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Abstract

We present and test an extension of slow feature analysis as a novel approach to nonlinear
blind source separation. The algorithm relies on temporal correlations and iteratively re-
constructs a set of statistically independent sources from arbitrary nonlinear instantaneous
mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two
audio signals with a high reliability. The algorithm is based on a mathematical analysis
of slow feature analysis for the case of input data that are generated from statistically
independent sources.
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1. Introduction

Independent Component Analysis (ICA) as a technique for blind source separation (BSS)
has attracted a fair amount of research activity over the past three decades. By now a num-
ber of techniques have been established that reliably reconstruct the underlying sources
from linear mixtures (Hyvärinen et al., 2001). The key insight for linear BSS is that the
statistical independence of the sources is usually sufficient to constrain the unmixing func-
tion up to trivial transformations like permutation and scaling. Therefore, linear BSS is
essentially equivalent to linear ICA.

An obvious extension of the linear case is the task of reconstructing the sources from
nonlinear mixtures. Unfortunately, the problem of nonlinear BSS is much harder than lin-
ear BSS, because the statistical independence of the instantaneous values of the estimated
sources is no longer a sufficient constraint for the unmixing (Hyvärinen and Pajunen, 1999).
For example, arbitrary point-nonlinear distortions of the sources are still statistically inde-
pendent. Additional constraints are needed to resolve these ambiguities.
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One approach is to exploit the temporal structure of the sources (e.g., Harmeling et al.,
2003; Blaschke et al., 2007). Blaschke et al. (2007) have proposed to use the tendency of
nonlinearly distorted versions of the sources to vary more quickly in time than the original
sources. A simple illustration of this effect is the frequency doubling property of a quadratic
nonlinearity when applied to a sine wave. This observation opens the possibility of finding
the original source (or a good representative thereof) among all the nonlinearly distorted
versions by choosing the one that varies most slowly in time. An algorithm that has been
specifically designed for extracting slowly varying signals is Slow Feature Analysis (SFA,
Wiskott, 1998; Wiskott and Sejnowski, 2002). SFA is intimately related to ICA techniques
like TDSEP (Ziehe and Müller, 1998; Blaschke et al., 2006) and differential decorrelation
(Choi, 2006) and is therefore an interesting starting point for developing nonlinear BSS
techniques.

Here, we extend a previously developed mathematical analysis of SFA (Franzius et al.,
2007) to the case where the input data are generated from a set of statistically independent
sources. The theory makes predictions as to how the sources are represented by the output
signals of SFA, based on which we develop a new algorithm for nonlinear blind source
separation. Because the algorithm is an extension of SFA, we refer to it as xSFA.

The structure of the paper is as follows. In Section 2, we introduce the optimization
problem for SFA and give a brief sketch of the SFA algorithm. In Section 3, we develop
the theory that underlies the xSFA algorithm. In Section 4, we present the xSFA algorithm
and evaluate its performance. Limitations and possible reasons for failures are discussed in
section 5. Section 6 discusses the relation of xSFA to other nonlinear BSS algorithms. We
conclude with a general discussion in Section 7.

2. Slow Feature Analysis

In this section, we briefly present the optimization problem that underlies slow feature
analysis and sketch the algorithm that solves it.

2.1 The Optimization Problem

Slow Feature Analysis is based on the following optimization task: For a given multi-dimen-
sional input signal we want to find a set of scalar functions that generate output signals
that vary as slowly as possible. To ensure that these signals carry significant information
about the input, we require them to be uncorrelated and have zero mean and unit variance.
Mathematically, this can be stated as follows:

Optimization problem 1: Given a function space F and an N -dimensional input
signal x(t), find a set of J real-valued input-output functions gj(x) ∈ F such that the output
signals yj(t) := gj(x(t)) minimize

∆(yj) = 〈ẏ2j 〉t (1)

under the constraints

〈yj〉t = 0 (zero mean) , (2)

〈y2j 〉t = 1 (unit variance) , (3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order) , (4)
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with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.
Equation (1) introduces the ∆-value, which is small for slowly varying signals y(t). The

constraints (2) and (3) avoid the trivial constant solution. The decorrelation constraint (4)
forces different functions gj to encode different aspects of the input. Note that the decor-
relation constraint is asymmetric: The function g1 is the slowest function in F , while the
function g2 is the slowest function that fulfills the constraint of generating a signal that is
uncorrelated to the output signal of g1. The resulting sequence of functions is therefore
ordered according to the slowness of their output signals on the training data.

It is important to note that although the objective is the slowness of the output signal,
the functions gj are instantaneous functions of the input, so that slowness cannot be achieved
by low-pass filtering. As a side effect, SFA is not suitable for inverting convolutive mixtures.

2.2 The SFA Algorithm

If F is finite-dimensional, the problem can be solved efficiently by the SFA algorithm
(Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005). The full algorithm can be split
in two parts: a nonlinear expansion of the input data, followed by a linear generalized
eigenvalue problem.

For the nonlinear expansion, we choose a set of functions fi(x) that form a basis of the
function space F . The optimal functions gj can then be expressed as linear combinations
of these basis functions: gj(x) =

∑
iWjifi(x). By applying the basis functions to the input

data x(t), we get a new and generally high-dimensional set of signals zi(t) = fi(x(t)). With-
out loss of generality, we assume that the functions fi are chosen such that the expanded
signals zi have zero mean on the input data x. Otherwise, this can be achieved easily by
subtracting the mean.

After the nonlinear expansion, the coefficients Wji for the optimal functions can be
found from a generalized eigenvalue problem:

ĊW = CWΛ . (5)

Here, Ċ is the matrix of the second moments of the temporal derivative żi of the expanded
signals: Ċij = 〈żi(t)żj(t)〉t. C is the covariance matrix C = 〈zi(t)zj(t)〉t of the expanded
signals (since z has zero mean), W is a matrix that contains the weights Wji for the
optimal functions and Λ is a diagonal matrix that contains the generalized eigenvalues on
the diagonal.

If the function space F is the set of linear functions, the algorithm reduces to solving
the generalized eigenvalue problem (5) without nonlinear expansion. Therefore, the second
step of the algorithm is in the following referred to as linear SFA.

3. Theoretical Foundations

In this section we extend previous analytical results for SFA to the case of nonlinear blind
source separation, more precisely, to the case where the input data x(t) are generated
from a set of statistically independent sources s(t) by means of a nonlinear, instantaneous,
and invertible (or at least injective) function: x(t) = F(s(t)). For readers that are more
interested in the algorithm than in its mathematical foundations, a summary of the relevant
theoretical results can be found at the end of the section.
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3.1 SFA With Unrestricted Function Spaces

The central assumption of the theory is that the function space F that SFA can access
is unrestricted apart from the necessary mathematical requirements of integrability and
differentiability.1 This has important conceptual consequences.

3.1.1 Conceptual Consequences of an Unrestricted Function Space

Let us for the moment assume that the mixture x = F(s) has the same dimensionality as
the source vector. Let g be an arbitrary function g ∈ F , which generates an output signal
y(t) = g(x(t)) when applied to the mixture x(t). Then, for every such function g, there is
another function g̃ = g ◦ F that generates the same output signal y(t) when applied to the
sources s(t) directly. Because the function space F is unrestricted, this function g̃ is also
an element of the function space F . Because this is true for all functions g ∈ F , the set of
output signals that can be generated by applying the functions in F to the mixture x(t) is
the same as the set of output signals that can be generated by applying the functions to
the sources s(t) directly. Because the optimization problem of SFA is formulated purely in
terms of output signals, the output signals when applying SFA to the mixture are the same
as when applied directly to the sources. In other words: For an unrestricted function space,
the output signals of SFA are independent of the structure of the mixing function F. This
statement can be generalized to the case where the mixture x has a higher dimensionality
than the sources, as long as the mixing function F is injective.

Given that the output signals are independent of the mixture, we can make analytical
predictions about the dependence of the output signals on the sources, when the input
signals are not a mixture, but the sources themselves. These predictions generalize to the
case where the input signals are a nonlinear mixture of the sources instead.

Of course, an unrestricted function space cannot be implemented in practice. Therefore,
in any application the output signals depend on the mixture and on the function space used.
Nevertheless, the idealized case provides important theoretical insights, which we use as the
basis for the blind source separation algorithm presented later.

3.1.2 Earlier Results for SFA with an Unrestricted Function Space

In a previous article (Franzius et al., 2007, Theorems 1-5), we have shown that the optimal
functions gj(x) for SFA in the case of an unrestricted function space are given by the
solutions of an eigenvalue equation for a partial differential operator D

Dgj(x) = λjgj(x)

with von Neumann boundary conditions∑
αβ

nαpx(x)Kαβ(x)∂βgj(x) = 0 .

1. More precisely, we assume that the function space F is the Sobolev space of functions for which both
the functions themselves as well as all their partial derivatives with respect to the input signals are
square-integrable with respect to the probability measure of the input signals.
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Here, D denotes the operator

D = − 1

px(x)

∑
α,β

∂αpx(x)Kαβ(x)∂β , (6)

px(x) is the probability density of the input data x (which we assumed to be non-zero
within the range of x) and ∂α the partial derivative with respect to the α-th component xα
of the input data. Kαβ(x) = 〈ẋαẋβ〉ẋ|x is the matrix of the second moments of the velocity
distribution p(ẋ|x) of the input data, conditioned on their value x and nα(x) is the α-th
component of the normal vector on the boundary point x. Note that the partial derivative
∂α acts on all terms to its right, so that D is a partial differential operator of second order.
The optimal functions for SFA are the J eigenfunctions gj with the smallest eigenvalues λj .

3.2 Factorization Of The Optimal Functions

As discussed above, the dependence of the output signals on the sources can be studied by
using the sources themselves as input data. However, because the sources are assumed to be
statistically independent, we have additional knowledge about their probability distribution
and consequently also about the matrix Kαβ. The joint probability density for the sources
and their derivatives factorizes:

ps,ṡ(s, ṡ) =
∏
α

psα,ṡα(sα, ṡα) .

Clearly, the marginal probability density ps also factorizes into the individual probability
densities pα(sα)

ps(s) =
∏
α

pα(sα) , (7)

and the matrix Kαβ of the second moments of the velocity distribution of the sources is
diagonal

Kαβ(s) := 〈ṡαṡβ〉ṡ|s = δαβKα(sα) with Kα(sα) := 〈ṡ2α〉ṡα|sα . (8)

The latter is true, because the mean temporal derivative of 1-dimensional stationary and
continuously differentiable stochastic processes vanishes for any sα for continuity reasons
(for a mathematical argument see Appendix), so that Kαβ is not only the matrix of the
second moments of the derivatives, but actually the conditional covariance matrix of the
derivatives of the sources given the sources. As the sources are statistically independent,
their derivatives are uncorrelated and Kαβ has to be diagonal.

We can now insert the specific form (7,8) of the probability distribution ps and the
matrix Kαβ into the definition (6) of the operator D. A brief calculation shows that this
leads to a separation of the operator D into a sum of operators Dα, each of which depends
on only one of the sources:

D(s) =
∑
α

Dα(sα)

with

Dα = − 1

pα
∂αpαKα∂α . (9)

This has the important implication that the solution to the full eigenvalue problem for D
can be constructed from the 1-dimensional eigenvalue problems for the individual sources:
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Figure 1: Schematic ordering of the optimal functions for SFA. For an unrestricted function
space and statistically independent sources, the optimal functions for SFA are
products of harmonics, each of which depends on one of the sources only. In the
case of two sources, the optimal functions can therefore be arranged schematically
on a 2-dimensional grid, where every grid point represents one function and its
coordinates in the grid are the indices of the harmonics that are multiplied to
form the function. Because the 0-th harmonic is the constant, the functions on
the axes are simply the harmonics themselves and therefore depend on one of the
sources only. Moreover, the grid points (1,0) and (0,1) are monotonic functions of
the sources and therefore a good representative thereof. It is these solutions that
the xSFA algorithm is designed to extract. Note that the scheme also contains
an ordering by slowness: All functions to the upper right of a given function have
higher ∆-values and therefore vary more quickly.

Theorem 1 Let gαi (i ∈ N) be the normalized eigenfunctions of the operators Dα, that is,
the set of functions gαi that fulfill the eigenvalue equations

Dαgαi = λαigαi (10)

with the boundary conditions
pαKα∂αgαi = 0 (11)

and the normalization condition

(gαi, gαi)α := 〈g2αi〉sα = 1 .

Then, the product functions

gi(s) :=
∏
α

gαiα(sα)

form a set of (normalized) eigenfunctions to the full operator D with the eigenvalues

λi =
∑
α

λαiα
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and thus those gi with the smallest eigenvalues λi are the optimal functions for SFA. Here,
i = (i1, ..., iS) ∈ NS denotes a multi-index that enumerates the eigenfunctions of the full
eigenvalue problem.

In the following, we assume that the eigenfunctions gαi are ordered by their eigenvalue
and refer to them as the harmonics of the source sα. This is motivated by the observation
that in the case where pα and Kα are independent of sα, that is, for a uniform distribution,
the eigenfunctions gαi are harmonic oscillations whose frequency increases linearly with i
(see below). Moreover, we assume that the sources sα are ordered according to slowness, in
this case measured by the eigenvalue λα1 of their lowest non-constant harmonic gα1. These
eigenvalues are the ∆-values of the slowest possible nonlinear point transformations of the
sources.

The key result of theorem 1 is that in the case of statistically independent sources,
the output signals are products of harmonics of the sources. Note that the constant func-
tion gα0(sα) = 1 is an eigenfunction with eigenvalue 0 to all the eigenvalue problems (10).
As a consequence, the harmonics gαi of the single sources are also eigenfunctions to the full
operator D (with the index i = (0, ..., 0, iα = i, 0, ..., 0)) and can thus be found by SFA.
Importantly, the lowest non-constant harmonic of the slowest source (i.e., g(1,0,0,...) = g11)
is the function with the smallest overall ∆-value (apart from the constant) and thus the
first function found by SFA. In the next sections, we show that the lowest non-constant
harmonics gα1 reconstruct the sources up to a monotonic and thus invertible point trans-
formation and that in the case of sources with Gaussian statistics they even reproduce the
sources exactly.

3.3 The First Harmonic Is A Monotonic Function Of The Source

The eigenvalue problem (10,11) has the form of a Sturm-Liouville problem (Courant and
Hilbert, 1989) and can easily be rewritten to have the standard form for these problems:

∂αpαKα ∂αgαi + λαipαgαi
(10,9)

= 0 , (12)

with pαKα∂αgαi
(11)
= 0 for sα ∈ {a, b} . (13)

Here, we assume that the source sα is bounded and takes on values on the interval sα ∈ [a, b].
Note that both pα and pαKα are positive for all sα. Sturm-Liouville theory states that (i) all
eigenvalues are positive (Courant and Hilbert, 1989), (ii) the solutions gαi, i ∈ N0 of this
problem are oscillatory and (iii) gαi has exactly i zeros on ]a, b[ if the gαi are ordered by
increasing eigenvalue λαi (Courant and Hilbert, 1989, Chapter VI, §6). In particular, gα1
has only one zero ξ ∈]a, b[. Without loss of generality we assume that gα1 < 0 for sα < ξ
and gα1 > 0 for sα > ξ. Then Equation (12) implies that

∂αpαKα∂αgα1 = −λαpαgα1 < 0 for sα > ξ

=⇒ pαKα∂αgα1 is monotonically decreasing on ]ξ, b]

(13)
=⇒ pαKα ∂αgα1 > 0 on ]ξ, b[

=⇒ ∂αgα1 > 0 on ]ξ, b[ , because pαKα > 0

⇐⇒ gα1 is monotonically increasing on ]ξ, b[ .
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A similar consideration for s < ξ shows that gα1 is also monotonically increasing on ]a, ξ[.
Thus, gα1 is monotonic and invertible on the whole interval [a, b]. Note that the monotony
of gα1 is important in the context of blind source separation, because it ensures that not
only some of the output signals of SFA depend on only one of the sources (the harmonics),
but that there should actually be some (the lowest non-constant harmonics) that are very
similar to the source itself.

3.4 Gaussian Sources

We now consider the situation that the sources are reversible Gaussian stochastic processes,
(i.e., that the joint probability density of s(t) and s(t+ dt) is Gaussian and symmetric with
respect to s(t) and s(t+ dt)). In this case, the instantaneous values of the sources and their
temporal derivatives are statistically independent, that is, pṡα|sα(ṡα|sα) = pṡα(ṡα). Thus,
Kα is independent of sα, that is, Kα(sα) = Kα = const. Without loss of generality we
assume that the sources have unit variance. Then the probability density of the source is
given by

pα(sα) =
1√
2π

e−s
2
α/2

and the eigenvalue Equations (12) for the harmonics can be written as

∂αe
−s2α/2∂αgαi +

λαi
Kα

e−s
2
α/2gαi = 0 .

This is a standard form of Hermite’s differential equation (see Courant and Hilbert, 1989,
Chapter V, § 10). Accordingly, the harmonics gαi are given by the (appropriately normal-
ized) Hermite polynomials Hi of the sources:

gαi(sα) =
1√
2ii!

Hi

(
sα√

2

)
.

The Hermite polynomials can be expressed in terms of derivatives of the Gaussian distri-
bution:

Hn(x) = (−1)nex
2
∂nx e−x

2
.

It is clear that Hermite polynomials fulfill the boundary condition

lim
sα→∞

Kαpα∂αgαi = 0 ,

because the derivative of a polynomial is again a polynomial and the Gaussian distribution
decays faster than polynomially as |sα| → ∞. The eigenvalues depend linearly on the
index i:

λαi = iKα . (14)

The most important consequence is that the lowest non-constant harmonics simply repro-
duce the sources: gα1(sα) = 1/

√
2H1(sα/

√
2) = sα. Thus, for Gaussian sources, some of the

output signals of SFA with an unrestricted function space reproduce the sources exactly.
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3.5 Uniformly Distributed Sources

Another canonical example for which the eigenvalue Equation (10) can be solved analyt-
ically is the case of uniformly distributed sources, that is, the case where the probability
distribution ps,ṡ is independent of s on a finite interval and zero elsewhere. Consequently,
neither pα(sα) nor Kα(sα) can depend on sα, that is, they are constants. Note that such a
distribution may be difficult to implement by a real differentiable process, because the veloc-
ity distribution should be different at boundaries that cannot be crossed. Nevertheless, this
case provides an approximation to cases, where the distribution is close to homogeneous.

Let sα take values in the interval [0, Lα]. The eigenvalue Equation (12) for the harmonics
is then given by

Kα∂
2
αgαi + λαigαi = 0

and readily solved by harmonic oscillations:

gαi(sα) =
√

2 cos

(
iπ
sα
Lα

)
.

The ∆-value of these functions is given by

∆(gαi) = λαi = Kα

(
π

Lα
i

)2

.

Note the similarity of these solutions with the optimal free responses derived by Wiskott
(2003b).

3.6 Summary: Results Of The Theory

The following key results of the theory form the basis of the xSFA algorithm:

• For an unrestricted function space, the output signals generated by the optimal func-
tions of SFA are independent of the nonlinear mixture, given the same original sources.

• The optimal functions of SFA are products of functions gαi(sα), each of which depends
on only one of the sources. We refer to the function gαi as the i-th harmonic of the
source sα.

• The slowest non-constant harmonic is a monotonic function of the associated source.
It can therefore be considered a good representative of the source.

• If the sources have stationary Gaussian statistics, the harmonics are Hermite poly-
nomials of the sources. In particular, the lowest harmonic is then simply the source
itself.

• The slowest function found by SFA is the lowest harmonic of the slowest source and
therefore a good representative thereof.
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4. An Algorithm For Nonlinear Blind Source Separation

According to the theory, some of the output signals of SFA should be very similar to the
sources. Therefore, the problem of nonlinear BSS can be reduced to selecting those output
signals of SFA that correspond to the first non-constant harmonics of the sources. In this
section, we propose and test an algorithm that should ideally solve this problem. In the
following, we sometimes refer to the first non-constant harmonics simply as the “sources”,
because they should ideally be very similar.

4.1 The xSFA Algorithm

The extraction of the slowest source is rather simple: According to the theory, it is well
represented by the first (i.e., slowest) output signal of SFA. Unfortunately, extracting the
second source is more complicated, because higher order harmonics of the first source may
vary more slowly that the second source.

The idea behind the algorithm we propose here is that once we know the first source,
we also know all its possible nonlinear transformations, that is, its harmonics. We can thus
remove all aspects of the first source from the SFA output signals by projecting the latter
to the space that is uncorrelated to all nonlinear versions of the first source. In the grid
arrangement shown in Figure 1, this corresponds to removing all solutions that lie on one
of the axes. The remaining signals must have a dependence on the second or even faster
sources. The slowest possible signal in this space is then generated by the first harmonic
of the second source, which we can therefore extract by means of linear SFA. Once we
know the first two sources, we can proceed by calculating all the harmonics of the second
source and all products of the harmonics of the first and the second source and remove
those signals from the data. The slowest signal that remains then is the first harmonic of
the third source. Iterating this scheme should in principle yield all the sources.

The structure of the algorithm is the following (see also Figure 2):

1. Start with the first source: i = 1.

2. Apply a polynomial expansion of degree NSFA to the mixture to obtain the expanded
mixture z.

3. Apply linear SFA to the expanded mixture z and store the slowest output signal as
an estimate s̃i of source i.

4. Stop if the desired number of sources has been extracted (i = S).

5. Apply a polynomial expansion of degree Nnl to the estimated sources s̃1,...,i and whiten
the resulting signals. We refer to the resulting nonlinear versions of the first sources
as nk, k ∈ {1, ..., N exp}, where N exp denotes the dimension of a polynomial expansion
of degree Nnl of i signals.

6. Remove the nonlinear versions of the first i sources from the expanded mixture z

zj(t)← zj(t)−
Nexp∑
k=1

cov(zj , nk)nk(t)
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Figure 2: Illustration of the xSFA algorithm. The mixture of the input signals is first
subjected to a nonlinear expansion that should be chosen sufficiently powerful to
allow (a good approximation of) the inversion of the mixture. An estimate of
the first source is then obtained by applying linear SFA to the expanded data.
The remaining sources are estimated iteratively by removing nonlinear versions
of the previously estimated sources from the expanded data and reapplying SFA.
If the number of sources is known, the algorithm terminates when estimates of
all sources have been extracted. If the number of sources is unknown, other
termination criteria might be more suitable (not investigated here).

and remove principal components with a variance below a given threshold ε.

7. To extract the next source, increase i by one and go to step 2, using the new expanded
signals z.

Note that the algorithm is a mere extension of SFA in that it does not include new objectives
or constraints. We therefore term it xSFA for eXtended SFA.

4.2 Simulations

We test the algorithm on two different tasks. The first one is the separation of two audio
signals that are subject to a rather complicated mixture. In the second task, we test if the
algorithm is able to separate more than two sources.
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4.2.1 Sources

Audio signals: We first evaluated the performance of the algorithm on two different test sets
of audio signals. Data set A consists of excerpts from 14 string quartets by Béla Bartók.
Note that these sources are from the same CD and the same composer and contain the same
instruments. They can thus be expected to have similar statistics. Differences in the ∆-
values should mainly be due to short-term nonstationarities. This data set provides evidence
that the algorithm is able to distinguish between signals with similar global statistics based
on short-term fluctuations in their statistics.

Data set B consists of 20 excerpts from popular music pieces from various genres, ranging
from classical music over rock to electronic music. The statistics of this set is more variable
in their ∆-values, in particular they remain different even for long sampling times.

All sources were sampled at 44,100 Hz and 16 bit, that is, with CD-quality. The length
of the samples was varied to assess how the amount of training data affects the performance
of the algorithm.

Artificial data: To test how the algorithm would perform in tasks where more than two
sources need to be extracted, we generated 6 artificial source signals with different temporal
statistics. The sources were colored noise, generated by (i) applying a fast Fourier transform
to white noise signals of length T , (ii) multiplying the resulting signals with exp(−f2/2σ2i )
(where f denotes the frequency) and (iii) inverting the Fourier transform. The parameter σi
controls the ∆-values of the sources (∆ ≈ σ2i ) and was chosen such that the ∆-values were
roughly equidistant: σi =

√
i T50 + 1.

4.2.2 Nonlinear Mixtures

Audio signals: We subjected all possible pairs of sources within a data set to a nonlinear
invertible mixture that was previously used by Harmeling et al. (2003) and Blaschke et al.
(2007):

x1(t) = (s2(t) + 3s1(t) + 6) cos(1.5πs1(t)) ,
x2(t) = (s2(t) + 3s1(t) + 6) sin(1.5πs1(t)) .

(15)

Figure 3 illustrates the spiral-shaped structure of this nonlinearity. This mixture is only
invertible if the sources are bounded between -1 and 1, which is the case for the audio data
we used. The mixture (15) is not symmetric in s1 and s2. Thus, for every pair of sources,
there are two possible mixtures and we have tested both for each source pair.

We have also tested the other nonlinearities that Harmeling et al. (2003) have applied to
two sources, as well as post-nonlinear mixtures, that is, linear mixture followed by a point
nonlinearity. The performance was similar for all mixtures tested without any tuning of
parameters (data not shown). Moreover, the performance remained practically unchanged
when we used linear mixtures or no mixture at all. This is in line with the argument that
the mixture should be irrelevant to SFA if the function space F is sufficiently rich (see
section 3).

Separation of more than two sources: For the simulations with more than two sources, we
created a nonlinear mixture by applying a post-nonlinear mixture twice. The basic post-
nonlinear mixture is generated by first applying a random rotation Oij to the sources si
and then applying a point-nonlinearity to each of the linearly mixed signals. We used an
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Figure 3: The spiral-shaped structure of the nonlinear mixture. Panel A shows a scatter
plot of two sources from data set A. Panel B shows a scatter plot of the nonlinear
mixture we used to test the algorithm.

arctangent as a nonlinearity:

Mi(s) = arctan

ζ−1
∑

j

Oijsj

 ,

with a parameter ζ that controls the strength of the nonlinearity. We normalized the sources
to have zero mean and unit variance to ensure that the degree of nonlinearity is roughly
the same for all combinations of sources and chose ζ = 2.

This nonlinearity was applied twice, with independently generated rotations, and a
normalization step to zero mean and unit variance before each application.

4.2.3 Simulation Parameters

There are three parameters in the algorithm: the degree NSFA of the expansion used for the
first SFA step, the degree Nnl of the expansion for the source removal and the threshold ε
for the removal of directions with negligible variance.

Degree of the expansion in the first SFA step: For the simulations with two sources, we
used a polynomial expansion of degree NSFA = 7, because it has previously been shown
that this function space is sufficient to invert the mixture (15) (Blaschke et al., 2007). For
2-dimensional input signals, this expansion generates a 35-dimensional function space. We
kept all J = 35 output signals of SFA. It is worth noting that the success rate of the
algorithm is practically unchanged when polynomials of higher order are used. From the
theoretical perspective, this is not surprising, because once the function space is sufficiently
rich to extract the first harmonics of the sources, the system performs just as good as it
could with an unrestricted function space.
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For the simulations with more than two sources, we used a polynomial expansion of
degree NSFA = 3.

Degree of the expansion for source removal: For the simulations with two sources, we
expanded the estimate for the first source in polynomials of degree Nnl = 20, that is, we
projected out 20 nonlinear versions of the first source. Using fewer nonlinear versions does
not alter the results significantly, as long as the expansion is sufficiently complex to remove
those harmonics of the first source that have smaller ∆-values than the second source. Using
higher expansion degrees sometimes leads to numerical instabilities, which we accredit to
the extremely sparse distribution that results from the application of very high monomials.

For the separation of more than two sources, all polynomials of degree Nnl = 4 of the
already estimated sources were projected out.

Variance threshold: After the removal of the nonlinear versions of the first source, there
is at least one direction with vanishing variance. To avoid numerical problems caused
by singularities in the covariance matrices, directions with variance below ε = 10−7 were
removed. For almost all source pairs, the only dimension that had a variance below ε after
the removal was the trivial direction of the first estimated source.

The simulations were done in Python using the modular toolkit for data processing
(MDP) developed by Zito et al. (2008). The xSFA algorithm is included in the current
version of MDP (http://mdp-toolkit.sourceforge.net).

4.2.4 Performance Measure

For stationary Gaussian sources, the theory predicts that the algorithm should reconstruct
the sources exactly. In most applications, however, the sources are neither Gaussian nor
stationary (at least not on the time scales we used for training). In this case the algorithm
cannot be expected to find the sources themselves, but rather a nonlinearly transformed
version of the sources, ideally their lowest harmonics. Thus, the correlation between the
output signals of the algorithm and the sources is not necessarily the appropriate measure for
the quality of the source separation. Therefore, we also calculated the lowest harmonics gα1
of the sources by applying SFA with a polynomial expansion of degree 11 to the individual
sources separately and then calculated the correlations between the output signals of the
algorithm and both the output signals of the harmonics yα1(t) = gα1(sα(t)) and the sources
themselves. In addition to the correlation coefficient, we also calculated the signal-to-noise
ratio.

4.2.5 Simulation Results

Figure 4 shows the performance of the algorithm depending on the duration of the training
data. To provide an idea of the statistics of the performance, we plot the median as well
as the 25th and 75th percentile of the distribution of the correlation coefficient and the
signal-to-noise ratio. For data set A, the algorithm requires on the order of 0.5s of training
data to extract the first source with a median signal-to-noise ratio (SNR) of about 18
(corresponding to a correlation coefficient (CC) larger than 0.99) and the second source
with a median SNR of about 13 (CC> 0.95). Although the median performance increases
slowly as the duration of the training data increases to several seconds, the growing distance
between the percentiles indicates a larger inhomogeneity in the results, suggesting that for
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Figure 4: Performance of the algorithm as a function of the duration of the training data.
The curves show the median of the distribution of correlation coefficients between
the reconstructed and the original sources, as well as the corresponding signal-to-
noise ratio (SNR). Grey-shaded areas indicate the region between the 25th and
the 75th percentile of the distribution of the correlation/SNR. Statistics cover all
possible source pairs that can be simulated (data set A: 14 sources → 182 source
pairs, data set B: 20 sources → 380 source pairs). Panels A and B show results
for data set A, panels C and D for data set B. Panels A and C show the ability
of the algorithm to reconstruct the sources themselves, while B and D show the
performance when trying to reconstruct the slowest harmonics of the sources.
Note the difference in time scales.

long durations, the algorithm either performs very well or fails completely. We attribute
this behavior to the fact that all sources were string quartets whose temporal statistics are
relatively similar in the long term. The SNR is only slightly higher when comparing the
extracted sources to the slowest harmonics of the original sources. This may serve as an
indication that the sources were close to Gaussian, so that the harmonics and the sources
were similar.
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Figure 5: Performance of the algorithm for multiple sources. The curves show the median
of the distribution of correlation coefficients between the reconstructed and the
orginal six sources, as well as the corresponding signal-to-noise ratio (SNR). The
grey-shaded area indicates the region between the 25th and the 75th percentile
of the distribution of the correlation/SNR for the 4th source. The percentiles
for the other sources are similar but not shown for reasons of graphical clarity.
Statistics cover 50 repetitions with independently generated sources. The dashed
grey line indicates the performance of a linear regression.

For data set B, longer training times of at least 2s were necessary to reach a similar
performance as for data set A. Further research is necessary to assess the reasons for this.
Again, the estimated sources are more similar to the slowest harmonics of the sources than
to the sources themselves. The reconstruction performance increases with the duration of
the training data. For this data set, the prominent divergence of the percentiles for data
set A is not observed.

The performance of xSFA is significantly better than that of independent slow feature
analysis (ISFA; Blaschke et al., 2007), which also relies on temporal correlations and was
reported to reconstruct both sources with CC> 0.9 for about 70% of the source pairs. For
our data sets, both sources were reconstructed with a correlation of more than 0.9 for more
than 90% of the source pairs, if the duration of the training data was sufficiently large.
Moreover, it is likely that the performance of xSFA can be further improved, for example,
by using more training data or different function spaces.

The algorithm is relatively fast: On a notebook with 1.7GHz, the simulation of the 182
source pairs for data set A with 0.2s training sequences takes about 380 seconds, which
corresponds to about 2.1s for the unmixing of a single pair.

Figure 5 shows the performance of the algorithm for the problem where six artificial
sources were to be extracted from a nonlinear mixture. The slowest source is extracted
with the highest SNR, and the SNR decreases with increasing ∆-value of the sources. This
is most likely due to an accumulation of error that arises from the iterative structure of
the xSFA algorithm (see discussion in section 5). The performance increases monotonically
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with increasing amount of training data. For 105 training data points, four of six estimated
sources have a correlation coefficient with the original source that is larger than 0.9. The
performance of a supervised linear regression between the sources and the mixture happens
to be close to 0.9. For the first four extracted sources, xSFA is thus performing better than
any linear technique could.

5. Practical Limitations

There are several reasons why the algorithm can fail, because some of the assumptions
underlying the theory are not necessarily fulfilled in simulations. In the following, we
discuss some of the reasons for failures. The main insights are summarized at the end of
the section.

5.1 Limited Sampling Time

The theory predicts that some of the output signals reproduce the harmonics of the sources
exactly. However, problems can arise if eigenfunctions have (approximately) the same eigen-
value. For example, assume that the sources have the same temporal statistics, so that the
∆-value of their slowest harmonics gµ1 is equal. Then, there is no reason for SFA to prefer
one signal over the other.

Of course, in practice, two signals are very unlikely to have exactly the same ∆-value.
However, the difference may be so small that it cannot be resolved because of limited
sampling. To get a feeling for how well two sources can be distinguished, assume there were
only two sources that are drawn independently from probability distributions with ∆-values
∆ and ∆ + δ. Then linear SFA should ideally reproduce the sources exactly. However, if
there is only a finite amount of data, say of total duration T , the ∆-values of the signals
can only be estimated with finite precision. Qualitatively, we can distinguish the sources
when the standard deviation of the estimated ∆-value is smaller than the difference δ in
the “exact” ∆-values. It is clear that this standard deviation depends on the number of
data points roughly as 1/

√
T . Thus the smallest difference δmin in the ∆-values that can

be resolved has the functional dependence

δmin ∼ ∆α 1√
T
.

The reason why the smallest distinguishable difference δ must depend on the ∆-value is
that subsequent data points are not statistically independent, because the signals have a
temporal structure. For slow signals, that is, signals with a small ∆-values, the estimate
of the ∆-value is less precise than for quickly varying signals, because the finite correlation
time of the signals impairs the quality of the sampling. For dimensionality reasons, the
exponent α has to take the value α = 3/4, yielding the criterion

δmin

∆
∼ 1√

T
√

∆
.

For an interpretation of this equation note that the ∆-value can be interpreted as a (quadratic)
measure for the width of the power spectrum of a signal (assuming a roughly unimodal power
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spectrum centered at zero):

∆(y) =
1

T

∫
ẏ2dt =

1

T

∫
ω2|y(ω)|2dω , (16)

where y(ω) denotes the Fourier transform of y(t). However, the inverse width of the power
spectrum is an operative measure for the correlation time τ of the signal, leaving us with a
correlation time τ ∼ 1/

√
∆. With this in mind, the criterion (16) takes a form that is much

easier to interpret:
δmin

∆
∼
√
τ

T
=

1√
Nτ

. (17)

The correlation time τ characterizes the time scale on which the signal varies, so intuitively,
we can cut the signal into Nτ = T/τ “chunks” of duration τ , which are approximately
independent. Equation (17) then states that the smallest relative difference in the ∆-value
that can be resolved is inversely proportional to the square root of the number Nτ of
independent data “chunks”.

If the difference in the ∆-value of the predicted solutions is smaller than δmin, SFA is
likely not to find the predicted solutions but rather an arbitrary mixture thereof, because
the removal of random correlations and not slowness is the essential determinant for the
solution of the optimization problem. Equation (17) may serve as an estimate of how much
training time is needed to distinguish two signals. Note however, that the validity of (17)
is questionable for nonstationary sources, because the statistical arguments used above are
not valid.

Using these considerations, we can estimate the order of magnitude of training data
that is needed for the data sets we used to evaluate the performance of the algorithm. For
both data sets, the ∆-values of the sources were on the order of 0.01, which corresponds
to an autocorrelation time of approximately 1/

√
0.01 = 10 samples. Those sources of

data set A that were most similar differed in ∆-value by δ/∆ ∼ 0.05, which requires
Nτ = (1/0.05)2 = 400. This corresponds to ∼ 4000 samples that are required to distinguish
the sources, which is similar to what was observed in simulations. In data set B, the
problem is not that the sources are too similar, but rather that they are too different in
∆-value, which makes it difficult to distinguish between the products of the second source
and harmonics of the first and the second source alone. The ∆-values often differ by a
factor of 20 or more, so that the relative difference between the relevant ∆-values is again
on the order of 5%. In theory, the same amount of training data should therefore suffice.
However, if the sources strongly differ in ∆-value, many harmonics need to be projected
out before the second source is accessible, which presumably requires a higher precision in
the estimate of the first source. This might be one reason why significantly more training
data is needed for data set B.

5.2 Sampling Rate

The theory is derived under the assumption that all signals are continuous in time. Real
data are generally discretized. Therefore, the theory is only valid if the data are sampled
at a sampling rate sufficient to generate quasi-continuous data. As the sampling rate de-
creases, so do the correlations between subsequent data points. In the limit of extremely
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low sampling rates this renders techniques like SFA that are based on short-term temporal
correlations useless.

For discrete data, the temporal derivative is usually replaced by a difference quotient:

ẏ(t) ≈ y(t+ ∆t)− y(t)

∆t
,

where y(t + ∆t) and y(t) are neighboring sample points and ∆t is given by the inverse of
the sampling rate r. The ∆-value can then be expressed in terms of the variance of the
signal and its autocorrelation function:

∆(y) = 〈ẏ2〉t ≈
2

∆t2
(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
= 2r2

(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
. (18)

If the sampling is too low, the signal effectively becomes white noise. In this case,
the term that arises from the time-delayed correlation vanishes, while the variance remains
constant. Thus, for small sampling rates, the ∆-value depends quadratically on the sampling
rate, while it saturates to its “real” value if the sampling rate is increased. This behavior
is illustrated in Figure 6A. Note that two signals with different ∆-values for sufficient
sampling rate may have very similar ∆-value when the sampling is decreased too drastically.
Intuitively, this is the case if the sampling rate is so low that both signals are (almost) white
noise. In this case, there are no temporal correlations that could be exploited, so that SFA
returns a random mixture of the signals.

The number of samples N that can be used for training is limited by the working
memory of the computer and/or the available CPU time. Thus, for a fixed maximal number
of training samples N , the sampling rate implicitly determines the maximal training time
T = N/r. The training time, in turn, determines the minimal relative difference in ∆-value
that can be distinguished (cf. Equation (17)). Thus, for a fixed number of sample points, the
minimal relative difference in ∆-value that can be resolved is proportional to 1/

√
T ∼

√
r.

But why do low sampling rates lead to a better resolution? The reason is that for high
sampling rates, neighboring data points have essentially the same value. Thus, they do not
help in estimating the ∆-value, because they do not carry new information.

In summary, the sampling rate should ideally be in an intermediate regime. If the
sampling rate is too low, the signals become white noise and cannot be distinguished, while
too high sampling rates lead to high computational costs without delivering additional
information. This is illustrated in Figure 6B.

5.3 Density Of Eigenvalues

The problem of getting random mixtures instead of the optimal solutions is of course most
relevant in the case where the sources, or more precisely, the slowest non-constant harmonics
of the sources have similar ∆-values. However, even when the sources are sufficiently differ-
ent, this problem eventually arises for the higher-order solutions. To quantify the expected
differences in ∆-value between the solutions, we define a density ρ(∆) of the ∆-values as the
number of eigenvalues expected in an interval [∆,∆ + δ], divided by the interval length δ.
A convenient way to determine this density is to calculate the number R(∆) of solutions
with eigenvalues smaller than ∆ and then take the derivative with respect to ∆.
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A B

Figure 6: Influence of the sampling rate. (A) Qualitative dependence of the ∆-value of two
different signals on the sampling rate. For very low sampling rates, both signals
become white noise and the ∆-value quadratically approaches zero. Signals that
have different ∆-values for sufficiently high sampling rates may therefore not be
distinguished if the sampling rate is too low. The dotted lines indicate the “real”
∆-values of the signals. Note: It may sound counterintuitive that the ∆-value
drops to zero with decreasing sampling rate, as white noise should be regarded as
a quickly varying signal. This arises from taking the sampling rate into account in
the temporal derivative (18). If the derivative is simply replaced by the difference
between adjacent data points, the ∆-value approaches 2 as the sampling rate
goes to zero and decreases with the inverse square of the sampling rate as the
sampling rate becomes large. (B) Sampling rate dependence of the “resolution”
of the algorithm for a fixed number of training samples. The solid line shows the
qualitative dependence of the relative difference in ∆-value of two signals as a
function of the sampling rate and the dashed line shows the qualitative behavior
of the minimal relative difference in ∆-value that can be resolved. The signals
can only be separated by SFA if the resolvable difference (dashed) is below the
expected relative difference (solid). Therefore an intermediate sampling is more
efficient. The dotted line indicates the “real” ratio of the ∆-values.

In the Gaussian approximation, the ∆-values of the harmonics are equidistantly spaced,
cf. Equation (14). As the ∆-value ∆i of the full product solution gi is the sum of the ∆-
values of the harmonics, the condition ∆i < ∆ restricts the index i to lie below a hyperplane
with the normal vector n = (λ11, ..., λS1) ∈ RS :∑

µ

iµλµ1 = i · n < ∆ . (19)

Because the indices are homogeneously distributed in index space with density one, the
expected number of solutions with ∆ < ∆0 is simply the volume of the subregion in index
space for which Equation (19) is fulfilled:

R(∆) =
1

S!

S∏
µ=1

∆

λµ1
.
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The density of the eigenvalues is then given by

ρ(∆) =
∂R(∆)

∂∆
=

1

(S − 1)!

[∏
µ

1

λµ1

]
∆S−1 .

As the density of the eigenvalues can be interpreted as the inverse of the expected distance
between the ∆-values, the distance and thus the separability of the solutions with a given
amount of data declines as 1/∆S−1. In simulations, we can expect to find the theoretically
predicted solutions only for the slowest functions, higher order solutions tend to be linear
mixtures of the theoretically predicted functions. This is particularly relevant if there are
many sources, that is, if S is large.

If the sources are not Gaussian, the dependence of the density on the ∆-value may have
a different dependence on ∆ (e.g., for uniformly distributed sources ρ(∆) ∼ ∆S/2−1). The
problem of decreasing separability, however, remains.

5.4 Function Space

An assumption of the theory is that the function space accessible to SFA is unlimited.
However, any application has to restrict the function space to a finite dimensionality. If the
function space is ill-chosen in that it cannot invert the mixture that generated the input
data from the sources, it is clear that the theory can no longer be valid.

Because the nature of the nonlinear mixture is not known a priori, it is difficult to choose
an appropriate function space. We used polynomials with relatively high degree. A problem
with this choice is that high polynomials generate extremely sparse data distributions.
Depending on the input data at hand, it may be more robust to use other basis functions
such as radial basis functions or kernel approaches (Böhmer et al., 2012), although for SFA,
these tend to be computationally more expensive.

The suitability of the function space is one of the key determinants for the quality
of the estimation of the first source. If this estimate is not accurate but has significant
contributions from other sources, the nonlinear versions of the estimate that are projected
out are not accurate, either. The projection step may thus remove aspects of the second
source and thereby impair the estimate of the second source. For many sources, these
errors accumulate so that estimates for faster sources will not be trustworthy, an effect
that is clearly visible in the simulations with more sources. This problem might be further
engraved by the increasing eigenvalue density discussed above.

5.5 Summary

In summary, we have discussed four factors that have an influence on simulation results:

• Limited sampling time: Whether the algorithm can distinguish two sources with
similar ∆-values depends on the amount of data that is available. More precisely, to
separate two sources with ∆-values ∆ and ∆ + δ, the duration T of the training data
should be on the order of T ∼ τ (∆/δ)2 or more. Here, τ is the autocorrelation time
of the signals, which can be estimated from the ∆-value of the sources: τ ≈ 1/

√
∆.

• Sampling rate: Because the algorithm is based on temporal correlations, the sam-
pling rate should of course be sufficiently high to have significant correlations between
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subsequent data points. If the number T of samples that can be used is limited by the
memory capacity of the computer, very high sampling rates can be a disadvantage, be-
cause the correlation time τ (measured in samples) of the data is long. Consequently,
the number T/τ of “independent data chunks” is smaller than with lower sampling
rates, which may impair the ability of the algorithm to separate sources with similar
∆-values (see previous point).

• Density of eigenvalues: The problem of similar ∆-values is not only relevant
when the sources are similar, because the algorithm also needs to distinguish the
faster sources from products of these sources with higher-order harmonics of the lower
sources. To estimate how difficult this is, we have argued that, for the case of Gaussian
sources, the expected difference between the ∆-values of the output of SFA declines
as 1/∆S−1, where S is the number of sources. Separating a source from the prod-
uct solutions of lower-order sources therefore becomes more difficult with increasing
number of sources.

• Function space: Another important influence on the performance of the system is
the choice of the function space F for SFA. Of course, F has to be chosen sufficiently
rich to allow the inversion of the nonlinear mixture. According to the theory additional
complexity of the function spaces should not alter the results and we have indeed
found that the system is rather robust to the particular choice of F , as long as it
is sufficiently complex to invert the mixture. We expect, however, that an extreme
increase in complexity leads to (a) numerical instabilities (in particular for polynomial
expansions as used here) and (b) overfitting effects.

6. Relation To Other Nonlinear BSS Algorithms

Because xSFA is based on temporal correlations, in a very similar way as the kernel-TDSEP
(kTSDEP) algorithm presented by Harmeling et al. (2003), one could expect the two
algorithms to have similar performance. By using the implementation of the kTDSEP
algorithm made available by the authors,2 we compared kTDSEP with xSFA on the audio
signals from data set A in the case of the spiral mixture (15). For the best parameter setting
we could identify, kTDSEP was able to recover both sources (with correlation >0.9) for only
20% of the signal pairs, while xSFA recovered both sources for more than 90% of the source
pairs with the same training data. This result was obtained using a training data duration
of 0.9 s, 25 time-shifted covariance matrices, a polynomial kernel of degree 7, and k-means
clustering with a maximum of 10000 points considered. Results depended strongly but not
systematically on training data duration. A regression analysis for a few of the failure cases
revealed that the sources were present among the extracted components, but not properly
selected, suggesting that the poor performance was primarily caused by a failure of the
automatic source selection approach of Harmeling et al. (2003). The kTDSEP algorithm
would resemble xSFA even more if kernel PCA were used instead of k-means clustering for
finding a basis in the kernel feature space. Using kernel PCA, however, yields worse results:
both sources were recovered at best in 5% of the signal pairs. The influence of the kernel

2. The code is available on http://people.kyb.tuebingen.mpg.de/harmeling/code/ktdsep-0.2.tar.
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choice (kernel PCA/k-means) on the performance could be due to numerical instabilities
and small eigenvalues, which we avoid in xSFA by using singular value decomposition with
thresholding in the SFA dimensionality reduction step.

Almeida (2003) has suggested a different approach (MISEP) that uses a multilayer per-
ceptron to extend the maximum entropy ansatz of Bell and Sejnowski (1995) to the nonlinear
case. MISEP has been shown to work in an application to real data (Almeida, 2005). In
our hands, MISEP was not able to solve the spiral-shaped nonlinear mixture described in
Section 4, however, exactly because of the problems described by Hyvärinen and Pajunen
(1999): it converges to a nonlinear mixture of the sources that generates statistically in-
dependent output signals. Conversely, xSFA fails to solve the image unmixing problem
on which MISEP was successful (Almeida, 2005), probably because of low-frequency com-
ponents that introduce correlations between the images (Ha Quang and Wiskott, 2013).
Whether an information-theoretic ansatz like MISEP or a temporal approach like xSFA is
more suitable therefore seems to depend on the problem at hand.

Zhang and Chan (2008) have suggested that the indeterminacies of the nonlinear BSS
problem could be solved by a minimal nonlinear distortion (MND) principle, which assumes
that the mixing function is smooth. To exploit this, they added a regularization term to
common nonlinear ICA objective functions (including that of MISEP). They investigated
both a global approach that punishes deviations of the unmixing nonlinearity from the
best linear solution and a local approach that favors locally smooth mappings. The latter
is remotely related to xSFA, which also tries to enforce smooth mappings, but measures
smoothness in time rather than directly in the unmixing function. The MND ansatz applies
to arbitrary functions, while xSFA is limited to time-varying data. On the other hand, the
temporal smoothness constraint of xSFA could extend to problems where the original sources
are smooth, but the mixing function is not.

A nonlinear BSS approach that is even more akin to SFA is the diffusion-map ansatz of
Singer and Coifman (2008). Diffusion maps and Laplacian eigenmaps are closely related to
SFA (Sprekeler, 2011). A key difference lies in the choice of the local metrics of the data,
which is dictated by the temporal structure for SFA (the matrix Kαβ can be thought of
as an inverse metric tensor), but hand-chosen for diffusion maps. Singer & Coifman made
a data-driven choice for the metric tensor through local inspection of the data manifold,
and showed that the resulting diffusion maps can reconstruct the original sources in a toy
example (Singer and Coifman, 2008) and extract slowly varying manifolds in time series
data (Singer et al., 2009).3

7. Discussion

In this article, we have extended previous theoretical results on SFA to the case where
the input data are generated from a set of statistically independent sources. The theory
shows that (a) the optimal output of SFA consists of products of signals, each of which
depends on a single source only and that (b) some of these harmonics should be monotonic
functions of the sources themselves. Based on these predictions, we have introduced the
xSFA algorithm to iteratively reconstruct the sources, in theory from arbitrary invertible
mixtures. Simulations have shown that the performance of xSFA is substantially higher

3. An SFA-based approach to a similar problem has been suggested by Wiskott (2003a).
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than the performance of independent slow feature analysis (ISFA; Blaschke et al., 2007)
and kTDSEP (Harmeling et al., 2003), other algorithms for nonlinear BSS that also rely on
temporal correlations.

xSFA is relatively robust to changes of parameters. Neither the degree of the expansion
before the first SFA step nor the number of removed nonlinear versions of the first source
need to be finely tuned, though both need to be within a certain range, so that the BSS
problem can be solved without running into the overfitting or error accumulation problems
discussed above. It should be noted, moreover, that polynomial expansions - as used here
- become problematic if the degree of the expansion is too high. The resulting expanded
data contain directions with very sparse distributions, which can lead (a) to singularities
in the covariance matrix (e.g., for Gaussian signals with limited sampling, x20 and x22 are
almost perfectly correlated) and (b) to sampling problems for the estimation of the required
covariances because the data are dominated by few data points with high values. Note, that
this problem is not specific to the algorithm itself, but rather to the expansion type used.
Other expansions such as radial basis functions may be more robust. The relative insensi-
tivity of xSFA to parameters is a major advantage over ISFA, whose performance depended
crucially on the right choice of a trade-off parameter between slowness and independence.

Many algorithms for nonlinear blind source separation are designed for specific types of
mixtures, for example, for post-nonlinear mixtures (for an overview of methods for post-
nonlinear mixtures see Jutten and Karhunen, 2003). In contrast, our algorithm should
work for arbitrary instantaneous mixtures. As previously mentioned, we have performed
simulations for a set of instantaneous nonlinear mixtures and the performance was similar
for all mixtures. The only requirements are that the sources are distinguishable based on
their ∆-value and that the function space accessible to SFA is sufficiently complex to invert
the mixture. Note that the algorithm is restricted to instantaneous mixtures. It cannot
invert convolutive mixtures because SFA processes its input instantaneously and is thus not
suitable for a deconvolution task.

It would be interesting to see if the theory for SFA can be extended to other algorithms.
For example, given the close relation of SFA to TDSEP (Ziehe and Müller, 1998), a variant
of the theory may apply to the kernel version of TDSEP (Harmeling et al., 2003). In
particular, it would be interesting to see whether the theory would suggest an alternative
source selection algorithm for kTDSEP that is more robust.

In summary, we have presented a new algorithm for nonlinear blind source separation
that is (a) independent of the mixture type, (b) robust to parameters, (c) underpinned by a
rigorous mathematical framework, and (d) relatively reliable, as shown by the reconstruction
performance for the examined cases.
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Appendix A. Proof Of Theorem 1

The proof that all product functions gi =
∏
α gαiα(sα) are eigenfunctions of the operatorD =∑

β Dβ can be carried out directly:

Dgi(s) =

∑
β

Dβ

∏
α

gαiα(sα)

=
∑
β

Dβ
∏
α

gαiα(sα)

=
∑
β

(
Dβgβiβ (sβ)

) ∏
α 6=β

gαiα(sα)

(because Dβ is a differential operator w.r.t. sβ only)

=
∑
β

λβiβgβiβ (sβ)
∏
α 6=β

gαiα(sα)

=

∑
β

λβiβ

∏
α

gαiα(sα)

= λigi(s) .

Because the product functions are eigenfunctions of the full operator D, the theory of
Franzius et al. (2007, Theorems 1-5) applies, stating that the J product functions with
the smallest eigenvalue, ordered by their eigenvalue, are the solutions of the optimization
problem of SFA. The proof of this theory requires that the eigenfunctions form a complete
set. Because the set of eigenfunctions for the individual operators Dα form a complete set
for the individual Sobolev space of functions depending on sα only, however (Courant and
Hilbert, 1989, §14), the product set gi is also a complete set for the product space.

Appendix B. Proof That Kαβ Is Diagonal

To prove that the matrix Kαβ(s) is diagonal, we first need to prove that the mean temporal
derivative of any 1-dimensional signal given its value vanishes: 〈ṡ〉ṡ|s =

∫
ṡp(ṡ|s)dṡ = 0.

To do so, we assume that the distribution of the signal is stationary and that the signal is
continuously differentiable. Because of the stationarity, the probability that the signal is
smaller than a given value s0 is constant:

0 =
d

dt

∫ s0

−∞

∫ ∞
−∞

p(s, ṡ)dsdṡ

=

∫ s0

−∞

∫ ∞
−∞

∂tp(s, ṡ)dsdṡ

= −
∫ s0

−∞

∫ ∞
−∞

∂s [ṡp(s, ṡ)] + ∂ṡ [s̈p(s, ṡ))] dsdṡ

where we used the continuity equation ∂tp(s, ṡ) + ∂s [ṡp(s, ṡ)] + ∂ṡ [s̈p(s, ṡ))] = 0. Using the
divergence theorem and assuming that the probability distribution vanishes as ṡ → ∞ for
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all s < s0, we get the desired result:

0 = −
∫ ∞
−∞

ṡp(s, ṡ)dṡ

= −p(s)〈ṡ〉ṡ|s .

Because the mean temporal derivative 〈ṡα〉 ˙sα|sα is zero for each signal, the matrix Kαβ =
〈ṡαṡβ〉ṡ|s is not only the matrix of the second moments of the velocity distribution given the
signal values s but its covariance matrix. Because the signals are statistically independent,
they are necessarily uncorrelated, that is, their covariance matrix is diagonal.
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