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2 ReconstructionA simple model for the cell responses in the visual cortex is the linear receptive�eld. Thus, the response J� of neuron � can be written asJ� = (T I)� = Z I(x) p�(x)dx; (1)with the shape of its receptive �eld given by p�(x) and the image I(x) as astimulus. This operation can also be interpreted as transformation T of an image.Since the intergral computes a projection of the image onto �lter p� , p� is alsocalled a projection function.Furthermore, it has been shown that receptive �eld pro�les of simple cellsin the visual cortex V1 can be modeled by Gabor �lters  k;x0 as projectionfunctions [7]: k;x0(x) = k2�2 exp��k2(x0 � x)22�2 � exp (ik(x0 � x)) ; (2)where k is the main frequency of the �lter and x0 speci�es the location of the�lter. The �lters have the shape of complex waves (third factor) restricted by aGaussian envelope function (second factor). Thus, the complex{valued  � (with� := (k� ;x0;�)) is composed of an even (cosine-type) and an odd (sine-type)part. The �rst factor compensates for the frequency-dependent decrease of thepower spectrum in natural images [8]. (There is an additional correction for theDC-value of the �lters which is not shown here.)Since the transformation T is linear, the optimal reconstruction of the imagefrom the values J� is linear as well and given by a well-known concept of linearalgebra: IR(x) = RJ =X� J�b�(x); (3)whereR symbolizes the reconstruction operation and b�(x) are appropriate basisfunctions.If the projection functions were orthogonal and normalized (R p�(x) p�(x)dx= ���) the basis functions would simply be b�(x) = p�(x). Since they are notorthogonal in case of Gabor functions, their a�nity must be taken into consid-eration by using a particular linear combination of the projection functions:b�(x) =X� �P�1��� p�(x); with P�� := Z p�(x) p�(x)dx: (4)The matrix coe�cients P�� are dot products of the projection functions. In caseof Gabor �lters, these products can be obtained analytically.Gabor �lters can also be used as basis functions (b� =  �) [9], in which casethe values ~J� have to be computed by minimizing kI(x)�P ~J� �k2. Since the ~J�are de�ned by the reconstruction formula, they di�er from those computed by
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Fig. 1. The projector P = RT shown in this �gure was derived from a set of 32 Gabor�lters as projection functions all centered at the same position y0 = (0; 0). The �gureshows how the original image contributes to the reconstructed image IR at a certainpoint x ((0,0) in (a) and (7,5) in (b)). E.g., in (b), the contributions come mainlyfrom the gray values around the corresponding point y = (7; 5) but also from the grayvalues at all other points within the extent of the Gabor �lters. Formally speaking, thekernel c(x; y) of the projection process IR(x) = PI(y) = R c(x; y)I(y)dy is shown:(a) c((0; 0); y), (b) c((7; 5); y). (The wave vector k = (k; ') of the applied Gabor �lterstakes on four di�erent frequency values k and eight di�erent orientation values '.)Eq. (1) and the image can be reconstructed directly by IR =P ~J� � . However,in the sense of the �ndings in [7], this approach cannot serve as a model for thecell responses in sensory cortex.The reconstruction de�ned by Eqs. (3) and (4) is perfect in the sense thatthe amount of information in the reconstructed image IR(x) is equal to that ofthe transformed data J. That also implies that the values J can be identicallyrecalculated by transforming IR, i.e., the compound operation T R is the identityoperator1.The compound operator P = RT is called a projector and it projects imagesinto the \space" of images which can be represented by the chosen set of pro-jection functions p� . P satis�es the condition for being a projector (P2 = P),for T R equals the unity operator. Figure 1 shows such a projector for the set ofGabor �lters all centered at the same positions.The reconstruction formulas presented can only be applied to a linear in-dependent set of projection functions, because otherwise the determinant of Pvanishes and P cannot be inverted. In other words, the transformed data ofa linear dependent set of p� is redundant. This means at least one p� can be1 The compound operation T R is the identity operator, for(T RJ)� = Z IR(x) p�(x)dx =X� �Z b�(x) p�(x)dx� � J�=X�  X� (P�1)�� Z p�(x) p�(x)dx| {z }=P�� ! � J� =X� ���J� = J�:



represented by a linear combination of (a subset of) the other projection func-tions and thus, the corresponding value(s) J� can be omitted for the purpose ofreconstruction without loss of information.3 Application to labeled graphsThe object recognition system described in [1, 2, 3] represents objects as well ashuman faces by graphs whose nodes are labeled by jets. The amount of infor-mation contained in such a representation can be visualized by reconstruction.Eq. (3) and (4) provide an optimal reconstruction for any arbitrary set of linear�lter responses. However, since the coe�cients most important for reconstruct-ing a given image point are contained in the jet nearest to that point, and thenodes are su�ciently far apart, the reconstruction can be approximated by usingthe components of just that jet independent of others. This has the advantagethat only a small set of basis functions has to be computed, which can be appliedto all nodes (see Fig. 3b as an example). Each so called local reconstruction isrestricted to a Voronoi area around its location, because no interaction betweenthe basis functions of adjacent jets is taken into account. This approximated re-construction di�ers little from the exact one, and can be computed much faster(in about 4 sec. {3.5 sec. to compute the basis functions and 0.5 sec. to applythem{ compared to about 1 hour needed for the exact version on a Sparc 20).Visualization of the information stored in a labeled graph may help exposede�ciencies in the object representation. It may even help to compensate forthese de�ciencies. As an example, consider the nodes located near the outline ofan object. Their jets are not only in
uenced by the object itself but also by thebackground, because of the spatial extent of the �lters. A simple linear tranfor-mation on the image, namely the multiplication with a 2-dimensional Heavyside-function properly located, could suppress the background locally. Let us denotethis transformation by �. In order to perform the corresponding transformationdirectly on a jet, one simply has to concatenate reconstruction, background sup-pression, and retransformation to form a single linear transformation L = T �R,which can then be applied to a jet (see Fig. 2c) [10, 11].For the task of �nding a face in an image without attempting to identify theperson, a graph containing the knowledge about several other faces is used [3].For this purpose, each node is labeled with a bunch of jets, each jet extractedfrom the image of a di�erent person but at the same facial landmark (such asthe tip of the nose or the left eye). Each bunch may, for example, contain jetsfrom 100 di�erent persons. Thus, it covers a wide variety of shapes for a singlelandmark. Such a graph is called a bunch graph.During the process, in which the bunch graph is matched onto an image withan unknown face, the jet �tting best to the presented face is automatically se-lected in each bunch. A reconstruction of an image from these jets �tting bestleads to a phantom face; a face created from transformed data taken from sev-eral di�erent persons (see Fig. 3c). Phantom faces have already been introducedin [3], where they have been used for the determination of facial attributes. How-
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Fig. 2. Background suppression: (a) Scene of toys (a zebra in front of a bear and abook). (b) Reconstruction from the jet marked in (a). (c) Reconstruction of a modi�edversion of the jet marked in (a). Knowing the outline of the zebra the considered jetcan be linearly transformed to suppress the in
uence of the background.
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Fig. 3. Reconstruction from a labeled graph: (a) A face with a graph. (b) Reconstruc-tion from the labeled graph taken from the image in (a). The reconstruction is achievedby a local reconstruction of each jet restricted to a Voronoi area around its location.Some of these areas are indicated by lines. (c) The phantom face: a reconstruction ofthe jets in a bunch graph which �tted best to the image (a). The bunch graph containedjets from about 100 di�erent persons (not including the one shown in (a)). (b,c) Asthe DC-part of the chosen �lters vanishes, the absolute grey levels are missing in thereconstructed images.ever, they have not been created from jets themselves (by reconstructing them).Instead, patches of the corresponding original images have been used.4 DiscussionSensory data, e.g., visual or auditory, are preprocessed in the cortex as in manyarti�cial systems. Usually the chosen �lters applied for preprocessing are de-signed to simplify the perceptual task by transforming the original data appro-priately. Visualization of the remaining amount of information after preprocess-ing is a great help in understanding and analyzing an arti�cial or even biological
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