signi�ant reognition of orret and inorret �rst rank models for allgallery pairs listed in Table 5.1 ombined. The solid line shows the proportion of falsepositives and the dashed line the proportion of true positives, depending on the on�-dene threshold. The former should be as low as possible, while the latter should be ashigh as possible. For the results in Table 5.1 I hose a on�dene threshold of C� = 1.5.3.2 ResultsFor the experiments I used model galleries of 300 faes with only one image per person.One omplete reognition, i.e. normalizing fae size, generating the fae graph, andomparison with 300 models, takes approximately 20 seonds on a Sun SPARCstation20-502 with a 50 MHz proessor.Reognition results are shown in Table 5.1. For frontal views against frontal viewsthe results are very good. Reognizing faes of di�erent pose turns out to be a muhharder task; the reognition rates are relatively poor. The results are asymmetrial fordi�erent poses. Performane is better if frontal views or pro�les serve as galleries thanif half-pro�les are used. This is due to the fat that frontal views as well as pro�les aremuh more standardized in pose than half-pro�les, where the angle varies between 40and 70 degrees. Sine the graph similarities degrade with rotation angle independently ofthe individuals, the 40 degrees half-pro�le models are favored if ompared with a frontal-view image instead of with pro�le. Analogously, the 70 degrees half-pro�le models arefavored if ompared with a pro�le image instead of with frontal view. This e�et degradesreognition performane. The results are signi�antly better for quarter views right thanfor quarter views left. One reason might be that the left views are ipped while the rightviews are not. But the more likely reason is that on average the right views are lessrotated in depth than the left.Figure 5.5 shows the proportion of true positives relative to all true ases and falsepositives relative to all false ases. The on�dene riterion would work perfetly if therewere no false positives and no true negatives. But this is not the ase and therefore onehas to ompromise between too many false positives and too few true positives. From53



�rst 15 ranks �rst rank true pos. false neg.model gallery probe images lower ranks lower ranks false pos. true neg.# % # % # % # %300 300 297 99.0 292 97.3 276 92.0 16 5.3frontal views A frontal views B 3 1.0 8 2.7 0 0.0 8 2.7300 300 298 99.3 294 98.0 266 88.7 28 9.3frontal views B frontal views A 2 0.7 6 2.0 0 0.0 6 2.0300 23 23 100.0 15 65.2 10 43.5 5 21.7frontal views A quarter views right 0 0.0 8 34.8 0 0.0 8 34.8300 23 15 65.2 7 30.4 2 8.7 5 21.7frontal views A quarter views left 8 34.8 16 69.6 0 0.0 16 69.6300 300 132 44.0 40 13.3 8 2.7 32 10.7frontal views A half-pro�les 168 56.0 260 86.7 1 0.3 259 86.3300 300 103 34.3 38 12.7 4 1.3 34 11.3half-pro�les frontal views A 197 65.7 262 87.3 0 0.0 262 87.3300 300 104 34.7 33 11.0 6 2.0 27 9.0half-pro�les pro�les 196 65.3 267 89.0 3 1.0 264 88.0300 300 120 40.0 41 13.7 8 2.7 33 11.0pro�les half-pro�les 180 60.0 259 86.3 6 2.0 253 84.3Table 5.1: Reognition results for ross-runs between di�erent galleries. The numberof gallery models and probe images and their pose is displayed in the �rst and seondolumn respetively. In all other entries of the table, four �gures are given. On the leftare the absolute numbers, on the right the respetive perentages. The upper �guresrefer to good rankings or orret reognition ases, the lower ones refer to poor rankingsor inorret reognition. The third olumn says how often the orret fae is amongthe 15 best models. The number of orretly reognized faes (i.e. if the orret modelhas the highest similarity with the image) is given in the next olumn. In the last twoolumns the on�dene riterion is applied with a threshold of 1, signi�ant reognitionin the left olumn and rejetion in the right olumn. Notie that the numbers in the lasttwo olumns add up to the numbers in the fourth olumn.
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Figure 5.5, I have hoosen a on�dene threshold of C� = 1 in order to avoid false positives.The results in Table 5.1 were obtained with this threshold.5.4 DisussionI have presented a general and exible system applied to fae reognition. It is designedfor an in-lass reognition task, i.e. for reognizing members of a known lass of objets,but the system is in no way tailored to faes. In priniple it should be diretly appliableto other in-lass reognition tasks suh as reognizing individuals of a given animalspeies, given the same level of standardization of the images. In ontrast to manyneural network systems, no extensive training for new faes or new objet lasses isrequired. The individuals are simply shown to the system one.The performane is high on faes of the same pose. Reognizing unfamiliar faes invery di�erent poses is a muh more diÆult task and the performane of the system issigni�antly degraded in that ase. It is known from psyhophysial experiments thathuman subjets perform poorly on reognizing faes taken from di�erent views, as well.Brue et al. (1987) showed that reliability on judging whether two unfamiliar faesare the same degrades signi�antly with rotation angle in depth. A similar result wasobtained by Kalosai et al. (1994) if no easy features suh as hairstyle, type of beard,wearing glasses or not, are available.5.4.1 Comparison with the Preeding SystemCompared to the preeding system of Lades et al. (1993) I have made three major mod-i�ations. The �rst two are of general advantage; only the last one fousses spei�allyon fae reognition or rather on in-lass reognition tasks. Phase information was usedfor better positioning of the nodes on the �duial points, objet-adapted graphs wereintrodued to deal with di�erent views, and a set of sample graphs was ombined to aGeneral Fae Knowledge in order to represent a wide range of di�erent and previouslyunknown faes.The modi�ed system has several advantages. Firstly, the previous system (Ladeset al., 1993) mathed eah model of the gallery separately to a fae image. By introduingthe GFK and by using phase information, image graphs an be generated with goodreliability, even if no image of that partiular person has been shown to the system before.This makes it possible to separate the graph generation phase from the reognition phase,whih makes the system muh faster by generating an image graph only one and not foreah model again. Seondly, the exible graphs provide a way to deal with very di�erentposes. Nodes an refer to the same �duial points regardless of view. That is essentialfor many operations that one wants to apply to the graphs (f. next setion). Thirdly,using phase information provides relatively preise node loations that an potentiallybe used as an additional reognition ue (though topography is not used for reognitionin the urrent system). Previously the loalization of the nodes was very rough and oflittle use for the reognition. 55



5.4.2 Comparison with Other SystemsThere is a onsiderable literature on fae reognition, and many di�erent tehniqueshave been applied to this task (see Samal & Iyengar, 1992; Valentin et al., 1994 forreviews). Sine reognition results depend very muh on database design, a omparisonof performane would not be meaningful, but it is worthwhile to do a omparison underoneptual aspets.Several systems are designed spei�ally for faes on the basis of manually de�nedfeatures. Yuille (1991), for example, represents eyes by a irle within an almond-shape and de�nes an energy funtion to optimize a total of 9 parameters of this modelfor mathing it to an image. Brunelli & Poggio (1993a, 1993b) similarly employspei� models for eyebrows, nose, mouth, et. and derive 35 geometrial features suhas eyebrow thikness, nose width, mouth width, and eleven radii desribing the hinshape. The drawbak of these systems is that the features as well as the predures toextrat them must be de�ned and programmed by the user for eah objet lass again,and the system has no means to adapt to samples for whih the features fail. For example,the eye models mentioned above may fail for faes with sun glasses or have problems ifthe eyes are losed. The hin radii annot be extrated if the fae is bearded. In theseases the user has to design new features and new algorithms to extrat them. Withthis paradigm, the system an never beome autonomous, it will always depend on theuser and programmer. The system presented here onsequently avoids suh user de�nedfeatures (exept the user de�ned loations of the �duial points in the beginning, whihhas to be replaed by autonomous proedures, see following setion). Within the EGMapproah, suh exeptions as faes with sun glasses or a beard an very naturally andautomatially be inluded into the GFK, and it was mentioned above that the systemshould be diretly appliable to other lasses of objets.Another approah to fae reognition not using manually de�ned features is based onPrinipal Component Analysis (PCA) (Sirovih & Kirby, 1987; Kirby & Sirovih,1990; Turk & Pentland, 1991; O'Toole et al., 1993). In this approah, faes are�rst aligned with eah other and then treated as high-dimensional vetors (this align-ment is frequently done manually or by means of manually de�ned features, but it analso be done automatially within the PCA framework, see Turk & Pentland, 1991).The PCA omputes eigenvetors, so-alled eigenfaes, and the respetive eigenvalues.Eah probe fae is deomposed with respet to these eigenvetors and represented bythe orresponding oeÆients in a very eÆient way (approximately 30 suÆe to obtaina good reonstrution). PCA is optimal with respet to ompression, but its appropri-ateness for reognition purposes an not be shown theoretially. It is known that the�rst eigenvetors apture mainly general information about faes and are therefore notas disriminative as eigenvetors with lower eigenvalue (O'Toole et al., 1993). Thusthe disriminative features are not optimally represented by eigenvetors.In ontrast to our EGM system, PCA is a ompletely holisti approah. Thus oneobvious disadvantage is that it has oneptually no means to deal with olusions as isdemonstrated for the more loalized EGM in Chapter 7. A seond disadvantage is thatgeometry is tightly oupled with loal features. As was already disussed in Chapter 1,geometrial variations, suh as a di�erent nose{mouth distane an thus not be odedby a displaement, but has to be treated as a ompletely new fae, with a di�erentmouth and/or nose. As a solution to this problem one an �rst apply a proedure whih56



ompensates for geometrial variations and generates a so-alled shape-free fae model(Lanitis et al., 1995). Then all faial features are aligned with eah other and an beoptimally enoded by PCA. The way PCA and EGM ompose a probe fae of knownomponents is very di�erent. That has onsequenes for the ability to generalize. Asan be seen in the following hapter, the GFK an, for instane, ompose a probe faewith glasses and a beard out of two known faes, one beardless fae with glasses and onebearded fae without glasses. This annot be done by PCA, sine the eigenvetors alwaysrepresent the whole fae. PCA on the other hand is able to ombine holisti features in away the GFK is not able to. While the advantage of the loalized omposition is obvious,I do not have a lear view of the potential of the holisti omposition for generalization.5.4.3 Future PerspetivesThe newly introdued features of the system open many possibilities to improve the sys-tem further. The objet-adapted graphs make it possible to treat the di�erent nodes indi-vidually. Kr�uger (1995), for example, has reently introdued trainable node weightsto take into aount that some �duial points are more reliable or more robust againstrotation in depth than others. This individual treatment is espeially important forfaes of di�erent pose. Maurer & von der Malsburg (1995) are urrently workingon linear transformations on the jets in order to ompensate for the e�et of rotation indepth. However, linear transformation is obviously not suÆient, and one may have totrain and apply more general transformations. An alternative approah might be to usethe GFKs and do the transformation based on sample faes (see Setion 6.4.2).By using phase information and the GFKs, mathing auray has improved sig-ni�antly. However, many partial mismathes still our. This is probably due to theprimitive way topography is enoded in the graphs, distortions being ontrolled by elas-ti fores to keep the spatial vetors between two nodes approximately onstant. Butfaes do not distort arbitrarily as in a fun-house mirror. There are rather typial dis-tortion patterns, e.g. due to rotation in depth, variations in faial expression, di�erenthairstyles, or di�erent but symmetrial shapes of the faes. It would be of great help ifthese typial distortion patterns ould be analyzed, and if the loal distortion ould bereplaed by a global distortion with muh fewer degrees of freedom just overing thesetypial distortion patterns. One might then possibly get information about the reasonfor the distortion as well, whether it omes from laughing or rotation in depth of a ertaindegree. Information about rotation in depth ould be espeially useful, sine a preisepose estimation would make reognition easier. Some researh in this diretion has, forexample, been done by Lanitis et al. (1995). When the mathing is reliable enough,it will be interesting to investigate to what extent the grid topography an be used forreognition (f. Brunelli & Poggio, 1993b).A further shortoming of the system is that all graph strutures have to be de�nedmanually. That has to be replaed by a self-organizing proess able to generate appro-priate representations for objet lasses in an autonomous fashion. This an most easilybe done on image sequenes, sine they provide many ues for grouping, segmentation,and deteting orrespondenes. For example, nodes ould be taken from salient pointsand grouped on the basis of ommon motion (f. Manjunath et al., 1992). Monitoringa rotating objet by ontinuously applying EGM an then reveal whih nodes refer toorresponding �duial points in di�erent views (f. Reiser, 1991). A General Objet57



Knowledge ould be established by mathing objet graphs and ombining those whihare similar, assuming that they belong to the same lass of objets.
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Chapter 6Phantom Faes and Fae AnalysisAbstrat: In this system the General Fae Knowledge (GFK) introdued in the previoushapter is enrihed with faial attribute labels suh as gender or the presene of a beard orglasses. Elasti Graph Mathing provides information about whih jet in the GFK best �ts theimage at whih node. The best �tting jet for a node is alled the loal expert. A omposite orphantom fae similar in appearane to the original an arti�ially be omposed based on theseloal experts. The faial attribute labels an be transferred to the phantom fae and provide agood ue for determining the faial attributes of the original, for instane, if most loal expertsbelong to female models the original is likely to be female. A statistial analysis based on Bayes'formula is given, and the relative signi�ane of eah node for the determination of gender andthe presene of a beard or glasses is omputed. Results onerning attribute determination aregiven for a gallery of up to 111 faes.6.1 IntrodutionWe have seen in the previous hapter how a graph representation of a probe fae an begenerated automatially by Elasti Graph Mathing against a General Fae Knowledge(GFK). Eah node of the image graph was allowed to selet its best �tting jet froma di�erent model. In this hapter I am going to investigate further possibilities foranalyzing a fae on the basis of jet similarities between the nodes of a graph and thenodes in a GFK. The mathing result is visualized by generating omposite or phantomfaes. Attributes of the probe fae, suh as gender, beard, and glasses, are determinedon the basis of the orresponding attributes of the models in the general fae knowledge.This is a step in the diretion of fae analysis rather than just fae reognition. If thissystem works well for several faial attributes it might help to improve fae reognitionby reduing the searh spae; this would be espeially valuable for reognizing faes indi�erent poses.6.2 The System6.2.1 Phantom FaesFirst I am going to illustrate how well the General Fae Knowledge an represent aprobe fae. Figure 6.1 shows an image, its graph, the GFK, and arrows pointing to the59
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Figure 6.2: Shown here is the original and the phantom fae for three di�erent persons.Notie that the phantom image was generated only on the basis of information providedby the math with the General Fae Knowledge; no image information from the originalwas used. That is why ertain details, suh as the reetions in the glasses or the preiseshape of the lips of the top image are not reprodued aurately. The �elds of labels onthe right side indiate the attributes of the models whih provide the loal experts forthe individual nodes; m: male, f: female, b: bearded, g: glasses.
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presene of a beard, and wearing glasses an be inferred from the math result in a verysimple way.Let us assume that gender and the presene of a beard or glasses is known for themodels in the GFK. Sine the phantom fae looks so similar to the original, it is rea-sonable to assume that the labels of the models providing the loal experts orrespondto the attributes of the probe fae with some reliability as well. The nodes of a femalewill most often �t female models, and a bearded man will pik up bearded models in thelower half of nodes. This priniple is demonstrated in Figure 6.1. Figure 6.2 shows ex-amples of atual experiments. In order to deide whether a probe fae is male or femaleone simply has to ount whether more loal experts belong to male or female models.Similarly for beard and glasses, onsidering, however, only the lower or upper half of thenodes, respetively.This is an illustration of the priniple idea. In pratie one would like to have a morethorough analysis of the node label distributions, espeially onerning the question ofwhih of the nodes are reliable and whih are not. I am therefore now going to apply amore systemati statistial analysis.6.2.3 Statistial AnalysisIn order to perform a statistial analysis, I onsider the proess of a node in the imagegraph pointing to a model with a partiular attribute as a probabilisti event. For eahnode n I introdue the stohasti variable Xn, whih an assume the values 1 and 0depending on whether the respetive loal expert has a partiular attribute or not. Xis the orresponding random variable for the probe fae. A sample of these stohastivariables is denoted by xn and x, respetively. Given an image with a ertain value x ofX, one an ask for the onditional probability P (x1; :::; xN jx) of a partiular ombinationof node labels. I make the strong assumption that the onditional probabilities for theindividual nodes are independent of eah other: P (x1; :::; xN jx) = Qn P (xnjx). TheBayes a posteriori probability for a probe fae having the attribute x given the nodelabels xn then isP (xjx1; :::; xN) = P (x1; :::; xN jx)P (x)P (x1; :::; xN j1)P (1) + P (x1; :::; xN j0)P (0)= P (x)Qn P (xnjx)P (1)Qn P (xnj1) + P (0)Qn P (xnj0) : (6.1)The deision whether the attribute is present (x = 1) or not (x = 0), is based on whetherP (1jx1; :::; xN ) > P (0jx1; :::; xN) or not.The probabilities P (xnjx) are not known and have to be estimated on the basis ofrelative frequenies F (xnjx) evaluated on a training set of images for whih the attributesare known. Assume that there are N images in the training set, of whih N(x) imageshave value x forX, with x 2 f1; 0g. N(xnjx) of them are labeled with value xn 2 f1n; 0ngat node n. For example for a training set of 21 faes one ould getN = N(1) + N(0) = 16 + 5 = 21,N(1) = N(1nj1) + N(0nj1) = 12 + 4 = 16,N(0) = N(0nj0) + N(1nj0) = 5 + 0 = 5.62



The derived relative frequenies areF (1) = N(1) /N = 0.76,F (1nj1) = N(1nj1)/N(1) = 0.75,F (0nj1) = N(0nj1)/N(1) = 0.25,F (0) = N(0) /N = 0.24,F (0nj0) = N(0nj0)/N(0) = 1.00,F (1nj0) = N(1nj0)/N(0) = 0.00.If one used these relative frequenies as probabilities for evaluating the a posterioriprobability, a probe fae with label 1 at node n would have a vanishing probability ofhaving attribute 0. That is a too strong statement on the basis of suh a small sampleset. I therefore enfore the probabilities being greater than zero by inrementing the zerolass and derementing the orresponding one lass by one. Hene N(0nj0) and N(1nj0)would be orreted to 4 and 1 respetively. The relative frequenies F (0nj0) and F (1nj0)would beome 0.8 and 0.2 respetively. Now the relative frequenies an be taken asprobabilities for Bayes' formula.Another issue is how to estimate P (1) and P (0). One an take the relative frequeniesof the training set. But that might be too strong a prejudie, produing good resultsfor the majority lass but relatively poor results for the minority lass. In addition, thiswould impliitly take into aount knowledge about the omposition of the test set, sinetraining set as well as test set are drawn from the same omplete set, therefore havingapproximately the same fration of females, et. For these reasons I onsistently hoseP (1) = P (0) = 0:5 to avoid prejudiing the test set omposition.6.2.4 Equivalene between Bayes' and Weights FormulationAn alternative to the Bayes approah would be to train weights for eah node in orderto optimize the orret determination rates. The deision would then be made on thebasis of a weighted sum over all nodes with a ertain attribute. Sine weights providean easy interpretation and a good visualization, I now transform Bayes' formula into anequivalent weight formulation.As seen above, the Bayes method determines a attribute based on whetherP (1jx1; :::; xN) > P (0jx1; :::; xN ) or not. By means of Equation 6.1 and taking intoaount that xn may only assume the values 0 and 1, this an be transformed in thefollowing way: P (1jx1; :::; xN ) > P (0jx1; :::; xN )() P (1)Yn P (xnj1) > P (0)Yn P (xnj0)() Xn ln P (xnj1)P (xnj0)! > ln P (0)P (1)!() Xn xn  ln P (1nj1)P (1nj0)!� ln P (0nj1)P (0nj0)!! > ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)!() Xn xn ln P (1nj1)P (0nj0)P (1nj0)P (0nj1)! > ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)!() Xn xn�n > �; (6.2)63



malefemale bearded beardless totaltotal # % # % # %9 8.1 18 16.2 27 24.3glasses 0 0.0 4 3.6 4 3.69 8.1 22 19.8 31 27.912 10.8 33 29.7 45 40.5no glasses 0 0.0 35 31.5 35 31.512 10.8 68 61.3 80 72.121 18.9 51 45.9 72 64.9total 0 0.0 39 35.1 39 35.121 18.9 90 81.1 111 100.0Table 6.1: Composition of the General Fae Knowledge.with �n = ln P (1nj1)P (0nj0)P (1nj0)P (0nj1)! ; (6.3)� = ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)! : (6.4)The weights �n are shown in Figure 6.3 as blak irles with a diameter proportionalto the weights. It is obvious that the bottom rows are signi�ant for beard detetion andthat the top rows are signi�ant for glasses detetion. For gender, the weights show nostrong emphasis on a partiular region. The weights are not perfetly symmetrial withrespet to the vertial axis, and there are some negative weights. This is probably dueto the fat that the galleries were not large enough, espeially for the pure sets.6.3 Experiments6.3.1 DatabaseThe gallery of faes used here was set up at the Institut f�ur Neuroinformatik, Bohum,and ontains 111 neutral frontal views. The images had 128�128 pixels subsampledfrom 512�512 pixels with 256 grey levels. The size of the faes varied up to a fator of1.5, with a tendeny for male faes to be larger than female faes. I therefore resaledall images suh that the x- and y-spaing is 10 pixels on average; the ratio between x-and y-spaing was kept as in the original image. In order to avoid a bias of the genderdetermination due to gender spei� hairstyles, the outer regions were masked by a greyframe with a smooth transition to the fae, see �g 6.4. The omposition of the gallerywith respet to the attributes male, beard, and glasses is shown in Table 6.1.6.3.2 ResultsCorret attribute determination rates are given in Table 6.2. The omplete GFK ontains111 faes, whih also serve as probe faes. Hene, if a fae is analyzed it is exluded from64
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Figure 6.3: Weights �n of the nodes. From left to right for gender determination, bearddetetion, and glasses detetion. The weights in the top row are determined on all 111test images and the omplete GFK of 111 minus 1 models. Results on pure sets areshown in the bottom row. From left to right on beardless faes without glasses only, onmales without glasses only, and on beardless males only.
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male bearded glassesfemale beardless no glassestotal total totalomplete 0.917 � 0.049 (0.944) 0.839 � 0.133 (0.905) 0.895 � 0.067 (0.903)sets 0.938 � 0.058 (0.949) 0.964 � 0.024 (0.956) 0.990 � 0.015 (0.988)(111/111/111) 0.924 � 0.033 (0.946) 0.941 � 0.027 (0.946) 0.963 � 0.023 (0.964)small 0.851 � 0.098 0.848 � 0.148 0.834 � 0.128sets 0.899 � 0.070 0.964 � 0.043 0.965 � 0.050(68/45/51) 0.875 � 0.050 0.935 � 0.054 0.919 � 0.053pure 0.822 � 0.091 (0.818) 0.589 � 0.198 (0.833) 0.800 � 0.113 (0.778)sets 0.840 � 0.090 (0.857) 0.942 � 0.046 (0.970) 0.932 � 0.044 (0.970)(68/45/51) 0.831 � 0.050 (0.838) 0.857 � 0.052 (0.933) 0.885 � 0.043 (0.902)Table 6.2: Corret attribute determination rates. In the �rst row the omplete GFK of111 faes was used for all three attributes. The images were split into a training set anda test set of 55 and 56 faes respetively. On the training set the probabilities P (xnjx)were estimated; on the test set the performane of the trained system was evaluated.The standard deviation is shown as well. In brakets the performane is given for thease where training set and test set are idential and both ontain all 111 samples of theGFK. This gives an estimation for the upper bound of performane that an be obtainedon this gallery with the Bayes approah. The last row gives performane results for puresets, i.e. 68 unbearded faes without glasses for gender determination, 45 male faeswithout glasses for beard detetion, and 51 unbearded males for glasses detetion. Theresults degrade signi�antly. Part of the degradation is due to the dereased GFK size.For omparison, results are given on mixed sets of same size in the middle row.the model gallery, and only 110 samples remain for the GFK. The same holds for smallerGFKs, e.g. in ase of pure sets. The probe faes are usually split into a training and atest set of equal size. On the training set the relative probabilities for eah node wereestimated, and on the test set the orret determination performane was tested. In orderto get a reliable mean perfomane and a standard deviation, 100 di�erent training andtest sets were drawn from the omplete set randomly. For the results given in brakets,the training and test set were idential and of maximum size, i.e. of same size as theGFK.Along with the results for the omplete set of 111 faes, results on pure subsets aregiven. For gender, only unbearded faes without glasses were used, for beard only malefaes without glasses, and for glasses only unbearded males, yielding GFKs of 68, 45, and51 faes respetively. This test was mainly done to hek to what extent the di�erentattributes interfere with eah other. A ertain degradation an be expeted from the re-dued number of faes in the GFK, shown in the middle row (see also next setion). Eventaking this into aount all results degrade. This is probably due to orrelations betweenthe di�erent attributes. It is lear that the presene of a beard tells something aboutthe gender. Using pure sets makes the task more diÆult. The orrelation oeÆientsare 0.356 for the attributes male and beard, 0.290 for the attributes male and glasses,and 0.161 for the attributes beard and glasses, as an be omputed from Table 6.1.Figure 6.4 shows more of the 111 sample faes. They are ordered with respet tothe signi�ane of their attributes as judged by the system when all faes were used as66
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training set. The least signi�ant females inlude the two youngest ones in the gallery,who were of an age where the di�erene between male and female faes is less obviousthan for older persons. The least signi�ant beardless fae, the female, was probablymislassi�ed due to the smile, whih generated strutures resembling a beard. The leastsigni�ant bearded and beardless samples also reveal the diÆulties and some arbitrari-ness in the de�nition of who is bearded and who is not. The samples in the bottom tworows, glasses and no glasses, allow no onlusions about the reasons why ertain faesare mislassi�ed with respet to this attribute.6.3.3 Dependenies on ParametersThe purpose of this setion is to investigate the dependenies of the orret lassi�ationrates on the parameters of the system. The mathing proess itself was not varied, i.e.the image graphs were generated one, and even if the size of the GFK was varied theimage graphs were kept onstant as obtained with the maximum size of the GFK.First I am going to onsider the system for di�erent sizes of the training set. Thesmaller the training set, the greater the errors in estimating the probabilities P (xnjx).But as the left graph in Figure 6.5 shows, the typial training set size of 55 faes issuÆient to get maximum performane.I laimed previously that inreasing the size of the GFK improves the lassi�ationrate. In order to get an impression, I measured the performane with varying GFKsize. The GFK always ontained at least one model for eah attribute. The right graphin Figure 6.5 shows how performane inreases with GFK size and that it has not yetreahed its maximum. Espeially for gender, one an expet that orret determinationrates will improve signi�antly with a larger GFK size. It is surprising that in ase ofbeard detetion, four models already ahieve a performane of 0.85 (though mathingpreision would degrade signi�antly with only four models in the GFK). It is lear thatthe required size of the GFK depends not only on the performane level that one wantsto ahieve but also on the number of attributes that one wants to determine and on thevariety of the faes.One idea to improve the performane is to take not only the best �tting jet pernode into aount, but to onsider the seond best, third best, et., as well. The leftgraph in Figure 6.6 shows the performane depending on the rank of the jets used forlassi�ation, i.e. only one jet per node was used: the best, the seond best, the thirdbest, et. As expeted, the performane degrades slowly. But one might still expetperformane to inrease if one takes the �rst several best into aount. The Bayesianapproah was applied to eah of the �rst ranks at eah node, providing N�R onditionalprobabilities per attribute, if R is the number of ranks taken into aount. Results areshown in the right graph. The result is not very suessful. Only in ase of genderdetermination ould a signi�ant improvement be ahieved. For glasses the performanein fat dereased. A reason might be that the node labels on di�erent ranks are notindependent of eah other as assumed in the Bayesian approah.Finally it is worth mentioning that the phase information is ruial for seleting theorret loal experts. For idential image graphs, performane degrades signi�antly ifthe similarity funtion Sa is used istead of S� (see Equations A.6 and A.7).68
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6.4 DisussionThe system presented here demonstrates suessful determination of the faial attributesgender, beard, and glasses. The arhiteture is quite homogeneous and simple. As in thefae reognition system of the previous hapter, nothing is speialized to faes, and onemay expet the system to perform satisfatorily on similar tasks, suh as disriminatingbetween speies of domesti animals.6.4.1 Comparison with Other SystemsWhile there is a huge literature on fae reognition, there are relatively few publiationsabout arti�ial systems for gender determination. Golomb et al. (1991) employed astandard bak-propagation network for gender determination. In 90 images of faes (45beardless male, 45 female) the eyes were loated manually and the images then rotatedand saled automatially to a standard format of 30�30 pixels. Images were ompressedby an enoder bak-propagation network with 40 hidden units. The output of these40 units served as input for a gender determination network, the SexNet, trained withthe bak-propagation algorithm as well. 8 tests were performed with a training set of 80images and 10 test images. Mean performane and standard deviation were 91.9%�8.6%.The system used limited hair information.O'Toole et al. (1993) used Prinipal Component Analysis for fae representationand for the disrimination of ethni groups as well as gender. They give no performaneresults on gender determination.A system based on geometrial features was presented by Brunelli & Poggio(1993a). They used 168 images of 21 males and 21 females. The faes were automatiallynormalized with respet to rotation and saling. Then 18 di�erent geometrial featuressuh as pupil-to-nose vertial distane, nose width, hin radii, and eyebrow thiknesswere automatially extrated, providing one 18 dimensional vetor per image. No hairinformation was used. A Hyper Basis Funtion Network was trained on the data sets ofall minus one person and tested on the exluded ones. The mean performane on thetraining sets was 92% and on the test sets 87.5%.Though the performane of these systems is omparable or higher, the system pre-sented has several advantages. Firstly, it is very general and oneptually not restritedto faes as is the system of Brunelli & Poggio. No fae spei� features have to bede�ned. Seondly, it is loal, i.e. in ontrast to the PCA approah of O'Toole et al.loalized attributes suh as glasses an easily be determined and one gets informationabout whih regions are important. Thirdly, the system presented is fully automati:no manual alignment suh as in the system of Golomb et al. is required. Fourthly,the training e�ort is minimal: only few training samples are required to determine therelative weights of the nodes. PCA and bak-propagation are known to be expensivein terms of training. The main drawbak of the system presented is that it is slow inrespet to proessing time. The Gabor transformation and the Elasti Graph Mathingrequire about one minute on a Sun SPARCstation 10{512 with a 50 MHz proessor. Asa seond disadvantage one may onsider that the system presented does not reveal whatis harateristi for a ertain attribute (though the node weights indiate whih nodesare signi�ant). Brunelli & Poggio for example ould illustrate that their systemonsiders a fae as male if it has thik eyebrows, a short and wide nose, a long distane71



between mouth and nose, et. O'Toole et al. found in their system that the seondeigenvetor explains most of the variane for gender determination. Image eigenve-tors an be diretly visualized. Suh information is not easily available in the systempresented here.6.4.2 Future PerspetivesSo far the attribute labels of the GFK-models are binary and de�ned by hand. A malefae an therefore be mislassi�ed beause it looks atually female or beause there isa similar female fae in the GFK that is very male in appearane. The attribute labelsshould vary ontiuously from one extreme, e.g. male, to the other, female. Taking thisinto aount might improve the determination performane. It might also be possible tolet the GFK �nd reasonable attribute lasses autonomously.Another diretion of investigation would be to apply the system to other faial at-tributes and to use the results for fae reognition purposes. The set of possible an-didates in the model gallery redues signi�antly if several attributes, suh as gender,age, and ethni group are determined in advane. Another idea ould be to use thephantom fae representation for manipulations suh as rotation in depth, or generatinga di�erent faial expression. Assume a GFK of neutral frontal views and a GFK of thesame persons in a di�erent pose are given. A single neutral frontal view of a probe faeould be presented to the system, and a phantom fae ould be generated. Sine forall models in the GFK a rotated version is present, it should be possible to generate arotated phantom fae. The question is whether the rotated phantom fae would looksimilar to the rotated original or not. Preliminary experiments showed no signi�antsimilarity and further investigation is neessary.It would also be interesting to apply the system to another lass of objets suhas domesti mammals, distinguishing between dogs, ats, sheep, and horses of di�erentraes. The task then is to abstrat from several horses of di�erent rae what is typialfor horses and to abstrat from several dogs of di�erent rae what is typial of dogs.This would again be done by generating general knowledge about domesti mammals,all having a ommon graph struture. By �nding the loal experts for eah node, thetype of animal ould be determined. Animals are atually a good example, sine theyshow a omplex hierarhy. It would be interesting to build an animal lassi�ation andreognition system based on the system presented here. An animal would be lassi�edaording to its phenotype. For example starting from distinguishing between birds andmammals, then di�erentiating between more similar speies suh as dogs and horses,then lassifying aording to the spei� rae, e.g. poodle versus German shepherd, and�nally reognizing the individual animal, if possible.
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Chapter 7Reognizing Objets inCluttered SenesAbstrat: The system presented below uses Elasti Graph Mathing (EGM) to math storedmodels into a sene of objets partially oluding eah other. The similarities of the nodes withthe image are evaluated in order to deide whih regions are oluded and whih are visible.If all objets in the sene are known, the system an proess the sene from front to bak. Itan then take advantage of the fat that the oluding objets are already reognized and thattheir ontours are known.7.1 IntrodutionThe systems presented in the previous three hapters all perform fae reognition, atask spei� in the sense that faes form a lass of similar objets, and the GeneralFae Knowledge aounts expliitly for that. In this hapter I am going to present areognition system for objets of very di�erent harater and shape1. Toy objets arearranged into senes and may olude eah other signi�antly. They are representedby labeled graphs, and Elasti Graph Mathing (EGM) serves to �nd the objets inthe sene. The diÆulty is to deide whih objets are atually present in the seneand to determine their order in depth. For this task the graph struture is espeiallyadvantageous, sine it allows referene to overlap regions in the image and makes expliitthat some parts are oluded while others are not.Two di�erent algorithms will be presented. The �rst is appropriate for searhing aknown objet in a sene with other objets whih are unknown. The algorithm deideswhether the objet is present, where it is, and whih parts are visible and whih areoluded. The seond algorithm requires that all objets in the sene are known to thesystem. The algorithm then analyzes the sene from front to bak, taking advantageof the fat that the objets in the front are ompletely visible and that for the objetsbehind them it is already known whih regions are oluded. This algorithm deideswhih objets are present in the sene, where they are, and in whih order in depth theyare arranged. It also provides information as to whih regions of the models are oludedand whih are visible.1This hapter is in part a modi�ed reprint of (Wiskott & von der Malsburg 1993) WorldSienti� Publishing Co. Pte. Ltd. With kind permission of the publisher.73



7.2 The System7.2.1 Data StruturesThe total system is omposed of an image domain I and a model domainM. Objets arerepresented by labeled graphs having a square grid struture with an outline dependenton the ontour of the objets (see Figure 7.2). Nodes are labeled with jets J as loalfeatures (see Appendix A). Edges whih onnet neighboring nodes are labeled with thedi�erene vetors between the respetive node positions ~xn in the image measured inpixel units. The graphs are rigid, i.e. in this system I do not allow for distortions of thegraphs. The similarity between the jets is de�ned as in Equation A.6 with the di�erenethat the similarity is taken to the power of four to emphasize nodes with high similarity(this to be motivated later):S(J (~xn);J 0(~xn)) = S4a(J (~xn);J 0(~xn)) : (7.1)To speify the state of the sene analysis system ompletely, it is neessary in additionto represent whih regions of the image have been reognized by whih model graphs,and what the olusion relations between the objets are. I desribe the relation of themodel domain to the image domain with the help of a few binary variables that deideon the reognition status of a model and the visibility or olusion of its individual nodes,plus a single position vetor for the plaement of the model graph in the image. Thesevariables will be introdued in the next setion.7.2.2 Model Graph FormationFor the formation of a model graph, a simple segmentation proedure is applied. Threeimages are taken, eah with the objet in idential position on a di�erent bakground.In two of the images, the bakground is formed by a horizontal or vertial lattie ofblak and white stripes approximately 3.5 pixels wide. The third image has a whitebakground. A square lattie of points with a spaing of 7 (or, for some deliate ob-jets, 5) pixels is seleted in the image. For eah of the seleted lattie points ~xn thesimilarity S(J h(~xn);J v(~xn)) between jets taken from the images with horizontal andvertial stripes, respetively, is omputed. These similarity values are high within thearea overed by the objet and low over the bakground. (Similarities for nodes insidean objet but near its border are lower to the extent that their wavelets reah over intothe bakground.) Now all lattie points are seleted for whih this similarity is abovea threshold (whih I hose in the range 0:124{0:334, depending on the objet. A moresound treatment of oluding boundaries will have to supplant this ad ho treatmentlater). The proedure may produe several mutually disonneted graphs, the largestof whih is seleted. (Two graphs are onneted if their minimal distane is one lattiespaing.) For the graph thus obtained, lattie points are labeled with the jets taken fromthe third image, whih has been taken with a blank bakground. The resulting graphis stored as a model graph in memory. This graph formation proess has the advantageof positioning the nodes automatially in those regions of the objet whih are leastsensitive to bakground variations. For example, the proess avoids plaing nodes inopenwork regions of an objet. I also suessfully experimented with other bakgroundtextures, not only horizontal and vertial stripes.74



7.2.3 Mathing a Model into a SeneWhen mathing a model graph against the image of a sene, a replia of its set of nodepositions f~xMn g is plaed in the image, reating the set of points f~xIng, where ~xIn = ~xMn +~xswith an o�set vetor ~xs ommon to all nodes. The graph formed by the set of pointsf~xIng is alled the image graph. The model graph is ompared to the image graph witho�set ~xs in terms of the similarity funtionSG(GI ;GM) = 1NV Xn2V S(J In ;JMn ); (7.2)where J In is the image jet taken at position ~xIn, V is the set of visible nodes (visibilitybeing de�ned below), and NV is their number. Now the mathing similarity (7.2) ismaximized by varying ~xs. First, the o�set is taken through all points on a square gridwith a spaing of �ve pixels for whih the replia of the model graph lies entirely withinthe image. Around the lattie point with maximal similarity a better maximum is thenfound for a �ner lattie with spaing 1. The resulting image graph is taken as theandidate math. In distintion to the mathing shedule desribed in Chapter 5, hereI do not onsider distortions of the image graph with respet to the model graph, and Iuse no phase information for the mathing.When an objet is oluded to a large extent, the total similarity of its math isdegraded by the many nodes that ome to fall on the image of other objets and thatorrespondingly have only average similarity values. It is deisive that this orret mathannot be outdone by a false math in some region of the image piked suh that manynodes have above-average similarity. In order to favor the orret math, I give itsorretly mathing nodes an advantage over the only averagely �tting nodes by raisingthe inner produt in Equation A.6 to the fourth power. (In the experiments, evaluationof orretly analyzed senes shows that orretly mathed nodes have a mean similarityvalue of S = 0:64, whereas with graphs mathed to senes not ontaining the objetnodes have a mean similarity of Sw = 0:35. Random pairs of jets have a mean similarityof Sr = 0:32.)7.2.4 Sene Analysis, Algorithm OneIn this �rst simple sene analysis algorithm, eah model graph is mathed separatelyto the image to deide if and where it �ts and to what extent it is oluded. Thealgorithm has the advantage that there is no need for all objets in the sene to beknown to the system. The algorithm examines all graphs in the model domain. First,a graph is mathed to the image. Then all nodes under a threshold of 0:52 for S aremarked as oluded. (This parameter ould be obtained automatially by olleting asimilarity histogram for a large set of model jets and image jets. In my experiene thishistogram tends to be bimodal, and the threshold an be set near the minimum betweenthe modes.) Sine I assume that olusion ours for oherent regions, the algorithmproeeds to revise the olusion deision for eah node aording to its neighborhoodin the graph. For oluded nodes whih have a majority of visible neighbors withinthe model graph, the deision is reversed, and similarly for visible nodes whih havea majority of oluded neighbors. In this way all nodes are visited repeatedly, in the75



arbitrary sequene inherent in the graph administration system, until no further hangesour.The visible region of the model's image graph is then the set of all pixels that liewithin squares of size d entered around visible nodes of the graph (d being the spaingof nodes in the model's graph, 7, or sometimes 5, pixels). If it has an average nodesimilarity better than 0:61 and an area of at least 1300 pixels, the model is aepted forthe sene. (Although not the point of this algorithm, it is onvenient for display purposesto order the aepted models in depth aording their mutual olusion indies, whihare omputed as explained in the next setion.)7.2.5 Sene Analysis, Algorithm TwoFor this algorithm to work, there must be models for all objets in the sene. Posing suha onstraint has the advantage that the relative olusion relations an be determinedand used for a more reliable analysis of the sene. For two graphs A and B, this relationwill be haraterized by the olusion index QAB. When it is omputed, the system mayalready have deided that third objet(s) are oluding parts of A or B so that only partof their graphs are visible in the image. Let me de�ne a similarity funtion SA(~x) for amodel A for all pixels of the image after the model has been mathed. For eah pixel ~xof the image it gives the similarity value of the nearest node, and zero outside the visibleregion of the graph. Further, let R be the region of overlap between the visible parts ofA and another model B. Then the olusion index of A with respet to B is de�ned asQAB = X~x2RSA(~x)� SB(~x): (7.3)For this we have the relations QAB = �QBA, QAA = 0, and for graphs A and B withoutoverlap we have QAB = 0. If QAB > 0, A is oluding B, and if QAB � 0, A is said notto be oluded by B.To start sene analysis, all stored models are �rst mathed to the image. Eah modelwill yield a \math", that is, the graph plaement fully inside the image with maximalgraph similarity (see Equation 7.2). These graph plaements will not be hanged duringall of the following steps. The e�et of the following iterative proess will result in thegraduation of some of the models in two steps, �rst to the status of andidate, then tothe status of being aepted. The proess has the following steps:Step 1 Turn those models into andidates (i) for whih the average node similarity isbetter than 0:45, (ii) for whih the visible region is bigger than 1300 pixels and(iii) whih haven't yet been aepted.Step 2 Stop if there are no andidates.Step 3 Aept one of the andidates: First, determine the mutual olusion indies forall pairs of andidates. Then selet the \unoluded" andidate(s), that is, thosefor whih all olusion indies are non-negative. If there are several, selet theone with highest graph similarity (see Equation 7.2). If there is no andidate forwhih all olusion indies are non-negative, pik the one that is least oluded,that is, for whih the smallest olusion index is largest.76



Step 4 Insert the model just aepted in the depth sequene of all aepted models. Forthis, the new model has to work its way from the bak of the list forward. Themodel is advaned one step if its olusion index relative to the model in frontof it is non-negative. (This omparison is based on the overlap of all of the newmodel with the visible part of the model in front of it.) Advanement stops assoon as the new model hits one with whih it has a negative olusion index.Step 5 Now the olusion status of the nodes is updated. Those in the newly aeptedgraph are oluded by the territory of the models in front of it. The nodes of themodel graphs now put behind are oluded by the new one. Also, the territory ofthe newly aepted graph is delared invisible for all as yet unommitted modelgraphs, whose visible areas and graph similarity values are modi�ed orrespond-ingly (see Equation 7.2). After that, proeed with Step 1.7.3 Experiments7.3.1 DatabaseThe pitures of the senes are of size 128� 128 pixels and have 256 distinguishable graylevels. They are derived from 512 � 512 pixel frames taken with a CCD amera bylow-pass �ltering and subsampling. I took pitures of 30 senes omposed of 3{6 objetseah. Senes were taken at approximately 200 m of distane, at whih pitures are 42m wide. Distanes to individual objets vary up to 10 m, ausing size variane of upto 5% relative to the images used for model graph formation. Individual objets weremostly presented in approximately the same orientation and perspetive, although I alsodid individual experiments with slightly rotated objets (see Figure 7.2.b). To avoidvisible shadows, I sometimes illuminated senes with two light soures (although duringmodel graph formation there had been only one light soure). This fat is relevant forthe issue of robustness to illumination. I made sure the objets were visible to a ertainminimal extent, 1300 pixels, orresponding to an area of approximately 140 m2.I reated a gallery of 13 toy objets of whih all senes are omposed. The objetsare: basket, bear, book, box, andleman, andlewoman, lok, elephant, glass-of-marbles,nutraker, rattle, windmill, and zebra. This gallery represents a ertain seletion. Ihave exluded objets that are too small, that have too little inner struture (althoughI inluded basket, rattle, and glass-of-marbles in spite of their poor inner struture), andthat are not ompat (although I inluded lok with its two holes and zebra with itsthin legs). The problem with small objets was that with a resolution of 128 � 128pixels the orresponding model graphs ontain too little information and yield goodgraph similarity in wrong plaes. This is similarly the ase with objets that are toohomogeneous. For objets with openwork struture (e.g. letter sales that we tried) theextended reeptive �elds aused problems, being too sensitive to the bakground.7.3.2 ResultsTwo of the senes used in the experiments are shown in Figure 7.1. Figure 7.3 showsanalyses obtained with Algorithm 1, and Figure 7.4 with Algorithm 2.77



a) b)

Figure 7.1: Two of the 30 sene images. a) ontains zebra, basket, elephant, andleman,and nutraker, b) ontains windmill, book, and nutraker. There are altogether 13models in the gallery, and 121 objets in the senes, eah sene ontaining between threeand six objets. The resolution of the images is 1282 pixels with 256 grey levels.a) b)

Figure 7.2: Piture of the image graphs for basket and nutraker as mathed inSene 7.1.a. Blak and white frames denote visible and oluded nodes, respetively.The state of visibility was determined by Algorithm 2. Center pixels of nodes ode forsimilarity of the model jets to orresponding image jets, from white (low similarity) toblak (high similarity). b) One example of a sene with rotated objets (� 20Æ) notinluded in the statistial investigation (for analysis see Figures 7.3. and 7.4..)78
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Figure 7.3: Analyses of the senes in Figures 7.1.a, b, and 7.2.b respetively, by Al-gorithm 1. Visible regions of the mathed model graphs are shown, from front (blak)to bak (light). a) The algorithm reognized zebra, basket, andleman and elephant inSene 7.1.a, but it missed the nutraker, not �nding the lower part under the zebraand disarding the identi�ed head region as too small in area. For the zebra, large partsare interpreted as oluded, beause of perturbation of inner jets by overlap with thebakground. b) Sene 7.1.b is analyzed orretly. Altogether 80% of the 121 objetswere reognized orretly while 2 models were aepted erroneously by this algorithm.) shows the analysis of Sene 7.2.b. All objets are reognized orretly, but againlarge parts are interpreted as oluded. Although I did not investigate the robustness ofthe system against rotation in depth systematially, several examples suh as this onesuggest that this algorithm might be robust up to approximately 10Æ.Algorithm 1 gave the following performane. From a total of 121 objets, 24 were notreognized orretly, leaving 80% reognized orretly. Only 2 objets were erroneouslyaepted. Some deisions regarding olusion were unsatisfatory, (see, for instane, theandleman in Figure 7.3.a), whih is not surprising sine no interations between objetswere taken into aount (and the point of Algorithm 1 was reognition only, anyway).Algorithm 2 produed 21 ompletely orret analyses from among the full set of 30senes. For 3 senes it made errors regarding the olusion order, always for pairs ofweakly overlapping objets. In the remaining 6 senes, 3 models were aepted althoughthe orresponding objet was not present, and 4 objets whih were present were notreognized. Among the latter, 2 were mathed at the wrong position and 2 objets weremathed orretly but were rejeted on the basis of too poor a graph similarity value.In all, 96.7% of the objets are reognized orretly and with on�dene.Some of the errors ommitted by the system are instrutive. In the total set ofexperiments, there were only 2 ases in whih the best math for a model graph in thesene was found in the wrong plae. One ase onerned the glass-of-marbles, whih haslittle internal struture and is partially transparent. In the other ase, andlewoman wasmathed to the fairly similar andleman while the proper objet was heavily oluded.To deal with this type of error, one ould produe several mathes for eah model. Thesystem would then have to manage more mathes, but it would be more likely to �ndorret mathes (and would be equipped to math multiple instanes of the same objettype). 79
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Figure 7.4: Analyses of the senes in Figures 7.1.a, b and 7.2.b by Algorithm 2. a) InSene 7.1.a, all objets and their olusion relations have been reognized orretly. b)In Sene 7.1.b, a box (rightmost model) was erroneously reognized. Besides, the bookmistakenly was put in front of the windmill. Altogether, 96.7% of the 121 objets werereognized orretly, and 3 models were aepted erroneously by this algorithm. ) Thethird example, Sene 7.2.b, was also reognized orretly. Algorithm 2 seems to be morerobust against rotation in depth than the �rst. Up to approximately 15Æ might be oflittle e�et. Both algorithms ould be improved in this respet if graph distortions werepermitted (see Chapter 5).7.4 DisussionThe system presented here is a very natural extension of the EGM system desribed in(Lades et al., 1993) to the reognition of partially oluded objets and the analysis ofsenes. The labeled graph as the fundamental data struture proved to be appropriatefor visual objet representation in the presene of signi�ant olusions. Only the statusvariable indiating whether a node is visible or not had to be added. It was ruialfor the suess of the system that graphs provide information about the loation andneighborhood relations of the nodes and the attahed loal features. This was essentialfor bak-labeling the sene with reognition information and with olusion relations.This appliation to senes also reveals a weakness of the loal feature representationbased on Gabor wavelets. The Gabor wavelets of lower frequeny have a non-negligibleextension ompared to the distane of the nodes and the extension of the objets. Thisbeomes evident for the zebra, for whih the legs were onsidered to be oluded byAlgorithm 1, beause their similarity was too muh degraded by the bakground (seeFigure 7.3). A solution to this problem would be to inrease the resolution of the imagesand to emphasize more the high frequeny kernels. A more fundamental solution wasdemonstrated by P�otzsh (1994), who showed that the inuene of bakground to ajet an be suppressed by a linear transformation imitating the operation of utting theimage information into two half planes and keeping only one. A seond disadvantageof the Gabor wavelet preproessing is that it depends on internal texture. This systemannot deal with strutureless objets whih are mainly de�ned by their ontour. Forsuh objets an edge-based representation would be more appropriate.The projet presented here was undertaken as a pilot study to investigate the prob-lems involved in analyzing luttered senes. The system still has to be reformulated ina fully neural system, based on Dynami Link Mathing.80



Chapter 8ConlusionOne of the intentions of this work was to show that the labeled graph is a powerfuland exible data format providing the syntatial struture missing in the vetor formattypially used in onventional neural net appliations. The syntatial links betweenelementary features play a ruial role in the appliations presented on several levels.They were either made expliit or they were impliit in the hosen data formats, butwould have to be realized expliitly in a mature system.Firstly, the individual oeÆients of the jet representation are impliitly bundled bylinks to generate a desription of a loal path of grey values. Seondly, nodes labeledwith jets were linked together by edges in order to build a graph representing individualobjets. Thirdly, the graphs an be mathed to an image by dynamially establishingonnetions from the nodes of the graph to a subset of nodes in the image. (These threeaspets of syntatial linking have already been used in previous systems (Buhmannet al., 1989; Lades et al., 1993). The following types of syntatial strutures are newlyintrodued in this work.) In the fourth plae, sets of jets were attahed to nodes andserve as a olletion of alternatives if the appearane of a ertain objet part, e.g. aneye, varies signi�antly. In the �fth plae, ontext information about di�erent propertiesof the objets was inorporated and expressed by attahed attributes (male, bearded,et.). And �nally, model graphs that were mathed to a sene ompeted with eah otherthrough inhibition between overlapping nodes.This is only a relatively small number of examples of how syntatial links may beused for pereptual tasks, and one major goal for future researh will be to investigateother possibilities of useful syntatially linked strutures, some of whih have alreadybeen mentioned in Chapter 2.A seond purpose of this work was to demonstrate that labeled graphs an atually beproessed in a neural arhiteture and that serious reognition tasks an be performedon this basis. For the �rst time a omplete DLM fae reognition system has beendeveloped, able to reognize faes against a gallery of more than one hundred modelfaes. Nevertheless DLM is relatively slow and umbersome ompared to the algorithmiversion, the EGM. Several features of the algorithmi models have yet to be implementedin a fully neural system, espeially the reognition of oluded objets in luttered senes.All systems presented here, the one based on DLM as well as those based on EGM,have various shortomings. Firstly, they are extreme in the sense that they build objetrepresentations diretly from low-level features. It is neessary to introdue some mid-level features that an mediate between models and image information. Seondly, no low-81



level segmentation ues are used to improve speed and reliability of objet reognition. Sofar the objets have either been presented in front of a homogeneous bakground, or thesegmentation was only guided top-down by objet knowledge. Thirdly, the generationof graph representations is very arti�ial. Model graphs are either de�ned by hand, or avery primitive segmentation proedure is used to determine the ontour of a new objet.Finally, more ontrol struture is required to enable the system to build a knowledgedatabase autonomously without user interation.Coneptionally, it will be neessary to develop further the ideas skethed in Chapter 2.The goal is to de�ne a small set of fundamental operations on graphs that suÆe to letomplex strutures emerge in an autonomous system able to learn from sensory input,to organize knowledge about its environment, and �nally to generate useful ation interms of a given goal.
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Appendix APreproessing with Gabor WaveletsAbstrat: Gabor wavelets have the shape of plane waves restrited by a Gaussian envelopefuntion. Convolving an image with a whole family of Gabor wavelets of di�erent size andorientation provides a set of omplex oeÆients at eah pixel. This set is alled a jet J andrepresents a loal path of grey values. Due to the wave harater of the kernels, the oeÆientshave a phase � varying with the harateristi frequeny of the kernel and a slowly hangingmagnitude a. Jets an be ompared by similarity funtions S� and Sa. If phase informationis taken into aount (S�), the spatial distane or disparity ~d between two jets taken fromapproximately the same objet loation an be estimated.A.1 Gabor Wavelet TransformationA jet is a speial type of loal feature desribing a small path of grey values in an imageI(~x) around a given pixel ~x = (x; y). It is based on a wavelet transform, de�ned as aonvolution Jj(~x) = Z I(~x0) j(~x� ~x0)d2~x0 (A.1)with a family of Gabor kernels j(~x) = k2j�2 exp �k2jx22�2 !"exp(i~kj~x)� exp ��22 !# ; (A.2)having the shape of plane waves with wave vetor ~kj restrited by a Gaussian envelopefuntion. I employ a disrete set of 5 di�erent frequenies, index � = 0; :::; 4, and 8orientations, index � = 0; :::; 7,~kj =  kjxkjy! =  k� os'�k� sin'�!; k� = 2� �+22 �; '� = ��8 ; (A.3)with index j = � + 8�. By this sampling the frequeny spae is evenly overed withina reasonable band-pass. The Gauss width is �=k with � = 2�, and the kernels are DC-free, i.e. the integral R  j(~x)d2~x vanishes. Sine this is a wavelet transform, the familyof kernels is selfsimilar in the sense that all kernels an be generated from one motherwavelet by dilation and rotation.A jet J is de�ned as the set fJjg of 40 omplex oeÆientsJj = aj exp(i�j) (A.4)83
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Figure A.1: The visual preproessing is based on the Gabor wavelet transform. Thewavelets have the shape of plane waves (5 di�erent frequenies � 8 di�erent orientations)restrited by a Gaussian envelope funtion. A onvolution yields 40 omplex oeÆientsreferred to as a jet. The phase of the oeÆients varies with the main frequeny (seeimaginary part) and their magnitude varies slowly.with amplitudes aj(~x) slowly varying with position and phases �j(~x) varying with thespatial frequeny given by the harateristi wave vetor ~kj (see Figure A.1).Gabor wavelets were hosen for their tehnial properties and biologial relevane.Sine they are DC-free, they provide robustness against varying brightness in the image.Robustness against varying ontrast an be obtained by normalizing the jets. The lim-ited loalization in spae and frequeny yields a ertain amount of robustness againsttranslation, distortion, rotation, and saling. Only the phase hanges drastially withtranslation, but that an be used for estimating displaement, as will be shown later.A disadvantage of the large kernels is their sensitivity to bakground variations. Butas was shown by P�otzsh (1994), if the objet ontour is known, the inuene of thebakground an be suppressed. Finally, the Gabor wavelets are losely related to thereeptive �elds of simple ells in the vertebrate visual ortex (Pollen & Ronner, 1981;Jones & Palmer, 1987; DeValois & DeValois, 1988).A.2 SalienySalieny indiates whether an image loation is onsidered to be interesting solely onthe basis of low level information (see for example Manjunath et al., 1992). I use thenorm of the jet as a simple salieny measure:N (J ) = sXj a2j ; (A.5)i.e. a jet is salient if it represents rih textural struture of high ontrast. This salienyis used in Chapter 4 to initialize the attention layer.84



A.3 Comparing JetsThe quik phase variations ause problems. Jets taken from an image few pixels apartfrom eah other have very di�erent oeÆients, although they represent almost the sameloal feature. I therefore either ignore the phase or ompensate for its variations ex-pliitely. The �rst leads to the jet similarity funtionSa(J ;J 0) = Pj aja0jrPj a2j Pj a02j (A.6)already used by Buhmann et al. (1992) and Lades et al. (1993). With J a �xed jet, andJ 0 = J 0(~x) the jets at positions ~x in an image, Sa(J ;J 0(~x)) is a smooth funtion, andits loal optima have large attrator basins suitable for very simple methods to searhfor them (see Figure A.2). Typially gradient desent or di�usion proesses onvergerapidly and reliably.Using phase information has two potential advantages. Firstly, phase informationan help to disriminate between patterns with similar amplitudes, and seondly, sinephase varies so quikly with loation, it provides a means to loate jets in an imagepreisely. In the following I assume that the two jets J and J 0 refer to similar objetloations with a small relative displaement ~d. The phase shifts an then approximatelybe ompensated for by the term ~d~kj, and the similarity an be de�ned asS�(J ;J 0) = Pj aja0j os(�j � �0j � ~d~kj)rPj a2j Pj a02j : (A.7)Before omputing the similarity, the displaement ~d has to be estimated. This an bedone by maximizing S� in its Taylor expansion, as will be explained in the followingsetion. The great advantage of this seond similarity funtion is atually that it yieldsthis displaement information. Pro�les of similarities and estimated displaements areshown in Figure A.2.A.4 Disparity EstimationIn order to estimate the displaement vetor ~d = (dx; dy), I have adopted a method usedfor disparity estimation (Theimer & Mallot, 1994) based on (Fleet & Jepson,1990). The idea is to maximize the similarity S� in its Taylor expansion:S�(J ;J 0) � Pj aja0j[1� 0:5(�j � �0j � ~d~kj)2℄rPj a2j Pj a02j : (A.8)Setting ��dxS� = ��dyS� = 0 then leads toXj aja0jkjx(�j � �0j)| {z }�x = dxXj aja0jkjxkjx| {z }�xx +dyXj aja0jkjxkjy| {z }�xy ; (A.9)85
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Xj aja0jkjy(�j � �0j)| {z }�y = dxXj aja0jkjykjx| {z }�yx=�xy +dyXj aja0jkjykjy| {z }�yy ; (A.10)whih an be solved for ~d if the determinant �xx�yy � �xy�yx does not vanish:~d(J ;J 0) =  dxdy ! = 1�xx�yy � �xy�yx  �yy ��yx��xy �xx ! �x�y ! : (A.11)This equation yields a straightforward method for estimating the displaement ordisparity between two jets taken from objet loations lose enough that their Gaborkernels are highly overlapping. Without further modi�ations, this equation an deter-mine displaements up to half the wavelength of the highest frequeny kernel, whihwould be two pixels for kmax = �=2. The range an be inreased by using low frequenykernels only. For the largest kernels the estimated displaement may be 8 pixels. Onean then proeed with the next higher frequeny level and re�ne the result, possibly byorreting the phases of the higher frequeny oeÆients by multiples of 2� aordingto the disparity estimated on the lower frequeny. I have referred to the number of fre-queny levels used for the �rst displaement estimation as fous. A fous of 1 indiatesthat only the lowest frequeny level is used and that the estimated displaement may beup to 8 pixels. A fous of 5 indiates that all �ve levels are used, and the disparity mayonly be up to 2 pixels. If one has aess to the whole image of jets, one an also workiteratively. Assume a jet J is given for whih the aurate position is needed in an imagearound a starting point ~x0. Comparing J with the jet J0 = J (~x0) gives an estimateddisplaement of ~d0 = ~d(J ;J (~x0)). Then a jet J1 is taken from position ~x1 = ~x0+ ~d0 andthe displaement is estimated again. But sine the new loation is loser to the orretposition, the new displaement ~d1 will be smaller and an be estimated more aurately.This proedure will eventually onverge with a remaining subpixel displaement. Thisis the iterative sheme that is used in the mathing proess desribed in Chapter 5.
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Appendix B
Zusammenfassung indeutsher Sprahe
B.1 EinleitungIn der Neuroinformatik dominiert die Vektorrepr�asentation zur Darstellung von Eingabe-daten. Ein Bild ist in tehnishen Systemen zun�ahst ein Feld von Pixeln, wobei jedesPixel eine Position und einen Grauwert hat. In der typishen Vektordarstellung werdendie Positionen nur als eindeutige Adressen verwendet, die repr�asentierten r�aumlihenBeziehungen gehen jedoh verloren. Das hat fatale Konsequenzen, was in Abbildung 1.1an einem einfahen Beispiel demonstriert wird. Ber�uksihtigt man Nahbarshafts-beziehungen, dann wird man die beiden rehten Bilder als gegeneinander vershobeneKopien erkennen. Mit der Hamming-Distanz als einem vektoriellen Abstandsma� wirdman jedoh zu dem Ergebnis kommen, da� die linken beiden Bilder einander �ahnlihersind.Die Vektorrepr�asentation von Bilddaten in der Neuroinformatik ist ein konzep-tionelles Problem, das auh durh geeignete Normierung der Eingabebilder oder durhModelle wie dem Neokognitron niht befriedigend gel�ost wird. Die vorliegende Arbeitbesh�aftigt sih mit etikettierten Graphen als einem alternativen Konzept zur Objekt-repr�asentation, das explizit Relationen zwishen Elementen kodieren kann. So werdenBilder aus lokalen Merkmalen und deren r�aumlihen Beziehungen zu Graphen zusam-mengefa�t.Neben den etikettierten Graphen werden die Prinzipien der dynamishen Graphenan-passung erl�autert. Dynamishe Graphenanpassung ist ein von von der Malsburg ent-wikeltes neuronales Konzept zum Vergleihen und Anpassen von etikettierten Graphen.In vier Anwendungen wird die Leistungsf�ahigkeit dieser Konzepte demonstriert. Alle An-wendungen basieren auf einer visuellen Vorverarbeitung, die durh die Gabor Wavelet-Transformation beshrieben wird. 89



B.2 Etikettierte Graphen zur Objektrepr�asentationWahrnehmung erfordert zun�ahst eine geeignete Repr�asentation der Reizmuster. Dabeigehe ih davon aus, da� jeder Sinn im wesentlihen in drei Unterr�aumen organisiert ist,und da� jeder Reiz als etikettierter Graph (labeled graph) repr�asentiert werden kann.Der erste der drei Unterr�aume ist der Sinnesraum (sensory spae), er ist die zweidimen-sionale Retina f�ur das visuelle System, die Cohlea im auditorishen System, oder dieHautober�ahe unseres Tastsinnes. Im Sinnesraum spielen Relationen oder relationaleMermale (relational features), wie z.B. Abst�ande, die wesentlihe Rolle. Menshen sindsehr genau in der Beurteilung ob drei Punkte auf einer Geraden liegen, ignorieren aberweitgehend den Ort des Musters auf der Retina. Die Relationen im Sinnesraum werdendurh Kanten im Graphen dargestellt, z.B. etikettiert mit Abstandsinformationen. Derzweite Unterraum ist der Merkmalsraum (feature spae). Merkmale, oder besser lokaleMerkmale (loal features), sind im visuellen System z.B. Farbe, Textur oder Orientierungeiner Kante. Hier spielt die absolute Emp�ndung eine gr�o�ere Rolle als Relationen.Entsprehend werden die Merkmale durh Knoten dargestellt, z.B. etikettiert mit Farb-oder Texturinformation. Der dritte Unterraum eines jeden Sinnes ist die Zeit (time). Siespielt in vershiedener Hinsiht eine besondere Rolle. Erw�ahnt werden soll hier nur, da�Zeit ein starker Hinweis auf Kausalit�at ist. Sie ist au�erdem allen Sinnen gemeinsamund vermutlih der wesentlihe Shl�ussel zur Integration der vershiedenen Sinne.Zur Bildung von etikettierten Graphen von Reizmustern m�ussen Knoten aus demBild ausgew�ahlt und durh Kanten zu Graphen verbunden werden. Im einfahsten Fallwerden die Knoten auf einem regelm�a�igen Gitter angeordnet. Der Abstand der Knotenh�angt dann nur von der Ausdehnung und Komplexit�at der verwendeten Merkmale ab.Aufwendiger, aber geeigneter, ist die Auswahl von sogenannten au�allenden Punkten(salient points), von denen man annimmt, da� sie wihtige Information tragen. Es istjedoh shwierig, diese Punkte allein auf der Basis von lokaler Bildinformation und ohneObjektwissen zu de�nieren. F�ur die Auswahl geeigneter Kanten zwishen den Knotendienen Gruppierungshinweise wie sie aus der Psyhophysik bekannt sind. Hier ist vorallem das Prinzip der N�ahe (proximity) zu nennen. Das kann sih auf alle drei Un-terr�aume beziehen: r�aumlihe N�ahe im Sinnesraum, �Ahnlihkeit im Merkmalsraum undKoinzidenz in der Zeit (siehe Abbildung 2.2). In allen drei Unterr�aumen werden Knotenmit identishen Eigenshaften stark miteinander verbunden, und die Verbindung wirdmit zunehmendem Abstand shw�aher. �Ubertr�agt man die induzierten Verbindungenauh auf alle benahbarten Knoten, so entsteht ein stark verkn�upfter Graph des Reiz-musters, der als Basis f�ur alle weiteren Shritte dient (siehe Abbildung 2.3).Sind Graphen von Reizmustern gebildet und abgespeihert, so m�ohte man alsn�ahstes Graphen miteinander vergleihen. Dabei werden zwei Graphen als �ahnlihangenommen, wenn sie sowohl in ihren lokalen als auh in ihren relationalen Merk-malen �ahnlih sind. Den entsprehenden Proze� des Vergleihens nennt man Graphenan-passung (graph mathing) (siehe Abbildung 2.4). Es ist auh denkbar, da� Graphenim wesentlihen aufgrund der gemeinsamen Struktur und unabh�angig von den lokalenMerkmalen miteinander verglihen werden k�onnen. Das w�urde auh den Vergleih vonGraphen untershiedlihen Ursprungs erm�oglihen, z.B. aus dem visuellen und dem au-ditorishen System. Ein solher Proze� kann als Analogiebildung interpretiert werden90



(siehe Abbildung 2.5). Mit der Graphenanpassung lassen sih auh Teilgraphenvergleihen und eine einfahe Strukturierung der gespeiherten Graphen vornehmen.Stellt man fest, da� Teile einer Menge von Graphen identish sind, so bildet man einensog. Fusionsgraphen (fusion graph), in dem die gemeinsamen Teilgraphen nur einmalrepr�asentiert sind (siehe Abbildung 2.6). Der Fusionsgraph hat zum einen den Vorteil,da� er weniger Speiherkapazit�at als die Einzelgraphen erfordert. Zum anderen hater Generalisierungsf�ahigkeiten, da die Teilst�uke nun auh in anderen Kombinationenzusammengesetzt werden k�onnen. Damit gekoppelt ist das Problem, da� der Fusions-graph die urspr�unglihen Graphen niht mehr eindeutig kodiert. Diese Eindeutigkeit l�a�tsih jedoh durh Einf�uhrung von sogenannten Kardinalknoten (ardinal ells) wiederherstellen. Geshieht dies in geeigneter Weise, k�onnen sowohl Generalisierungsf�ahigkeitals auh die Eindeutigkeit der urspr�unglihen Graphen in kontrollierter Weise miteinan-der kombiniert werden (siehe Abbildung 2.7).In den in dieser Arbeit vorgestellten Anwendungen geht es um Gesihtserkennung undSzenenanalyse. Beides erfordert spezielle Graphenstrukturen. In der Gesihtserkennungist es vorteilhaft, die gemeinsame Struktur von Gesihtern auszunutzen. Die Gesihts-graphen f�ur eine Ansiht (Frontalansiht, Halbpro�l oder Pro�l) werden entsprehendalle die gleihe Struktur haben, z.B. einen Knoten auf dem rehten Auge, einen Knotenauf der Nasenspitze, usw. Dies erm�ogliht es, die Gesihtsgraphen stapelartig zu kom-binieren, wobei etwa alle rehten Augenknoten miteinander verbunden werden, ebensoalle Nasenknoten, usw. Dieser Fusionsgraph repr�asentiert das gesamte Wissen des Sy-stems �uber Gesihter und wird entsprehend allgemeines Gesihtswissen (general faeknowledge) genannt. Es erm�ogliht auh, neue Gesihter aus shon bekannten zusam-menzusetzen. Zur weiteren Analyse von Gesihtern wird das allgemeine Gesihtswissenmit Kontextinformation versehen. In der vorgestellten Anwendung bezieht sih das aufdas Geshleht der Personen, ob sie b�artig sind und ob sie eine Brille tragen (siehe Ab-bildung 2.8 links). F�ur die Szenenanalyse sind die Objekte sehr untershiedliher Naturund daher niht in einem Fusionsgraphen kombinierbar. Jedoh m�ussen die Graphen zurAnalyse einer Szene miteinander um Bild�ahe konkurrieren, wenn man annimmt, da�an jedem Ort nur ein Objekt sihbar sein kann. Dabei mu� ber�uksihtigt werden, da�sih die Objekte niht gegenseitig durhdringen k�onnen. Das kann durh die Forderungeiner eindeutigen Tiefenreihenfolge erreiht werden (siehe Abbildung 2.8 rehts).B.3 Prinzipien der dynamishen GraphenanpassungNeuronale Netzwerke sheinen zun�ahst ungeeignet zu sein, etikettierte Graphen zu ver-arbeiten. Das liegt im wesentlihen daran, da� konventionelle neuronale Netze Rela-tionen zwishen Neuronen nur durh deren synaptishe Verbindungsst�arke ausdr�ukenk�onnen, die zudem nur auf einer langsamen Zeitskala durh Lernen ver�anderlih ist.von der Malsburg hat in der von ihm vorgeshlagenen Dynami Link Arhiteturedie konventionellen neuronalen Netze konzeptionell um die M�oglihkeit des dynamishenBindens von Neuronen durh Korrelation ihrer Zeitsignale und um shnell und reversibelshaltende Synapsen erweitert. Beide Konzepte zusammen erm�oglihen die dynamisheGraphenanpassung (dynami link mathing), ein Proze� zum aufeinander Abbilden undVergleihen von etikettierten Graphen. 91



Ein etikettierter Graph wird repr�asentiert durh eine Shiht von Neuronen. Je-dem Neuron ist ein lokales Merkmal zugeordnet, und laterale Verbindungen induziereneine Metrik und somit Abst�ande zwishen den Neuronen. In der Graphenanpassungsollen zwei solhe Shihten entsprehend der �Ahnlihkeit ihrer repr�asentierten Musteraufeinander abgebildet werden. Zu Beginn sind beide Shihten vollst�andig miteinan-der vershaltet, beshrieben durh die Verbindungsmatrix. Shlie�lih soll jedoh jedesNeuron der einen Shiht mit nur einem Neuron der anderen Shiht verbunden sein(siehe Abbildung 3.1). Die dynamishe Graphenanpassung basiert auf folgenden vierPrinzipien (siehe Abbildungen 3.2 bis 3.5): Erstens, die lateralen Verbindungen einerShiht induzieren eine Dynamik, die Nahbarshaften durh Korrelationen ausdr�ukt,benahbarte Neurone haben korrelierte Zeitsignale, entfernte Neurone feuern unkorre-liert. Zweitens, sind zwei Shihten mit einer Identit�atsabbildung verbunden, so werdensih die Aktivit�atsdynamiken beider Shihten synhronisieren. Korrespondierende Neu-rone feuern korreliert. Drittens, die Synhronisation ist robust gegen Raushen, Verzer-rungen und Teilverdekungen. Sie ist ohnehin invariant gegen Translation, Rotation, undSpiegelung. Diese St�orungen werden immer auftreten, wenn die Shihten reale Bilderrepr�asentieren. Viertens, die Verbindungsstruktur kann sih aufgrund der induziertenKorrelationen zu einer eins-zu-eins Abbildung (one-to-one mapping) entwikeln. Dies istein Wehselwirkungsproze�, da die Korrelationen bei entwikelter Verbindungsstrukturihrerseits auh verbessert werden (siehe Abbildung 3.6).Die dynamishe Graphenanpassung ist einer von wenigen Ans�atze zur translationsin-varianten Objekterkennung in neuronaler Arhitektur. Trotz ihrer M�oglihkeiten, die imn�ahsten Abshnitt kurz erl�autert wird, kann sie die Leistungsf�ahigkeit unseres visuellenSystems aus zwei Gr�unden niht erkl�aren: Erstens, die dynamishe Graphenanpassungist zu langsam. Die enorm kurzen Erkennungszeiten unseres visuellen Systems lassensih durh die relativ langsame Aktivit�ats- und Verbindungsdynamik niht erkl�aren.Man kann jedoh annehmen, da� die dynamishe Graphenanpassung in einem fr�uhenEntwiklungsstadium zur Objekterkennung verwendet wird, und da� sih sp�ater eÆzien-tere Mehanismen entwikeln, die jedoh ein hohes Ma� an visueller Erfahrung erfordern.Zweitens, die anf�anglihe vollst�andige Vershaltung zwishen den Shihten erfordert zuviele Verbindungen. Die L�osung dieses Problems liegt o�ensihtlih in der Einf�uhrungvon hierarhishen Strukturen, wie shon ansatzweise gezeigt wurde.B.4 Gesihtserkennung mit dynamisher Graphen-anpassungAls Aktivit�atsdynamik der dynamishen Graphenanpassung wurde bisher eine ver-wendet, die station�are Aktivit�atseken erzeugt. Dabei wurde die gesamte Dynamikauf reht k�unstlihe Weise kontrolliert und mit den folgenden vier Shritten iteriert:Erzeugung eines Aktivit�atseks auf einer Shiht, initiiert durh Raushen; Erzeugungeines Aktivit�atseks auf der anderen Shiht aufgrund der durh die Verbindungsma-trix propagierten Aktivit�at des ersten Fleks; Anwendung eines Lernshrittes f�ur dieVerbindungsstruktur; Zur�uksetzen der Shihtaktivit�aten auf Null. Au�erdem ist diedynamishe Graphenanpassung bisher noh niht zu einem vollst�andigen Erkennungssy-stem entwikelt worden. Es wurden meist wenige Modelle, typisherweise drei, verwen-det, und die Erkennungsentsheidung wurde aufgrund von Gr�o�en, z.B. der gemittelten92



Verbindungsst�arke, getro�en, die in einem biologishen System niht direkt zug�anglihsind. Es war das Anliegen dieser Arbeit, die dynamishe Graphenanpassung zu einemvollst�andigen Erkennungssystem mit kontinuierliher und autonomer Dynamik zu ent-wikeln.Das Ziel der kontinuierlihen Dynamik wurde durh Einf�uhrung von verz�ogerterSelbsthemmung (delayed self-inhibition) erreiht. Durh die Selbsthemmung kann dervormals station�are Aktivit�atsek niht mehr an einem Ort stehen bleiben, sondern ermu� st�andig auf benahbarte Bereihe ausweihen, da dort die Selbsthemmung nohgering ist. Das f�uhrt zu einer kontinuierlihen Bewegung, in der der Aktivit�atsek diegesamte neuronale Shiht abtastet (siehe Abbildung 4.2). Diese starke Eigendynamikder Aktivit�atseken f�uhrt nat�urlih auh zu Problemen. Insbesondere ist die Synhro-nisation der Aktivit�atseken auf vershieden gro�en Shihten ershwert. Daher habeih einen Aufmerksamkeitsek (attention blob) eingef�uhrt, der die Bewegungsfreiheitdes laufenden Fleks auf der gr�o�eren Shiht einshr�ankt. Der Aufmerksamkeitsekkann seinerseits aber auh von dem Aktivit�atseken vershoben werden, z.B. in denBereih des abgebildeten Objektes (siehe Abbildungung 4.4 und 4.5). Die dynamisheGraphenanpassung geshieht parallel zwishen dem Bild und einer Galerie von Model-len. Zur eigentlihen Erkennung des rihtigen Modells wird dessen Gesamtaktivit�atverwendet. Das rihtige Modell ist dem Bild am �ahnlihsten und kooperiert daher amerfolgreihsten, was zu einer erh�ohten Gesamtaktivit�at f�uhrt. In einfahen F�allen kannshon sehr fr�uh das rihtige Modell bestimmt werden (siehe Abbildung 4.6 oben). Inanderen F�allen m�ussen sih die Verbindungsmatrizen erst stark organisiert haben, bevorsih das rihtige Modell durhsetzen kann (siehe Abbildung 4.6 unten). Erkennungslei-stungen unter vershiedenen Bedingungen f�ur Galerien von bis zu 111 Modellen sind inTabelle 4.3 angegeben.Drei weitere Ver�anderungen gegen�uber dem urspr�unglihen System sind von Bedeu-tung: Erstens wurden die Shihten wehselseitig, anstatt wie bisher unidirektional,miteinander verbunden. Das hat zum einen den Vorteil, da� sih die Aktivit�atsekenleihter synhronisieren. Zum anderen ist das f�ur das Erkennungssystem notwendig: DieModelle m�ussen das Bild beeinussen, um den Aufmerksamkeitsek rihtig auf demObjekt zu positionieren. Das Bild mu� die Modelle anregen, um eine Untersheidungzwishen �ahnlihen und un�ahnlihen Modellen zu erlauben. Zweitens wurden die Modelleuntereinander derartig verkn�upft, da� die Aktivit�atseken in allen Modellen immer syn-hron laufen und zu einem Zeitpunkt am gleihen Ort im Gesiht sind, z.B. das rehteAuge oder die Nasenspitze. Diese Struktur kommt dem allgemeinen Gesihtswissen shonsehr nahe. Ohne diese Zwangssynhronisation in der Modelldom�ane w�urde die Synhro-nisation des Bildes mit den Modellen weitgehend von zuf�alligen Anfangsbedingungenabh�angen. Drittens werden die Neuronen niht, wie �ublih, durh die Summe der einge-henden Signale angeregt, sondern durh das Maximum. Die Summe vermisht n�amlihein korrektes Signal mit vielen falshen, w�ahrend das Maximum mit einer relativ hohenWahrsheinlihkeit das rihtige Signal und nur dieses selektiert. Ein weiterer Vorteildes Maximums ist, da� der dynamishe Bereih der �au�eren Anregung w�ahrend desSelbstorganisationsprozesses gleih bleibt. Es m�ussen also keine Parameter nahgeregeltwerden. 93



B.5 Gesihtserkennung mit elastisher Graphenan-passungZur dynamishen Graphenanpassung gibt es eine algorithmish ausgerihtete Variante,die elastishe Graphenanpassung (elasti graph mathing). Sie ist sehr viel shnellerund exibler als ihr neuronales Gegenst�uk und daher angemessener f�ur tehnisheAnwendungen. Hier ist die Aufgabe wieder Gesihtserkennung. Anstatt durh neu-ronale Shihten werden die Gesihter direkt durh etikettierte Graphen repr�asentiert, dieKnoten werden mit Jets als lokalen Merkmalen etikettiert, und die Kanten tragen Infor-mationen �uber den Abstand der verbundenen Knoten (siehe Abbildung 5.1). Es werdenzwei Prozesse untershieden, das Bilden eines neuen Gesihtsgraphen durh elastisheGraphenanpassung und die eigentlihe Gesihtserkennung, bei der der neue Gesihts-graph mit einer Galerie von Modellgraphen verglihen wird. Das letztere geshiehteinfah aufgrund der gemittelten �Ahnlihkeit korrespondierender Jets. Die Geometrieder Graphen spielt dabei keine Rolle. Die elastishe Graphenanpassung dagegen beruhtauf einem relativ aufwendigen Optimierungsproze�, in dem versuht wird, denjenigenTeilgraphen aus einem Bild auszuw�ahlen, der eine m�oglihst hohe Jet�ahnlihkeit mitden Modellgraphen hat unter der Nebenbedingung, da� der Bildgraph geometrish nihtzu stark verzerrt sein darf gegen�uber der mittleren Geometrie der Modellgraphen. Umeine m�oglihst hohe Pr�azision zu erreihen, wird f�ur die Graphenanpassung die Jet-Vergleihsfunktion unter Ber�uksihtigung der Phaseninformation verwendet.In der elastishen Graphenanpassung spielt das allgemeine Gesihtswissen eine beson-dere Rolle. In dieser Graphenstruktur ist das allgemeine Wissen des Systems um die ver-shiedenen m�oglihen Ersheinungsformen von Gesihtern zusammengefa�t (siehe Abbil-dung 5.2). Die Kanten sind wieder mit Abstandsinformationen etikettiert, jedoh gemit-telt �uber alle Modelle des allgemeinen Gesihtswissens. Den Knoten sind die Jets allerModelle zugeordnet. Dabei entspriht jeder Knoten einem bestimmten Punkt im Gesiht,z.B. der Nase, dem linken Auge, oder einem Mundwinkel. Bei der elastishen Graphenan-passung kann jeweils ein Jet pro Knoten angesprohen werden, und man w�ahlt jeweilsden am besten passenden aus. Auf diese Weise kann die volle kombinatorishe Vielfaltdes allgemeinen Gesihtswissens genutzt werden. Ergebnisse der elastishen Graphenan-passung sind in Abbildung 5.3 gezeigt.Das System ist auh in der Lage, Gesihter in sehr vershiedener Ansiht miteinanderzu vergleihen, z.B. Frontalansiht mit Halbpro�l. Dazu ist es notwendig, objektange-pa�te Graphen (objet-adapted graphs) zu de�nieren. Die Knoten beziehen sih aufgleihe Punkte im Gesiht, unabh�angig von der Ansiht. So gibt es in jeder AnsihtAugenknoten, Nasenknoten, usw. Die Struktur der Graphen sowie die Korresponden-zen zwishen Knoten, die zu gleihen Punkten im Gesiht geh�oren, wurden per Handde�niert. Im Vergleih zweier Gesihter vershiedener Pose werden dann nat�urlih nurkorrespondierende Knoten verglihen. Die Erkennungsraten liegen jedoh f�ur unter-shiedlihe Posen relativ niedrig, wie beim Menshen auh (siehe Tabelle 5.1). ZurBeurteilung, ob ein Gesiht zuverl�assig erkannt wurde, habe ih ein shon fr�uher ent-wikeltes Kon�denzma� (on�dene measure) verwendet.Die drei wesentlihen Neuerungen gegen�uber dem vorangegangenen System sind dieVerwendung von Phaseninformation bei der Graphenanpassung, die Einf�uhrung des all-gemeinen Gesihtswissens, und die Verwendung von objektangepa�ten Graphen zumVergleih von Gesihtern vershiedener Pose.94



B.6 Phantombilder und Bestimmung von Gesihts-merkmalenDas Ergebnis der elastishen Graphenanpassung ist niht nur der Bildgraph, sondernauh die Information, f�ur welhen Knoten welher Jet und damit auh welhes Modelldes allgemeinen Gesihtswissens am besten pa�t. Diese Information soll nun f�ur eine wei-tergehende Analyse eines Gesihtes genutzt werden. Zun�ahst kann man ein Phantombilderzeugen. Dazu werden die lokalen Grauwertverteilungen, die zu den ausgew�ahlten Jetsgeh�oren, mit weihen �Uberg�angen aneinandergef�ugt. Es wird also keinerlei Grauwertin-formation des Originalbildes verwendet. Die Phantombilder sehen den Originalen reht�ahnlih (siehe Abbildung 6.2). Man kann also davon ausgehen, da� f�ur ein weiblihesGesiht die elastishe Graphenanpassung im wesentlihen Jets von weiblihen Modellenausw�ahlt. Gleihes gilt f�ur m�annlihe Gesihter oder Gesihter mit Brille oder Bart (beiletzteren aber nur f�ur die oberen bzw. unteren Knoten). Die Merkmale der Modelle lassensih so auf das Originalgesiht �ubertragen und dessen Merkmale damit ermitteln. DasPrinzip ist in Abbildung 6.1 illustriert. Die Erkennungsrate f�ur die GesihtsmerkmaleGeshleht, Brille und Bart sind in Tabelle 6.2 angegeben. Anwendung der BayesshenFormel gibt au�erdem einen Hinweis darauf, welhe Knoten f�ur die Merkmalsbestim-mungen besonders zuverl�assig sind (siehe Abbildung 6.3).Die Erkennungsraten sind etwas niedriger bis vergleihbar mit anderen neuronalenModellen zur Bestimmung des Geshlehtes eines Gesihts. Jedoh hat die vorgestellteMethode einige grundlegende Vorteile. Sie ist sehr allgemein, erfordert also keinemanuelle De�nition von Merkmalen, die f�ur die Aufgabe geeignet sind. Das Systemsollte ohne weitere Modi�kationen auf andere Aufgaben �ubertragbar sein, wie z.B. dieBestimmung von emotionalen Gesihtsausdr�uken oder die Untersheidung vershiedenerHaustierrassen (Hund, Katze, Shaf). Bedingung ist nur eine in Bezug auf Gestalt undPose konsistente Darstellung der zu bestimmenden Objekte. Das System erfordert au�er-dem nur ein Minimum an Trainingsaufwand. Die alternativen Modelle, wie z.B. Bak-propagation oder Systeme basierend auf einer Hauptahsentransformation, sind bekanntf�ur ihren gro�en Trainingsaufwand, sowohl in bezug auf die Anzahl der Trainingsbeispieleals auh in bezug auf die Rehenzeiterfordernisse.B.7 Erkennung von teilverdekten ObjektenDie Anwendungen der vorangegangenen drei Abshnitte beziehen sih auf Gesihtserken-nung. In diesem Abshnitt ist die Aufgabe eine ganz andere. Vershiedene Spielzeugob-jekte werden zu Szenen zusammengestellt und k�onnen sih dabei weitgehend �uberdeken(siehe Abbildung 7.1). Das vorgestellte System soll die Objekte trotz der Verdekungenerkennen. Hier erweist sih die Repr�asentation der Objekte durh etikettierte Graphenals besonders vorteilhaft, da sie in nat�urliher Weise erlaubt, vershiedene Teile einesObjektes vershieden zu behandeln. Die Knoten m�u�en lediglih um eine Statusvariableerg�anzt werden, die bezeihnet, ob der Knoten als sihtbar oder verdekt angenommenwerden soll. Auh kann f�ur zwei �uberlappende Graphen gezielt bestimmt werden, welherim �Uberlappbereih besser in das Bild pa�t. Danah rihtet sih die Hypothese, welhesder beiden Objekt als verdekt angenommen wird.Es werden zwei Algorithmen zur Objekterkennung in einer Szene vorgestellt. Beiden95



geht die Graphenanpassung voraus, die f�ur alle Objekte einer kleinen Galerie von 13Objekten jeweils den wahrsheinlihsten Ort im Bild ermittelt. Der erste Algorithmusbehandelt jeden Graphen einzeln und bestimmt aufgrund der �Ahnlihkeiten der einzelnenKnoten mit dem Bild, welhe Regionen des Graphen voraussihtlih verdekt und welhesihtbar sind. Ist die Gesamt�ahnlihkeit zu gering oder der als sihtbar angenommeneBereih zu klein, so wird das Modell ganz verworfen. Dieser Algorithmus erreiht eineErkennungsrate von 80% und ist geeignet, wenn bekannte Objekte unter unbekanntenObjekten erkannt werden soll (siehe Abbildung 7.3). Kann man voraussetzen, da� alleObjekte der Szene bekannt sind, so kann man die Szene von vorne nah hinten abar-beiten. Das hat den Vorteil, da� die vorderen Objekte siher niht verdekt sind, und da�f�ur weiter hinten liegende Objekte genau bekannt ist, welhe Bildbereihe shon durhObjekte im Vordergrund besetzt sind. Die Erkennungsrate ist mit 96.7% entsprehendh�oher (siehe Abbildung 7.4).
B.8 DiskussionAbsiht der vorliegenden Arbeit war es, zu demonstrieren, da� der etikettierte Graph einleistungsf�ahiges und exibles Datenformat ist, das die syntaktishe Struktur beinhaltet,die der Vektorrepr�asentation fehlt. Die Knotenrelationen spielten in den vershiedenenAnwendungen eine wihtige Rolle. Sie waren entweder explizit oder implizit in denjeweiligen Datenstrukturen realisiert.Erstens wurden die individuellen KoeÆzienten der Gabor Wavelet-Transformation zuJets zusammengebunden. Zweitens wurden Knoten durh Kanten zu Graphen organi-siert. Drittens arbeiten sowohl die dynamishe als auh die elastishe Graphenanpassungmit Verbindungen zwishen einem oder mehreren Modellgraphen und einem Bild, umeinen neuen Bildgraphen zu generieren. (Diese Aspekte syntaktisher Verbindungensind shon in fr�uheren Arbeiten verwendet worden. In dieser Arbeit neu hinzugekom-men sind die folgenden.) Viertens, eine Menge von Jets, die als Alternativen f�ur einund denselben Objektpunkt fungieren k�onnen, wurden im allgemeinen Gesihtswissengemeinsam an einen Knoten gebunden. F�unftens wurde das allgemeine Gesihtswissenum Kontextinformation erweitert, die Jets gleihen abstrakten Merkmals miteinanderverbindet. Sehstens shlie�lih gab es zwishen den Knoten von Objektgraphen in-hibitorishe Verbindungen, wenn die Knoten um den gleihen Bildbereih konkurrierten.Dies ist nur eine relativ kleine Zahl von m�oglihen Beziehungen zwishen Knoten. Manwird weitere entwikeln und Wege �nden m�ussen, wie sih die Relationen geeignet selbst-organisieren k�onnen.Das zweite Anliegen der Arbeit war, zu zeigen, da� die dynamishe Graphenanpas-sung ein leistungsf�ahiges neuronales Konzept zur Verarbeitung von etikettierten Graphendarstellt. Zum erstenmal wurde auf dieser Basis ein vollst�andiges Erkennungssystem ent-wikelt, das in der Lage ist, Gesihter gegen eine Galerie von �uber hundert Modellen zuerkennen. Die elastishe Graphenanpassung ist aber immer noh deutlih langsamerund unexibler als die elastishe Graphenanpassung und viele Apekte der vorgestelltenAnwendungen m�u�en noh in neuronalem Stile entwikelt werden.96



B.9 Anhang A: Visuelle Vorverarbeitung mit GaborWaveletsGabor-Funktionen haben die Form von Wellenpaketen (wavelet): ebene Wellen untereiner einh�ullenden Gau�gloke. In der Gabor-Wavelettransformation wird ein Bild miteiner ganzen Familie von Gabor Funktionen gefaltet. Die Gabor Kerne haben alle diegleihe Form und untersheiden sih nur in Gr�o�e und Orientierung. In der vorliegendenArbeit werden f�unf Gr�o�en (Frequenzen) und aht Orientierungen, d.h. 40 Kerne, ver-wendet. Das Ergebnis sind 40 komplexe KoeÆzienten an jedem Pixel des Bildes. Da dieKerne wellenartig sind, k�onnen den KoeÆzienten Amplitude und Phase zugeshriebenwerden. Die Amplitude �andert sih nur langsam mit dem Ort, die Phase variiert mitder Raumfrequenz der Welle. Die KoeÆzienten eines Pixels werden zusammenfassendals Jet bezeihnet. Ein Jet ist eine kompakte und exible Beshreibung einer Grauwert-umgebung (siehe Abbildung A.1).Jets werden in zweierlei Hinsiht ausgewertet. Erstens kann die �Ahnlihkeit zwishenzwei Jets bestimmt werden. Dazu dient das normierte Skalarprodukt, ohne oder mitBer�uksihtung der Phaseninformation. Zweitens kann die Phaseninformation verwendetwerden, um den r�aumlihen Abstand zweier Jets an Nahbarpunkten eines Objektesabzush�atzen. Dies ist f�ur Stereobilder als Disparit�atssh�atzung bekannt.

97



98



BibliographyAmari, S. (1977). Dynamis of pattern formation in lateral-inhibition type neural �elds.Biologial Cybernetis, 27:77{87.Amari, S. (1980). Topographi organization of nerve �elds. Bulletin of MathematialBiology, 42:339{364.Amari, S. (1989). Dynamial stability of formation of ortial maps. In Arbib, M. A.and Amari, S., editors, Dynami Interations in Neural Networks: Models andData. Springer-Verlag, New York.Anderson, C. H. and van Essen, D. C. (1993). Dynami neural routing iruits.In Brogan, D., Gale, A., and Carr, K., editors, Visual Searh 2. Taylor &Franis, London.Aviitzhak, H., Diep, T., and Garland, H. (1995). High-auray optial harater-reognition using neural networks. IEEE Transations on Pattern Analysis andMahine Intelligene, 17(2):218{224.Behrmann, K.-O. (1993). Leistungsuntersuhungen des \Dynamishen Link-Mathings" und Vergleih mit dem Kohonen-Algorithmus. Diploma thesis, inter-nal report IR-INI 93{05, Fakult�at f�ur Physik und Astronomie, Ruhr-Universit�atBohum, D-44780 Bohum.Bienenstok, E. and Doursat, R. (1991). Issues of representation in neural net-works. InGorea, A., editor, Representations of Vision: Trends and Tait Assump-tions in Vision Researh, pages 47{67. Cambridge University Press, Cambridge.Bienenstok, E. and von der Malsburg, C. (1987). A neural network for invariantpattern reognition. Europhysis Letters, 4:121{126.Blok, H. (1962). The pereptron: a model for brain funtioning. i. Reviews ofModern Physis, 34:123{135. Also appeared in Neuroomputing, J.A. Anderson andE. Rosenfeld, Eds., MIT Press, Massahusetts, pp. 138{150.Boff, K. R., Kaufman, L., and Thomas, J. P., editors (1986). Handbook ofPereption and Human Performane. John Wiley and Sons, New York.Brue, V., Valentine, T., and Baddeley, A. (1987). The basis of the 3/4 viewadvantage in fae reognition. Applied Cognitive Psyhology, 1:109{120.Brunelli, R. and Poggio, T. (1993a). Cariatural e�ets in automated fae perep-tion. Biologial Cybernetis, 69:235{241.99



Brunelli, R. and Poggio, T. (1993b). Fae reognition: Features versus templates.IEEE Transations on Pattern Analysis and Mahine Intelligene, 15(10):1042{1052.Buhmann, J., Lange, J., and von der Malsburg, C. (1989). Distortion invariantobjet reognition by mathing hierarhially labeled graphs. In IJCNN Interna-tional Conferene on Neural Networks, Washington, pages 155{159. IEEE.Buhmann, J., Lange, J., von der Malsburg, C., Vorbr�uggen, J. C., andW�urtz, R. P. (1992). Objet reognition with Gabor funtions in the dynamilink arhiteture: Parallel implementation on a transputer network. In Kosko,B., editor, Neural Networks for Signal Proessing, pages 121{159. Prentie Hall,Englewood Cli�s, NJ 07632.Chalmers, D. J., Frenh, R. M., and Hofstadter, D. R. (1992). High-levelpereption, representation, and analogy: A ritique of arti�ial intelligene method-ology. Journal of Experimental and Theoretial Arti�ial Intelligene, 4:185{211.de Edson, C., Filho, B., and Bisset, D. L. (1990). Applying the ART1 arhitetureto a pattern reognition task. In Ekmiller, R., Hartmann, G., and Hauske,G., editors, Parallel Proessing in Neural Systems and Computers, pages 343{349.North-Holland, Amsterdam.DeValois, R. and DeValois, K. (1988). Spatial Vision. Oxford Press.Ehrig, H., editor (1991). Graphs grammars and their appliation to omputer siene:4th international workshop, Bremen, Germany, Marh 5{9,1990, Berlin. Springer.Eigen, M. (1978). The hyperyle. Naturwissenshaften, 65:7{41.Fleet, D. J. and Jepson, A. D. (1990). Computation of omponent image veloityfrom loal phase information. International Journal of Computer Vision, 5(1):77{104.Fu, K. S. (1982). Syntati Pattern Reognition and Appliations. Prentie Hall, En-glewood Cli�s, NJ 07632.Fukushima, K., Miyake, S., and Ito, T. (1983). Neoognitron: a neural net-work model for a mehanism of visual pattern reognition. IEEE Transations onSystems, Man, and Cybernetis, 13:826{834. Also appeared in Neuroomputing,J.A. Anderson and E. Rosenfeld, Eds., MIT Press, Massahusetts, pp. 526{534.Golomb, B., Lawrene, D., and Sejnowski, T. (1991). Sexnet: a neural net-work identi�es sex from human faes. In Touretzky, D. and Lippman, R.,editors, Advanes in Neural Information Proessing Systems 3. Morgan Kaufmann,SanMateo, CA.H�aussler, A. and von der Malsburg, C. (1983). Development of retinotopiprojetions | an analytial treatment. J. Theor. Neurobiol., 2:47{73.100



Jones, J. and Palmer, L. (1987). An evaluation of the two dimensional Gabor�lter model of simple reeptive �elds in at striate ortex. J. of Neurophysiology,58:1233{1258.Kalosai, P., Biederman, I., and Cooper, E. E. (1994). To what extent an thereognition of unfamiliar faes be aounted for by a representation of the diretoutput of simple ells. In Proeedings of the Assoiation for Researh in Vision andOphtalmology, ARVO, Sarasota, Florida.Kidder, J. N. and Seligson, D. (1993). Fast reognition of noisy digits. NeuralComputation, 5(6):885{892.Kirby, M. and Sirovih, L. (1990). Appliation of the Karhunen-Lo�eve proedurefor the haraterization of human faes. IEEE Transations on Pattern Analysisand Mahine Intelligene, 12(1):103{108.Kohonen, T. (1972). Correlation matrix memories. IEEE Transations on Computers,C-21:353{359. Also appeared in Neuroomputing, J.A. Anderson and E. Rosenfeld,Eds., MIT Press, Massahusetts, pp. 174{180.Kohonen, T. (1982). Self-organized formation of topologially orret feature maps.Biologial Cybernetis, 43:59{69.Kohonen, T. (1987). Adaptive, assoiative, and self-organizing funtions in neuralomputing. Applied Optis, 26(23):4910{4918.Konen, W., Maurer, T., and von der Malsburg, C. (1994). A fast dynami linkmathing algorithm for invariant pattern reognition. Neural Networks, 7(6/7):1019{1030.Konen, W. and von der Malsburg, C. (1992). Unsupervised symmetry detetion:A network whih learns from single examples. Arti�ial Neural Networks, 2:121{125.Konen, W. and von der Malsburg, C. (1993). Learning to generalize from singleexamples in the dynami link arhiteture. Neural Computation, 5:719{735.Konen, W. and Vorbr�uggen, J. C. (1993). Applying dynami link mathing toobjet reognition in real world images. In Gielen, S. and Kappen, B., editors,Proeedings of the International Conferene on Arti�ial Neural Networks, ICANN,pages 982{985, London. Springer-Verlag.K�onig, P. and Shillen, T. B. (1991). Stimulus-dependent assembly formation ofosillatory responses: I. synhronization. Neural Computation, 3:155{166.Kosko, B. (1987). Adaptive bidiretional assoiative memories. Applied Optis,26(23):4947{4960.Kr�uger, N. (1994). personal ommuniation.Kr�uger, N. (1995). Learning weights in disrimination funtions using a priori on-straints. Aepted for 17. Symposium der deutshen Arbeitsgemeinshaft f�ur Mus-tererkennung (DAGM). 101



Lades, M., Vorbr�uggen, J. C., Buhmann, J., Lange, J., von der Mals-burg, C., W�urtz, R. P., and Konen, W. (1993). Distortion invariant objetreognition in the dynami link arhiteture. IEEE Transations on Computers,42(3):300{311.Lanitis, A., Taylor, C., and Cootes, T. (1995). An automati fae identi�ationsystem using exible appearane models. Image and Vision Computing, 13(5):393{401.LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,W., and Jakel, L. (1989). Bakpropagation applied to handwritten Zip odereognition. Neural Computation, 1(4):541{551.Manjunath, B., Chellappa, R., and von der Malsburg, C. (1992). A featurebased approah to fae reognition. Tehnial Report CAR-TR-604 or CS-TR-2834,Computer Vision Laboratory, University of Maryland, Colledge Park, MD 20742{3411.Mao, M. W. and Kuo, J. B. (1992). A oded blok adaptive neural network systemwith a radial-partitioned struture for large-volume hinese haraters reognition.Neural Networks, 5:835{841.Martin, G. L. (1993). Centered-objet integrated segmentation and reognition ofoverlapping handprinted haraters. Neural Computation, 5(3):419{429.Maurer, T. and von der Malsburg, C. (1995). Single-view based reognition offaes rotated in depth. In Proeedings of the International Workshop on AutomatiFae- and Gesture-Reognition, Z�urih.Olshausen, B. A. (1994). Neural Ciruits for Forming Invariant Representations ofVisual Objets. PhD thesis, California Institute of Tehnology, Pasadena, California.Oram, M. W. and Perrett, D. I. (1994). Modeling visual reognition from neuro-biologial onstraints. Neural Networks, 7(6/7):945{972.O'Toole, A., Abdi, H., Deffenbaher, K., and Valentin, D. (1993). Low-dimensional representation of faes in higher dimensions of the fae spae. Journalof the Optial Soiety of Ameria A, 10(3):405{411.Pollen, D. A. and Ronner, S. F. (1981). Phase relationship between adjaentsimple ells in the visual ortex. Siene, 212:1409{1411.P�oppel, E. (78). Time pereption. In Held, R., Leibowitz, H., and Teuber,H.-L., editors, Pereption, hapter 23, pages 713{729. Springer, Berlin Heidelberg.P�otzsh, M. (1994). Die Behandlung der Wavelet-Transformation von Bildern in derN�ahe von Objektkanten. Diploma thesis, Fahbereih Physik, Universit�at Dort-mund. Also published as internal report IR-INI 94-04 at the Institut f�ur Neuroin-formatik, Ruhr-Universit�at Bohum. 102



Reiser, K. (1991). Learning persistent struture. Dotoral thesis, Res. Report 584,Hughes Airraft Co., 3011 Malibu Canyon Rd. Malibu, CA 90265.Rinne, M. (1995). Mathen von Kantenbildern mit einem dynamishen Neuronennetz.Diploma thesis, internal report IR-INI 95-06, Institut f�ur Neuroinformatik, Ruhr-Universit�at Bohum, D-44780 Bohum.Samal, A. and Iyengar, P. A. (1992). Automati reognition and analysis of humanfaes and faial expressions: A survey. Pattern Reognition, 25(1):65{77.Shwarz, A. (1995). Erkennung von Objekten in Grauwertbildern mit laufendennihtlinearen Wellen. Diploma thesis, Fakult�at f�ur Physik und Astronomie, Ruhr-Universit�at Bohum, D-44780 Bohum.Sejnowski, T. J., Kienker, P. K., and Hinton, G. E. (1986). Learning symmetrygroup with hidden units: Beyond the pereptron. Physia, 22D:260{275.Sirovih, L. and Kirby, M. (1987). Low-dimensional proedure for the harateri-zation of human faes. Journal of the Optial Soiety of Ameria A, 4(3):519{524.Subramaniam, S., Biederman, I., Kalosai, P., and Madigan, S. (1995). A-urate identi�ation, but hane fored-hoie reognition for rsvp pitures. In Pro-eedings of the Assoiation for Researh in Vision and Ophtalmology, ARVO, Ft.Lauderdale, Florida.Theimer, W. M. and Mallot, H. A. (1994). Phase-based binoular vergene on-trol and depth reonstrution using ative vision. CVGIP: Image Understanding,60(3):343{358.Ting, C. and Chuang, K.-C. (1993). An adaptive algorithm for neoognitron toreognize analog images. Neural Networks, 6(2):285{299.Turk, M. and Pentland, A. (1991). Eigenfaes for reognition. Journal of CognitiveNeurosiene, 3(1):71{86.Valentin, D., Abdi, H., O'Toole, A. J., and Cottrell, G. W. (1994). Conne-tionist models of fae proessing: A survey. Pattern Reognition, 27(9):1209{1230.van Essen, D. C., Anderson, C. H., and Olshausen, B. A. (1994). Dynamirouting strategies in sensory, motor, and ognitive proessing. In Koh, C. andDavis, J., editors, Large Sale Neural Theories of the Brain. MIT Press.von der Malsburg, C. (1973). Self-organization of orientation sensitive ells in thestriate ortex. Kybernetik, 14:85{100.von der Malsburg, C. (1979). Development of oularity domains and growth be-haviour of axon terminals. Biologial Cybernetis, 32:49{62.von der Malsburg, C. (1981). The orrelation theory of brain funtion. Internalreport, 81-2, Max-Plank-Institut f�ur Biophysikalishe Chemie, Postfah 2841, 3400G�ottingen, FRG. 103



von der Malsburg, C. (1983). How are nervous strutures organized? In Bas�ar, E.,Flohr, H., Haken, H., and Mandell, A., editors, Synergetis of the Brain |Preeedings of the International Symposium on Synergetis, pages 238{249. Springer,Berlin Heidelberg.von der Malsburg, C. (1985). Nervous strutures with dynamial links. Ber. Bun-senges. Phys. Chem., 89:703{710.von der Malsburg, C. (1986). Am I thinking assemblies? In Palm, G. andAertsen, A., editors, Proeedings of the Trieste Meeting on Brain Theory, Otober1984, pages 161{176. Springer, Berlin Heidelberg.von der Malsburg, C. (1988). Pattern reognition by labeled graph mathing. NeuralNetworks, 1:141{148.von der Malsburg, C. (1994). personal ommuniation.von der Malsburg, C. and Bienenstok, E. (1987). A neural network for theretrieval of superimposed onnetion patterns. Europhys. Lett., 3(11):1243{1249.von der Malsburg, C. and Buhmann, J. (1992). Sensory segmentation with ou-pled neural osillators. Biologial Cybernetis, 67:233{242.von der Malsburg, C. and Willshaw, D. (1977). How to label nerve ells sothat they an interonnet in an ordered fashion. Pro. Natl. Aad. Si. (USA),74:5176{5178.Vorbr�uggen, J. C. (1994). Zwei Modelle zur datengetriebenen Segmentierung visuellerDaten, volume 47 of Reihe Physik. Verlag Harri Deutsh, Frankfurt a. Main. PhDthesis.Wagner, B. and von der Malsburg, C. (1995). Stability analysis of a two-dimensional self-organizing retinotopy system. in preparation.Wang, D., Haase, H., and von der Malsburg, C. (1990). A framework of knowl-edge representation in the brain based on the dynami link struture. unpublishedmanusript.Widrow, B. and Hoff, M. E. (1960). Adaptive swithing iruits. In 1960 IREWESCON Convention Reord, pages 96{104. IRE. Also appeared in Neuroomput-ing, J.A. Anderson and E. Rosenfeld, Eds., MIT Press, Massahusetts, pp. 126{134.Widrow, B., Winter, R., and Baxter, R. (1988). Layered neural nets for pat-tern reognition. IEEE Transations on Aoustis, Speeh, and Signal Proessing,36(7):1109{1118.Willshaw, D. and von der Malsburg, C. (1976). How patterned neural onne-tions an be set up by self-organization. Pro. R. So. London, B194:431{445.Willshaw, D. and von der Malsburg, C. (1979). A marker indution mehanismfor the establishment of ordered neural mappings; its appliation to the retinotetalproblem. Trans. R. So. London, B287:203{243.104



Wiskott, L., Fellous, J.-M., Kr�uger, N., and von der Malsburg, C. (1995).Fae reognition and gender determination. In Proeedings of the InternationalWorkshop on Automati Fae- and Gesture-Reognition, IWAFGR 95, pages 92{97,Zurih.Wiskott, L. and von der Malsburg, C. (1993). A neural system for the reognitionof partially oluded objets in luttered senes. Int. J. of Pattern Reognition andArti�ial Intelligene, 7(4):935{948. Also appeared in Advanes in Pattern Reog-nition Systems using Neural Networks Tehnologies, Series in Mahine Pereptionand Arti�ial Intelligene, Vol. 7, Eds. Guyon, I. and Wang, P.S.P., IJPRAI,World sienti�, February 1994.W�urtz, R. P. (1995). Multilayer Dynami Link Networks for Establishing Image PointCorrespondenes and Visual Objet Reognition, volume 41 of Reihe Physik. VerlagHarri Deutsh, Frankfurt a. Main. PhD thesis.Yuille, A. L. (1991). Deformable templates for fae reognition. Journal of CognitiveNeurosiene, 3(1):59{70.

105



106



Indexalignmentbetween models, 29Amari, Shun-ihi, 18, 32analogies�nding {, 10Anderson, Charles H., 25, 26attention blob, 35attributefaial {, see faial attributeaverage graph, 48Aviitzhak, H.I., 3bak-propagation, 71weight sharing {, 25bakground, 80Bayes a posteriori probability, 62Behrmann, Kay-Ole, 25Bienenstok, Elie, 3, 6, 9, 10, 18, 24blobattention {, 35running {, 29Blok, H.D., 1Boff, Kenneth R., 7Brue, Viki, 41, 54Brunelli, R., 55, 57, 71Buhmann, Joahim, 7, 9, 81, 85ardinal ell, 13Chalmers, David J., 10Chuang, Keng-Chee, 3on�deneriterion, 51, 53threshold, 53onnetivityall-to-all {, 19, 28display, 20initial {, 21initialization, see synapti weights, initial-izationone-to-one {, see mapping, one-to-one {ontext knowledge, 14ooperationbetween neighboring links, 21orrelationbetween orresponding neurons, 21between neighboring neurons, 19DC-free, 83

de Edson, C., 1delayed self-inhibition, 29DeValois, K.K., 84DeValois, R.L., 84disambiguation, 10distortiongrid {, 48loal {, 49patterns, 56DLM, see dynami link mathingdomainimage {, 28, 74model {, 28, 74Doursat, Ren�e, 3, 6, 24dynami link arhiteture, 3dynami link mathing, 3, 18, 27onstraints, 19for abstrat patterns, 26history, 17priniples, 19time sale, 18too many links, 25too slow, 24EGM, see graph mathing, elasti {Ehrig, Hartmut, 13Eigen, Manfred, 36eigenfaes, 55elasti graph mathing, see graph math-ing, elasti {exitationloal {, 29, 32expertloal {, 48, 60fae analysis, 59results, 64graph, 28, 46phantom {, 60reognition, 14, 36, 59results, 41, 52faesdi�erentexpression, 51size, 40, 51, 64views, 51, 54faial attributes107



determination of {, 14, 60results, 64falsenegative, 51positive, 51fast synapti plastiity, 3, 23, 35featureeasy {, 54loal {, 6, see jetrelational {, 6similarity, 7spae, 6�duial points, 14, 46, 60�tness, 36Fleet, David J., 85fous, 48, 87Fu, King Sun, 5Fukushima, Kunihiko, 3, 25fusion graph, 10Gaborkernel, 83wavelet, 80frequenies, 83orientations, 83gallery, 14, 41, 47ARPA/ARL FERET database, 51Bohum {, 64image { vs. model {, 49mixed {, 51of toy objets, 77vs. GFK, 49gender determination, see faial attributesgeneralization, 10, 56general fae knowledge, 14, 46, 54, 59vs. gallery, 49GFK, see general fae knowledgeglobal inhibition, 29, 32Golomb, B.A., 71graphabstrat {, 10average {, 48fae {, 28, 46fusion {, 10generationautomati {, 47, 74manual {, 47image {, 14, 28, 48, 49, 75image { vs. model {, 49labeled {, 3, 6, 18, 46, 74, 80neural representation, 19mathing, 9, 18onstraints, 9elasti {, 47in a sene, 75NP-omplete {, 9model {, 14, 28, 46, 74

objet-adapted {, 7, 46, 54, 56objet {, 15, 74rigid, 74similarity, 9, 48, 49, 52, 75distribution, 49with olusion, 75topography, 46neural representation, 19topology, 9visible region, 76graphsompetition between {, 15of di�erent modality, 10of di�erent views, 46grid, 47distortion, 48grouping, 7growth rule, 23, 35H�aussler, A.F., 18, 26hierarhy, 3, 25Hoff, Marian E., 1imagedomain, 28, 74graph, 14, 28, 48, 49, 75inhibitionglobal {, 29, 32Iyengar, Prasana A., 55Jepson, Allan D., 85jet, 28, 46, 74, 83salieny, 84similarity, 28, 48, 49, 85Jones, J.P., 84Kalosai, Peter, 41, 54Kidder, Je�rey N., 3Kirby, M., 2, 55Kohonen, Teuvo, 1, 18, 25Konen, Wolfgang, 2, 9, 18, 24, 27, 39Kosko, Bart, 1Kr�uger, Norbert, 49, 56Kuo, James B., 3K�onig, Peter, 7labeled graph, 3, 6, 18, 46, 74, 80Lades, Martin, 6, 28, 41, 51, 54, 80, 81, 85Lanitis, Andreas, 56, 57layersynhronization, 21robustness, 21LeCun, Y., 3, 25links, see synapti weightsaidental {, 21neighboring {, 21link dynamis, 35108



autonomous, 18, 19, 26loaldistortion, 49exitation, 29, 32expert, 48, 60feature, 6, see jetMallot, Hanspeter A., 85Manjunath, B.S., 7, 57, 84Mao, Mark W., 3mapping, 9, 17all-to-all {, see onnetivity, all-to-all {one-to-one {, 19, 29Martin, Gale L., 3Maurer, Thomas, 56modality, 6graphs of di�erent {, 10modeldomain, 28, 74graph, 14, 28, 46, 74mother wavelet, 83neoognitron, 3, 25neural routing iruits, 26neuronsorresponding {, 19nodeoluded {, 74signi�ant {, 64visible {, 74, 75weights, 63normalization rule, 23, 35O'Toole, A.J., 2, 55, 56, 71, 72objetgraph, 15, 74reognition, 14, 73olusiongraph similarity with {, 75index, 76of oherent regions, 75relations, 74, 76Olshausen, Bruno A., 25, 26Oram, Mike W., 24P�otzsh, Mihael, 80, 84Palmer, L.A., 84patterndistortion {, 56sensory {, 5PCA, see prinipal omponent analysisPentland, A., 2, 55pereption, 5Perrett, David I., 24phantom fae, 60phase information, 54, 68, 85Poggio, T., 55, 57, 71

points�duial {, 14, 46, 60salient {, 7Pollen, Daniel A., 84preproessing, 3, 49, 83robustness, 84prinipal omponent analysis, 2, 55, 71proximity, 7spatial {, 7temporal {, 7P�oppel, Ernst, 6reognitionfae {, 14, 36, 59results, 41, 52in-lass {, 53objet {, 14, 73raw { rate, 51with on�dene, 51Reiser, Kurt, 9, 10, 57retinotopi projetion, 17Rinne, Mihael, 25Ronner, Steven F., 84salieny, jet {, 84salient points, 7Samal, Ashok, 55senesanalysis of {, 14, 74, 75results, 77database, 77Shillen, Thomas B., 7Shwarz, Andreas, 21, 24, 44segmentation, 7, 74Sejnowski, Terrene J., 2selfsimilar, 83Seligson, Daniel, 3sensorypattern, 5spae, 6sexnet, 71signi�ant nodes, 64similarityfeature {, 7graph {, 9, 48, 49distribution, 49jet {, 28, 48, 49, 85Sirovih, L., 2, 55size variationompensate {, 49of faes, 40, 51, 64spaefeature {, 6sensory {, 6Subramaniam, S., 24synapti weights, see linksgrowth rule, 23, 35109



initialization, 19normalization rule, 23, 35temporal binding, 3Theimer, Wolfgang M., 85time, 6Ting, Christopher, 3topography, 28, 45, 46topology, 1training e�ort, 2, 3, 24, 25, 54, 71true negative, 51positive, 51Turk, M., 2, 55Valentin, Dominique, 55van Essen, David C., 25, 26vetor representation, 1von der Malsburg, Christoph, iii, 2, 3, 5{7,9, 10, 18, 24, 26, 27, 56, 73, 89, 91Vorbr�uggen, Jan C., 7, 18, 27, 39Wagner, Bill, 26Wang, DeLiang, 18, 28waveletGabor {, 80mother {, 83wave vetor, 83weightsnode {, 63Widrow, Bernard, 1, 3Willshaw, David, 18Wiskott, Laurenz, iii, 28, 73W�urtz, Rolf P., 7, 25Yuille, Alan L., 55

110


