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We present and test an extension of slow feature analysis as a novel
approach to nonlinear blind source separation. The algorithm relies on
temporal correlations and iteratively reconstructs a set of statistically
independent sources from arbitrary nonlinear instantaneous mixtures.
Simulations show that it is able to invert a complicated nonlinear mix-
ture of two audio signals with a reliability of more than 90%. The
algorithm is based on a mathematical analysis of slow feature analysis
for the case of input data that are generated from statistically inde-
pendent sources.

1 Introduction

Independent Component Analysis (ICA) as a technique for blind source separation
(BSS) has attracted a fair amount of research activity over the past two decades.
By now a number of techniques have been established that reliably reconstruct the
underlying sources from linear mixtures (Hyvärinen et al., 2001). The key insight
for linear BSS is that the statistical independence of the sources is usually sufficient
to constrain the unmixing function up to trivial transformations like permutation
and scaling. Therefore linear BSS is essentially equivalent to linear ICA.

An obvious extension of the linear case is the task of reconstructing the sources
from nonlinear mixtures. Unfortunately, the problem of nonlinear BSS is much
harder than linear BSS, mainly due to the fact that the statistical independence of
the instantaneous values of the estimated sources is no longer a sufficient constraint
for the unmixing (Hyvärinen and Pajunen, 1999). For example, arbitrary point-
nonlinear distortions of the sources are still statistically independent. Therefore,
additional constraints are needed to resolve these ambiguities.
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nique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland

1



One approach is to exploit the temporal structure of the sources (e.g., Harmel-
ing et al., 2003; Blaschke et al., 2007). Blaschke et al. (2007) proposed to use the
tendency of nonlinearly distorted versions of the sources to vary more quickly in
time than the original sources. A simple illustration for this effect is the frequency
doubling property of a quadratic nonlinearity when applied to a sine wave. This
observation opens the possibility of finding the original source (or a good repre-
sentative thereof) among all the nonlinearly distorted versions by choosing the one
that varies most slowly in time. An algorithm that has been specifically designed
for extracting slowly varying signals is Slow Feature Analysis (SFA, Wiskott, 1998;
Wiskott and Sejnowski, 2002). Moreover, SFA is intimately related to ICA tech-
niques like TDSEP (Ziehe and Müller, 1998; Blaschke et al., 2006) and differential
decorrelation (Choi, 2006) and is therefore an interesting starting point for devel-
oping nonlinear BSS techniques.

Here, we extend a previously developed mathematical analysis of SFA (Franzius
et al., 2007) to the case where the input data are generated from a set of statistically
independent sources. The theory makes clear predictions as to how the sources are
represented by the output signals of SFA. Based on these predictions, we develop
a new algorithm for nonlinear blind source separation. Because the algorithm is
an extension of SFA, we refer to it as xSFA.

The structure of the paper is as follows. In section 2, we introduce the opti-
mization problem for SFA and give a brief sketch of the SFA algorithm. In Section
3 we develop the theory that underlies the xSFA algorithm. In section 4, we present
the xSFA algorithm and evaluate its performance on nonlinear mixtures of audio
signals. Limitations and possible reasons for failures are discussed in section 5.
We conclude with a general discussion in section 6.

2 Slow Feature Analysis

In this section, we briefly present the optimization problem that underlies slow
feature analysis and sketch the algorithm that solves it.

2.1 The Optimization Problem

Slow Feature Analysis is based on the following optimization task: For a given
multi-dimensional input signal we want to find a set of scalar functions that gen-
erate output signals that vary as slowly as possible. To ensure that these signals
carry significant information about the input, we require them to be uncorrelated
and have zero mean and unit variance. Mathematically, this can be stated as fol-
lows:

Optimization problem 1: Given a function space F and an N-dimensional
input signal x(t) find a set of J real-valued input-output functions gj(x) ∈ F such
that the output signals yj(t) := gj(x(t)) minimize

∆(yj) = 〈ẏ2j 〉t (1)

under the constraints

〈yj〉t = 0 (zero mean) , (2)

〈y2j 〉t = 1 (unit variance) , (3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order) , (4)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.

Equation (1) introduces the ∆-value, which is small for slowly varying sig-
nals y(t). The constraints (2) and (3) avoid the trivial constant solution. The
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decorrelation constraint (4) forces different functions gj to encode different aspects
of the input. Note that the decorrelation constraint is asymmetric: The function
g1 is the slowest function in F , while the function g2 is the slowest function that
fulfills the constraint of generating a signal that is uncorrelated to the output sig-
nal of g1. The resulting sequence of functions is therefore ordered according to the
slowness of their output signals on the training data.

It is important to note that although the objective is the slowness of the output
signal, the functions gj are instantaneous functions of the input, so that slowness
cannot be achieved by low-pass filtering. As a side effect, this makes SFA unsuit-
able for inverting convolutive mixtures.

2.2 The SFA Algorithm

If F is finite-dimensional, the problem can be solved efficiently by the SFA algo-
rithm (Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005). The full algorithm
can be split in two parts: a nonlinear expansion of the input data, followed by a
linear generalized eigenvalue problem.

For the nonlinear expansion, we choose a set of functions fi(x) that form a basis
of the function space F . The optimal functions gj can then be expressed as linear
combinations of these basis functions: gj(x) =

∑
iWjifi(x). By applying the basis

functions to the input data x(t), we get a new and generally high-dimensional set
of signals zi(t) = fi(x(t)). Without loss of generality, we assume that the functions
fi are chosen such that the expanded signals zi have zero mean. Otherwise, this
can be achieved easily by subtracting the mean.

After the nonlinear expansion, the coefficients Wji for the optimal functions
can be found from a generalized eigenvalue problem:

ĊW = CWΛ . (5)

Here, Ċ is the matrix of the second moments of the temporal derivative żi of the
expanded signals: Ċij = 〈żi(t)żj(t)〉t. C is the covariance matrix C = 〈zi(t)zj(t)〉t
of the expanded signals (since z has zero mean), W is a matrix that contains the
weights Wji for the optimal functions and Λ is a diagonal matrix which contains
the generalized eigenvalues on the diagonal.

If the function space F is the set of linear functions, the algorithm reduces to
solving the generalized eigenvalue problem (5). Therefore, the second step of the
algorithm is in the following referred to as linear SFA.

3 Theoretical Foundations

In this section we extend previous analytical results for SFA to the case of nonlinear
blind source separation, more precisely, to the case where the input data x(t) are
generated from a set of statistically independent sources s(t) by means of a nonlin-
ear, instantaneous, and invertible (or at least injective) function: x(t) = F(s(t)).
For readers that are more interested in the algorithm than in its mathematical
foundations, a summary of the relevant theoretical results can be found at the end
of the section.

3.1 SFA with Unrestricted Function Spaces

Conceptual Consequences of an Unrestricted Function Space

The central assumption for the theory is that the function space F that SFA can
access is unrestricted. This has important conceptual consequences.

Let us for the moment assume that the mixture x = F(s) has the same di-
mensionality as the source vector. Let g be an arbitrary function g ∈ F , which
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generates an output signal y(t) = g(x(t)) when applied to the mixture x(t). Then,
for every such function g, there is another function g̃ = g ◦ F that generates the
same output signal y(t) when applied to the sources s(t) directly. Because the
function space F is unrestricted, this function g̃ is also an element of the function
space F . Because this is true for all functions g ∈ F , the set of output signals that
can be generated by applying the functions in F to the mixture x(t) is the same
as the set of output signals that can be generated by applying the functions to
the sources s(t) directly. Because the optimization problem of SFA is formulated
purely in terms of output signals, the output signals when applying SFA to the
mixture are the same as when applied directly to the sources. In other words: For
an unrestricted function space, the output signals of SFA are independent of the
structure of the mixing function F. This statement can be generalized to the case
where the mixture x has a higher dimensionality than the sources, as long as the
mixing function F is injective.

Given that the output signals are independent of the mixture, we can make
analytical predictions about the dependence of the output signals on the sources,
when the input signals are not a mixture, but the sources themselves. The results
of such an analysis generalize to the case where the input signals are a nonlinear
mixture of the sources instead.

Of course, an unrestricted function space cannot be implemented in practise.
Therefore, in any application the output signals will depend on the mixture and
on the function space used. Nevertheless, the idealized case provides important
theoretical insights, which we use as the basis for the blind source separation
algorithm presented later.

Earlier Results for SFA with an Unrestricted Function Space

In a previous article (Franzius et al., 2007), we have shown that the optimal func-
tions gj(x) for SFA in the case of an unrestricted function space are given by the
solutions of an eigenvalue equation for a partial differential operator D

Dgj(x) = λjgj(x) (6)

with von Neumann boundary conditions∑
αβ

nαpx(x)Kαβ(x)∂βgj(x) = 0 . (7)

Here, D denotes the operator

D = − 1

px(x)

∑
α,β

∂αpx(x)Kαβ(x)∂β , (8)

px(x) is the probability density of the input data x and ∂α the partial derivative
with respect to the α-th component xα of the input data. Kαβ(x) = 〈ẋαẋβ〉ẋ|x is
the matrix of the second moments of the velocity distribution p(ẋ|x) of the input
data, conditioned on their value x and nα(x) is the α-th component of the normal
vector on the boundary point x. Note that the partial derivative ∂α acts on all
terms to its right, so that D is a partial differential operator of second order.

The optimal functions for SFA are the J eigenfunctions gj with the smallest
eigenvalues λj .

3.2 Factorization of the Optimal Functions

As discussed above, the dependence of the output signals on the sources can be
studied by using the sources themselves as input data. However, because the
sources are assumed to be statistically independent, we have additional knowledge

4



Figure 1: Schematic ordering of the optimal functions for SFA. For an unrestricted
function space and statistically independent sources, the optimal functions for
SFA are products of harmonics, each of which depends on one of the sources
only. In the case of two sources, the optimal functions can therefore be arranged
schematically on a 2-dimensional grid, where every grid point represents one
function and its coordinates in the grid are the indices of the harmonics that
are multiplied to form the function. Because the 0-th harmonic is the constant,
the functions on the axes are simply the harmonics themselves and therefore
depend on one of the sources only. Moreover, the grid points (1,0) and (0,1) are
monotonic functions of the sources and therefore a good representative thereof.
It is these solutions that the xSFA algorithm is designed to extract. Note that
the scheme also contains an ordering by slowness: All functions to the upper
right of a given function have higher ∆-values and therefore vary more quickly.

about their probability distribution and consequently also about the matrix Kαβ .
The joint probability density for the sources and their derivatives factorizes:

ps,ṡ(s, ṡ) =
∏
α

psα,ṡα(sα, ṡα) . (9)

Clearly, the marginal probability density ps also factorizes into the individual prob-
ability densities pα(sα)

ps(s) =
∏
α

pα(sα) , (10)

and the matrix Kαβ of the second moments of the velocity distribution of the
sources is diagonal

Kαβ(s) := 〈ṡαṡβ〉ṡ|s = δαβKα(sα) with Kα(sα) := 〈ṡ2α〉ṡα|sα . (11)

The latter is true because the mean temporal derivative of 1-dimensional stationary
and differentiable stochastic processes vanishes for any sα for continuity reasons,
so that Kαβ is not only the matrix of the second moments of the derivatives, but
actually the conditional covariance matrix of the derivatives of the sources given
the sources. As the sources are statistically independent, their derivatives are
uncorrelated and Kαβ has to be diagonal.

We can now insert the specific form (10,11) of the probability distribution ps
and the matrix Kαβ into the definition (8) of the operator D. A brief calculation
shows that this leads to a separation of the operator D into a sum of operators Dα,
each of which depends on only one of the sources:

D(s) =
∑
α

Dα(sα) (12)

with

Dα = − 1

pα
∂αpαKα∂α . (13)
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This has the important implication that the solution to the full eigenvalue prob-
lem for D can be constructed from the 1-dimensional eigenvalue problems for the
individual sources:

Theorem 1. Let gαi (i ∈ N) be the normalized eigenfunctions of the operators Dα,
i.e., the set of functions gαi that fulfill the eigenvalue equations

Dαgαi = λαigαi (14)

with the boundary conditions

pαKα∂αgαi = 0 (15)

and the normalization condition

(gαi, gαi)α := 〈g2αi〉sα = 1 . (16)

Then, the product functions

gi(s) :=
∏
α

gαiα(sα) (17)

form a complete set of (normalized) eigenfunctions to the full operator D with the
eigenvalues

λi =
∑
α

λαiα (18)

and thus those gi with the smallest eigenvalues λi are the optimal functions for SFA.
Here, i = (i1, ..., iS) ∈ NS denotes a multi-index that enumerates the eigenfunctions
of the full eigenvalue problem.

In the following, we assume that the eigenfunctions gαi are ordered by their
eigenvalue and refer to them as the harmonics of the source sα. This is motivated
by the observation that in the case where pα and Kα are independent of sα,
i.e., for a uniform distribution, the eigenfunctions gαi are harmonic oscillations
whose frequency increases linearly with i (see below). Moreover, we assume that
the sources sα are ordered according to slowness, in this case measured by the
eigenvalue λα1 of their lowest non-constant harmonic gα1. These eigenvalues are
the ∆-value of the slowest possible nonlinear point transformations of the sources.

The key result of theorem 1 is that in the case of statistically independent
sources, the output signals are products of harmonics of the sources. Note that
the constant function gα0(sα) = 1 is an eigenfunction with eigenvalue 0 to all the
eigenvalue problems (14). As a consequence, the harmonics gαi of the single sources
are also eigenfunctions to the full operator D (with the index i = (0, ..., 0, iα =
i, 0, ..., 0)) and can thus be found by SFA. Importantly, the lowest non-constant
harmonic of the slowest source (i.e., g(1,0,0,...) = g11) is the function with the
smallest overall ∆-value (apart from the constant) and thus the first function found
by SFA. In the next sections, we show that the lowest non-constant harmonics gα1
reconstruct the sources up to a monotonic and thus invertible point transformation
and that in the case of sources with Gaussian statistics, they even reproduce the
sources exactly.

3.3 The First Harmonic is a Monotonic Function of the Source

The eigenvalue problem (14,15) has the form of a Sturm-Liouville problem (Courant
and Hilbert, 1989) and can easily be rewritten to have the standard form for these
problems:

∂αpαKα ∂αgαi + λαipαgαi
(14,13)

= 0 , (19)

with pαKα∂αgαi
(15)
= 0 for sα ∈ {a, b} . (20)
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Here, we assume that the source sα is bounded and takes on values on the inter-
val sα ∈ [a, b]. Note that both pα and pαKα are positive for all sα. Sturm-Liouville
theory states that the solutions gαi, i ∈ N0 of this problem are oscillatory and that
gαi has exactly i zeros on ]a, b[ if the gαi are ordered by increasing eigenvalue λαi
(Courant and Hilbert, 1989, chapter IV, §6). All eigenvalues are positive. In par-
ticular, gα1 has only one zero ξ ∈]a, b[. Without loss of generality we assume that
gα1 < 0 for sα < ξ and gα1 > 0 for sα > ξ. Then equation (19) implies that

∂αpαKα∂αgα1 = −λαpαgα1 < 0 for sα > ξ (21)

=⇒ pαKα∂αgα1 is monotonically decreasing on ]ξ, b] (22)

(20)
=⇒ pαKα ∂αgα1 > 0 on ]ξ, b[ (23)

=⇒ ∂αgα1 > 0 since pαKα > 0 on ]ξ, b[ (24)

⇐⇒ gα1 is monotonically increasing on ]ξ, b[ . (25)

A similar consideration for s < ξ shows that gα1 is also monotonically increasing
on ]a, ξ[. Thus, gα1 is monotonic and invertible on the whole interval [a, b]. Note
that the monotony of gα1 is important in the context of blind source separation,
because it ensures that not only some of the output signals of SFA depend on only
one of the sources (the harmonics), but that there should actually be some (the
lowest non-constant harmonics) that are very similar to the source itself.

3.4 Gaussian Sources

We now consider the situation that the sources are reversible Gaussian stochastic
processes, (i.e., that the joint probability density of s(t) and s(t+ dt) is Gaussian
and symmetric with respect to s(t) and s(t+ dt)). In this case, the instantaneous
values of the sources and their temporal derivatives are statistically independent,
i.e., pṡα|sα(ṡα|sα) = pṡα(ṡα). Thus, Kα is independent of sα, i.e., Kα(sα) = Kα =
const. Without loss of generality we assume that the sources have unit variance.
Then the probability density of the source is given by

pα(sα) =
1√
2π

e−s
2
α/2 (26)

and the eigenvalue equations (19) for the harmonics can be written as

∂αe
−s2α/2∂αgαi +

λαi
Kα

e−s
2
α/2gαi = 0 . (27)

This is a standard form of Hermite’s differential equation (see Courant and Hilbert,
1989, chapter V, § 10). Accordingly, the harmonics gαi are given by the (appro-
priately normalized) Hermite polynomials Hi of the sources:

gαi(sα) =
1√
2ii!

Hi

(
sα√

2

)
. (28)

The Hermite polynomials can be expressed in terms of derivatives of the Gaussian
distribution:

Hn(x) = (−1)nex
2

∂nx e−x
2

. (29)

It is clear that Hermite polynomials fulfill the boundary condition

lim
sα→∞

Kαpα∂αgαi = 0 , (30)

because the derivative of a polynomial is again a polynomial and the Gaussian
distribution decays faster than polynomially as |sα| → ∞. The eigenvalues depend
linearly on the index i:

λαi = iKα . (31)
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The most important consequence is that the lowest non-constant harmonics simply
reproduce the sources: gα1(sα) = 1/

√
2H1(sα/

√
2) = sα. Thus, for Gaussian

sources, some of the output signals of SFA with an unrestricted function space
reproduce the sources exactly.

3.5 Homogeneously Distributed Sources

Another canonical example for which the eigenvalue equation (14) can be solved
analytically is the case of homogeneously distributed sources, i.e., the case where
the probability distribution ps,ṡ is independent of s on a finite interval and zero
elsewhere. Consequently, neither pα(sα) nor Kα(sα) can depend on sα, i.e., they
are constants. Note that such a distribution may be difficult to implement by a
real differentiable process, because the velocity distribution should be different at
boundaries that cannot be crossed. Nevertheless, this case provides an approxi-
mation to cases, where the distribution is close to homogeneous.

Let sα take values in the interval [0, Lα]. The eigenvalue equation (19) for the
harmonics is then given by

Kα∂
2
αgαi + λαigαi = 0 (32)

and readily solved by harmonic oscillations:

gαi(sα) =
√

2 cos

(
iπ
sα
Lα

)
. (33)

The ∆-value of these functions is given by

∆(gαi) = λαi = Kα

(
π

Lα
i

)2

. (34)

Note the similarity of these solutions with the optimal free responses derived by
Wiskott (2003).

3.6 Summary: Results of the Theory

The following key results of the theory form the basis of the xSFA algorithm:

• For an unrestricted function space, the output signals generated by the op-
timal functions of SFA are independent of the nonlinear mixture, given the
same original sources.

• The optimal functions of SFA are products of functions gαi(sα), each of which
depends on only one of the sources. We refer to the function gαi as the i-th
harmonic of the source sα.

• The slowest non-constant harmonic is a monotonic function of the associated
source. It can therefore be considered as a good representative of the source.

• If the sources have stationary Gaussian statistics, the harmonics are Hermite
polynomials of the sources. In particular, the lowest harmonic is then simply
the source itself.

• The slowest function found by SFA is the lowest harmonic of the slowest
source and therefore a good representative thereof.
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4 An Algorithm for Nonlinear Blind Source Separation

According to the theory, some of the output signals of SFA should be very similar
to the sources. Therefore, the problem of nonlinear BSS can be reduced to selecting
those output signals of SFA that correspond to the first non-constant harmonics
of the sources from those that correspond to higher harmonics or products of
harmonics. In this section, we propose an algorithm that should ideally solve this
problem and test it using a nonlinear mixture of two audio signals. In the following,
we sometimes refer to the first non-constant harmonics simply as the “sources”,
because they should ideally be very similar.

4.1 The xSFA algorithm

An Intuition

The extraction of the slowest source is rather simple: According to the theory, it
is well represented by the first (i.e., slowest) output signal of SFA. Unfortunately,
extracting the second source is more complicated, because higher order harmonics
of the first source may vary more slowly that the second source.

The idea behind the algorithm we propose here is that once we know the first
source, we also know all its possible nonlinear transformations, that is, its harmon-
ics. We can thus remove all aspects of the first source from the SFA output signals
by projecting the latter to the space that is uncorrelated to all nonlinear versions
of the first source. In the grid arrangement shown in Figure 1, this corresponds to
removing all solutions that lie on one of the axes. The remaining signals must have
a dependence on the second or even faster sources. The slowest possible signal in
this space is then generated by the first harmonic of the second source, which we
can therefore extract by means of linear SFA. Once we know the first two sources,
we can proceed by calculating all the harmonics of the second source and all prod-
ucts of the harmonics of the first and the second source and remove those signals
from the data. The slowest signal that remains then is the first harmonic of the
third source. Iterating this scheme should in principle yield all the sources.

The structure of the algorithm is illustrated in Figure 2. Note that it is a mere
extension of SFA in that it does not include new objectives or constraints. We
therefore term it xSFA for eXtended SFA.

Additional ICA Steps for Increasing Robustness

In practice, finite sampling time and restrictions of the function space can com-
plicate the selection process for faster sources. These complications occur when
two of the output signals predicted by the theory have approximately the same
∆-value. In this case random correlations can corrupt the solution and yield ran-
dom mixtures of the theoretically predicted solutions. This problem occurs mainly
when the sources have either very similar or very different ∆-values. If they are
similar, the algorithm may yield a random (linear) mixture of the sources. This
problem can be solved by standard techniques for linear BSS. Because the tem-
poral statistics of the sources is similar, ICA techniques that rely on higher order
statistics (Bell and Sejnowski, 1995; Hyvärinen, 1999; Blaschke and Wiskott, 2004)
may be favorable over second-oder techniques that rely on temporal correlations
(Molgedey and Schuster, 1994; Belouchrani et al., 1997; Ziehe and Müller, 1998).
In our simulations, however, the choice of the ICA technique had practically no
influence on the performance. The results presented here were obtained using
second-order ICA. Note that the situation where the output signals could be a
linear mixture of the sources can be detected blindly, because it is sufficient to
check if they have similar ∆-values or not.
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Figure 2: Illustration of the xSFA algorithm. The mixture of the input signals is first
subjected to a nonlinear expansion that should be chosen sufficiently powerful
to allow (a good approximation of) the inversion of the mixture. An estimate of
the first source is then obtained by applying linear SFA to the expanded data.
The remaining sources are estimated iteratively by removing nonlinear versions
of the previously estimated sources from the expanded data and reapplying SFA.
If the number of sources is known, the algorithm terminates when estimates of
all sources have been extracted. If the number of sources is unknown, other
terminal criteria might be more suitable (not investigated here).

If the ∆-values of the sources are very different, the algorithm almost certainly
finds the first source. However, because the first source is so much slower than the
second, the ∆-values of the products g(j,1) = g1jg21 of the second source and the
harmonics of the first are similar to the ∆-value of the second source g21 alone,
so that the algorithm may not find the second source, but rather a linear mixture
of g21 and product solutions g(j,1). In this case, it is not obvious how the problem
can be tackled, because the signals g21 and g(j,1) are not statistically independent,
so that the usual techniques for linear BSS cannot be expected to disentangle
the mixture. In practice, however, second order ICA seems to solve the problem
with more than chance level. A possible explanation is that the product solutions
– although not statistically independent – should be uncorrelated, probably also
when time delays are introduced. Second order ICA relies on the removal of time-
delayed correlations, which may in this case help to remove random correlations
between the product states and the second source. This situation of possible
mixtures of product solutions can also be detected blindly, because after projecting
out nonlinear versions of the first source and performing linear SFA, the slowest
solution is only likely to be a mixture, if the ∆-value of the second slowest output
signal is similar.

Formalization of the xSFA Algorithm

The simulations presented below apply the following scheme to a nonlinear mix-
ture x(t), t ∈ {1, ..., T} of two sources s(t):

1. Apply a polynomial expansion of degree NSFA to the mixture.
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2. Apply linear SFA to the expanded data and store the J slowest output sig-
nals y

(1)
j .

3. If the ∆-values of the slowest output signals of SFA are similar, apply second
order ICA to the slowest signals to account for possible linear mixtures of
similar sources. We chose to perform this step on all signals, whose ∆-value
differed from that of the slowest signal by no more than a factor of 1.4.

4. Choose the slowest output signal y
(1)
1 as a representative s̃1 of the first source.

5. Expand the representative s̃1 of the first source in monomials of degree Nnl

and whiten the resulting signals. We refer to the resulting nonlinear versions
of the first source as nk, k ∈ {1, ..., Nnl}.

6. Remove the nonlinear versions of the first source from the SFA output sig-
nals y

(1)
j

y
(2)
j (t) = y

(1)
j (t)−

Nnl∑
k=1

cov(y
(1)
j , nk)nk(t) (35)

and remove principal components with a variance below a given threshold ε.

7. Apply linear SFA to y
(2)
j and store the output signals y

(3)
j .

8. If the ∆-values of the slowest output signals of the last SFA step are similar,
apply second order ICA to the first components of y

(3)
j to disentangle possible

linear mixtures of the second source with products of the second source and
harmonics of the first. We chose to perform this step on all signals, whose ∆-
value differed from that of the slowest signal by no more than a factor of 1.7.
Choose the output signal with the smallest ∆-value as a representative s̃2 of
the second source.

4.2 Simulations

We test the algorithm on two different tasks. The first one is the separation of
two audio signals that are subject to a rather complicated mixture. In the second
task, we test if the algorithm is able to separate more than two sources.

Sources

We evaluated the performance of the algorithm on two different test sets of audio
signals. Data set A consists of excerpts from 14 string quartets by Bela Bartok.
Note that these sources are from the same CD and the same composer and con-
tain the same instruments. They can thus be expected to have similar statistics.
Differences in the ∆-values should mainly be due to short-term nonstationarities.
This data set provides evidence that the algorithm is able to distinguish between
signals that have similar global statistics based on short-term fluctuations in their
statistics.

Data set B consists of 20 excerpts from popular music pieces from various
genres, ranging from classical music over rock to electronic music. The statistics
of this set is more variable in their ∆-values, in particular they remain different
even for long sampling times.

All sources were sampled at 44,100 Hz and 16 bit, i.e., with CD-quality. The
length of the samples was varied to assess how the amount of training data affects
the performance of the algorithm.
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Nonlinear Mixture

Separation of 2 audio signals: We subjected all possible pairs of sources within a
data set to a nonlinear invertible mixture that was previously used by Harmeling
et al. (2003) and Blaschke et al. (2007):

x1(t) = (s2(t) + 3s1(t) + 6) cos(1.5πs1(t)) ,
x2(t) = (s2(t) + 3s1(t) + 6) sin(1.5πs1(t)) .

(36)

Figure 3 illustrates the spiral-shaped structure of this rather extreme nonlinearity.

Figure 3: The spiral-shaped structure of the nonlinear mixture. Panel A shows a
scatter plot of two sources from data set A. Panel B shows a scatter plot of the
nonlinear mixture we used to test the algorithm.

This mixture is only invertible if the sources are bounded between -1 and 1, which
is the case for the audio data we used. The mixture (36) is not symmetric in s1
and s2. Thus, for every pair of sources, there are two possible mixtures and we
have tested both for each source pair.

We have also tested the other nonlinearities that Harmeling et al. (2003) applied
to two sources, as well as post-nonlinear mixtures, i.e., linear mixture followed by
a point nonlinearity. The performance was similar for all tested mixtures without
any tuning of parameters (data not shown). Moreover, the performance remained
practically unchanged when we used linear mixtures or no mixture at all. This
is in line with the argument that the mixture should be irrelevant to SFA if the
function space F is sufficiently rich (see section 3).

Separation of more than 2 sources: For the simulations with more than two
sources, we used a post-nonlinear mixture by first applying a random rotation Oij
to the sources si and then applying a point-nonlinearity to each of the linearly
mixed signals. The nonlinearity we used is arctangent with a scaling parameter:

xj = arctan((
∑

Oijsj)/T ) . (37)

The parameter T determines the degree of the nonlinearity. For these simulations
with we normalize the sources to have zero mean and unit variance, to ensure that
the degree of nonlinearity is roughly the same for all combinations of sources.

Simulation Parameters

There are several parameters of the algorithm: the degree NSFA of the expansion
used for the first SFA step, the degree Nnl of the expansion for the source removal,
the threshold ε for the removal of directions with negligible variance and, finally,
the parameters for the additional ICA steps used to disentangle possible linear
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mixtures due to random correlations.

Degree of the expansion in the first SFA step: For the simulations with two
sources,we used a polynomial expansion of degree NSFA = 7, because it has previ-
ously been shown that this function space is sufficient to invert the mixture (36)
(Blaschke et al., 2007). For 2-dimensional input signals, this expansion generates
a 35-dimensional function space. We kept all J = 35 output signals of SFA. It is
worth noting that the success rate of the algorithm practically unchanged when
polynomials of higher order are used. From the theoretical perspective, this is not
surprising, because once the function space is sufficiently rich to extract the first
harmonics of the sources, the system performs just as good as it could with an
unrestricted function space.

For the simulations with more than two sources, we used a polynomial expan-
sion of degree NSFA = 3.

Degree of the expansion for source removal: For the simulations with twoWe
sources, we expanded the estimate for the first source in polynomials of degreeNnl =
20, i.e., we projected out 20 nonlinear versions of the first source. Using fewer non-
linear versions does not alter the results significantly, as long as the expansion is
sufficiently complex to remove those harmonics of the first source that have smaller
∆-values than the second source. Using higher expansion degrees sometimes leads
to numerical instabilities, which we accredit to the extremely sparse distribution
that result from the application of very high monomials.

For the separation of more than two sources, all polynomials of degree Nnl = 4
of the already estimated sources were projected out.

Variance threshold: After the removal of the nonlinear versions of the first source,
there is at least one direction with vanishing variance. To avoid numerical prob-
lems caused by singularities in the covariance matrices, directions with variance
below ε = 10−7 were removed. For almost all source pairs, the only dimension
that had a variance below ε after the removal was the trivial direction of the first
estimated source.

Parameters for second order ICA steps: The algorithm we used for second or-
der ICA is TDSEP (Ziehe and Müller, 1998). TDSEP relies on the simultaneous
diagonalization of multiple time-delayed covariance matrices with different delays.
We used time delays that were equally spaced by 100 samples. The maximal delay
was 44100 samples, which corresponds to 441 different time delays within 1s. If
the training data were shorter than the maximal delay, the total number of delays
was limited by the duration of the training data.

The TDSEP step after the first SFA step (step 3 in the scheme above) that
should separate linear mixtures of similarly slow sources was only done on those
signals whose ∆-value differed by a factor of less than 1.4 from that of the slowest
signal. For the TDSEP step that should separate the second source and product
solutions (step 7), we used only those signals whose ∆-values differed by a factor
of less than 1.7 from the slowest signal. The choice for these two thresholds is
conservative. The results do not rely on fine tuning of these parameters.

The simulations were done in PYTHON using the modular data processing toolbox
(MDP) developed by Zito et al. (2008).

Performance Measure

For stationary Gaussian sources, the theory predicts that the algorithm should
reconstruct the sources exactly. In most applications, however, the sources are
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neither Gaussian nor stationary (at least not on the time scales we used for train-
ing). In this case the algorithm cannot be expected to find the sources themselves,
but rather a nonlinearly transformed version of the sources, ideally their lowest
harmonics. Thus, the correlation between the output signals of the algorithm and
the sources is not necessarily the appropriate measure for the quality of the source
separation. Therefore, we also calculated the correlation of the sources with the
closest nonlinearly transformed version of its estimate. To this end, we performed
a linear regression between each of the sources and a polynomial expansion of
the source estimate with highest linear correlation with the source. The corre-
lation between this optimally transformed source estimate and the source takes
into account possible nonlinear distortions of the source. Almeida (2005) used an
equivalent approach, but calculated the signal-to-noise ratio instead of the corre-
lation. We considered source reconstruction to be successful, when the associated
correlation was above 0.9.

Data Set A Data Set B
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Figure 4: Performance of the algorithm as a function of the duration of the
training data. The curves show the percentage of source pairs, for which
the algorithm reconstructed 0 (dash-dotted), 1 (dashed), and 2 (solid) of the
sources/harmonics. Panels A and B show results for data set A, panels C and D
for data set B. Panels A and C show the ability of the algorithm to reconstruct
the sources themselves, while B and D show the performance when trying to
reconstruct the harmonics of the sources. Statistics cover all possible source
pairs that can be simulated (data set A: 14 sources→ 182 source pairs, data set
B: 20 sources → 380 source pairs). Note the difference in time scales.

Simulation Results

Figure 4 shows the performance of the algorithm depending on the duration of
the training data. For data set A, the algorithm reconstructs the first harmonic
of the two sources for 93±2.5% (mean±std, n=9 data points) of the source pairs
for training sequences of at least 0.2s duration, corresponding to at least 8,820
samples. The reconstruction of the sources themselves is equally successful. This
may serve as an indication that the sources were close to Gaussian, so that the
harmonics and the sources were very similar.
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For data set B, the sources could be reconstructed for 91.7±0.3% (mean±std,
n=3 data points for training times 2, 5 and 10s) of the source pairs, but longer
training times of at least 2s were necessary. Further research will be necessary
to assess the reasons for this. Surprisingly, on average, the sources estimated by
the algorithm match the original sources slightly better than the harmonics of the
sources. A possible reason might lie in the complexity of the function space. If the
relation between the harmonics and the sources is highly nonlinear, the function
space may be sufficiently complex to find a good approximation of the sources, but
not of the harmonics.

The performance of xSFA is significantly better than that of independent slow
feature analysis (ISFA; Blaschke et al., 2007), which also relies on temporal corre-
lations and was reported to reconstruct both sources for about 70% of the source
pairs. Moreover, it is likely that the performance of xSFA can be further improved,
e.g., by using more training data or different function spaces.

The algorithm is relatively fast: On a notebook with 1.7GHz, the simulation
of the 182 source pairs for dataset A with 0.2s training sequences takes about 380
seconds, which corresponds to about 2.1s for the unmixing of a single pair.

5 Practical Limitations

There are several reasons why the algorithm can fail, because some of the as-
sumptions underlying the theory are not necessarily fulfilled in simulations. In
the following, we discuss some of the reasons for failures. The main insights are
summarized at the end of the section.

Limited Sampling Time

The theory predicts that some of the output signals reproduce the harmonics of
the sources exactly. However, problems can arise if eigenfunctions have (approx-
imately) the same eigenvalue. For example, let us assume that the sources have
the same temporal statistics, so that the ∆-value of their slowest harmonics gµ1 is
equal. Then, there is no reason for SFA to prefer one signal over the other.

Of course, in practice, two signals are very unlikely to have exactly the same ∆-
value. However, the difference may be so small that it cannot be resolved because
of limited sampling. To get a feeling for how well two sources can be distinguished,
assume there were only two sources that are drawn independently from probability
distributions with ∆-values ∆ and ∆+δ. Then linear SFA should ideally reproduce
the sources exactly. However, if there is only a finite amount of data, say of total
duration T , the ∆-values of the signals can only be estimated with finite precision.
Qualitatively, we can distinguish the sources when the standard deviation of the
estimated ∆-value is smaller than the difference δ in the “exact” ∆-values. It is
clear that this standard deviation depends on the number of data points roughly
as 1/

√
T . Thus the smallest difference δmin in the ∆-values that can be resolved

has the functional dependence

δmin ∼ ∆α 1√
T
. (38)

The reason why the smallest distinguishable difference δ must depend on the ∆-
value is that subsequent data points are not statistically independent, because the
signals have a temporal structure. For slow signals, i.e., signals with a small ∆-
values, the estimate of the ∆-value is less precise than for quickly varying signals,
because the finite correlation time of the signals impairs the quality of the sampling.
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For dimensionality reasons, the exponent α has to take the value α = 3/4,
yielding the criterion

δmin

∆
∼ 1√

T
√

∆
. (39)

For an interpretation of this equation note that the ∆-value can be interpreted as
a (quadratic) measure for the width of the power spectrum of a signal (assuming
a roughly unimodal power spectrum centered at zero):

∆(y) =
1

T

∫
ẏ2dt =

1

T

∫
ω2|y(ω)|2dω , (40)

where y(ω) denotes the Fourier transform of y(t). However, the inverse width of
the power spectrum is an operative measure for the correlation time τ of the signal,
leaving us with τ ∼ 1/

√
∆. With this in mind, the criterion (39) takes a form that

is much easier to interpret:

δmin

∆
∼
√
τ

T
=

1√
Nτ

. (41)

τ characterizes the time scale on which the signal varies, so intuitively, we can
cut the signal into Nτ = T/τ “chunks” of duration τ , which are approximately
independent. Equation (41) then states that the smallest relative difference in the
∆-value that can be resolved is inversely proportional to the square root of the
number Nτ of independent data “chunks”.

If the difference in the ∆-value of the predicted solutions is smaller than δmin,
SFA is likely not to find the predicted solutions but rather an arbitrary mixture
thereof, because the removal of random correlations and not slowness is the es-
sential determinant for the solution of the optimization problem. Equation (41)
may serve as an estimate of how much training time is needed to distinguish two
signals. Note however, that the validity of (41) is questionable for nonstationary
sources, because the statistical arguments used above are not valid.

Using these considerations, we can estimate the order of magnitude of training
data that is needed for the datasets we used to evaluate the performance of the
algorithm. For both datasets, the ∆-values of the sources were on the order of
0.01, which corresponds to an autocorrelation time of approximately 1/

√
0.01 = 10

samples. Those sources of dataset A that were most similar differed in ∆-value by
δ/∆ ∼ 0.05, which requires Nτ = (1/0.05)2 = 400. This corresponds to ∼ 4000
samples that are required to distinguish the sources, which is similar to what was
observed in simulations. In dataset B, the problem is not that the sources are too
similar, but rather that they are too different in ∆-value, which makes it difficult
to distinguish between the products of the second source and harmonics of the
first and the second source alone. The ∆-values often differ by a factor of 20 or
more, so that the relative difference between the relevant ∆-values is again on the
order of 5%. In theory, the same amount of training data should therefore suffice.
However, if the sources strongly differ in ∆-value, many harmonics need to be
projected out before the second source is accessible, which presumably requires a
higher precision in the estimate of the first source. This might be one reason why
significantly more training data is needed for dataset B.

Sampling Rate

The theory is derived under the assumption that all signals are continuous in time.
Real data are generally discretized. Therefore, the theory is only valid if the data
are sampled at a sampling rate sufficient to generate quasi-continuous data. As the
sampling rate decreases, so do the correlations between subsequent data points.
In the limit of extremely low sampling rates this renders techniques like SFA that
are based on short-term temporal correlations useless.
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For discrete data, the temporal derivative is usually replaced by a difference
quotient:

ẏ(t) ≈ y(t+ ∆t)− y(t)

∆t
, (42)

where y(t + ∆t) and y(t) are neighboring sample points and ∆t is given by the
inverse of the sampling rate r. The ∆-value can then be expressed in terms of the
variance of the signal and its autocorrelation function:

∆(y) = 〈ẏ2〉t ≈
2

∆t2
(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
= 2r2

(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
.

(43)
If the sampling is too low, the signal effectively becomes white noise. In this

case, the term that arises from the time-delayed correlation vanishes, while the
variance remains constant. Thus, for small sampling rates, the ∆-value depends
quadratically on the sampling rate, while it saturates to its “real” value if the
sampling rate is increased. This behavior is illustrated in Figure 5A. Note that
signals with different ∆-values for sufficient sampling rate may have very similar
∆-value when the sampling is decreased too drastically. Intuitively, this is the
case if the sampling rate is so low that both signals are (almost) white noise. In
this case, there are no temporal correlations that could be exploited, so that SFA
returns a random mixture of the signals.

A B

Figure 5: Influence of the sampling rate. (A) Qualitative dependence of the ∆-value of
two different signals on the sampling rate. For very low sampling rates, both sig-
nals become white noise and the ∆-value quadratically approaches zero. Signals
that have different ∆-values for sufficiently high sampling rates may therefore
not be distinguishable if the sampling rate is too low. The dotted lines indicate
the “real” ∆-values of the signals. Note: It may sound counterintuitive that the
∆-value drops to zero with decreasing sampling rate, as white noise should be
regarded as a quickly varying signal. This arises from taking the sampling rate
into account in the temporal derivative (43). If the derivative is simply replaced
by the difference between adjacent data points, the ∆-value approaches 2 as the
sampling rate goes to zero and decreases with the inverse square of the sampling
rate as the sampling rate becomes large. (B) Sampling rate dependence of the
“resolution” of the algorithm for a fixed number of training samples. The solid
line shows the qualitative dependence of the relative difference in ∆-value of
two signals as a function of the sampling rate and the dashed line shows the
qualitative behavior of the minimal relative difference in ∆-value that can be
resolved. The signals can only be separated by SFA if the resolvable difference
(dashed) is below the expected relative difference (solid). Therefore an inter-
mediate sampling is more efficient. The dotted line indicates the “real” ratio of
the ∆-values.

The number of samples N that can be used for training is limited by the
working memory of the computer and/or the available cpu time. Thus, for a fixed
maximal number of training samples N , the sampling rate implicitly determines
the maximal training time T = N/r. The training time, in turn, determines
the minimal relative difference in ∆-value that can be distinguished (cf. equation
(41)). Thus, for a fixed number of sample points, the minimal relative difference
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in ∆-value that can be resolved is proportional to 1/
√
T ∼

√
r. But why do low

sampling rates lead to a better resolution? The reason is that for high sampling
rates, neighboring data points have essentially the same value. Thus, they do not
help in estimating the ∆-value, because they do not carry new information.

In summary, the sampling rate should ideally be in an intermediate regime. If
the sampling rate is too low, the signals become white noise and cannot be distin-
guished, while too high sampling rates lead to high computational costs without
delivering additional information. This is illustrated in Figure 5B.

Density of Eigenvalues

The problem of getting random mixtures instead of the optimal solutions is of
course most relevant in the case where the sources, or more precisely, the slow-
est non-constant harmonics of the sources have similar ∆-values. However, even
when the sources are sufficiently different, this problem eventually arises for the
higher-order solutions. To quantify the expected differences in ∆-value between
the solutions, we define a density ρ(∆) of the ∆-values as the number of eigenvalues
expected in an interval [∆,∆ + δ], divided by the interval length δ. A convenient
way to determine this density is to calculate the number R(∆) of solutions with
eigenvalues smaller than ∆ and then take the derivative with respect to ∆.

In the Gaussian approximation, the ∆-values of the harmonics are equidistantly
spaced, cf. (31). As the ∆-value ∆i of the full product solution gi is the sum of the
∆-values of the harmonics, the condition ∆i < ∆ restricts the index i to lie below
a hyperplane with the normal vector n = (λ11, ..., λS1) ∈ RS :∑

µ

iµλµ1 = i · n < ∆ . (44)

Because the indices are homogeneously distributed in index space with density
one, the expected number of solutions with ∆ < ∆0 is simply the volume of the
subregion in index space for which equation (44) is fulfilled:

R(∆) =
1

S!

S∏
µ=1

∆

λµ1
. (45)

The density of the eigenvalues is then given by

ρ(∆) =
∂R(∆)

∂∆
=

1

(S − 1)!

[∏
µ

1

λµ1

]
∆S−1 . (46)

As the density of the eigenvalues can be interpreted as the inverse of the expected
distance between the ∆-values, the distance and thus the separability of the so-
lutions with a given amount of data declines as 1/∆S−1. In simulations, we can
expect to find the theoretically predicted solutions only for the slowest functions,
higher order solutions tend to be linear mixtures of the theoretically predicted
functions. This is particularly relevant if there are many sources, i.e., if S is large.

If the sources are not Gaussian, the dependence of the density on the ∆-value
may have a different dependence on ∆ (e.g., for uniformly distributed sources
ρ(∆) ∼ ∆S/2−1). The problem of decreasing separability, however, remains.

Function Space

An assumption of the theory is that the function space accessible to SFA is un-
limited. However, any application has to restrict the function space to a finite
dimensionality. If the function space is ill-chosen in that it cannot invert the mix-
ture that generated the input data from the sources, it is clear that the theory can
no longer be valid.
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Because the nature of the nonlinear mixture is not known a priori, it is diffi-
cult to choose an appropriate function space. We used polynomials with relatively
high degree. A problem with this choice is that high polynomials generate ex-
tremely sparse data distributions. Depending on the input data at hand, it may
be more robust to use other basis functions such as radial basis functions or kernel
approaches, although for SFA, these tend to be computationally more expensive.

The suitability of the function space is one of the key determinants for the
quality of the estimation of the first source. If this estimate is not accurate but has
significant contributions from other sources, the nonlinear versions of the estimate
that are projected out are not accurate, either. The projection step may thus
remove aspects of the second source and thereby impair the estimate of the second
source. We expect that for many sources, these errors will accumulate so that
estimates for faster sources will not be trustworthy. This problem might be further
engraved by the increasing eigenvalue density discussed above.

Summary

In summary, we have discussed four factors that have an influence on simulation
results:

Limited sampling time: If the algorithm can distinguish two sources with similar
∆-values depends on the amount of data that is available. More precisely,
to separate two sources with ∆-values ∆ and ∆ + δ, the duration T of the
training data should be on the order of T ∼ τ (∆/δ)2 or more. Here, τ is the
autocorrelation time of the signals, which can be estimated from the ∆-value
of the sources: τ ≈ 1/

√
∆.

Sampling rate Because the algorithm is based on temporal correlations, the sam-
pling rate should of course be sufficiently high to have significant correlations
between subsequent data points. If the number T of samples that can be used
is limited by the memory capacity of the computer, very high sampling rates
can be a disadvantage, because the correlation time τ (measured in samples)
of the data is long. Consequently, the number T/τ of “independent data
chunks” is smaller than with lower sampling rates, which may impair the
ability of the algorithm to separate sources with separate similar ∆-values
(see previous point).

Density of eigenvalues: The problem of similar ∆-values is not only relevant when
the sources are similar, because the algorithm also needs to distinguish the
faster sources from products of these sources with higher-order harmonics of
the lower sources. To estimate how difficult this is, we have argued that, for
the case of Gaussian sources, the expected difference between the ∆-values
of the output of SFA declines as 1/∆S−1, where S is the number of sources.
Separating a source from the product solutions of lower-order sources there-
fore becomes more difficult with increasing the number of sources.

Function space: Another important influence on the performance of the system is
the choice of the function space F for SFA. Of course, F has to be chosen
sufficiently rich to allow the inversion of the nonlinear mixture. According
to the theory additional complexity of the function spaces should not alter
the results and we have indeed found that the system is rather robust to
the particular choice of F , as long as it’s sufficiently complex to invert the
mixture. We expect, however, that an extreme increase in complexity will
lead to (a) numerical instabilities (in particular for polynomial expansions as
used here) and (b) overfitting effects.
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6 Discussion

In this article, we have extended previous theoretical results on SFA to the case
where the input data are generated from a set of statistically independent sources.
The theory shows that (a) the optimal output of SFA consists of products of
signals, each of which depends on a single source only and that (b) some of these
harmonics should be monotonic functions of the sources themselves. Based on
these predictions, we have introduced the xSFA algorithm to iteratively reconstruct
the sources, in theory from arbitrary invertible mixtures. Simulations for a rather
complicated nonlinear mixture of two audio sources have shown that the algorithm
extracts both sources for 90% percent of the source pairs. The performance is
substantially higher than the performance of independent slow feature analysis
(ISFA; Blaschke et al., 2007), another algorithm for nonlinear BSS that relies on
temporal correlations.

xSFA is relatively robust to changes of the implementation details. Neither a
higher degree of the expansion before the first SFA step nor the removal of more
nonlinear versions of the first source change the reconstruction performance sig-
nificantly. It should be noted, however, that polynomial expansions - as used here
- become problematic if the degree of the expansion is too high. The resulting
expanded data contain directions with very sparse distributions, which can lead
(a) to singularities in the covariance matrix (e.g., for Gaussian signals with limited
sampling, x20 and x22 are almost perfectly correlated) and (b) to sampling prob-
lems for the estimation of the required covariances because the data are dominated
by few data points with high values. Note, that this problem is not specific to the
algorithm itself, but rather to the expansion type used. Other expansions such as
radial basis functions may be more robust. The relative insensitivity of xSFA to
parameters is a major advantage over ISFA, whose performance depended crucially
on the right choice of a trade-off parameter between slowness and independence.

Many algorithms for nonlinear blind sources separation are designed for specific
types of mixtures, e.g., for post-nonlinear mixtures (for an overview of methods for
post-nonlinear mixtures see Jutten and Karhunen, 2003). In contrast, our algo-
rithm should work for arbitrary instantaneous mixtures. As previously mentioned,
we have performed simulations for a set of instantaneous nonlinear mixtures and
the performance was similar for all mixtures. The only requirements are that the
sources are distinguishable based on their ∆-value and that the function space
accessible to SFA is sufficiently complex to invert the mixture. Note that the
algorithm is restricted to instantaneous mixtures. It cannot invert convolutive
mixtures because SFA processes its input instantaneously and is thus not suitable
for a deconvolution task.

We have presented simulations for two sources only. In theory, the algorithm
should be able to separate mixtures of more sources as well. In practice, however,
the number of reconstructable sources may be limited because of accumulating
errors as discussed in section 5. Further simulations are needed to assess the
performance of the algorithm for more sources.

It would be interesting to see if the theory for SFA can be extended to other
algorithms. For example, given the close relation of SFA to TDSEP (Ziehe and
Müller, 1998), a variant of the theory may apply to the kernel version of TDSEP
(Harmeling et al., 2003).

In summary, we have presented a new algorithm for nonlinear blind source sep-
aration that is (a) independent of the mixture type, (b) robust to parameters, (c)
underpinned by a rigorous mathematical framework, and (d) relatively reliable on
to sources, as shown by the reconstruction performance of 90-95% for the examined
case of two audio sources.
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