ANALYSIS OF THE FORMATION OF MEMORY AND PLACE CELLS IN THE HIPPOCAMPUS: A COMPUTATIONAL APPROACH

by

Torsten Neher

A thesis submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctoris (PhD) in Neuroscience

From the International Graduate School of Neuroscience

Ruhr University Bochum

October 1st 2015

This research was conducted at the Institute for Neural Computation at the Ruhr University under the supervision of Prof. Dr. Laurenz Wiskott

Printed with the permission of the International Graduate School of Neuroscience, Ruhr University Bochum
Statement

I certify herewith that the dissertation included here was completed and written independently by me and without outside assistance. References to the work and theories of others have been cited and acknowledged completely and correctly. The “Guidelines for Good Scientific Practice” according to § 9, Sec. 3 of the PhD regulations of the International Graduate School of Neuroscience were adhered to. This work has never been submitted in this, or a similar form, at this or any other domestic or foreign institution of higher learning as a dissertation.

The abovementioned statement was made as a solemn declaration. I conscientiously believe and state it to be true and declare that it is of the same legal significance and value as if it were made under oath.

Name / Signature

Torsten Neher

Bochum, 01.10.2015
PhD Commission

Chair: Prof. Dr. Stefan Wiese

1st Internal Examiner: Prof. Dr. Laurenz Wiskott

2nd Internal Examiner: Prof. Dr. Denise Manahan-Vaughan

3rd Internal Examiner: Prof. Dr. Sen Cheng

External Examiner: Prof. Dr. Allessandro Treves

Non-Specialist: Prof. Dr. Albert Newen

Date of Final Examination: 23.11.2015
CONTENTS

1.4.2 Grid-to-place transformation 30
1.5 Content of the thesis .. 31

2 Methods .. 33
2.1 The standard model .. 33
 2.1.1 Model architecture and activation function 33
 2.1.2 Learning rules .. 36
 2.1.3 Storage and recall .. 38
2.2 Alternative models .. 40
 2.2.1 Standard model without CA3 recurrence 40
 2.2.2 EC-CA1-EC model ... 40
2.3 General feedforward model .. 42
 2.3.1 Linear classification ... 43
2.4 Input .. 44
 2.4.1 Randomly firing cells 45
 2.4.2 Grid cells ... 45
 2.4.3 Weakly spatially modulated cells 46
 2.4.4 Mixture of inputs ... 48
 2.4.5 Different environments 48
 2.4.6 Recall cues ... 49
2.5 Analysis .. 49
 2.5.1 Recall evaluation .. 49
 2.5.2 Dimensionality analysis of the pattern space in CA3 ... 51
 2.5.3 Pattern separation index 51
 2.5.4 Place field analysis .. 52
 2.5.5 Cell lesioning ... 52
 2.5.6 Stability .. 53
CONTENTS

3 Models for hippocampal memory formation 55

- 3.1 Comparison to the model in Rolls (1995) 56
- 3.2 Pattern separation in DG 60
 - 3.2.1 Random input 61
 - 3.2.2 Grid cell input 61
- 3.3 Pattern completion in CA3 70
 - 3.3.1 Random input 70
 - 3.3.2 Grid cell input 74
- 3.4 The EC-CA1-EC model 74
- 3.5 Non grid cell input and different environments 80

4 Models for the formation of hippocampal spatial representations 84

- 4.1 A simple grid-to-place transformation is implausible 85
 - 4.1.1 Issues of producing realistic field sizes 85
 - 4.1.2 Weight vectors found by machine learning algorithms 87
- 4.2 Place field analysis in the EC-CA1-EC model 91
 - 4.2.1 Realistic place field sizes with weakly spatially modulated cells 91
 - 4.2.2 Lesion studies 94
 - 4.2.3 Stability 96

5 Discussion 99

- 5.1 Summary 99
 - 5.1.1 Memory formation in the hippocampus 99
 - 5.1.2 Hippocampal place cell formation out of grid cells 100
 - 5.1.3 Place cell formation in the EC-CA1-EC model 101
- 5.2 Detailed discussion 102
5.2.1 Issues with the standard model 102
5.2.2 Alternative functions for CA3 106
5.2.3 Evidence for pattern completion in CA3? 106
5.2.4 Grid cells as the only source for place cells is implausible 111
5.2.5 Alternative models for place cell formation 115
5.2.6 Role of grid cells . 119
5.2.7 Predictions of the EC-CA1-EC model 121
5.2.8 Extensions of the EC-CA1-EC model and future direc-
tions . 123
5.3 Conclusion . 124

Bibliography 126

Appendix 147
Curriculum Vitae . 148
List of Publications . 151
Acknowledgements . 152
List of Figures

1.1 The two pathways through the hippocampus 19
1.2 Parameters of a grid cell. 26

2.1 The standard model ... 34
2.2 Alternative models .. 41
2.3 General feedforward model 43
2.4 Linear classification ... 44
2.5 Modelled grid cells .. 47
2.6 Weakly spatially modulated cells 48
2.7 Modelling different environments 49

3.1 Analysis of the model by Rolls (1995) 59
3.2 Pattern separation in the DG with random input. 62
3.3 Pattern separation in the DG with grid cell input. 63
3.4 Dimensionality in CA3. 68
3.5 Recall performance of the model with random input. 71
3.6 Illustration of confused pattern completion 73
3.7 Recall performance of the model with grid input. 75
3.8 Comparison of the standard model with the simpler EC-CA1-EC model ... 76
3.9 Pattern completion in the EC-CA1-EC model 79
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>Non grid cell input and different environments</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>The issue with the simple grid-to-place transformation in feed-forward networks</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Solution of the grid-to-place transformation by a linear support vector classifier.</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Solutions of the grid-to-place transformation by logistic regression and linear regression.</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Place cells in the EC-CA1-EC model</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of lesioning different EC inputs</td>
<td>95</td>
</tr>
<tr>
<td>4.6</td>
<td>Stability of place cells</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>No pattern completion in CA3 in the double cue rotation task</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Adding non-spatial inputs to grid cells might not be sufficient to generate realistic place cells.</td>
<td>118</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Numbers and connections in the rat hippocampus 18
1.2 Comparison of place field sizes and numbers in selected studies 30
2.1 Overview of measured activity levels in hippocampal subregions 36
List of Abbreviations

CA Cornu Ammonis
DG Dentate gyrus
EC Entorhinal cortex
$kWTA$ k-Winner-take-all
LEC Lateral entorhinal cortex
MEC Medial entorhinal cortex
PCA Principal Component Analysis
PV Population vector
Nomenclature

ϵ Error rate, the proportion of bins a place cells fires erroneously.

γ learning rate for one shot learning in Eq. 2.5

C Connectivity matrix. $c_{ij} = 1 \iff$ neuron j is connected to neuron i

r Refers to a location $r = (x, y)$ in 2-d space.

V Weight matrix of the recurrent weights in CA3

W Weight matrix. w_{ij} is the strength of the connection from cell j to i

w_i Weight vector of all connections projecting to neuron i

σ_N Width (cm) of Gaussian kernel that is applied to generate weakly spatially modulated cells

$\tilde{q}(t)$ Recalled pattern in CA3 after t update cycles in the recurrent network

a_X Proportion of cells being active in region X at any given time

A_{ij} Peak rate of place field j in neuron i

$corr(p, q)$ Pearson correlation between pattern p and pattern q

$Corr_{CA1}$ Mean correlation between recalled and stored patterns in CA1
LIST OF TABLES

Corr\textsubscript{CA3} Mean correlation between recalled and stored patterns in CA3

Corr\textsubscript{EC} Mean correlation between recalled and stored patterns in EC

\(h_i\) Activation of neuron \(i\)

\(k_X\) Number of winners in region \(X\), i.e. \(k_X = a_X N_X\)

\(N_{CA1}\) Number of neurons in the CA1

\(N_{CA3}\) Number of neurons in the CA3

\(N_{DG}\) Number of neurons in the DG

\(N_{EC}\) Number of neurons in the EC

\(S_t\) Signal term given pattern \(t\)

\(X_{i,s,t}\) Crosstalk term for neuron \(i\) given pattern \(t\) arising through other stored pattern \(s\)
Abstract

The hippocampus has a crucial role in memory formation. Furthermore, it has a remarkable anatomical structure and based on physiological properties it can be divided into in the Cornu Ammonis (CA) regions CA1, CA2 and CA3, and the dentate gyrus (DG). In the last decades a standard model regarding the function of the hippocampus in memory formation has been established and tested computationally. It has been argued that the CA3 region works as an auto-associative memory and that its recurrent fibers are the actual storing place of the memories. Furthermore, to work properly CA3 requires memory patterns that are mutually uncorrelated. It has been suggested that the DG orthogonalizes the patterns before storage, a process known as pattern separation. In this thesis we review the model when random input patterns are presented for storage and investigate whether it is capable of storing patterns of more realistic entorhinal grid cell input. Surprisingly, we find that an auto-associative CA3 network is redundant for random inputs up to moderate noise levels and is only beneficial at high noise levels. When grid cell input is presented, auto-association is even harmful for memory performance at all levels. Furthermore, we find that Hebbian learning in the dentate gyrus does not support its function as a pattern separator. These findings challenge the standard framework.

We suggest the alternative view where a simpler EC-CA1-EC model is
sufficient for memory storage. We find that given biological plausible input this network outperforms the standard model in pattern completion despite its simplicity.

Furthermore, cells in the hippocampus and its input structure, the medial entorhinal cortex (MEC) are highly spatially selective. While grid cells in the MEC have multiple, regularly arranged firing fields, place cells in the CA regions mostly have single spatial firing fields. In this thesis, we investigate the formation of spatial representation in the hippocampus. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell into robust place cell firing, however experimental evidence is ambiguous. Here we point out that all current models suffer from another issue that has received little attention so far: unrealistically small place field sizes compared to those in experiments.

In the present work we use a general feedforward model and machine learning algorithms to show that it is implausible that a purely feedforward network can generate realistically sized place fields based on grid cell input alone because of the grid cells’ structured autocorrelation. These results suggest that additional mechanisms are needed for the formation of place cells. We propose that weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. We test this hypothesis on the EC-CA1-EC model. We find that despite their lack of spatial information and temporal stability weakly spatially modulated cells are able to reproduce robust place cells with realistic field sizes. Moreover, lesion studies in the model reproduce not only many puzzling experimental findings, but also make some strong and testable predictions. These results provide strong support for our hypothesis.
To conclude, with the help of a computational model that accounts for both, hippocampal memory function as well as the formation of spatial representations in the hippocampus we challenge current opinions in the hippocampal research field and provide alternative and testable suggestions.
Chapter 1

Introduction

The hippocampus is an evolutionary old brain region in mammals located in the limbic system. Compared to other brain regions it has a unique anatomy in which neurons are highly ordered in three layers. Large body of research has revealed its crucial role in memory and spatial navigation. In the following Sections we briefly describe the main features of the hippocampus. Section 1.1 is dedicated to its anatomy. Section 1.2 sketches its memory function and introduces the standard model for memory formation. In Section 1.3 we describe the spatial tuning of cells in the hippocampus and its surrounding areas, in particular we introduce place cells and grid cells. In Section 1.4 we present the well-known theory that place cell responses are derived from grid cell firing. Finally in Section 1.5, we give a short overview of the content of this thesis.

1.1 Anatomy of the hippocampus

The hippocampus has a remarkable anatomical structure. Based on cytoarchitecture it can be divided into the dentate gyrus (DG) and the Cornu
Ammonis (CA) regions CA1, CA2 and CA3 (Lorente De Nó, 1936; Anderson et al., 2007). Below, we briefly describe these regions and the main connections among them (see Fig. 1.1).

The DG area consists of a large number of granule cells that project to CA3 pyramidal cells via the so called mossy fibers. Only very few of these fibers connect to any one CA3 cell (Anderson et al., 2007, page 64ff). Because of the large size of the mossy fiber synapses and their location nearby the cell body, the mossy fibers can strongly excite CA3 cells so that just a few of them can make the cell spike (Urban et al., 2001).

CA3 and CA1 regions are densely packed with pyramidal cells. Besides cytoarchitectonic differences, the regions mainly differ in the input they receive and the regions they project to. CA3 is the only region that gets input from the DG. Moreover, it is the only region that has a striking number of recurrent connections, i.e. axons that connect onto the cells of the same region. In the rat, one CA3 cell innervates roughly 2% of the other CA3 cells (Cutsuridis et al., 2010, page 21ff). The main output of this region goes to CA1 via the Schaffer collaterals. CA1 in turn, which has almost twice as many pyramidal cells as CA3 (see Table 1.1), projects mainly to the entorhinal cortex (EC) (layer three) and the subiculum (Amaral et al., 1990; Anderson et al., 2007).

The very narrow CA2 region can be seen as the transition zone from CA3.

Table 1.1. Numbers and connections in the rat hippocampus. Data taken from (Amaral et al., 1990) and (Cutsuridis et al., 2010, page 21ff)

<table>
<thead>
<tr>
<th>Region</th>
<th>Neurons</th>
<th>Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC II</td>
<td>110,000</td>
<td>3542 to one DG (CA3) cell</td>
</tr>
<tr>
<td>DG</td>
<td>1,200,000</td>
<td>72 to one CA3 cell</td>
</tr>
<tr>
<td>CA3</td>
<td>250,000</td>
<td>6000 (8000) to one CA3 (CA1) cell</td>
</tr>
<tr>
<td>CA1</td>
<td>420,000</td>
<td>13440 to one EC III cell</td>
</tr>
</tbody>
</table>
Figure 1.1. The two pathways through the hippocampus. Illustration of the main connections in the hippocampal formation. **A**: The trisynaptic pathway EC-DG-CA3-CA1-EC pathway. **B**: The temporoammonic pathway EC-CA1-EC.
to CA1 and its existence has often been questioned (Anderson et al., 2007, p.43). CA2 pyramidal cell bodies are the same as the ones in CA3, but like CA1 cells they do not receive mossy fiber input from the DG.

The main input structure of the hippocampus is the EC, which itself can be divided into the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). Neurons in layer two of both parts project to the DG and to CA3. Neurons of layer three of the EC project to CA1, where the proximal CA1 side (the side near CA3) receives more input from the medial part and the distal side (near the subiculum) receives more input from the LEC (Igarashi et al., 2014).

In conclusion, the information flow across the hippocampus is mainly unidirectional and follows two main pathways: The so called trisynaptic pathway EC-DG-CA3-CA1-EC and the temporoammonic pathway EC-CA1-EC.

1.2 Hippocampal memory function

1.2.1 Crucial role in memory formation

The crucial role of the hippocampus in memory formation is well known. The most prominent evidence is the case study of patient H.M. whose hippocampi and nearby cortices had been removed. After surgery he had severe deficits in acquiring new episodic memory (anterograde amnesia) and in remembering events that happened shortly before the damage (retrograde amnesia) (Milner et al., 1968; Corkin, 2002). Older memories, however, have been spared from the lesions. This lead to the theory of systems consolidation (Squire and Alvarez, 1995; Frankland and Bontempi, 2005). Based on this theory new declarative memories (episodic and semantic memories) are initially encoded
in the hippocampus and then slowly transferred to the neocortex where it is permanently stored. As a result, memories become independent of the hippocampus after some time. Further research have shown that stabilized memories can become hippocampus dependent again, once the memory has been retrieved again, which lead to the theory of re-consolidation (Nader et al., 2000). Interestingly, additional studies on patient H.M. showed that many other of his cognitive abilities including some other memory functions remained intact. For example, the retention of information for short time intervals or the acquisition of new procedural memories (learning new motor skills) were unaffected (Corkin, 2002). Neuropsychological analysis on amnesic patients and functional imaging studies further confirm the importance of the hippocampus in establishing new episodic memories in humans (Burgess et al., 2002).

Impairments in memory formation can be observed in animals, too (Squire et al., 2004). A large body of studies in rodents show that the hippocampus supports spatial memories, i.e. memories of locations in relation to external landmarks, which lead to the theory that the hippocampus builds an internal 'cognitive map' of space (OKeefe and Nadel, 1978; McNaughton et al., 2006). Other work show that the hippocampus is also involved in non-spatial memories (see for example (Eichenbaum et al., 1999). For instance, rats with a lesioned hippocampus cannot associate stimuli if there is a time delay between them (Gluck and Myers, 2001).
1.2.2 The standard model of memory formation

Pattern completion in CA3

The question that arises from the previous sections is, how does the peculiar anatomical structure of the hippocampus serve memory formation? Over the years, a standard model has been developed regarding hippocampal function and it has been tested with a number of computational models (for example by Rolls (1995); Weisz and Argibay (2009)). A memory or episodic event is typically interpreted as an activation pattern of a set of neurons in the input structure of the hippocampus. Once a memory is stored in the hippocampal network, recall is modelled by initializing the network with a partial recall cue, i.e. a corrupted or incomplete version of this memory and retrieval is considered successful, if the whole pattern could be reconstructed. This process is called pattern completion.

The main idea of the standard model is that pattern completion is performed by an auto-associative memory or attractor network (Marr, 1971; McNaughton and Morris, 1987; Treves and Rolls, 1994; O’Reilly and McClelland, 1994; Rolls, 2007). An attractor network is a recurrent network equipped with so called attractor states, which are certain patterns of neural activation imprinted on its connections. Once initialized randomly, the activation pattern in the network will converge over time towards one of those patterns and will remain in this state.

Given the anatomical requirements it has been suggested that CA3 functions as such a network. It stores patterns in its recurrent connections by using an auto-associative learning rule. In this way each stored pattern becomes an attractor state in the network’s dynamics (see (Amit, 1989)). During recall a partial cue is then attracted towards the originally stored pattern.
and hence the pattern is completed as soon as the network has settled down
on the attractor. Thus, the actual storing place are the recurrent connections
and this idea explains why there are so remarkably many in CA3.

Pattern Separation in DG

An auto-associative memory can only store patterns that are not similar
or mutually correlated (Marr, 1971; Amit, 1989; Rolls, 2007). By nature,
however, the neural activation in the input region of the hippocampus, the
EC, is not uncorrelated (Hafting et al., 2005). Thus, it has been suggested
that the DG performs the so called pattern separation during the storage
phase (McNaughton and Morris, 1987; Treves and Rolls, 1994; O’Reilly and
McClelland, 1994; Rolls, 2007). It decorrelates the patterns of the EC and
projects the separated versions of the patterns to CA3 for storage. A large
number of cells with low activity and the sparse projections of mossy fibers
support pattern separation computationally (Rolls, 2007; Treves et al., 2008).
Hence, this view explains the appearance of further prominent hippocampal
characteristics. Finally, it has been proposed that the role of CA1 is to decode
the highly transformed patterns in CA3 back to their original versions in the
EC.

Since the introduction of the model, the computational functions of pat-
tern completion and pattern separation have been highly discussed. Experi-
mental studies have not only tried to find direct evidence for these operations
through neuronal recordings (see for example (Guzowski et al., 2004; Leut-
geb et al., 2007; Bakker et al., 2008), but have also reinterpreted them on a
behavioural level (see for a review (Kesner et al., 2004; Santoro, 2013)).
1.3 Spatial representations in the hippocampal formation

Besides its outstanding anatomy and its function in memory formation, the hippocampus is famous for having cells that are receptive to certain locations in space. Electrophysiological recordings have also revealed that cells in the hippocampal formation not only respond to locations but also to other high level 'stimuli'. In what follows we briefly describe the different cell types in the hippocampal formation of rodents categorized based on their preferred stimulus.

1.3.1 Place cells in the hippocampus

Probably the most prominent cell type in the hippocampus is the place cell. It is highly active when the animal is at a well defined region in the environment called place field and fires typically at low rate elsewhere (O’Keefe and Dostrovsky, 1971; Moser et al., 2008). Place cells have been found throughout all subregions in the hippocampus (O’Keefe, 1979; Leutgeb et al., 2005a, 2007) and are likely to be pyramidal cells in the CA regions (Henze et al., 2000) and granule cells in the DG (Jung and McNaughton, 1993; Leutgeb et al., 2007).

Place cells in the CA regions typically have one or two place fields, whereas in the DG cells tend to have more but smaller fields (Jung and McNaughton, 1993; Leutgeb et al., 2007). Cells have their place fields at different locations such that across the population the entire physical space is covered and the location of the animal can be reconstructed accurately by monitoring the firing rates of a small set of place cells (Wilson and McNaughton, 1993; Zhang et al., 1998).
Field sizes express a fair amount of variance within animals (Mizuseki et al., 2012), but the average place field size increases from dorsal sites to ventral sites (Jung et al., 1994; Maurer et al., 2005; Kjelstrup et al., 2008) of the hippocampus.

Almost all pyramidal cells can exhibit place fields, but only a fraction of them do so in any given environment (see Table 2.1 in Methods). Apparently, there is no relationship between the subset of cells that are active and locations of their place fields across environments (O’Keefe and Conway, 1978; Thompson and Best, 1989; Alme et al., 2014).

The location of place fields can be very stable between different visits in the same environment (Thompson and Best, 1990; Moser et al., 2008). They can also be remarkably robust against the removal of some environmental cues (O’Keefe and Conway, 1978; Moser et al., 2008). However, due to some changes to the environment they can alter their firing rates, a process called rate remapping (Anderson and Jeffery, 2003; Leutgeb et al., 2005a). Moreover, due to larger manipulations of the environment an entire new set of active cells can be recruited and cells active in both environments can change their firing location. This phenomenon is called global remapping (Bostock et al., 1991; Leutgeb et al., 2004; Alme et al., 2014).

1.3.2 Grid cells in the MEC

Contrary to hippocampal place cells grid cells in the medial entorhinal cortex have several place fields highly ordered on a hexagonal grid (Fyhn et al., 2004; Hafting et al., 2005). This grid pattern can be described by three properties: its orientation, its spatial phase and its grid spacing (Fig. 1.2).

The grid orientation is the orientation of the grid axes relative to some reference direction and is by definition between 0 and 60 degrees. The spa-
Figure 1.2. Parameters of a grid cell. When the firing rates of a cell are plotted over space, one gets the so called rate map of the cell. The figure shows the rate map of a modelled grid cell in a 2 m by 1 m rectangular environment. Red indicates high firing rates and blue low firing rates. One can define a grid cell by three parameters: the grid orientation θ (relative to an arbitrarily defined direction), the spacing between two vertices s, and the spatial offset or phase (x, y).

The spatial phase specifies the spatial offset of the grid pattern with respect to a reference point. Finally, the spacing is defined as the distance between two neighbouring vertices on the hexagonal grid (on a hexagonal grid this distance is constant among all pairs of neighbouring vertices). The sizes of the place fields that are located at the grid vertices scale proportionally with the cell’s grid spacing (Hafting et al., 2005, Fig.S4G).

Initially, it has been thought that grid spacings increase continuously from dorsomedial to ventrolateral locations of the MEC (Hafting et al., 2005) mirroring the increase of size of place fields along the dorsoventral axis in the hippocampus. Recent findings, however, suggest that grid cells are organized in discrete modules with similar spacings and orientations and that modules with small spacings are predominantly in dorsal regions and modules with large spacings in more ventral entorhinal areas (Barry et al., 2007; Stensola et al., 2012). The spatial phase appears to be uniformly distributed in all modules and a topography has not been found yet (Moser et al., 2008, 2014).
Like place cells, grids cell patterns are remarkably stable during repeated exposure to the same environment (Hafting et al., 2005). Moreover, when exposed to a novel environment grid patterns remap. The offsets shift randomly and the patterns rotate by random amounts, whereby cells recorded at the same location rotate coherently (Fyhn et al., 2007). The spacings of the cells are constant across environments, however, during the first days of exposure they are larger (Barry et al., 2012). Interestingly, this remapping appears to occur exactly, whenever global remapping in the hippocampus is observed (Fyhn et al., 2007; Barry et al., 2012).

1.3.3 Other cell types in the MEC

Besides grid cells a few other cell types have been found in the MEC. Two prominent examples are head direction cells and border cells.

A head direction cell has a preferred direction, i.e. it fires only rapidly when the animal’s head is pointing into this direction independently of the current location of the animal (Taube et al., 1990a,b; Sargolini et al., 2006). Across the MEC population a full range of directions is presented and it is possible to reconstruct the animals head direction accurately just by monitoring the firing rates of a small number of head direction cells (Zhang, 1996; Johnson et al., 2005)

Border cells, also known as boundary cells, are active whenever a boundary is at a particular distance and direction from the animals location (Solstad et al., 2008; Savelli et al., 2008) independently of head direction. When a second boundary is inserted to the environment they express a further place field at the same distance and direction to the new boundary.

Head direction cells and border cells, as well as grid cells maintain their firing behaviour in darkness (Taube et al., 1990a; Hafting et al., 2005; Lever
et al., 2009) and rotate coherently when polarising visual stimuli are moved (Knierim et al., 1995; Hafting et al., 2005; Sargolini et al., 2006; Solstad et al., 2008). This suggest that these cell types are coupled to sensory input and that they are influenced by self-motion cues.

Additionally, many spatially and non-spatially selective cells are observed in the MEC that do not fit into the three categories above (Krupic et al., 2012; Zhang et al., 2013). Roughly estimated, around 30% of MEC cells are grid cells, 20% are head direction cells and less than 10% are border cells (Solstad et al., 2008; Krupic et al., 2012; Zhang et al., 2013).

1.3.4 Cells in the LEC

In contrast to the MEC, cells in the LEC express only little spatial selectivity and carry much weaker self-motion information (Neunuebel et al., 2013).

Recordings have shown that single LEC cells in the rat are receptive to individual items such as odours (Young et al., 1997) or objects (Zhu et al., 1995b,a; Deshmukh and Knierim, 2011). In the monkey they respond to pictures of objects and their location on the monitor (Suzuki et al., 1997).

Thus, when a rat explores an environment with only few objects, cells carry much less spatial information compared to the MEC and rate maps are less stable between visits to the same environment (Hargreaves et al., 2005). This is also true in environments containing many spatial landmarks (Yoganarasimha et al., 2011). Nevertheless, the LEC signal still carries some amount of spatial information (Neunuebel et al., 2013).

In environments that are enriched with some objects, spatial information reaches the level of grid cells (Deshmukh and Knierim, 2011). Here, additional to cells receptive to individual objects, a small number of cells fire like hippocampal place cells at regions where the animal had never experienced
an object. Other cells fire at locations where an object has been removed and this memory response can last for days to weeks (Tsao et al., 2013).

1.4 From grid cells to place cells

1.4.1 Grid cells may be responsible for place cell firing

Both grid cells and place cells are similarly dependent on landmarks and boundaries of the environment. They exhibit stable firing pattern during repeated visits of the same environment (Thompson and Best, 1990; McNaughton et al., 2006), are robust to the removal of some environmental cues (O’Keefe and Conway, 1978; Hafting et al., 2005), mostly preserve their firing maps in darkness (Quirk et al., 1990; Zhang et al., 2014), rotate their spatial firing maps in concert with the displaced landmark (Muller and Kubie, 1987; Hafting et al., 2005), rescale the size of the place fields when the environment is expanded (O’Keefe and Burgess, 1996; Barry et al., 2007) or becomes familiar to the animal (Mehta et al., 1997; Lee et al., 2004a; Barry et al., 2012), and their representation remap simultaneously (Fyhn et al., 2007; Barry et al., 2012). Moreover, the field sizes of both cell types increase along the dorsoventral axis (Fyhn et al., 2007; Kjelstrup et al., 2008), consistent with topographic projections from EC to the hippocampus along the same axis (Dolorfo and Amaral, 1998; Honda et al., 2012).

Because of these similarities and since grid cells are found just one synapse upstream from place cells, it has been suggested by many scientists that the former is responsible for the activation of the latter (for example (Fuhs and Touretzky, 2006; McNaughton et al., 2006; Rolls et al., 2006; Solstad et al., 2006; Blair et al., 2007; Franzius et al., 2007), but see (Moser et al., 2008)).

However, some experimental evidence has accumulated that place cells
emerge without the drive of grid cells (Wills et al., 2010; Langston et al., 2010; Koenig et al., 2011; Brandon et al., 2011) and other suggestions of place cell formation exists. For example some authors propose that place cells are the product of border cells (Hartley et al., 2000; Burgess et al., 2000) or others even argue vice versa that place cells trigger grid cells (Castro and Aguiar, 2014).

1.4.2 Grid-to-place transformation

Quite a few theoretical models have shown that it is possible to create a place cell population out of the activation of grid cells in a simple feedforward network by competitive learning (Rolls et al., 2006; Si and Treves, 2009), through competitive cell activation (de Almeida et al., 2009), by a Fourier transformation (Solstad et al., 2006), by defining weights in a specific manner (Azizi et al., 2014), by Hebbian learning (Savelli and Knierim, 2010), by independent component analysis (Franzius et al., 2007) or by applying linear regression (Blair et al., 2007). However, all these methods either produce place fields of limited size (see Table 1.2) or, in the case of linear regression, are highly sensitive to noise (Cheng and Frank, 2011).

Table 1.2. Comparison of place field sizes and numbers in selected studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Field Size</th>
<th>Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (ICA)</td>
<td>very small</td>
<td>≈ 1</td>
<td>Franzius et al. (2007)</td>
</tr>
<tr>
<td>Model (competitive learning)</td>
<td>350cm²</td>
<td>1.2</td>
<td>Si and Treves (2009)</td>
</tr>
<tr>
<td>Model (competitive activation)</td>
<td>627cm²</td>
<td>1.5</td>
<td>de Almeida et al. (2009)</td>
</tr>
<tr>
<td>Model (random weights; CA3)</td>
<td>290cm²</td>
<td>1.1</td>
<td>de Almeida et al. (2012)</td>
</tr>
<tr>
<td>Model (predefined weights)</td>
<td>< 420cm²</td>
<td>1</td>
<td>Azizi et al. (2014)</td>
</tr>
<tr>
<td>Measurement DG</td>
<td>< 900cm²</td>
<td>3-4</td>
<td>personal communication with Edvard Moser</td>
</tr>
<tr>
<td>Measurement CA3</td>
<td>1275cm²</td>
<td>1.5</td>
<td>Mizuseki et al. (2012)</td>
</tr>
<tr>
<td>Measurement CA1</td>
<td>1725cm²</td>
<td>1.4</td>
<td>Mizuseki et al. (2012)</td>
</tr>
</tbody>
</table>
CHAPTER 1. INTRODUCTION

The average place field size in the noise robust models roughly corresponds to the small place field size of granule cells in the rat dentate gyrus. However, in the CA-regions place fields are significantly larger (Mizuseki et al., 2012) and to the best of our knowledge there are no ‘grid to place’ models that reproduce robust fields of these sizes.

1.5 Content of the thesis

The goal of this thesis is to present a unifying computational model that accounts for both, hippocampal memory function and the formation of spatial representations in the hippocampus.

The prominent standard model described in Section 1.2.2 explains only memory formation but ignores the appearance of hippocampal spatial representations. In Chapter 3 we review the standard model and we reveal computational inefficiencies. In particular, when neural patterns in the EC resemble more realistic grid cell activity instead of random activity, an auto-associative CA3 network is harmful for memory performance. This is in contradiction to the ideas of the standard model and challenges it seriously. Therefore we propose an alternative model that patterns are stored in the feedforward connections of the temporoammonic pathway EC-CA1-EC and we show that this model is indeed more efficient in pattern completion.

In Chapter 4 we focus on the formation of hippocampal spatial representations. Many models argue that place cells are triggered by grid cells in a feedforward network. We study the general structure of such a network that all models have in common and we show that it is not plausible that a simple feedforward model creates robust place fields of realistic size as found in the CA regions of rodents. As an alternative model we propose that place cells
are mainly triggered by other entorhinal cell types that are weakly spatially modulated. We test this hypothesis on the EC-CA1-EC model, which we introduced in Chapter 3. We found that the model can produce large and robust place fields. Moreover, it reproduces many other place cells characteristics as well as results from studies in lesioned animals and makes some strong predictions.

Thus, we present a simple model that outperforms the more complex standard model in memory formation. At the same time this model reproduces hippocampal place cell characteristics and overcomes the issue of creating robust place fields of realistic size.

In Chapter 2 we describe the methods we use. In particular, the model is described in detail there. Finally, we discuss our results in Chapter 4.
Chapter 2

Methods

2.1 The standard model

2.1.1 Model architecture and activation function

The model consists of the regions EC, DG, CA3 and CA1. Cell numbers N_{EC}, N_{DG}, N_{CA3} and N_{CA1} in each region and numbers of connections one cell in a downstream region receives from an upper region are summarized in Fig 2.1. Cell numbers and numbers of connections are derived from rat data (Amaral et al., 1990; Cutsuridis et al., 2010, and see Table 1.1) and scaled down by 100 and 10, respectively. Dividing the number of connections per cell by 100, too, would lead to CA3 cells that do not receive any input from the DG. On the other hand, leaving this number constant would result in triple connections among cell pairs in the network. Thus, we choose to scale by a value between the two extremes. Cells in our model have continuous firing rates with the exception of CA3 cells, which are binary, i.e., they either fire and have the value 1 or are silent and have the value 0. This is in line with Rolls (1995), where CA3 does not work well with continuous firing rates.
Figure 2.1. The standard model. The four subregions EC, DG, CA3 and CA1 are modelled. \(a \) denotes the proportion of cells being active at any given time. Arrows indicate connectivity among regions. Black ones are random and fixed connections, green ones are plastic and adjusted during learning. The number next to the arrows show the number of connections one cell in the downstream region has with the upstream region.

(Rolls, 1995).

A pattern \(\mathbf{p} \) of neural activation, for example, \(\mathbf{p} \in \mathbb{R}^{N_{EC}} \) in the EC triggers neural activity in a downstream region, e.g., in the DG, via the connections as follows: First, the activation \(h_i \) of the output cell \(i \) is calculated by the standard weighted sum of its inputs

\[
h_i = \sum_{j=1}^{N} w_{ij} p_j,
\]

where \(w_{ij} \) is the strength of the connection from cell \(j \) to cell \(i \) and is defined as 0 whenever this connection is not existent.

To determine the firing of a cell a simple \(k \)-Winner-Take-All (\(k \)WTA) mechanism is applied: After calculating the activation of all cells of that
region, the \(k \) cells with the highest activation are either set to 1 or to \(h_i \) whenever they are continuous. The others are inhibited and set to 0. The number \(k \) is determined by the sparsity \(a \) of that region, i.e \(k = aN \). For instance, the pattern of neural activity \(q \in \mathbb{R}^{N_{DG}} \) in the DG is

\[
q_i = \begin{cases}
 h_i & \text{if } h_i \text{ is among the } k \text{ highest } \{h_j : 1 \leq j \leq N_{DG}\} \\
 0 & \text{otherwise.}
\end{cases}
\]

(2.2)

Thus, inhibitory cells are not modelled explicitly but rather through their effect on a population level (Roudi and Treves, 2008; Moustafa et al., 2009; Rennó-Costa et al., 2010; Appleby et al., 2011; Monaco and Abbott, 2011).

In order to determine the sparsity \(a \) in one region (the proportion of cells being active at each location) we multiply the average proportion of cells being active in the entire environment by the average proportion of the environment a cell is typically active in. We have estimated the average proportion of cells being active in the entire environment by referring to several studies that count active cells by immediate early genes (Vazdarjanova and Guzowski, 2004; Alme et al., 2010; Marrone et al., 2011; Satvat et al., 2011) or by electrophysiological recordings (Leutgeb et al., 2004; Lee et al., 2004b). Individual reports are summarized in Table 2.1 and yield average activity levels of 2.9% in the DG, 22.7% in CA3 and 42.7% in CA1 across the enclosure. To estimate the average proportion of the environment a cell is active in we use data from recordings within a 1m\(^2\) apparatus (Leutgeb et al., 2004, Supplementary Table 1) and we obtain a coverage of 14% of a CA3 cell, and 21% of a CA1 cell. A typical DG cell has 3-4 fields and a field size smaller than 900cm\(^2\) (personal communication with Edvard Moser) which brings us to an estimation of 27% coverage. Multiplying the proportion of cells being active across the environment by the proportion of the environment one active
Table 2.1. Overview of measured activity levels in hippocampal subregions. The table shows an overview of selected studies which measure the activity levels in hippocampal subregions either by electrophysiological recordings or by immediate early genes (IEG). Last column shows percentage of cells active in one environment.

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Active cells %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satvat et al. (2011) (Fig. 3)</td>
<td>IEG</td>
<td>3</td>
</tr>
<tr>
<td>Marrone et al. (2011) (Fig. 5)</td>
<td>IEG</td>
<td>3-4</td>
</tr>
<tr>
<td>Alme et al. (2010) (Fig. 7)</td>
<td>IEG</td>
<td>2.2</td>
</tr>
<tr>
<td>Vazdarjanova and Guzowski (2004) (Fig.3c)</td>
<td>IEG (Arc, Homer1)</td>
<td>18</td>
</tr>
<tr>
<td>Leutgeb et al. (2004)</td>
<td>Electrophysiology</td>
<td>17-32</td>
</tr>
<tr>
<td>Lee et al. (2004b)</td>
<td>Electrophysiology</td>
<td>26</td>
</tr>
<tr>
<td>Vazdarjanova and Guzowski (2004) (Fig.3c)</td>
<td>IEG (Arc, Homer1)</td>
<td>35</td>
</tr>
<tr>
<td>Leutgeb et al. (2004)</td>
<td>Electrophysiology</td>
<td>48-66</td>
</tr>
<tr>
<td>Lee et al. (2004b)</td>
<td>Electrophysiology</td>
<td>36</td>
</tr>
</tbody>
</table>

cells fires leads to the activation level at one location given by a (see Fig 2.1).

For the EC we calculated the average coverage of a grid cell to be 35% using data from Hafting et al. (2005) and assume that a grid cell is active in every environment (Hafting et al., 2005; Fyhn et al., 2007). This value is similar to the estimation made by other authors publishing a computational model (de Almeida et al., 2009).

2.1.2 Learning rules

To store patterns in the network the plastic weights among subregions (green arrows in Fig 2.1) are adjusted by three related Hebbian learning rules. Let C denote the connection matrix of two regions, i.e., $c_{ij} = 1$ if there is a connection from cell j to i and $c_{ij} = 0$ otherwise.

For the connections EC to CA3, CA3 to CA1, and CA1 to EC a rule for hetero-association is used. Let $\{p^{(s)} : 1 \leq s \leq M\}$ be the set of M input
patterns and \(\{ q^{(s)} : 1 \leq s \leq M \} \) be the set of output patterns, then the connection strength is defined according to the so called Stent-Stinger rule (Stent, 1973)

\[
w_{ij} = c_{ij} \sum_{s=1}^{M} (p_j^{(s)} - \bar{p}_j)q_i^{(s)},
\]

where the connection from cell \(j \) to \(i \) is the sum over all patterns \(s \) of firing \(p_j^{(s)} \) of input cell \(j \) subtracted by its mean \(\bar{p}_j \) times the firing \(q_i^{(s)} \) of cell \(i \). The factor \(c_{ij} \) assures that non-existing connections remain at zero weight.

For the synaptic weight matrix \(V \) of the recurrent weights in CA3 the co-variance rule is used (Sejnowski, 1977) to learn an auto-association among a set of patterns \(\{ p^{(s)} : 1 \leq s \leq M \} \)

\[
v_{ij} = c_{ij} \sum_{s=1}^{M} (p_j^{(s)} - \bar{p}_j)(p_i^{(s)} - \bar{p}_i).
\]

By subtracting the mean the two learning rules model LTP and LTD. Furthermore the subtraction is essential for computational reasons (see for example (Amit, 1989, chapter 8.2)).

Finally, the connections from EC to DG are altered by a one shot competitive learning rule. Here, the current input pattern \(p \) first triggers a firing pattern \(q \) in the downstream region according to the equations above. Synapses are then changed by

\[
w_{ij} = c_{ij}(w_{ij}^{\text{old}} + \gamma p_j q_i),
\]

where \(\gamma \) is a constant learning rate. After applying equation (2.5) the Euclidean norm of vector \(w_i \) of incoming weights to cell \(i \) is normalized to one to assure that not always the same cells get activated. These rules are adopted
CHAPTER 2. METHODS

from Rolls (1995) to keep the model as similar as possible to that one.

After hetero-association of \(\{ p(s) : 1 \leq s \leq M \} \) with \(\{ q(s) : 1 \leq s \leq M \} \) by applying equation (2.3) between some regions, given pattern \(p^{(t)} \) as the present input we can rewrite the activation \(h_i^{(t)} \) as

\[
\begin{align*}
\textstyle h_i^{(t)} & \overset{(2.1)}{=} \sum_{j=1}^{N} w_{ij} p_j^{(t)} \\
& \overset{(2.3)}{=} \sum_{j=1}^{N} c_{ij} \sum_{s=1}^{M} (p_j^{(s)} - \bar{p}_j) q_i^{(s)} p_j^{(t)} \\
& = q_i^{(t)} \sum_{j=1}^{N} c_{ij} (p_j^{(t)} - \bar{p}_j) p_j^{(t)} + \sum_{s \neq t} q_i^{(s)} \sum_{j=1}^{N} c_{ij} (p_j^{(s)} - \bar{p}_j) p_j^{(t)} \\
& \approx q_i^{(t)} \left[\frac{(p^{(t)} - \bar{p})^T p^{(t)}}{S_t} + \sum_{s \neq t} c \frac{(p^{(s)} - \bar{p})^T p^{(t)}}{X_{(i,s,t)}} \right],
\end{align*}
\]

where \(c \) is the proportion of cells one output cell is connected to in the input layer. Thus, we can write the activation of cell \(i \) as the sum of a signal term \(q_i^{(t)} S_t \) which comes from the weights arising from the storage of pattern \(p^{(t)} \) and the crosstalk terms \(X_{(i,s,t)} \) which come from the contribution of the other stored patterns in which this cell was active (Willshaw and Dayan, 1990)

\[
h_i^{(t)} \approx q_i^{(t)} S_t + \sum_{s \neq t} X_{(i,s,t)}.
\]\n
Ideally, the activation is high if and only if the cell has fired in pattern \(q^{(t)} \).

2.1.3 Storage and recall

Storing a pattern \(p \) of entorhinal activation in the network is done as follows. First, this pattern triggers neural activity in the DG which in turn triggers a pattern in the CA3 region via equations (2.1) and (2.2). Thus, during
storage, activity in CA3 is only influenced by the mossy fiber input from the DG. The connections from EC to DG are altered by the competitive learning rule (equation (2.5)) for pattern separation. Hence, for the next pattern the connections are different than for the current pattern. Furthermore, p drives an activity pattern in CA1. Now, the pattern in CA3 is hetero-associated with p in EC, auto-associated in the recurrent connections in CA3, and hetero-associated with the pattern in CA1. Finally, the CA1 activity is hetero-associated with p in the EC.

After the storage of all patterns the network is presented a recall cue by setting entorhinal activity to a noisy version \hat{p} of a previously stored pattern. This activity triggers a pattern $\tilde{q}(0)$ in CA3 directly via the previously learned weights from EC to CA3. The pattern then runs through 15 activation cycles of the auto-associative network in CA3 while leaving the input from EC clamped. In more detail, for the t-th cycle the activation of CA3 cell i is

$$h_i(t) = \alpha \sum_{j=1}^{N_{EC}} w_{ij}^{EC-CA3} \hat{p}_j + \beta \sum_{j=1}^{N_{CA3}} v_{ij} \tilde{q}_j(t - 1),$$

(2.11)

where α and β are constant factors set to 1 and 3 and $\tilde{q}(t)$ is determined by the k-WTA mechanism described in equation 2.2. Hence, during recall CA3 activity is dominated by the recurrent connections and the DG is not involved anymore. The resulting pattern $\tilde{q}(15)$ triggers a pattern in CA1, which in turn determines the output pattern in the EC via the learned weights from CA3 to CA1 and CA1 to EC, respectively.

\[^1\text{we have verified that after 15 cycles the results have converged.}\]
2.2 Alternative models

2.2.1 Standard model without CA3 recurrence

In Chapter 3 we compare the recall ability of the standard model to the ability of two alternatives. Firstly, to determine how effective the CA3 recurrent connections are, we perform simulations of a network without these connections (Fig. 2.2A). Here, the pattern \(\tilde{q}(0) \) defined in Section 2.1.3 is directly transferred to CA1 during recall without undergoing the activation cycles of the auto-associative network in CA3. The result of these simulations are indicated by dashed lines throughout the figures in Chapter 3.

2.2.2 EC-CA1-EC model

Secondly, we investigate the ability of a minimal EC-CA1-EC model to store patterns (Fig. 2.2B). In this model, during storage, activity in CA1 is triggered by input from the EC-CA3-CA1 pathway, without any plasticity in these connections. The CA1 patterns are then hetero-associated with the original input patterns in the connection weights EC-CA1 and CA1-EC, so in contrast to previous models the EC-CA1 connections are now plastic. During the recall phase the recall cue is transferred to CA1 via the temporoammonic pathway (EC-CA1) and from there back to EC. The result of these simulations are indicated by magenta lines throughout the figures in Chapter 3.

Since it will come out that this simpler model performs best, we further investigate its ability of creating robust and realistic sized place fields in Chapter 4.

Besides the architecture outlined above, parameters do not change across simulations except in section 'Comparison to the Model in Rolls (1995)'. All
Figure 2.2. Alternative models. A: The standard model without recurrent connections in CA3. Here, patterns are stored only in the remaining plastic feedforward connections (in green). B: The EC-CA1-EC model. Only the connections from EC to CA1 and from CA1 to EC are plastic. During storage CA1 patterns are triggered by CA3. During recall the cue in EC is projected to CA1 directly via the EC-CA1 connections and is then reconstructed in EC via the CA1-EC connections.
parameter changes there are described in the main text.

2.3 General feedforward model

In Chapter 4 we study an additional generic model to investigate whether it is possible to generate realistic place fields in a feedforward network, in principle, based solely on grid cell input (Fig. 2.3). The network consists of an input layer containing grid cells and an output layer containing purported place cells. We denote the population vector (PV) of grid cell activity at location \(r \) as \(p(r) \). Each output cell \(i \) is activated by grid cell inputs weighted by the vector \(w_i \).

\[
h_i(r) = w_i^T p(r) \quad (2.12)
\]

To determine when the output cell fires spikes, a monotonic activation function \(f(h_i) \) is applied. Suppose cell \(i \) has a place field at location \(r_i \) with radius \(R_i \). If we want the neuron to fire spikes inside the field and not elsewhere, then the activation \(h_i(r) \) must be higher within the field than outside it, since the activation function \(f \) is monotonic. Hence, there must be some threshold \(c \) such that

\[
\begin{align*}
& w_i^T p(r) \geq c \quad \forall r : ||r - r_i|| \leq R_i \\
\land & w_i^T p(r) < c \quad \forall r : ||r - r_i|| > R_i.
\end{align*}
\]

(2.13)

Up to here, the model is general and subsumes several previous models (Rolls et al., 2006; Solstad et al., 2006; Blair et al., 2007; Si and Treves, 2009; de Almeida et al., 2009; Savelli and Knierim, 2010; Azizi et al., 2014). Specific models differ only in the activation function and in the way the weights are set up.
Figure 2.3. General feedforward model. A: Magenta arrow illustrates a population vector \(\mathbf{p} \) at some location. The components of the vector are the firing rates of the cells at that location. B: Sketch of the general model. At each location the firing of the downstream cell is determined by a monotonic function \(f \) of the sum the grid cell inputs \(\mathbf{p} \) weighted by connections weights \(\mathbf{w} \). Ideally, this results in a place field.

2.3.1 Linear classification

We can regard the problem of finding the weight vector and threshold fulfilling Eq. 2.13 as a linear classification problem. A putative weight vector defines a hyperplane in the input space and classifies the PVs into two classes depending on which side of the plane the PV is located (see Fig. 2.4). An optimal weight vector, which fulfills Eq. 2.13, splits the input space such that on one side are all PVs referring to locations within the place field and on the other side are all PVs located outside the place field.

Linear classification is well studied and there are some established machine learning algorithms. We apply a linear support vector machine to find the weight vector and threshold for circular place fields with a radius of 10cm, 25cm and 35cm. This classifier does not only find a solution when it exists, but also returns the solution that is most robust, in the sense that the distance from the nearest PVs to the hyperplane is maximal (see for example (Hastie et al., 2009, chapter 4.5.2)).
CHAPTER 2. METHODS

Figure 2.4. Linear classification. Cartoon that shows 40 PVs of a population of two neurons. Colours indicate whether the location of the PV is inside a given place field or outside the place field. In this example the vector \mathbf{w} is able to separate the two classes perfectly.

Additionally, to make sure the results obtained by the linear support vector machine are not dependent on the choice of the algorithm, we apply two more linear classification algorithms for the largest place field size: Linear and logistic regression. For all algorithms we use the implementation of the python package sklearn (Pedregosa et al., 2011). We refer the reader to (Hastie et al., 2009, chapter 4) for detailed information about the algorithms.

2.4 Input

For the study of memory formation in Chapter 3 we investigate the storage of three different kinds of patterns in the EC. Patterns made of randomly firing cells, patterns made of grid cells and patterns made of a mixture of grid cells and weakly spatially modulated cells. To do so we build a 1m by 1m virtual square environment discretized into 400 locations. For every cell a
rate map is defined which determines the cell’s firing rate at each location in the environment. After the rate maps have been created as described below, 252 locations are drawn randomly. At each of them firing rates of all cells but the k ones with the highest activation are set to zero as in equation (2.2) to control for sparsity. The resulting PV is considered a pattern for storage.

In the study of place cell formation in Chapter 4 patterns are made of grid cells and of a mixture of grid cells and weakly spatially modulated cells. Here, a 2m by 1m virtual environment is created and discretized into $2.5 \times 2.5 \text{cm}^2$ bins (3200 locations) to match the methods in (Stensola et al., 2012) closely. Controlling for sparsity is not necessary and a kWTA mechanism is not applied to the input.

2.4.1 Randomly firing cells

At every location cell activity h_i of a randomly firing cell is sampled from a normal distribution with mean and variance equal to 1.

2.4.2 Grid cells

We model the grid cell population closely to data recorded in (Stensola et al., 2012). This data is obtained from recordings in the dorsal MEC covering up to 50% of the dorsoventral axis. Thus, we model the input to a typical dorsal cell in the hippocampus, since the projections to the hippocampus are topographic along this axis (Dolorfo and Amaral, 1998; Honda et al., 2012). As in previous models (Savelli and Knierim, 2010; Appleby et al., 2011; Neher et al., 2015b), the activity of each grid cell is made up of multiple firing fields arranged in a hexagonal grids. We divide the grid cell population into four modules. Cells in the same module have similar grid spacings and orientations, which were drawn from normal distributions (Figs. 2.5). The
grid spacings in the four modules have a mean of 38.8, 48.4, 65 and 98.4 cm (Stensola et al., 2012, Fig 1D) and a common standard deviation of 8 cm. The orientations have means of 15, 30, 45 and 60 degrees and a standard deviation of 3 degree. Most grid cells (87\%) belong to the two modules with small spacings (see Fig. 2.5B) (Stensola et al., 2012). The offset of a grid cell is chosen randomly. The activation of grid cell i at location $r = (x, y)$ is determined by

$$p_i(r) = A_{ij} \exp \left[-\ln(5) \left(\frac{d(r)}{\sigma_i} \right)^2 \right],$$

(2.14)

where d is the Euclidean distance to the nearest field center j and A_{ij} is the peak rate in that field, $\sigma_i = 0.32s_i$ is the radius of the firing field and s_i the spacing of the cell. Thus, the activation is A_{ij} in the center and $1/5A_{ij}$ at the border of a field, which is motivated by the definition of a place field (Hafting et al., 2005). The relationship between σ_i and s_i is derived from (Hafting et al., 2005, Fig. S4G). The peak firing rates A_{ij} are distributed uniformly between 0.8 and 1.2.

2.4.3 Weakly spatially modulated cells

An abstract model of EC cells that are not grid cells are weakly spatially modulated cells (Neher et al., 2015a). The rate map of such a cell is created by assigning to each location a random activation drawn from a uniform distribution between 1 and 0. The map is then smoothed with an isotropic Gaussian kernel. The standard deviation of the smoothing kernel σ_N varies from 1 to 16 cm. Firing rates are then normalized such that they are between zero and one. Examples of rate maps produced by different kernel widths are shown in Fig. 2.6A. As the default, we chose $\sigma_N = 6$ cm, which matches roughly the spatial information of cells in rat LEC (Hargreaves et al., 2005;
Yoganarasimha et al., 2011) (see Fig. 2.6B).

Note that we do not claim that weakly spatially modulated cells respond to the spatial location of the animal *per se*, instead we think it is likely that these cells respond to other stimuli that happen to be located in a particular spatial location. For some cells, such as border cells (Solstad et al., 2008), these stimuli are known, but for many other EC cells the preferred stimuli remain unknown. Deshmukh and Knierim (2011) have shown that cells in the LEC, which does not contain grid cells tend to have several pseudo place fields that actually code for specific objects. In (Rennó-Costa et al., 2010) LEC cells are modelled similarly as the weakly spatially modulated cells. There, the cell’s rate map has specific active and non-active regions.
CHAPTER 2. METHODS

Figure 2.6. Weakly spatially modulated cells. A: Examples of weakly spatially modulated cells created with different kernel sizes σ_N (shown on the left). The numbers above each panel indicate the spatial information of the rate map. B: Cumulative density function (cdf) of spatial information for different kernel sizes. Black line shows the observed distribution in the rat LEC (Hargreaves et al., 2005)

2.4.4 Mixture of inputs

To study the effect of non-grid cells to the models, we apply a mixture of inputs in some simulations. Here, the EC consists of grid cells as well as weakly spatially modulated cells. Since the proportion of grid cells and non-grid cells in the EC is not clear, we parametrized it and performed simulations with various proportions of grid cells.

2.4.5 Different environments

To study the effect of global remapping, input patterns from different environments are stored in some simulations. Here, each input cell has a rate map for each environment. For a grid cell, its rate map is computed by rotating and shifting its grid structure defined in the first environment, where the rotation angle and shifting vector is the same for the cells from the same module. This is inspired by the results of (Fyhn et al., 2007), where they
find a coherent remapping in cells recorded at the same location in the MEC. For a weakly spatially modulated cell we define a completely new map for each environment in the same way as for the first map. Examples of input cells and their remapping are shown in Figs 2.7.

2.4.6 Recall cues

To test for pattern completion in Chapter 3, a noisy version of a stored pattern is created, which we call recall cue. For each noisy pattern a subset of cells is selected randomly to fire incorrectly by setting its rate to that of an arbitrary other cell in that pattern. The quality of the cue is controlled by the number of cells that fire incorrectly and is measured by the Pearson correlation between original pattern and the recall cue.

2.5 Analysis

2.5.1 Recall evaluation

Memory performance is determined by the network’s ability to perform pattern completion. In more detail, after storage, patterns are presented to the
network again, but now in a corrupted version called recall cue (see Section 2.4.6). If the network’s output is more similar to the original pattern than its cue was, then the network has done some amount of recall. As a measure for similarity we use the Pearson correlation coefficient. For instance, the correlation between the originally stored pattern p in the EC and the reconstructed one \tilde{p} is defined as:

$$\text{Corr}(p, \tilde{p}) = \frac{(p - \bar{p})^T(\tilde{p} - \bar{\tilde{p}})}{\|p - \bar{p}\| \cdot \|\tilde{p} - \bar{\tilde{p}}\|}, \quad (2.15)$$

where \bar{p} and $\bar{\tilde{p}}$ are the means of p and \tilde{p}, respectively. The higher this correlation is, the more similar is the recalled pattern to the original one. Furthermore, we define the average correlation over all stored patterns $\{p^{(s)} : 1 \leq s \leq M\}$ as

$$\text{Corr}_{EC} = \frac{1}{M} \sum_{s=1}^{M} \text{Corr}(p^{(s)}, \tilde{p}^{(s)}). \quad (2.16)$$

We perform simulations where we alter the quality of the recall cue and we illustrate the memory performance by plotting Corr_{EC} over the quality of the cues, i.e. the average correlation the cues have with the original patterns. Measurements above the main diagonal then show that the output of the network is on average more similar to the stored patterns than the cues. Hence, the more the measurements are above the diagonal, the better is the performance. To investigate how much pattern completion each sub-region contributes to the overall performance, we similarly define Corr_{CA3} and Corr_{CA1}.
2.5.2 Dimensionality analysis of the pattern space in CA3

To better understand pattern completion in the EC-CA3 network we investigate the dimensionality of the space where the recalled CA3 patterns are located in. Since we store 252 patterns each having 2500 entries, the maximal dimensionality of the space is 252. However, due to correlations the actual dimensionality can be much smaller.

Since all CA3 activities during recall are a linear sum of the learned weights from EC to CA3, the dimensionality of the spanned space of these weights gives us a good measure of the dimensionality of the space of the recalled patterns.

To estimate this dimensionality we apply principal component analysis (PCA) on the weights from EC to CA3. PCA finds the dimensions (or components) that explain the most variance of the given data. When several dimensions (say 20) explain much variance and all other dimensions explain only little variance of the data, one can follow that the data lies on a low (20) dimensional subspace spanned by the first 20 principal components. For more details regarding PCA we refer the reader to (Hastie et al., 2009, chapter 14.5)

Additionally we apply PCA on the grid cell input patterns in the EC, to estimate how many dimension this space has.

2.5.3 Pattern separation index

To quantify the degree of pattern separation by the DG we plot the pairwise correlations of stored patterns in CA3 over the ones of the stored input patterns themselves and calculate the regression line between them. Whenever
CHAPTER 2. METHODS

the line approximates the data well, then its slope is a good measure of how effective the DG separates the patterns. The flatter it is, the better is the separation. Thus, we refer to it as the pattern separation index.

2.5.4 Place field analysis

A contiguous region of active bins in the cells’ rate map is considered a place field if this region has an area \(> 200 \text{ cm}^2 \). We compare our simulation results to the data obtained by Mizuseki et al. (2012) who use a similar definition of a place field. Spatial information in the rate map of cell \(i \) is computed by

\[
I_i = \sum_{r} p(r) \frac{\lambda_i(r)}{\lambda_i} \log_2 \frac{\lambda_i(r)}{\lambda_i},
\]

where \(p(r) \) is the occupancy probability, which is uniform across the environment in our simulations (Skaggs et al., 1996). The value \(\lambda_i(r) \) is the firing rate at location \(r \) and \(\lambda_i \) is the mean firing rate of the cell over all bins.

2.5.5 Cell lesioning

To test whether the models are robust to noise, we lesioned a part of the input by setting the firing rate of randomly chosen input cells to zero at all locations. We then quantified the error rate of a downstream place cell as the average proportion of bins, in which the place cell erroneously fired or remained silent.

\[
\varepsilon = \frac{1}{2} \left(\frac{N(\text{silent & infield})}{N(\text{infield})} + \frac{N(\text{active & outfield})}{N(\text{outfield})} \right),
\]

where \(N(\cdot) \) indicates the number of bins that match the text label. The maximum error, when the cell’s firing rate is a random number, is \(\varepsilon = 0.5 \).
CHAPTER 2. METHODS

This level is reached when all input cells are lesioned. On the other hand, if no noise is applied, $\varepsilon = 0$. For a network that generates a place field, but is sensitive to noise, we expect that the error rate as a function of the lesion size is a line that passes through $(0,0)$ and $(N,0.5)$, where N is the size of the network ($N = 1100$ in our case). For a place cell that is robust to noise we expect that the error rate grows slower than linear for small lesions.

2.5.6 Stability

Since spatial rate maps of LEC cells are not as stable as those of MEC cells during a recording session or between sessions (Hargreaves et al., 2005; Yoganarasimha et al., 2011), we tested how the instability in LEC cells might affect the stability of place cells in the hippocampus. To model instability parametrically, we first generate for each LEC cell two independent rate maps M_1 and M_2. The cell’s rate map on the first entry is M_1. On the second entry, it is a mixture of the two maps

$$M_x = \alpha M_1 + (1 - \alpha) M_2,$$

(2.19)

where the parameter $0 \leq \alpha \leq 1$ controls for the degree of stability. The higher α, the higher the stability of the cell’s firing rate map across the two sessions. After applying (2.19), we normalize the rates to ensure that they are between 0 and 1.

The EC-CA1 weights in the model are trained on M_1. We then compare the response of the hippocampal layer in this network when it is driven with either M_1 or the mixed map in the LEC input, along with the identical MEC input. Like in (Hargreaves et al., 2005), we define a cell’s stability between visits to the same environment as the correlation between the cell’s
rate map on first entry and the rate map on the second entry. Furthermore, we investigate hippocampal stability when entorhinal regions are lesioned on the second entry.
Chapter 3

Models for hippocampal memory formation

Up to date the standard model described in Section 1.2.2 has been tested storing random patterns of entorhinal cell activities. We review the model in this Chapter and further investigate its ability to store more biologically plausible patterns made from grid cells and weakly spatially modulated cells.

We first examine the model implemented by Rolls (1995) and highlight some biological unrealistic properties in Section 3.1. We further suggest slight changes to the implementation to correct for these issues and show that these adjustments produce qualitatively similar results as the model proposed by Rolls (1995).

We then investigate the ability of the standard model to perform pattern separation given random inputs and grid cell inputs in Section 3.2. We find that Hebbian plasticity, as suggested by Rolls (1995), does not contribute to pattern separation for random patterns and is even harmful when grid cell input is given.

In Section 3.3 we investigate how effective the auto-associative CA3 net-
work is in pattern completion. To do so, we compare the standard model with a reduced version that lacks the recurrent connections in CA3. Surprisingly, we find that given grid cell input, an auto-associative CA3 harms memory performance. Moreover, with random inputs, it only helps when the recall cues are highly degraded.

These findings challenge the ideas of the standard model. We suggest instead that pattern completion is done over the temporoammonic pathway EC-CA1-EC. We show in Section 3.4 that this model performs better in storing grid cell input than the standard model.

Finally, in Section 3.5 we confirm that these results hold true when the model learns patterns created by two different scenarios. In the first one, the model stores patterns that originate from different environments instead of just one. In the second one, it stores patterns that stem not just from grid cells in the MEC but also from weakly modulated cells that have been found experimentally for example in the LEC. In both scenarios the alternative EC-CA1-EC model outperforms the standard model.

Most of the results of this chapter have been published recently in (Neher et al., 2015b).

3.1 Comparison to the model in Rolls (1995)

In a series of studies, a hippocampal model for memory formation within the standard framework has been established and tested computationally (Rolls, 1995). The main argument of this model is that CA3 equipped with many recurrent connections functions as an auto-associative network and is the crucial place for pattern completion. To test the theory, performance of simulations where those connections have been removed, has been compared
to the performance of the full network.

To reproduce the results of Rolls (1995) we performed a simulation of this model using the same parameters as in that study, including number of cells and connections and the sparseness parameters, and stored 100 random patterns. Fig 3.1A shows the average correlation between stored patterns and the reconstructed ones in the EC vs. the cue quality. Since the curve is well above the diagonal the network as a whole performs pattern completion. Only when the cue quality becomes highly degraded, pattern completion starts to break down. The intermediate stages of the network, CA1 and CA3, while not as efficient as the entire network, perform pattern completion as well to a certain degree (Fig 3.1A). To specifically test the role of the recurrent connections in CA3, we performed the same analysis without those recurrent connections. In this case, pattern completion in CA3 was abolished (Fig 3.1A, dashed green line). However, as in the data of Rolls (1995), at the output level pattern completion was not affected. This has not been discussed by Rolls (1995) and we will turn to this in more detail below. In conclusion, we reproduce the main results of the model (compare Fig 3.1A with (Rolls, 1995, Fig 3 bottom)).

While most of the parameters in the Rolls’ model are consistent with the rat hippocampal anatomy, two clearly are not. Firstly, in the model CA1 the sparsity, i.e., the proportion of cells being active, $a_{CA1} = 1\%$, is much lower compared to the other regions, but the contrary is true in the real rat hippocampus (Leutgeb et al., 2004; Mizuseki et al., 2012) (and see sparsity estimates in Section 2.1.1 in Methods). This way, many CA1 cells only code for one pattern as shown in Fig 3.1B and the pattern a cell codes for is burned into the weights of that cell, which is reflected in a high learning rate in CA1. However, it is unrealistic to assume such a coding scheme.
Since it allows CA1 to store only $1/\rho_{CA1} = 100$ patterns, even when numbers of cells and connections are scaled up to realistic ones of several hundreds of thousands as in the rat. This sparse coding scheme is functional, since the recall performance breaks down when we abandon it by increasing the sparsity to 10% (Fig 3.1C). In particular, patterns that are stored in the beginning of learning are overwritten by patterns that are stored later.

Secondly, full connectivity from CA1 to EC is assumed. This property is important, too. When the connectivity is diluted like between other regions, the low activity in CA1 is unable to trigger the whole original pattern in the EC (Fig 3.1D, diamonds). In this case, given a pattern in CA1, due to its high sparsity there are a few cells in EC that do not get any activation from it. However, this high connectivity is biologically not plausible.

To improve on these two inconsistencies we propose that, during storage, CA1 is activated by the EC via the temporoammonic pathway, that has not been considered yet. Thus, rather than a competitive one shot learning, we suggest a hetero-association between CA3 and CA1 as between EC-CA3 and CA1-EC. Now, the network recalls well even when the connectivity is not complete and the sparsity in CA1 is not unreasonably high (Fig 3.1D, stars). An alternative could be to keep the one shot learning and lower the sparsity and the learning rate. However, for simplicity we choose the former option.

Besides the changes in CA1, we scaled the model up and adjusted all parameters to more biological plausible ones (Fig 2.1) and simplified the activation function to a k-WTA mechanism (see Section 2.1.1 in Methods for details). Overall, these changes did not alter the behaviour of the network much (Fig 3.1E), although the presence of recurrence in CA3 now has a stronger effect on pattern completion at the output stage. Notice also, that the completion of the first hetero-association from EC to CA3 is much more
Figure 3.1. Analysis of the model by Rolls (1995). A: Recall performance (see Section 2.5.1 in Methods) in the model as proposed in (Rolls, 1995). Different colors show mean correlation between reconstructed patterns and stored ones in different regions; dashed lines show performance in a simulation where the recurrent connections in CA3 were turned off. B: Histogram of CA1 cell firing during storage. When sparsity is 0.01 (magenta) each cell fires about one time. This grandmother-like coding is abandoned if sparsity is 0.1 (black). C: Recall performance in CA1 (red) and EC (blue) for sparsity 0.1 (stars) measured for the last 10 patterns stored (stars) and for the first 10 (diamonds). Abandoning the grandmother-like code leads to a breakdown in performance by forgetting previously stored patterns. D: Recall performance in EC when connectivity from CA1 to EC is not complete and sparsity in CA1 is 0.01 (diamonds). A grandmother-like code cannot reproduce the whole pattern if the connectivity is sparse. When CA3-CA1 is a hetero-association with sparsity 0.1 (stars) diluting the connectivity has a milder effect. E: Our model as described in the text yields better results as in A, in particular for simulations with recurrent connections, and is biologically more plausible, we believe.
effective. Due to a very sparse coding in Rolls’ EC (5%) and a sparse connectivity the signal cannot be transferred properly to CA3 during recall. This is not the case in our model, since here the sparsity in EC is 35%.

From now on, all simulations are performed with continuous input, thus the model is now as described in the Method Section.

3.2 Pattern separation in DG

The standard model suggests that the role of the DG is to perform pattern separation (McNaughton and Morris, 1987; Treves and Rolls, 1994; O’Reilly and McClelland, 1994). This process transforms correlated patterns in the EC into more uncorrelated ones in CA3. This is a necessary operation, since a Hopfield-like auto-associative memory in CA3 would only be efficient in storing patterns that are nearly orthogonal to each other (Hopfield, 1982). Rolls (1995) has suggested that pattern separation can be learned by a Hebbian competitive network, however, that has not been verified computationally. We therefore investigated whether DG is a good pattern separator and whether Hebbian learning enhances this function. We compared three different simulations. One with learning in the DG enabled, one where it is disabled, and one simulation, where we modelled the DG as a perfect pattern separator. In the last case, we removed the EC-DG-CA3 pathway and instead artificially set up a random uncorrelated code in CA3 for storage. Each set of simulations was performed with random input and more realistic grid cell input (see Section 2.4 in Methods).
3.2.1 Random input

As one might expect, with random input there are no great differences in performance between the three simulations (Figs 3.2B-D). Patterns in the EC input are already uncorrelated by construction. This low degree of correlation is then just transferred to CA3. Hebbian learning in connections between EC and DG is not able to remove any more correlation (Fig 3.2A). Since the pairwise correlation in CA3 is not linearly dependent on the ones in EC (r value ranges from -0.01 to 0.12), the pattern separation index is not reliable here.

3.2.2 Grid cell input

With grid cell input from the EC, Hebbian learning has a strong effect on the network. One observation is the different firing behaviour of CA3 cells. Since each input pattern refers to one location in space, we can illustrate the firing of CA3 cells over all stored patterns plotted over the environment (Fig 3.3A). Note that only 252 of the 400 locations can be occupied, as only 252 patterns were selected for storage. We observe that after learning, many cells in CA3 establish place fields. They fire around certain locations, but are silent elsewhere. This is in accordance to other work that has shown that Hebbian learning indeed transforms grid cell code into a place field representation (Rolls et al., 2006; Franzius et al., 2007; Si and Treves, 2009; Savelli and Knierim, 2010; Cheng and Frank, 2011). Consequently, the probability a CA3 cell fires at location s given it fires at location t is significantly higher when the Euclidean distance between these locations is small than when they are far away (green line in Fig 3.3I). When learning is disabled, a typical cell in CA3 fires scattered over the entire space and is more comparable to a
Figure 3.2. Pattern separation in the DG with random input. A: Pairwise correlation between stored patterns in CA3 as a function of pairwise correlation in EC with learning in DG (green), without (blue) and when the CA3 code is set up randomly (red). Regression lines are plotted, r values are shown in the upper left. B-D: Recall performance of the different simulations in CA3 (B), CA1 (C) and EC (D). Dashed lines are simulations where the recurrent connections in CA3 have been removed.
CA3 cell that is created randomly, as in the third simulation. Hence, the probability it fires at \(s \) is no longer dependent on the distance to \(t \) in the random CA3 case (red curve in Fig 3.3I). This dependency is weaker when the DG connections are static (blue curve). In particular, the dependency extends to a smaller radius.

More interestingly, we find that Hebbian learning does not support pattern separation. To the contrary, we have measured the pairwise correlation between all stored patterns in CA3 and in EC and we have found that some patterns are highly similar in CA3 (Fig 3.3B) when learning is enabled. This is a direct consequence of the established place-field-like code in CA3. Patterns referring to close locations are very similar. Without learning, we do not see patterns of such high correlation, since CA3 cell firing is not as spatially clustered as before. This is in line with the lower pattern separation index of the static DG (0.15) compared to the plastic one (0.28). In the

Figure 3.3 (following page). Pattern separation in the DG with grid cell input. **A:** Firing of three typical CA3 cells across all stored patterns plotted over the environment. Colour code as in Fig 3.2. **B:** Pairwise correlation between stored patterns in CA3 as a function of pairwise correlation in EC (the discretization effect on the x-axis is due to the discretization of the input space into 400 locations). Number next to regression line show its slope, r-values are shown in the upper right. **C-E:** Recall performance of the different simulations in CA3 (**C**), CA1 (**D**) and EC (**E**). Dashed lines are simulations without recurrent connections in CA3. **F:** Distribution of activities during recall when a cell fires during storage (solid) or is silent during storage (dashed) in CA3 when noiseless cues are given. \(S = \langle S_i \rangle_t \) indicates the average signal term in equation (2.10). **G:** Distribution of crosstalk terms of cells that fire (solid) and are silent during storage (dashed). **H:** Average overlap of two patterns \(p^{(s)} \) and \(p^{(t)} \) in the EC plotted over the distance of \(s \) and \(t \). **I:** Probability that a CA3 cell fires at a location \(s \) given it fires at \(t \) plotted over the Euclidean distance of \(s \) and \(t \). Inset shows zoomed plot. **J:** Average Overlap of two patterns \(p^{(s)} \) and \(p^{(t)} \) in the EC plotted over the probability a cell fires at \(s \) given it fires at \(t \). **K:** Probability a cell fires at \(s \), given it is silent at \(t \). Inset shows zoomed plot. **L:** Same as **F** but in CA1.
simulation where the DG is modelled as a perfect separator the correlation between two patterns is distributed around zero and no high correlations are found by definition.

In simulations without recurrent connections, the consequence of a place-field-like code in CA3 is a better recall performance in CA3 compared to the other scenarios, but a worse one at the output level in the EC (Figs 3.3C-E, dashed lines). To investigate the reason for the improvement in CA3 in this simulation, we looked at the activity distributions of cells during recall with a noiseless cue. We distinguished between activities of cells that should fire given the present recall cue and those cells that should be silent. To no surprise, we find that the mean of the former is much higher. With plasticity in the DG the two distributions have very little overlap (green curves in Fig 3.3F). Thus, it is very rare that a cell that should be silent receives more activation than a cell that should be active. Hence, very few mistakes are made. In contrast, if the CA3 code is random, these distributions overlap more and false behaviour occurs more often.

What is the origin of this effect? In equation (2.10) we expressed the activation of cell \(i\) given the noiseless recall cue \(p^{(t)}\) as the sum of the signal \(S_t\) and the crosstalk terms. In the random case, the activations of cells that should be silent are distributed around 0 (red dashed line in Fig. 3.3F). Here, in each activation the signal term vanishes (because \(q_i^{(t)} = 0\)) and it is only influenced by the sum of crosstalk terms. For the activations of cells that should fire, the signal term does not vanish (because \(q_i^{(t)} = 1\)) and the distribution is shifted to the right by the average signal \(S = \langle S_t \rangle_t\) while its shape is preserved\(^1\) (solid red line in Fig. 3.3F). Hence, the sums of crosstalk terms are not dependent on whether a cell fired during storage or not.

\(^1\)we find that the variance of \(S\) is negligible
In contrast, in a place-field-like code these distributions are not just shifted by S. Here, crosstalk terms tend to be larger, when a cell is supposed to fire (Fig 3.3G). Note that each crosstalk term $X_{(i,s,t)}$ is proportional to $q_i^{(s)}$, the firing of cell i at location s, times the overlap $(p^{(s)} - \bar{p})^T p^{(t)}$ of the input pattern at location s with the cue. Suppose cell i has fired at t, as seen in Fig 3.3I, $q_i^{(s)}$ is more likely to be non zero when location s is nearby location t. Additionally, due the spatial character of the grid cell input, the overlap is highly dependent on the distance, too, and is maximal when the locations are close by (Fig 3.3H). Thus, the more likely $q_i^{(s)} = 1$, the higher is the overlap as shown in Fig 3.3J (green dots). This is not true when cell i has been silent at t (Fig 3.3K). Here, the cell is less likely to fire at nearby locations and hence crosstalk terms with a large overlap factor do vanish at least as often as others. Therefore, crosstalks are greater in cells that should be active than in cells that should not. This explains the higher activation of cells that should be active and the better performance.

When learning is disabled the probability of $q_i^{(s)}$ is less dependent on the distance of s and t. Hence, the relation of the overlap with $q_i^{(s)}$ is less pronounced (blue dots in Fig 3.3J). Consequently, this relation disappears in a random CA3 code, since here a CA3 cell fires entirely independently of the distance (red dots in Fig 3.3J).

The advantage in performance when learning is enabled, however, is already gone at the CA1 stage (dashed lines in Fig 3.3D). Due to the high similarity of some patterns in CA3, some crosstalk terms in CA1 become very large. The consequence is a high variance of the sum of crosstalks and hence wider distributions of activities of cells that should be active and of those that should not. This results in a high overlap between these two distributions, thus many errors are made (Fig 3.3L).
Without Hebbian learning in the DG and in the simulation where the DG is a perfect separator, we do not see this high variance because of the lack of patterns that are highly similar. Here, the distributions are sharper resulting in less overlap and fewer mistakes (Fig 3.3L).

To summarize, Hebbian plasticity does not enhance pattern separation as suggested in Rolls (1995). When grid input is given, it has even the contrary effect and hence harms memory performance. Moreover, we find that a static DG performs decent pattern separation.

Dimensionality in CA3

The recall correlations in CA3 without recurrent connections are very low, in particular when the CA3 patterns are created randomly (red dashed line in Fig 3.3C). This requires an explanation.

Even though the 252 patterns stored in CA3 are orthogonal and span a high dimensional space, due to the high correlations in the grid input, the learned EC-CA3 weights span a much lower dimensional space (Fig. 3.4C). When CA3 patterns are projected into this low-dimensional subspace, the correlation between recalled and stored patterns are high, i.e., the EC-CA3 hetero-association works in principle (Fig. 3.4D). However, when assessing the retrieval quality, we compare the retrieved to the stored pattern in the larger dimensional space of CA3 patterns. Since the EC-CA3 weights span a low-dimensional space, they cannot address the higher dimensional space and, therefore, the correlations between stored and recalled patterns are low, and the dashed red line in Fig. 3.3C is far below the diagonal (see Fig. 3.4A for illustration).

The recurrent collaterals in CA3 are doing their job well in the random CA3 case as one can see from the solid red line, which is well above the dashed
CHAPTER 3. MODELS FOR MEMORY FORMATION

Figure 3.4. Dimensionality in CA3. A: Cartoon illustrates the dimensions in CA3 pattern space when CA3 patterns are created randomly. It shows 10 stored patterns (filled circles) and the same patterns when they are recalled through the EC-CA3 network (empty circles). Grey ellipse indicates the subspace where all recalled patterns are located in. Since the subspace of recalled patterns is much smaller than the space where the stored patterns are, recall correlations appear poor (see Fig. 3.3C red dashed line). However, when stored patterns and recalled patterns are projected onto the subspace, recall correlations are high (see D). B: Same as A when patterns are triggered by the plastic DG. Now, the stored patterns do not span the whole space and are correlated with the subspace. Consequently, recall correlations are better than in A (see Fig. 3.3C green dashed line). C: PCA of the weights from EC to CA3 after learning (see Section 2.5.2 in Methods). The plot shows the first 50 components when the DG is plastic, fixed or when patterns in CA3 are random. Diamond marks that approximately 14 components are significant suggesting that weights from EC to CA3 span a low dimensional subspace. Black line shows PCA of the input patterns in the EC indicating that low dimensionality is inherited from the input. D: Recall correlations in CA3 when patterns are projected onto subspace that is spanned by the first 14 principal components.
one in Fig 3.3C. However, the solid red line is still barely above the diagonal for low to moderate cue quality and well below for high cue quality, because the auto-associative net cannot entirely overcome the limitation of the EC-CA3 projections. As in the network without recurrent connections, when patterns are projected onto the low-dimensional subspace, recall correlation is much better (Fig. 3.4D). That information about the stored input patterns is preserved in CA3, despite the low retrieval correlations, is evident when examining the later stages of hippocampal processing, in CA1 (Figs. 3.3D) and EC output (Figs. 3.3E). There, the retrieval performance is quite high for random CA3 patterns. The fact that it is better than for the static or plastic DG case confirms that auto-associative networks perform best for uncorrelated (CA3) patterns.

For the static and plastic DG case, we find that without recurrent connections performance in CA3 is better than for random CA3 patterns (Fig. 3.3C, green and blue dashed lines lie above red dashed line) and that the difference between recurrent and no recurrent connections is less pronounced (compare respective solid to dashed lines). These findings lend further support to our explanation for the retrieval correlations for random CA3 patterns. When DG is static or plastic, the pattern in CA3 is driven during storage to a certain extend by the EC input (via DG) and thus is correlated with it. Therefore, the mismatch between the dimensionality of the CA3 patterns and that of the EC inputs is lower and, as a result, the retrieval correlations in CA3 are higher (Fig. 3.4B). However, the correlations between stored CA3 patterns reduce the ability of the CA3 recurrent network to perform pattern completion, which hurts retrieval performance in the downstream layers (Figs. 3.3D,E).

To conclude, recall correlations at the CA3 stage does not predict recall
correlations at the output level in EC and thus recall performance of the network. Since the static DG performs better pattern separation than the plastic DG, learning in the DG is disabled in the following analysis.

3.3 Pattern completion in CA3

To test the hypothesis that CA3 functions as an auto-associative memory, we compared a simulation of the complete network with one, where we disabled the recurrent connections. Once again, we perform this comparison for random and grid cell inputs.

3.3.1 Random input

When random inputs are presented, we indeed find the recurrent connections performing a fair amount of pattern completion in CA3 (Fig 3.5A) as also found by Rolls (1995). At the output stage in the EC, however, the recurrent connections in CA3 are only beneficial when cues are highly degraded. Both simulations with and without recurrent CA3 connections perform equally well for strong to moderate cue qualities (Fig 3.5B). Thus, in these cases the hetero-associative steps EC-CA3, CA3-CA1 and CA1-EC are already sufficient for pattern completion.

One can argue that a good recall performance does not only include a high correlation between reconstructed and original pattern, but also requires that the recalled pattern is more similar to the original one than to any other one. To investigate this, we compared the correlation between a reconstructed pattern and its original stored version with the correlations between this reconstructed pattern and all other stored patterns. If the pattern is remembered correctly, the former correlation should be larger than all
of the latter ones. Otherwise, the recall cue has been reconstructed closer to
a wrong pattern and hence it has been confused by the network as another
stored pattern (see Fig. 3.6 for illustration). We find that the simulations
using the recurrent connections do confuse patterns more often when cue
qualities are poor than do simulations without recurrent connections (Figs
3.5C-D). At moderate to high cue qualities, the performance is equal with
and without recurrent network.

In more detail, the mean of the distribution of correlations between the
reconstructed patterns and their original version is increased by the recurrent
connections, which is good. However, at the same time, this distribution
becomes wider and even bimodal. Thus, it begins to intersect with the
distribution of correlations between the reconstructed patterns and all other
stored pattern. Consequently, it starts to confuse reconstructed patterns with
the other stored ones (Fig 3.5G). This confusion cannot be solved at later
stages and the correlation between these patterns and their originals stays
low till the output stage (Fig 3.5H). The result is a bimodal distribution of
correctly remembered patterns with high correlation and false recalled ones
with correlation around 0. When the recurrent connections are disabled, the
distribution of correlations in the EC stays unimodal with a lower mean but

Figure 3.5 (following page). Recall performance of the model with ran-
dom input. Performance in CA3 (left column) and in EC (right column). A-B:
Recall performance in CA3 and EC; dashed lines are simulations without recurrent
connections. C-D: Proportion of correctly retrieved cues. E-F: Histogram of pair-
wise correlations between reconstructed pattern and corresponding stored pattern
(cyan, blue) and between reconstructed pattern and another stored pattern (red).
Blue indicate the cases when the correlation between the reconstructed pattern
and the stored pattern is not maximal (see Fig. 3.6 for illustration). Star marks
mean of the distribution of the correlation between the reconstructed pattern and
the stored pattern. The histogram is calculated at the cue quality indicated by the
red rhombus in A-D. G-H: Same as E-F but with recurrent connections enabled.
Figure 3.6. Illustration of confused pattern completion. The cartoon illustrates the two possible scenarios in pattern completion and the color conventions in Fig. 3.5E-H. The upper star in the middle illustrates the given recall cue. As indicated by thick lines, only part of the star is presented during recall. Second row shows the pattern after it has been completed by the network. On the left side the star has been completed correctly towards the correct pattern. Thus, the reconstruction is most correlated with corresponding stored pattern (star) compared to the other stored pattern (moon and sun). In this case the correlation between the stored pattern and the recalled pattern is indicated by cyan. On the right hand side the cue has been completed towards a wrong pattern. Here the reconstruction is more correlated with the sun than with the star. In this case the correlation between the stored pattern and the recalled pattern is indicated by blue.
fewer patterns are confused (Fig 3.5F).

To summarize, for moderate to good cue qualities, the computation of the recurrent connections is completely redundant, since the pattern completion is also performed by the inevitable decoding pathway over CA1. For weak cues, the recurrent connections do help recall, but this advantage comes at the price of a slightly higher confusion rate.

3.3.2 Grid cell input

We also tested how effective the pattern completion by the recurrent connections is in the grid cell input scenario. We observe that having these connections helps in CA3 only marginally, but at the price of a significantly higher confusion rate (Figs 3.7A,C). More importantly, at the output level in EC the recurrent connections become a deficiency for the model and the performance is worse (Figs 3.7B). Additionally, the higher confusion rate is still apparent (Figs 3.7D). Thus, the recurrent connections are not only redundant but even harmful for memory performance for all cue qualities.

3.4 The EC-CA1-EC model

An alternative proposal is that pattern completion is performed by the pathway EC-CA1-EC (Cheng, 2013). Our data shows that recurrence in CA3 is redundant and that three hetero-associations are sufficient for completion. We investigated, whether the two associations EC-CA1-EC are sufficient for pattern completion as well. The results are shown in Fig 3.8.

When input patterns are created randomly, the simpler model confuses fewer patterns (Figs 3.8C-D), but performance in terms of correlation is worse than with the complete network (Figs 3.8A-B). It seems that in this scenario
Figure 3.7. Recall performance of the model with grid input. Effect of recurrent connections when grid cell input is given. Plotting conventions as in Fig 3.5.
two steps are not sufficient to reconstruct the whole pattern. Interestingly, in the more realistic grid cell input scenario, the two steps in the alternative model are slightly more effective in pattern completion than the complete network (Figs 3.8E-F). Moreover, the former confuses far fewer patterns than the latter (Figs 3.8G-H).

In all simulations above we scaled the number of synapses found in rats by 10 and the number of neurons by 100 (see Section 2.1.1 in Methods). We wondered whether scaling factors effect the model. Thus, we performed simulations as in Fig 3.8 where we scaled down the number of neurons by only 20 rather than by 100 while leaving the scaling factor for synapses at 10. We stored 5·252 patterns (instead of 252) and kept all other parameters constant. We find no qualitative differences between the simulations indicating that our results do not change when numbers of cells and synapses approach the realistic ones.

The advantage of the EC-CA1-EC model to the other models given grid cell input is the following. Due to the hetero-associative learning rule (Eq. 2.3) the weight \(w_{ji}^{EC-CA1} \) from EC neuron \(j \) to CA1 neuron \(i \) is the same as the weight \(w_{ij}^{CA1-EC} \) connecting neuron \(i \) and \(j \) supposing both weights

Figure 3.8 (following page). Comparison of the standard model with the simpler EC-CA1-EC model. Performance of the complete model (green and blue) and of the simpler EC-CA1-EC model (magenta) when random input is given (A-D) and grid input is given (E-H). A: Recall performance in CA3 (complete model) and CA1 (simpler model). B: Performance in EC. C-D: Proportion of correctly retrieved patterns in CA3/CA1 (C) and EC (D), respectively; dashed lines are simulations without recurrent connections. E-H: Same as left column, but with grid cell input.
CHAPTER 3. MODELS FOR MEMORY FORMATION

A

B

C

D

E

F

G

H
exist:

\[w_{ij}^{EC-CA1} = c_{ij} \left(\sum_{s=1}^{M} p_j^{(s)} q_i^{(s)} - \sum_{s=1}^{M} \bar{p}_j q_i^{(s)} \right) \] \hspace{1cm} (3.1)

\[\frac{(c_{ij}=1)}{=} \sum_{s=1}^{M} p_j^{(s)} q_i^{(s)} - \sum_{s=1}^{M} \sum_{s' = 1}^{M} \frac{1}{M} p_j^{(s')} q_i^{(s)} \] \hspace{1cm} (3.2)

\[\frac{(c_{ji}=1)}{=} c_{ji} \left(\sum_{s=1}^{M} q_i^{(s)} p_j^{(s)} - \sum_{s' = 1}^{M} \bar{q}_i p_j^{(s')} \right) \] \hspace{1cm} (3.3)

\[\frac{(2.3)}{=} w_{ji}^{CA1-EC} \] \hspace{1cm} (3.4)

Thus, the weight matrix connecting CA1 with EC is very similar to the transposed weight matrix connecting EC with CA1\(^2\), i.e. \(W_{CA1-EC} \approx W_{EC-CA1}^{T} \).

It follows that vectors that are orthogonal to the columns of \(W_{EC-CA1} \) are almost orthogonal to the rows of \(W_{CA1-EC} \). Thus, vectors that are orthogonal to the subspace spanned by the columns of \(W_{EC-CA1} \) are mapped to 0 by \(W_{CA1-EC} \). Therefore, only the part of a CA1 pattern that is projected onto this subspace is important to the mapping from CA1 to EC. Hence, as long as the correlations between stored and recalled patterns are high within this subspace, the model can perform a high amount of pattern completion in EC, although when the recall correlations in CA1 might be low in the whole space (compare magenta lines in Fig. 3.8E and F).

The amount of pattern completion the EC-CA1-EC model performs is dependent on the dimensionality of the CA1 subspace. The dimensionality of the subspace is inherited by the dimensionality of the space where the inputs are located in. Given grid cell input this dimensionality is low (see black line in Fig. 3.4C) and hence many of the 252 dimensions in the input space are

\(^2\)They are not equal because of the sparse connectivity among the subregions. Thus, the existence of \(w_{ij} \) does not imply the existence of \(w_{ji} \).
Figure 3.9. Pattern completion in EC-CA1-EC model. Cartoon shows the EC when recall cues are presented, CA1 and the EC when patterns are recalled. Grey ellipse in the EC illustrates the low dimensional subspace where all stored patterns are located in. Grey ellipse in CA1 illustrates low dimensional subspace spanned by the weights from EC to CA1. It hosts all recalled patterns in CA1 by definition. Red dashed lines illustrate the pattern completion process of one highlighted pattern. The weak recall cue is mapped to some point in the CA1 subspace and $Corr_{CA1}$ appears to be low, since the original stored CA1 pattern is somewhere located in the whole space (during storage it was created by a random mapping from CA3). However, the recall correlation is high when the stored pattern is projected onto the subspace (black dot). The mapping CA1-EC only considers the dimensions within the subspace (see main text). Thus, the reconstructed pattern in CA1 is mapped to a pattern in EC that is close to the originally stored EC pattern, as long as recall correlations in the CA1 subspace are high. Similarly, the EC-CA1 mapping considers only dimensions within the EC subspace. Thus, mainly the noise part applied within this subspace (black circle) disturbs reconstructing the CA1 pattern. Therefore, the smaller this subspace is, the better is pattern completion in the model.
not relevant for the transformation from EC to CA1\(^3\). Thus, much of the noise in the EC, which is applied to a stored pattern to create its recall cue, is not affecting the mapping EC-CA1 (see Fig. 3.9 for illustration). Hence, we observe in the CA1 subspace a high correlation between stored pattern and recalled patterns even for low cue strengths (at high noise levels). This simplicity does not apply to the EC-CA3-CA1-EC models, since here the additional hetero-association step might interfere with this symmetry.

When input patterns are randomly created the input space used has 252 dimensions and hence the CA1 subspace is fairly large. Consequently, pattern completion does not work as effectively as with grid cell input (Fig. 3.8A,B).

To conclude, given grid cell input the EC-CA1-EC model is more effective in pattern completion than the other models. Recall correlations are higher and it confuses patterns less often.

3.5 Non grid cell input and different environments

Up to now we have considered only grid cell input to the hippocampus, which originates from the medial part of the entorhinal cortex. Studies have shown that substantial part of hippocampal inputs are not from grid cells. In particular, neurons in the LEC fire only weakly spatially modulated (Hargreaves et al., 2005) and rather respond to individual objects ((Deshmukh and Knierim, 2011) and see Section 1.3.4). Similarly the MEC contains spatial and non-spatial cells that are not grid cells (see Section 1.3.3). How do the networks behave under the influence of such input? To investigate

\(^3\)Basic linear algebra says that for a linear mapping \(W\) the dimensionality of the input space is equal to the sum of dimensionality of the image of \(W\) (in our case the CA1 subspace) and the kernel of \(W\) (dimensions that are mapped to 0).
that we modelled entorhinal cells that are not grid cells as weakly spatially modulated cells (see Section 2.4.3).

Since the proportion of weakly spatially modulated cell input relative to grid cell input is not clear, we parametrized it and performed simulations with different proportions of weakly spatially modulated cells. We find that the recall correlations in EC are not affected much by adding weakly spatially modulated cell input (Fig 3.10A). When input comes only from weakly spatially modulated cells the networks confuse patterns more often. Because of the pseudo place field code in those cells, nearby patterns are highly correlated and the radius to which this extends is slightly larger than in the grid cell code (Fig 3.10G). Consequently, the number of high correlated patterns is higher which results in a higher confusion (Fig 3.10B) as well as in a slightly less effective pattern separation (Fig 3.10C).

Fyhn et al. (2007) found that when a rat is exposed to a new environment the grid cells remap, i.e. their grid patterns rotate and shift coherently while the spatial frequency remains roughly stable (Fyhn et al., 2007). We investigated how well the networks can store patterns of activity originating from different environments rather than from just one. We find that by increasing the number of maps, the recall correlations and the proportion of correctly retrieved patterns of the networks with and without recurrent connections become almost equal, where the EC-CA1-EC network remains the best in both measures (Fig 3.10D).

As argued above, already a small number of moderately correlated patterns in CA3 degrades the auto-association and the subsequent hetero-association with CA1. Given just one map, correlation appears only in patterns that are nearby. We wondered, whether this is still true comparing patterns from different environments. In Figures 3.10H,I we see the pairwise correla-
CHAPTER 3. MODELS FOR MEMORY FORMATION

Figure 3.10. Non grid cell input and different environments. Results of simulations with additional weakly spatially modulated cell input (A-C) and with input from multiple environments (D-F). First row (A,D) shows the recall correlation in EC averaged over all cue strengths, second row (B,E) shows averaged proportion of correctly retrieved patterns and last row (C,F) shows pattern separation index. G: Pairwise correlation between stored patterns in CA3 as a function of pairwise correlation in EC in a simulation with only weakly spatially modulated cell input. Euclidean distance (in m) of the pair is indicated by the colour of disk according to the colour bar. Black line is the regression line with slope s (separation index) and r value shown in the upper left. H-I: Same as (G) in a simulation with only grid cell input originating from nine different environments. H shows all pairs where both patterns come from the same map, I show all pairs where the patterns come from different maps.
tions of stored patterns in CA3 over the ones in the input in a simulation where we store patterns from nine different environments. Comparing patterns that originate from the same map, only those that are up to 5 cm apart have a high correlation above 0.6 and these are the only pairs that remain to have moderate correlations left in CA3 (Fig. 3.10H). Many pairs that are not nearby have a fair correlation in the input but are almost uncorrelated after pattern separation through the DG. This can be observed for pairs where each pattern is from a different environment, too (Fig. 3.10I). Many of them are moderately correlated in the input, but no longer in CA3. Thus, the remapping of the grids does not orthogonalize the activities in the EC. Nevertheless, after pattern separation by the DG the patterns become almost uncorrelated in CA3.

To conclude, when patterns are stored from several environments, the relative number of pattern pairs that are nearby and from the same environment decreases and with it the number of pairs with remaining correlation in CA3. This benefits in particular the recurrent network and it performs as well as the network without recurrent connections. Nevertheless, the EC-CA1-EC network performance is best in all scenarios.
Chapter 4

Models for the formation of hippocampal spatial representations

In the previous Chapter we have established that given realistic inputs memory formation is most effective in the simpler EC-CA1-EC model compared to the other models. In the present Chapter we look into the ability of this model to form hippocampal spatial responses. We show in Section 4.2.1 that when the right proportion of grid cells are present in the input the model reproduces stable place cells with realistic place field sizes. Moreover, the model reproduces puzzling results from experimental lesion studies and makes some strong predictions, which we present in Section 4.2.2. In Section 4.2.3 we investigate the stability of place cells in different lesion conditions.

When only grid cell input is present this model cannot generate place cells with realistic field sizes. The same can be observed in other models, too. In Section 4.1.1 we provide insight to why all existent feedforward models that generate robust place cell responses solely out of grid input fail to generate
place fields of realistic size. With the help of a general model which is the base frame of all feedforward models and some machine learning algorithms we show that a robust grid-to-place transformation in such a network is not plausible in Section 4.1.2.

4.1 A simple grid-to-place transformation is implausible

Existent models produce average place field sizes ranging from about 300 – 627 cm2 (Table 1.2), place cells in the dorsal CA regions have significantly larger fields around 1225 cm2 in CA3 and 1775 cm2 in CA1 (Mizuseki et al., 2012). Moreover, place fields as large as 5000 cm2 have been reported for dorsal cells in both regions. We study this discrepancy between models and experiments in a general two-layer feedforward network representing the simple grid-to-place transformation in the dorsal hippocampus (see Section 2.3 in Methods).

4.1.1 Issues of producing realistic field sizes

As suggested elsewhere (Rolls et al., 2006; Si and Treves, 2009), the transformation can be found by competitive learning, but resulting place field sizes are small. In the following, we examine the reason for that. Competitive learning leads to a vector quantization of the input space (see for example (Rojas, 1996, chapter 5)). In other words, learning converges to weight vectors that are similar to some input PV $w_i = p(r_i)$. Noting that the PV of grid activity has the highest autocorrelation at zero offset and drops off very quickly (Fig. 4.1A), it follows that for cell i the activation
Figure 4.1. The issue with the simple grid-to-place transformation in feedforward networks. A: Spatial autocorrelation of the grid cell population vectors (PV). B: Mean cosine of two PVs depending on the distance of their locations in space. C: Rate map of an output cell when its weight vector equals the grid cell PV at location (1,0.5).

$h_i(r) = p(r_i)^T p(r)$ shows a clear peak at $r = r_i$. Figure 4.1C shows the rate map when $r_i = (1,0.5)$. Thus, by setting a sufficiently high threshold c, a single place field at r_i will appear. The lower the threshold is, the larger the field. However, if c is too small, firing will occur outside the place field due to the periodicity of the rate map. The lowest threshold c that produces just one field creates a field with a size of merely around 314cm^2 in our model. Thus, competitive learning cannot produce single large fields.

The problem of creating single large fields is not restricted to competitive learning and is rather due to the periodicity of the PVs in the grid population. In general, the weight vector w_i that produces a place field with a certain radius, say $R = 30\text{cm}$ ($\sim 2800\text{cm}^2$) at r_i, has to point into the direction of the PV $p(r_i)$ as well as into the directions of all the PVs at the locations within 30cm distance. At the same time, the weight vector has to point away
from the directions of all the PVs outside the field. The challenge here is that the PV at \(\mathbf{r}_i \) is nearly orthogonal to the PV at the locations \(\mathbf{r} \) between 20cm and 28cm away (Fig. 4.1B), but correlated with the PV further away that are outside the field, e.g., at about 45cm. The exact measurements from Fig. 4.1B are derived from our modelled grid cell input (see Section 2.4.2 in Methods) and are dependent on the actual distribution of grid cell spacings and size of the grid fields. However, using different parameters would not change the results qualitatively, since the observed repetitive structure is an inherent property of grid cell population activity.

4.1.2 Weight vectors found by machine learning algorithms

Given these constraints, we ask whether there exits a weight vector at all that fulfils equations (2.13) for large radii \(R_i \). Finding a weight vector \(\mathbf{w} \) that divides the set of PVs into two groups, in-field PVs and out-of-field PVs, is a classification problem that can be solved by a linear support vector classifier (see Section 2.3.1 in Methods). We use place fields of different sizes: a circle with radius 10cm, 25cm or 35cm (field sizes of 314cm\(^2\), 1963cm\(^2\) and 3848cm\(^2\)). Interestingly, there are solutions to the problem even for large place fields (Fig. 4.2A,D,G). We then quantified the robustness of the solution by lesioning different fractions of the grid cell inputs. Examples of the resulting firing rate maps (Fig. 4.2A,D,G; bottom panels) indicate that the solution for the large place field is less robust to noise than the solutions for the other two place field sizes. A systematic exploration of the error rate (see Section 2.5.5 in Methods) reveals that the solution for the large size is highly sensitive to lesioning even a small fraction of grid cells (Fig. 4.2H). Note that the classifier, by design, finds the most robust solution in the sense
that the margin of the threshold to the PVs is maximized1. Furthermore, the weights in the solution are unevenly distributed (Fig. 4.2I). Strong weights are found only to cells in the two modules with the largest grid spacings, despite constituting only about 13\% of the population of grid cells. The vast majority of inputs from grid cells, those with small spacings, have small weights on the output cell, raising the question of whether they are needed at all in the grid-to-place transformation. We therefore solved the classification problem on a grid cell population of equal size containing only cells in the two modules with the larger spacings. The classifier is able to find more robust solutions for medium sized and large fields when the population has only large spacings.

To test whether these results are just an artefact of the support vector machine, we additionally solved the classification problem for the large place fields with two other machine learning algorithm (Fig. 4.3). We find that applying logistic regression yields similar results. The solution is highly sensitive to noise, connection weights to cells of modules containing the large spacings are strongest and robustness is increased if the cell population only consists of those cells. The solution found by applying linear regression shows even more dramatic sensitivity to noise, but the connection strength bias towards cells with large spacings is less pronounced.

In conclusion, our results suggest that based on grid cell inputs alone it is implausible that a linear transformation can produce robust place fields with realistic sizes. First, the solutions are rather sensitive to disruption of the inputs. Second, the most robust transformations rely mostly on cells with large spacings, whereas, in the rat, grid cells with smaller spacings are far more numerous than those with large spacings. Finally, it is highly specula-

1In other words, the minimal euclidean distance of all PVs to the hyperplane is maximized.
Figure 4.2. Solution of the grid-to-place transformation by a linear support vector classifier. A: Upper panel shows the rate map of the output cell $h(r)$ after solving Eqs. 2.13 for a place field with a radius 10cm. Middle panel shows the map after all $h(r) < c$ have been inhibited. Lower panel shows the same as the middle panel after 7% of the grid cells have been lesioned. B: The error rate in the output rate map (see Section 2.5.5 in Methods) as a function of the fraction of grid cells that are lesioned is an indicator of the robustness of the solution. Blue line represents simulations when all four grid cell modules are present in the input. Green line represents simulations when only the two modules with the largest grid spacings are included. Dashed line is the reference when the error rate would increase linearly. Red diamond indicates noise level for rate maps in (A). C: Absolute value of the weights that are assigned to grid cells in different modules in the solution. D-I: Same as (A-C) for a place field with radius 25cm (D-F) and 35cm (G-I), respectively.
Figure 4.3. Solution of the grid-to-place transformation by logistic and linear regression. Plotting conventions as in Fig. 4.2. A-C are the results of an weight vector found by logistic regression and D-E the ones of a weight vector found by linear regression.
tive whether the transformation found by machine learning algorithms can be learned in a biologically plausible self-organized way. Since our results are based on a generalized feedforward model, all feedforward models that receive input solely from grid cells face the same issues. These issues cannot be solved by fine-tuning model parameters because they arise from the structure in the spatial autocorrelation of grid cells. Thus, additional network mechanisms are required to account for experimentally observed place field sizes.

4.2 Place field analysis in the EC-CA1-EC model

4.2.1 Realistic place field sizes with weakly spatially modulated cells

Our analysis in Section 4.1 suggests that other mechanisms might have to be added to account for experimentally observed place field sizes. Here, we explore the effect of mixing weakly spatially modulated cell, which are abundant in the LEC (Hargreaves et al., 2005; Yoganarasimha et al., 2011) as well as in the MEC (Zhang et al., 2013) with grid cells in the feedforward EC-CA1-EC model. In particular, we investigate the transformation from EC to CA1. As before, the connection weights from EC cells onto CA1 cells are learned by Hebbian plasticity. During learning, CA1 activity is triggered only by CA3 inputs and this activity is associated with the activity in the EC (see Sections 2.2.2 and 2.1.2 in Methods). After learning activity is only triggered by EC input. The feedforward EC-CA1 network can learn to transform EC input into place cells with realistic field sizes (Fig. 4.4). During
learning, cells have many small fields, whereas after learning they typically exhibit one or two fields of greater size (e.g., Fig. 4.4A).

We systematically compare the resulting place field size distribution in the CA1 population to experimental results (Mizuseki et al., 2012) for different proportions of grid cells in the EC input (Fig. 4.4B). The size distribution matches the experimental data best, when there is only a small fraction (< 17%) of grid cells. When the input consists of grid cells entirely, the resulting place fields are too small, adding to our doubts that a plausible plasticity mechanism does not yield a grid-to-place transformation with realistic field sizes. The correlation analysis (as in Fig. 4.1A) reveals in this case, too, why larger fractions of grid cells lead to smaller place field sizes. For grid fractions < 17%, the spatial autocorrelation of the input PVs are single-peaked and wide (Fig. 4.4C). For larger fractions, a second maximum appears in the auto correlation, thus forcing a higher threshold, which in turns leads to smaller place fields. In addition, the number of fields per cell reaches unrealistic values at larger proportions of grid cells in the EC input (Fig. 4.4D). Interestingly, for a wide range of parameter values almost all of the active CA1 cells are place cells (Fig. 4.4E). This reflects experimental findings (O’Keefe, 1979; Leutgeb et al., 2004; Lee et al., 2004b). Our results

Figure 4.4 (following page). Place cells in the EC-CA1-EC model. A: Three examples of CA1 rate maps, one in each row, during learning (left column) and after learning (right column). B: Distributions of place field sizes in the CA1 population for different proportions of grid cells in the EC input. Thick green line shows the simulation with the default parameter. Dashed black line shows distribution for the rat CA1 (Mizuseki et al., 2012). C: Mean correlation of two input PVs as a function of the distance between their locations in space for different proportions of grid cells in the EC input. D: Mean place field size and mean number of fields per CA1 cell. E: Number of active cells and number of place cells. F-H: Similar to C-E, but varying the width σ_N of the smoothing kernel instead of the proportion of grid cells in the EC input, which is set to $\frac{1}{5}$.
suggest that < 17% of EC inputs consists of grid cells, which is consistent with data from the rat. Roughly half of the EC consists of MEC and about one third of MEC cells projecting to the hippocampus are grid cells (Zhang et al., 2013). Therefore, grid cells account for about 1/6 of EC cells in the rat.

Given the relative importance of weakly spatially modulated cells in generating realistic place field sizes, we further investigate the dependence on their properties, in particular the width of the smoothing kernel σ_N (see Section 2.4.3 in Methods). For the following analysis, we fix the proportion of grid cells at 1/6. If the kernel is narrow, the rate maps appear salt-and-pepper-like (Fig. 2.6A) and the spatial autocorrelation is therefore rather narrow and dominated by the grid inputs (Fig. 4.4F, blue and red lines). As a result, the field sizes are small, the mean number of fields per cell is significantly larger than one (Fig. 4.4G) and very few of the active cells are place cells (Fig. 4.4H). On the other hand, the autocorrelation of PVs is wide for larger kernel width. Consequently, the mean size of hippocampal place fields is larger in these simulations, there are fewer fields per cell (Fig. 4.4G) and almost all active cells are place cells (Fig. 4.4H). We choose an intermediate value of $\sigma_N = 6$ cm as a default, since it also roughly matches the spatial information measured in LEC cells (Hargreaves et al., 2005), but note that the exact procedure for generating the weakly modulated cells is not important for the model to replicate realistic place field sizes, only the spatial autocorrelation of PVs matters.

4.2.2 Lesion studies

Since robustness is an important property of information processing in the brain and since place cells are prominent for their robust firing in lesion
studies, we next examine the model’s sensitivity to lesioning different types of EC inputs after the transformation has been learned. Place fields appear largely preserved when all MEC, all grid cells or all LEC cells are lesioned (Fig. 4.5A).

A systematic study, in which different fractions of input cells are lesioned selectively, reveals that place cells in our model are robust to lesions in the LEC and in the MEC, and is sensitive to specific lesions of grid
cells (Fig. 4.5B). By adding grid cells, the model becomes more sensitive to noise than a model that receives only weakly spatially modulated cells (green dashed line in Fig. 4.5B), confirming the analysis in Figure 4.2.

Experimental studies indicate that, in MEC-lesioned rats, hippocampal place cell responses continue to be spatially selective in familiar environments, although their fields are broader and fewer cells are active (Brun et al., 2008; Hales et al., 2014). We therefore study place field properties after EC lesions in our model. If the entire MEC is lesioned it continues to generate rate maps similar to those when the MEC input is present (Fig. 4.5A), but the number of fields decreases slightly (Fig. 4.5C), field sizes are larger (Fig. 4.5D) and the number of active cells is smaller (Fig. 4.5E). These modelling results are in good qualitative agreement with the experimental observations. If grid cells in MEC are selectively lesioned in our model, very similar effects result, suggesting that the experimental effect might be due to the absence of, specifically, grid cell firing. Complete lesions to the LEC lead to contrary effects. Number of fields increase and sizes decrease, which can be explained by the resulting higher grid cell proportion in the input. To conclude, the EC-CA1-EC model creates place cells that have realistic place field sizes, are robust and change their fields similarly as observed in lesion studies.

4.2.3 Stability

Next, we tested the stability of CA1 place fields. Hippocampal place cells and cells in the MEC appear to have stable spatial firing maps during one recording session and between session in the same environment (Thompson and Best, 1990; Hargreaves et al., 2005; Yoganarasimha et al., 2011; Mizuseki et al., 2012). By contrast, spatial firing is significant less stable in LEC neurons especially in object-poor environments. Since LEC stabil-
Figure 4.6. Stability of place cells. A: Stability of CA1 place cells between two visits of the same environment as a function of stability in the LEC. Colours indicate lesions of different entorhinal inputs before animal encounters the environment the second time. Error bars show standard errors of 5 simulations. B: Mean CA1 place field size, C: Mean number of place fields and D: Mean number of active cells.
ity seems to depend on the properties of the environment, we parametrized the level of LEC stability (see Section 2.5.6 in Methods). We find that the model produces stable place fields with a constant field size for all stability levels (Fig. 4.6A,B, black lines). Also the number of active cells were constant. Furthermore, lesioning the MEC leads to lower hippocampal stability, larger place fields, and lower number of active cells. These effects are more pronounced when LEC stability is low. Lesioning the LEC had only minor effects. Thus, the pattern of stability in the model is in good qualitative agreement with experimental findings obtained in object poor environments (Lu et al., 2013; Hales et al., 2014). Moreover, our model predicts that the effects of MEC lesions on hippocampal place field size, stability, and number of active cells are reduced in object rich environments, when LEC activity is more stable.
Chapter 5

Discussion

5.1 Summary

5.1.1 Memory formation in the hippocampus

The thesis started by reviewing the standard model of memory formation. We compared three different models: the standard model itself, the standard model without recurrent connections and the minimal EC-CA1-EC model. In doing so we investigated the models’ ability to store input patterns of three different kinds: random patterns, grid cell patterns and patterns of grid cells and weakly spatially modulated cells.

Surprisingly, we find that when random inputs are stored an auto-associative CA3 network is redundant for pattern completion of recall cues with strong and moderate cue strength. It is only helpful for highly distorted cues, but this advantage comes with the prize of a higher confusion rate of cues with wrong patterns. Moreover, the network is even harmful for all cue strengths when inputs of grid cells or inputs of grid cells and weakly spatially modulated cells are stored, which we regard as biologically more plausible.
inputs. In these cases, the minimal EC-CA1-EC model is most efficient in pattern completion and confuses cues less often despite its simplicity. We further provide an intuition why this simpler network performs best.

Moreover, we find that Hebbian plasticity in the synapses from EC to DG does not support pattern separation in the DG as suggested by the standard model. With the biologically more plausible inputs Hebbian plasticity has even the opposite effect.

These results challenge the standard model. In particular, they question its crucial idea that an auto-associative CA3 network performs pattern completion. Instead, they suggest that pattern completion is rather performed in a feedforward way by the simpler EC-CA1-EC model.

5.1.2 Hippocampal place cell formation out of grid cells

Next we investigated place cell formation out of grid cell input in the dorsal hippocampus. We pointed out that all feedforward grid-to-place models generate either highly non robust place cells or place cells that have only small place fields. We studied this issue in a generic feedforward model, which is a general version of the feedforward networks discussed in the literature. We find that the creation of realistically sized fields is implausible due to the structured spatial autocorrelation of the grid input and hence not due to an improper parameter tuning in the individual models.

We then asked whether the feedforward transformation from grid input to place cells with realistic field sizes is possible at all by applying different machine learning algorithms to the generic model. We find that there are transformations, but these transformation are biologically not plausible for two reasons. Firstly, large place cells are highly sensitive to noise in these
transformations contradicting their robustness. Secondly, these transformations rely mainly on grid cells with large spacings. However, these cells are by far outnumbered by grid cells with small spacings in the dorsal MEC. Moreover, it is highly speculative whether these transformations found by a computer algorithm can be learned in a biologically plausible self-organized way. Thus, our results suggest that place cells are not solely driven by grid cells in a feedforward network and that further mechanisms have to be added to account for experimentally observed place fields.

5.1.3 Place cell formation in the EC-CA1-EC model

We propose that place cells are generated by a mixture of grid cells and other cells that are present in the EC and tested this hypothesis in the EC-CA1-EC model. Entorhinal cells that are not grid cells are modelled abstractly as weakly spatially modulated cells carrying only little spatial information. We investigated place cell formation by Hebbian learning given different inputs.

We find that given only grid cell input, place cells have unrealistically many and small place fields confirming our analysis above. More interestingly, when the input consists of a mixture of grid cells and weakly spatially modulated cells, the model produces place cells with realistic characteristics such as place field size, average number of fields per cell and robustness to input perturbations for a wide parameter range. In particular, this is true for a mixture that consist of a grid cell proportion of 1/6, which reflects experimental estimates of the amount of hippocampal grid cell input. This supports our suggestion that place cells are triggered by a mixture of grid cells and non-grid cells.

We further studied place field properties in the model after lesioning several entorhinal regions. We find that after MEC lesions fewer place cells
are active and place fields become broader, which is in good agreement with the puzzling findings in experimental lesion studies performed in rats (Brun et al., 2008; Hales et al., 2014; Ormond and McNaughton, 2015). Furthermore, the model makes some strong predictions regarding LEC and grid cell lesions in novel and familiar environments.

Since LEC cells are relatively temporally unstable, we studied whether this instability affects the stability of place cells. Due to the stability provided by MEC cells and the robustness of the model we find stable place cell firing in CA1 even for highly unstable LEC cells. Moreover, lesioning different parts of the EC in the model lead to similar behaviour of place cell stability as observed in experiments obtained in object poor environments. Furthermore, the model makes predictions regarding place field sizes, place field stability and number of active cells in object rich environments, where LEC cells are more stable.

These results support the idea that place cells are mainly triggered by non-grid cells including cells from the LEC despite their lack of stability and spatial information.

5.2 Detailed discussion

5.2.1 Issues with the standard model

In the last decades, a view has evolved about how the peculiar anatomic structure of the hippocampus serves memory formation. It has been postulated that the CA3 region with its many recurrent connections functions as an attractor network performing pattern completion when degraded input is given (McNaughton and Morris, 1987; Rolls, 2007). Thus, it is believed that CA3 is the actual storing place. Complex mathematical analysis show
that the memory capacity of such a network is sufficient, when the activity in the region is sparse enough (Hopfield, 1982; Amit, 1989; Treves and Rolls, 1991). However, a decorrelation among the stored patterns is crucial and all the analysis supposes that. It is believed that the DG removes all correlations from the input patterns of the EC and performs the so called pattern separation. This is supported by a sparse coding, by strong and sparse synapses from DG to CA3 (O’Reilly and McClelland, 1994; Rolls, 2007), and by Hebbian plasticity from EC to DG during storage (Rolls, 1995).

In Chapter 3 we challenge this view and show several weaknesses of it. Firstly, in the mathematical analysis of the standard framework only an isolated CA3 network has been considered and the inevitable decoding pathway via CA1 has been neglected. We show that this pathway is capable of reconstructing the memory even when the recurrent connections in CA3 are removed. This makes the assigned auto-associative function of CA3 redundant for low to moderate noise levels. Interestingly, by arguing for CA3 being an attractor network, Treves and Rolls (1991) compared the ability of pattern completion of an auto-associative network with that of subsequent hetero-associative networks (Treves and Rolls, 1991). They conclude that when the sparsity of the activity approaches zero, the performance of a single auto-associative memory reaches nearly that of several hetero-associations, while at the same time fewer neuronal components are needed. However, in the standard model these components have to be present to perform encoding and decoding, turning this argument against the proposed function of CA3. Thus, our work illustrates how essential it is to consider the whole hippocampal loop while investigating individual functional roles of the subregions.

Secondly, simple Hebbian plasticity in the DG as proposed by Rolls (1995) does not support pattern separation. To the contrary. We have shown that
due to this plasticity the grid cell code in the EC is mapped onto a place field like code in CA3. This is in line with other work, that investigate the transformation from grid cells to place cells (Rolls et al., 2006; Franzius et al., 2007; Si and Treves, 2009; Savelli and Knierim, 2010; Cheng and Frank, 2011) by Hebbian learning. In this code, patterns from nearby locations happen to be highly correlated, which is the opposite of what a pattern separator should do. Thus, a competitive net is not a good candidate to orthogonalize patterns for grid cell input. What is not modelled here, is adult neurogenesis in the DG (Gross, 2000). This additional plasticity might support pattern separation in contrast to Hebbian learning alone. Weisz and Argibay (2009) studied the effects of neurogenesis in the standard model and they find advantages in memory performance, but they only considered the case of random inputs (Weisz and Argibay, 2009). However, alternative hypotheses for adult neurogenesis exist (e.g (Appleby et al., 2011)). We show that by having random and fixed connections the DG performs quite well as a pattern separator. Only for very highly correlated patterns in the input, there remains some amount of correlation in these patterns after applying the separator. Despite the significant reduction, this amount is still enough to degrade the auto-associative CA3. Thus, to make the standard model work, a separator is needed that functions perfectly. However, assuming it exists, the benefit of a recurrent CA3 net would still be small compared to the EC-CA1-EC model if applied to grid cell input (compare red line in Fig. 3.3E with magenta line in Fig. 3.8F).

Thirdly, a further challenging argument against an auto-associative function of CA3 is the fact that the actual representations in the mammalian CA3 are far from uncorrelated. The vast majority of active pyramidal cells are place cells (O’Keefe, 1976), thus activity patterns are correlated by na-
Storing such patterns of continuous place cell activity that occur in one environment in an auto-associative network leads to a continuous attractor or so called chart (Samsonovich and McNaughton, 1997; Cerasti and Treves, 2013). Every point in this chart refers to the neural representation of one location in the environment. A degraded input is then attracted towards a point on the chart and the network is indeed able to diminish the noise orthogonal to the attractor. However, it has been observed that many points are not stable (Tsodyks and Sejnowski, 1995) and drift along the attractor until they reach a fixed point (Cerasti and Treves, 2013). This means that many patterns finally retrieved are representations of the wrong location.

The issue of drifting is even more pronounced when discrete memories are stored on top of the continuous chart. In this case only a fraction of locations are stable (Roudi and Treves, 2008; Solstad et al., 2014). Since we store correlated patterns in the auto-associative CA3 net, a continuous attractor is also formed in the present model. It can store a large number of patterns drawn from the grid map moderately well, however, drifting occurs in the recall. This drifting is already reduced, since the CA3 representations are binary rather than continuous (Papp et al., 2007), but still apparent as reflected by the high confusion rate of patterns when using the recurrent connections in CA3 (see Fig 3.7C). Papp et al. (2007) state that the drift may be much slower than pattern completion and hence storage of locations is still possible (Papp et al., 2007). In other words, pattern completion is already done in the first update cycles in the attractor network. This is in agreement with our results. By viewing each hetero-associative step as one update cycle, pattern completion is performed by the two hetero-associative networks EC-CA1 and CA1-EC without loosing accuracy caused by the drift and the auto-associative function in CA3 becomes redundant. Consequently, given
the structured grid cell input in the EC, the simpler network EC-CA1-EC is already sufficient for pattern completion and it confuses memories less often than the more complex standard model does.

5.2.2 Alternative functions for CA3

We established that a recurrent CA3 is not necessary for pattern completion. This frees the recurrent CA3 connections to perform other functions. For instance, Levy (1996) suggested that CA3 associates its present activity with activity occurring in the past. In this way, sequences of activities are stored, which can explain the hippocampal involvement in tasks like trace conditioning or configural learning problems. A further alternative to an attractor net in CA3 has been suggested by Cheng (2013). He assumes that the recurrent CA3 network is not plastic, but rather creates intrinsic sequences which are then associated with temporal sequences of patterns in the EC.

We do not model temporal aspects here, but our study shows that because of the redundancy of CA3 as an auto-associative net, it very likely fulfils some other function. Similarly, the EC-CA1-EC model does not require plasticity in the synapses projecting from EC to CA3 nor in the Schaffer Collaterals, where plasticity has been found (Buchanan and Mellor, 2010, for a review). Hence, the plasticity could serve another function leaving the pattern completion function in the EC-CA1-EC model unaffected.

5.2.3 Evidence for pattern completion in CA3?

Experimental studies reported putative evidence for CA3 being an auto-association memory. For example, Gold and Kesner (2005) show that rats with lesioned CA3 are impaired in remembering a location when parts of the spatial cues are removed (Gold and Kesner, 2005). Another study obtains
similar results when plasticity in CA3 synapses is corrupted in knock-out mice (Nakazawa et al., 2002). The authors conclude that CA3 is crucial for spatial pattern completion. In our opinion this is not convincing. If the actual location of the memory is CA3 then lesioning it or removing plasticity should give equivalent results as lesioning the entire hippocampus (Cheng, 2013). This is not the case, since in both studies animals behave normally in full cue conditions, but animals with hippocampal lesions are clearly impaired (Morris et al., 1982; Gilbert et al., 1998). An alternative interpretation for the experimental observations could be that the animals rely more on the integration of self motion cues in conditions when external cues are poor. This is in line with others who assign a path integration function to CA3 (Samsonovich and McNaughton, 1997; Colgin et al., 2010). If spatial information provided by the external cues is sufficient, spatial recognition can be performed by CA1 alone (Brun et al., 2002; Steffenach et al., 2002).

In another experimental paradigm CA3 and CA1 population activities are compared in a familiar radial maze with the activities in an altered version of the maze when local and distal cues have been rotated in opposite directions (Lee et al., 2004a). It has been shown that CA3 cells follow the local cue rotation coherently, where this is not seen in CA1. Thus, CA3 is capable to restore the original representations (rotated by the local cues) despite the noisy sensory inputs caused by the conflicting rotation of the global cues. The authors interpret this is as strong evidence for pattern completion in CA3.

In our opinion this interpretation is imprecise. The study does not show that CA3 receives noisy representations as direct input and it is possible that the observed pattern completion is already performed in one of its upstream regions. Although CA1 representations do not show high correlation between
the two environments which might reflect low correlation in CA1 inputs, this
does not imply that this is also the case for CA3 inputs. CA3 gets input
from EC layer II and from the DG, whereas CA1 receives only input from
EC layer III. Thus, the high correlations in CA3 could just be a reflection of
high correlations in one of its input regions.

Similarly, two other studies compared activity in CA3 and CA1. Leutgeb
et al. (2004) show by electrophysiological recordings that population activity
in CA1 changes gradually with increasing manipulations to the environment
whereas activity in CA3 remapped entirely already due to the smallest ma-
nipulations. Vazdarjanova and Guzowski (2004) confirm the results from
(Lee et al., 2004a) and (Leutgeb et al., 2004) by visualization of the expres-
sion of immediate early genes. The active cell population in CA3 is more
similar than in CA1 under conditions in which changes to the environment
were small and conversely it is more different in CA3 than in CA1 when
changes are large. These results are interpreted as evidence that CA3 follows
a non-linear attractor like behaviour (Guzowski et al., 2004) and hence as
evidence for pattern completion. However, the interpretation of these studies
suffer from the same issue as the one in (Lee et al., 2004a). The attractor
behaviour in CA3 could be merely inherited by attractor behaviour in one of
its input regions.

Neunuebel et. al. have tried to address this issue in two follow up studies
(Neunuebel et al., 2013; Neunuebel and Knierim, 2014). Additionally to CA3,
they record from the EC and the DG to control whether high correlations are
already existent at these stages. By using the same experimental paradigm as
in (Lee et al., 2004a) they confirm that CA3 population activity follows the
rotation of the local cues and show that activity in the MEC follows global
cues, whereas activities of DG and LEC cells express more an ambiguous
behaviour. Since on the population level none of the main input regions to CA3 share its sensitivity to local cues, the authors interpret that CA3 itself must perform pattern completion.

This interpretation, however, is imprecise. By the definition of pattern completion its crucial property is that the correlation between the noisy representation and the original representation is higher after the completion than before. However, throughout all tested cue rotations, the correlation between the representation in the altered maze and the representation in the original maze is similar in CA3 and DG even when rate maps are corrected for the local cue rotation (Neunuebel and Knierim, 2014, Fig. 5, but see Fig. 5.1 here). Thus, CA3 does clearly not correct for further error. The difference between the regions is that in CA3 the correlation is high specifically when rate maps are corrected for local cue rotation but, for example, not when corrected for global cue rotation, where in the DG such high specificity is absent. Nevertheless, this is not part of the definition of pattern completion.

Finally, a stream of studies recorded hippocampal cell activities in rats as the geometry of an environment is morphed gradually from a square to a circle in several stages (Wills et al., 2005; Leutgeb et al., 2005b, 2007; Colgin et al., 2010). In (Wills et al., 2005) activities in CA1 in square like morph geometry were similar to the ones in the square environment and activities in circle like morph stages were similar to the ones in the circle environment. Importantly the jump from circle to square representations was sudden and non-linear indicating attractor dynamics. However, in (Leutgeb et al., 2005b) this was not the case and representations changed gradually. Colgin et al. (2010) resolved these seemingly contradicting results by showing that the change of the representations in CA3 and CA1 is highly dependent on the learning conditions. Only when the path integration coordinates had the chance to reset
Figure 5.1. No pattern completion in CA3 in the double cue rotation task. Each red (blue) polar plot in the left (right) column shows the mean spatial correlation between CA3 (DG) PVs in the unaltered environment and PVs in the altered environment as a function of spatial rotation of the cells’ rate maps in the altered environment. Each row shows an experiment where the degree of cue rotations of the altered environment were different. L indicates the degree of local cue rotation and G the degree of global cue rotation. Numbers on the left show the degree of total cue rotation, i.e. in the experiment of the first row, local cues were rotated 22.5 degrees counter clockwise and global cues 22.5 degrees clockwise. Black dots indicate angles of rate map rotations at which mean correlations where maximal. Note that the correlations in CA3 were specifically high when rate maps are rotated to the same degree as the local cues. In the DG, this high specificity is not seen. However, the amount of correlation is not higher in CA3 than DG even when rate maps are rotated according to local cue rotation. Grey polar plots show control experiment when the rat enters the same environment twice. Figure is taken with permission from (Neunuebel and Knierim, 2014, Fig.5)
during learning the representations of the circle and square environment, the jump in representations will be sudden during testing. Thus, attractor like behaviour in CA3 is very likely due to the path integration system, which is believed to originate in the MEC (McNaughton et al., 2006). Hence, it seems that the MEC is the source for the sudden change in hippocampal cell activity and not the putative auto-associative CA3 network. Indeed, (Fyhn et al., 2007) show that global remapping (a sudden change of hippocampal representations) is accompanied by remapping of grid cells in the MEC. Moreover, Leutgeb et al. (2007) show that when there is a gradual shift in CA3 activity in the morphing paradigm, grid cell activity is stable. Thus, the MEC is likely to be the source of the observed attractor dynamics in the hippocampus and not CA3, although there are models that explain rate remapping in the morphing experiment through feedback connections in CA3 (Rennó-Costa et al., 2014; Solstad et al., 2014).

To conclude, although otherwise claimed, up to date there is no clear evidence of pattern completion in CA3. Carefully examination of work that postulates such evidence reveals imprecise interpretations or opens up alternative explanations of the observed data.

5.2.4 Grid cells as the only source for place cells is implausible

The firing behaviour of grid cells and place cells is correlated in many ways. First, both cell types are similarly dependent on landmarks and boundaries of the environment. Both exhibit stable firing patterns during repeated visits of the same environment (Thompson and Best, 1990), are robust to the removal of some environmental cues (O’Keefe and Conway, 1978; Hafting et al., 2005) and mainly preserve their firing maps during darkness (Quirk
et al., 1990; Zhang et al., 2014). Moreover, when prominent landmarks are moved, both types rotate their firing patterns in concert with the displaced landmark (Muller and Kubie, 1987; Hafting et al., 2005), however, grid cells follow global cues and place cells mainly local cues in conflicting rotations (Neunuebel et al., 2013; Neunuebel and Knierim, 2014). Finally, when the boundaries of a familiar environment are expanded, the size of the place fields in both cell types rescale, too (O’Keefe and Burgess, 1996; Barry et al., 2007).

Second, the field sizes in both types increase along the dorsal to ventral axis (Fyhn et al., 2007; Kjelstrup et al., 2008) and the connection from EC to hippocampus is topographic along this axis (Dolorfo and Amaral, 1998; Honda et al., 2012), i.e dorsal EC cells project mostly to the dorsal hippocampus and ventral cells mostly to the ventral hippocampus.

Third, when the animal encounters a novel environment for the first time, place fields in both types tend to be larger during the first minutes of exposure (Mehta et al., 1997; Lee et al., 2004a; Barry et al., 2012). However, the time scale until stable size is reached might differ.

Finally, global remapping in the hippocampus appears to happen exactly when grid cells remap (Fyhn et al., 2007; Barry et al., 2012).

Consequently, it is suggested that both cell types are not just correlated, but that this relationship is causal. In more detail, it is proposed that grid cells are driving place cell activity (Fuhs and Touretzky, 2006; McNaughton et al., 2006; Rolls et al., 2006; Solstad et al., 2006; Blair et al., 2007; Franzius et al., 2007). A few experimental findings support this causality. CA1 place cells are unstable in rats with a lesioned EC (Van Cauter et al., 2008), but are stable when only LEC is lesioned (Lu et al., 2013) or when the input from CA3 is blocked (Brun et al., 2002; Nakashiba et al., 2008). Furthermore,
place fields at distal parts in CA1 are less spatial than the ones in proximal parts (Nakamura et al., 2013). At the same time, distal parts receive less input from the MEC (Honda et al., 2012) and hence probably receive less input from grid cells.

However, other experimental work questions the plausibility of such causality (Bush et al., 2014). Lesions to the MEC of rats did not abolish place cell firing (Brun et al., 2008; Hales et al., 2014). Second, two developmental studies have shown that in young rat pups place and head-direction cells developed adult like firing patterns earlier than grid cells do (Wills et al., 2010; Langston et al., 2010). Third, in other studies, theta oscillation in the hippocampus was disrupted by reversibly inactivating the medial septum (Koenig et al., 2011; Brandon et al., 2011, 2014). This resulted in a high degradation of the periodicity in grid cell firing, but at the same time CA1 place cells continued to have normal fields. However, in large and novel environments place cell firing was disrupted under these conditions (Wang et al., 2015). Forth, it has been shown that in conflicting cue rotations cells in the MEC mainly follow global cues and CA3 place cells mainly local cues (Neunuebel et al., 2013; Neunuebel and Knierim, 2014). Fifth, place fields in grid and place cells are larger in first entries to novel environments, but this expansion last for hours in grid cells (Barry et al., 2012), whereas place cells become stable much more rapidly (Mehta et al., 1997; Lee et al., 2004a). Finally, it has been shown that cells in the MEC fire shortly after pyramidal cells in the hippocampus, making a casual relationship unlikely (Mizuseki et al., 2009).

Although some of these issues could be accounted for by robustness of the grids-to-places transformation (Azizi et al., 2014), the experimental evidence whether grid cells trigger place cells remains unclear. In this thesis we have
pointed out that a linear grid-to-place transformation suffers from another issue that has received little attention so far: unrealistically small place field sizes.

Theoretical work that models this transformation produces place fields that have either small sizes reflecting those fields found in the granule cells in the DG (Rolls et al., 2006; Solstad et al., 2006; Si and Treves, 2009; de Almeida et al., 2009; Savelli and Knierim, 2010; Azizi et al., 2014) or fields that are highly sensitive to tiny perturbations in the input (Blair et al., 2007). One study explicitly models the formation of place fields in CA3 by mixing grid cell input with input from the DG and by mimicking realistic distribution of synapses (de Almeida et al., 2012). They are able to generate place cells with single fields by using a competitive activation function, however, for all investigated model parameters the fields were too small compared to CA3 fields found experimentally (de Almeida et al., 2012, see Fig. 4b).

Another modelling study suggested that a place cell is the result of a Fourier transform where grid cells with a common spatial phase are the basis functions (Solstad et al., 2006). To produce large place fields, the model relies on grid cells with a grid spacing larger than any observed so far. One prediction of the model is that lesioning grid cells with large spacings leads to contraction of place fields, whereas lesions of cells with small spacings lead to an expansion of fields. A recent study tested this prediction experimentally by inactivating grid cells at three different locations along the dorsoventral axis of MEC, along which grid spacings increase systematically (Ormond and McNaughton, 2015). In contrast to the model predictions, inactivation at all MEC locations result in an expansion of place fields. Moreover, the number of place fields decreases. Interestingly, both experimental findings are predicted by our EC-CA1-EC model that includes input from weakly
In Section 4.1.1 we have provided a computational reason why feedforward models cannot produce realistically sized fields. The structured spatial autocorrelation of the grid cell PVs prevents the formation of single large fields. This spatial structure is enhanced when grid cells express a common orientation (Solstad et al., 2006) and experiments indeed show that grid cell orientations are clustered in rats (Barry et al., 2007; Stensola et al., 2012). On the other hand, the grid symmetry reduces with increasing variety between the peak firing rates of the receptive fields of individual grid cells (Rolls et al., 2006; Bush et al., 2014) and this variety has been found in rats (Hafting et al., 2005). In our models we are rather conservative and grid cell orientations are only clustered module wise and different modules have different mean orientations distributed along the entire 0 to 60 degrees (Fig. 2.5C). Moreover, we introduce some variety between peak firing rates of receptive fields, too (see Section 1.4.1 in Methods). However, despite these symmetry breaking aspects, our general feedforward model shows that the formation of realistic place cells by grid cells is questionable.

To conclude, experimental studies tell us that place cells are present in the absence of medial entorhinal input and in particular of grid cell input. Moreover, we have provided theoretical evidence that a grid-to-place transformation simply by a feedforward network is implausible. This strengthen alternatives models for place cell formation that do not rely solely on grid cells or models that are not purely feedforward.

5.2.5 Alternative models for place cell formation

The boundary vector cell (BVC) model suggests that place cell firing arise through the input from border cells in the MEC (Hartley et al., 2000; Burgess
et al., 2000). In this model place fields emerge by the thresholded sum of border cells with different preferred direction and distance. The model can reproduce the empirical observation that the firing locations of place fields tend to maintain fixed distances to one or more boundaries following changes to the geometry of a familiar environment (O’Keefe and Burgess, 1996). Interestingly, the model predicted the existence of border cells before they were found in the MEC (Solstad et al., 2008; Savelli et al., 2008).

This model resolves some issues of the grid-to-place models mentioned in the previous Section 5.2.4 (Bush et al., 2014). In particular, the model could produce realistic place field sizes in principle, since border cells do not have a repetitive structure in their PV autocorrelation. Although, to our knowledge, this has not been shown explicitly. Furthermore, border cells are not disrupted by shutting down theta, which might explain the stability of place fields when the medial septum is inactivated and grid cell firing is degraded (Koenig et al., 2011; Brandon et al., 2011). Moreover, border cells are rapidly stable in novel environments, as place cells are and they appear roughly at the same time during development in rat pups (Wills et al., 2010; Langston et al., 2010).

Nevertheless, as this model solely relies on cells located in the MEC, it cannot explain other experimental findings including intact place cell firing in rats with lesioned MEC (Brun et al., 2008; Hales et al., 2014), preceding firing of place cells before cells in the MEC (Mizuseki et al., 2009) and the opposite behaviour of place cells and MEC cells in conflicting cue rotations (Neunuebel et al., 2013; Neunuebel and Knierim, 2014).

The EC-CA1-EC model we propose here does not have the issues of the BVC and the grid-to-place models, since it does not only rely on cells in the MEC, but also on cells in the LEC. Hence, it is able to generate place
CHAPTER 5. DISCUSSION

cells even when the MEC is lesioned. We use a more abstract cell class, the weakly spatially modulated cells, which do not systematically express firing fields at borders. Their crucial property is that their population activity does not have a repetitive structure. Border cells do not have such structure either. Thus, when part of the weakly spatially modulated cells are modelled more concretely, i.e. when a subset of these abstract cells is substituted by border cells, the model should produce qualitatively similar place cells as those observed in Section 4.2.1. However, by implementing border cells into the model it could, as the BVC model, reproduce the experimental finding that place field locations tend to appear at fixed distances to boundaries (O’Keefe and Burgess, 1996).

Another possibility is that place cells are driven solely by grid cells but in a more complex network. For example a model of CA3 with recurrently connected neurons could generate realistically sized fields, even when CA3 cells receive only narrowly tuned spatial drive from grid cells (Neher et al., 2015a). Due to the recurrence and the excitation by other neurons that receive spatial inputs at a more distant location, the place field of a CA3 cell will appear larger than the extent of its external spatial input. However, since this model does only rely on grid cells, it has all other issues of the grid-to-place models described earlier.

In some previous feedforward models, non-spatial input was present in addition to the grid cell input (Si and Treves, 2009). However, this had only a small effect on the place field sizes and could not generate realistic field sizes. Lyttle et al. (2013) modelled the increase of hippocampal place field sizes along the dorsal to ventral axis by increasing the spacings of grid inputs along this axis and also by increasing the amount of non-spatial inputs at ventral locations. In this way, realistic place fields sizes could be generated
Figure 5.2. Adding non-spatial inputs to grid cells might not be sufficient to generate realistic place cells. Plots show cumulative density functions of place field sizes measured in the model of Lyttle et al. (2013) using different parameters (green, red and blue lines) and field sizes measured in rats (black lines) (Royer et al., 2010). Left plot shows distributions in the dorsal hippocampus and right plot in the ventral hippocampus. Although the model could reproduce the sizes measured in the ventral hippocampus, the model generated for all parameters dorsal place field sizes that were too small indicating that grid cell input to the dorsal hippocampus along with non-spatial input is not sufficient to generate dorsal place fields of realistic size. Figure is taken with permission from (Lyttle et al., 2013, Fig.5)

in the ventral hippocampus but not in the dorsal hippocampus (Lyttle et al., 2013, Fig. 5A, but see Fig. 5.2 here). Hence, the results of these studies suggest that non-spatial inputs along with grid inputs are not sufficient to produce realistic place fields in a feedforward network.

We suggest instead that place cells are generated by a mixture of grid cells and cells that are somewhat spatial and carry at least some spatial information. These cells are abundant in the MEC (Zhang et al., 2013) and in particular in the LEC (Hargreaves et al., 2005; Yoganarasimha et al., 2011). We have shown that this mixture is sufficient to generate realistically sized place fields in a feedforward network. Interestingly, in the conflicting
cue rotation task LEC cells tend to follow local cues (Neunuebel et al., 2013) similar to place cells in CA3 (Neunuebel and Knierim, 2014), which indicate their influence on hippocampal place cell formation.

To conclude, to our knowledge the EC-CA1-EC model is the first model that produces robust place cells with realistic field sizes and that is in good agreement with puzzling results from a large body of experimental studies (Brun et al., 2008; Wills et al., 2010; Langston et al., 2010; Koenig et al., 2011; Brandon et al., 2011; Mizuseki et al., 2012; Zhang et al., 2013; Brandon et al., 2014; Hales et al., 2014; Ormond and McNaughton, 2015, for example). Thus, the model presented supports the view that grid cells and cells in the MEC are not the only source for place cell formation and that rather cells across the entire EC are involved, despite their lack of spatial information and stability.

5.2.6 Role of grid cells

If, as our results suggest, grid cells are not sufficient for the creation of place fields of realistic size in the hippocampus, are they necessary for place cell firing at all? In the absence of external visual inputs, place cells can maintain their firing location (Quirk et al., 1990; Gothard et al., 1996; Zhang et al., 2014). Thus, in addition to external cues, place cells also receive positional information from self-motion cues and likely grid cells are the source of this information. It is has been suggested that grid cells are part of a path integration system in the MEC that updates positional information based on self-motion cues (McNaughton et al., 2006). Their regular hexagonal pattern of firing fields might provide the distance metric, medial entorhinal head direction cells the directional information and the recently founded speed cells in the MEC (Kropff et al., 2015) might provide the information about
CHAPTER 5. DISCUSSION

the animals velocity. Thus, the MEC has all the neural components necessary for performing path integration. Indeed, all three cell types maintain their firing behaviour during darkness (Taube et al., 1990a; Hafting et al., 2005; Kropff et al., 2015).

On the other hand, cells in the LEC are receptive to individual sensory cues such as objects or odours (Zhu et al., 1995b,a; Young et al., 1997; Deshmukh and Knierim, 2011) and in object-poor environments their rate maps are less stable over time as compared to cells in the MEC (Hargreaves et al., 2005; Yoganarasimha et al., 2011). Thus, when external cues are weak, temporal stability of place cells might be inherited by stability of cells in the MEC. This view is backed by studies that show that CA1 place fields are more stable in control than in MEC lesioned rats in object poor environments (Brun et al., 2008; Hales et al., 2014). The EC-CA1-EC model supports this idea. When sensory cues are weak and hence LEC inputs are unstable, stable MEC input is necessary and sufficient to generate stable place cells in CA1 (Fig. 4.6).

Recent experiments suggest a similar role of grid cell input during the learning of a novel environment. If the medial septum is inactivated, grid cells lose their spatially periodic activity pattern (Koenig et al., 2011; Brandon et al., 2011). If this occurs in familiar or a small novel environment, place fields seem to be intact and stable (Brandon et al., 2014; Wang et al., 2015). However, in a large novel environment, medial septum inactivation abolished CA1 firing fields and prevents the emergence of spatial stable firing (Wang et al., 2015). To us these results suggest the following interpretation. In a familiar environment, inputs from weakly spatially modulated cells alone can maintain established place cell responses. The same inputs can generate a new spatial representation in a small novel environment because there is a
sufficient number of distinct sensory features to uniquely identify a location. This is less likely, however, in a large novel environment, so that the grid cell input is needed to stably represent the spatial location by self-motion cues.

5.2.7 Predictions of the EC-CA1-EC model

The EC-CA1-EC model shows that although weakly spatially modulated EC cells have much lower spatial information than grid cells do, they still can drive the spatial selectivity of place cells. Spatial information might therefore not be the right measure to determine whether cells are driving hippocampal place cell firing. The crucial requirement on the input, to generate large single place fields, are certain features in the spatial autocorrelation of its PVs. As long as nearby PVs are correlated in a sufficiently large radius and the autocorrelation does not exhibit large values at larger distances, it can be transformed into place cells straightforwardly. Hence, a prediction of this model is that the PV of cells that project to place cells are of this kind, which can be verified experimentally.

In novel environments Lu et al. (2013) reported that rats with a partial lesion of the LEC exhibit no differences in hippocampal field sizes compared to controls. The mean lesion size in that study was around 40% of the LEC. In our model, this is equivalent to learning the transformation with a larger proportion of grid inputs, around $\frac{1/6}{1/2+0.6\times1/2} \approx 0.21$. The model produces smaller fields in this case, but the difference is small (compare the second and the third data point in Fig. 4.4D). If, however, the LEC lesion were complete, our feedforward model would predict significantly smaller place field sizes and more fields in CA1 in novel environments (compare proportion of grid inputs 0.17 to 0.5 in Fig. 4.4D). While this would be a difficult experiment, it could, in principle, be performed with existing methods.
In familiar environments lesioning the MEC in rats leads to a decrease in number of active cells and in broader place fields in the CA1 region (Brun et al., 2008; Hales et al., 2014; Ormond and McNaughton, 2015). Our model reproduces these findings (Fig. 4.5) and predicts that these effects occur to the same degree when grid cells are lesioned specifically instead of the entire MEC. Furthermore, it predicts opposite effects for lesions of the LEC. In a familiar environment, place fields will decrease in size and place cells will have more place fields.

Moreover, in MEC lesioned rats the stability of CA1 place cells is reduced in the Morris Water Maze (Hales et al., 2014). We argue that this reduced stability is inherited by the instability of LEC cells (Fig. 4.6) that has been observed in object poor environments (Hargreaves et al., 2005; Yogananarasimha et al., 2011) like the classic water maze. In object rich environments, however, LEC cells are stable (Deshmukh and Knierim, 2011). Thus, our model predicts that in these environments the stability of place cells in MEC lesioned animals is less reduced (Fig. 4.5A). Similarly it predicts that the enlargement of fields and the decrease in the number of active cells in lesioned animals in the Morris Water Maze is less pronounced in object rich environments.

Next, there is some gradient in the connectivity from EC to CA1 along the transverse axis (Honda et al., 2012). The proportion of MEC inputs to CA1 are higher than LEC inputs at proximal parts (the part near CA3) and the relationship is reversed at distal parts (the part near the subiculum). Interestingly, proximal CA1 place cells express stable and mostly single place fields whereas distal cells typically have a few fields that are less stable (Henriksen et al., 2010). Although the EC-CA1-EC model can explain the reduced stability in those cells, it cannot explain the expression of multiple
place fields. Thus, the model predicts that there is a reason other than the gradient of entorhinal inputs for this phenomenon. We propose that different CA3 inputs could be the origin of the expression of several fields in distal CA1 cells. Proximal CA3 cells (near the DG) preferentially project to distal CA1 cells whereas distal CA3 cells (near CA2) project preferentially to proximal CA1 cells (Amaral and Witter, 1989; Ishizuka et al., 1990). Moreover, recent experiments hint to the existence of a proximal CA3 to distal CA1 subnetwork (Nakamura et al., 2013). It would be interesting to study how different inputs from CA3 can affect the place field characteristics in CA1 in our model.

5.2.8 Extensions of the EC-CA1-EC model and future directions

In the EC-CA1-EC model, we focused on the spatial correlates of the hippocampal neurons’ spiking. Since in place cells, spatial responses and the timing of spikes are related through theta phase precession (Skaggs et al., 1996), it will be important to extent the model to account for temporal features of place cell firing.

One question that we did not address specifically in our computational study is how place fields with realistic sizes emerge in CA3. However, our model of the formation of place cells in CA1 by a feedforward network driven by grid cells and weakly spatially modulated EC cells can be applied to CA3 in a straightforward manner and this has been studied in (Neher et al., 2015a). Furthermore, it would be interesting to study the role of the Schaffer collaterals by modelling their plasticity (Buchanan and Mellor, 2010). For example Mehta et al. (2000) showed in a feedforward model that Schaffer collaterals that undergo STDP lead to larger place fields in CA1 compared
to their inputs from CA3 cells and to an asymmetry of CA1 place fields on linear tracks as observed in experiments. Furthermore, CA1 place cell responses are observed in animals with large lesions of the EC (Van Cauter et al., 2008) suggesting that these responses are triggered just by CA3 input. However, in our model CA1 place cell firing occur without CA3 even when large areas of EC are lesioned.

The current study models the dorsal hippocampus and does not take into account the topography in the hippocampal formation. The size of hippocampal place fields increase along the dorsal to ventral axis (Kjelstrup et al., 2008). Similarly, the grid spacing is organized topographically in the MEC (Rowland and Moser, 2014). Dorsal regions of the MEC express small spacings and the spacing increases when moving towards the ventral part. Moreover, there is also topography in the connectivity pattern between EC and the CA regions of the hippocampus (Dolorfo and Amaral, 1998; Honda et al., 2012). Thus, ventral CA cells get input from grid cells with larger spacings than dorsal cells. Whether this can account for larger place fields in ventral cells (McNaughton et al., 2006; Solstad et al., 2006; Moser et al., 2008) or whether a gradient of non-spatial input along the dorsal ventral axis is necessary (Lyttle et al., 2013) needs to be determined in the EC-CA1-EC model.

5.3 Conclusion

In this thesis we have shown that:

- Hebbian learning does not support pattern separation in the DG.

- The idea that CA3 performs pattern completion by being an auto-associative network with discrete attractor states is very questionable.
• Pattern completion over the simpler EC-CA1-EC pathway can be more effectively, which challenges the idea of CA3 being an attractor network.

• Place cell formation with realistic field sizes solely by grid cell input in a simple feedforward network is not plausible and that additional mechanisms are necessary.

• Despite their lack of spatial information and stability, weakly spatially modulated cells together with grid cells can generate stable place cells. Thus, we show that these measures might not be the right ones to determine which cell types trigger place cells.

• By a mixture of grid cell and weakly spatially modulated cell input the feedforward EC-CA1-EC model overcomes the issue of generating place fields of limited size. Furthermore, it reproduces the puzzling behaviour of place cells in many lesion studies. Hence, we provide strong support for the hypothesis that place cells are not just generated by grid cells, but rather by cells from the entire EC.

• The EC-CA1-EC model makes several testable predictions regarding place cell firing in novel, familiar and object rich environments in healthy and lesioned animals.

Thus, with the introduction of the EC-CA1-EC model, that is effective in pattern completion and can produce realistic place cells, we present not only a model that unifies hippocampal memory function and the generation of its spatial representations, we also challenge current opinions in the hippocampus research field. We believe that the models’ controversial ideas and its strong predictions will inspire new experiments and induce fresh discussions.
Bibliography

Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B., and Moser, E. I.

scaling along the septo-temporal axis of the hippocampus. *Hippocampus*, 15:841–852.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,

BIBLIOGRAPHY

Appendix
Curriculum Vitae

Personal Details
Name: Torsten Neher
Date of birth: 25th of November 1983
Place of birth: Viernheim, Germany
Address: Ruhr-University Bochum
Mercator Research Group 'Structure of Memory'
Faculty of Psychology
GA 04/143
Universtätsstrasse 150
44801 Bochum
Germany
Phone: +49-234- 32 29616

Education
July 2010 - present PhD candidate, Institute for Neural Computation, Ruhr University of Bochum, Germany.
Working title: 'Analysis of the formation of memory and place cells in the hippocampus: A computational approach.'
Mar 2009 - Feb 2010 Master of Science in Mathematics, University of Auckland, New Zealand.
Thesis: 'Cased Based Decision Theory'
Honoured with First Class Honorable

Mar 2008 - Feb 2009 Bachelor of Science in Mathematics, University of Auckland, New Zealand.
Thesis: 'How far is a voting game from a weighted majority game?
Honoured with First Class Honorable

Erasmus Programme of the European Union

Intermediate exam 'Vordiplom'

Awards
Jan 2015 - Dec 2015 Research grant from the Mercator Foundation, Essen

Jul 2010 - Jun 2013 Research grant from the International Graduate School of Neuroscience, Bochum

Mar 2009 - Feb 2010 Master Award from the University of Auckland, New Zealand

Jul 2006 - Jun 2007 Erasmus grant from the European Union
Jun 2003 Book Prize from the German Physical Society (DPG)

Teaching Experience

Jun 2013 - Dec 2014 Supervision of two bachelor students
Mar 2008 - Jul 2008 Teaching assistant in ’Maths108’ at the University of Auckland
Oct 2007 - Feb 2008 Teaching assistant in ’Analysis I’ at the University of Konstanz

Skills

Programming Python, Numpy, Scikit-learn, Matplotlib (expert)
Inkscape, Latex, Microsoft Office (good)
Pandas, R, Matlab (basic)

Languages German (native), English (fluent), Spanish (good)
List of Publications

Neher, T. and Wiskott (2012). A computational model of memory formation in the hippocampus. *Poster at the 8th FENS Forum of Neuroscience, Jul 14–18, Barcelona, Spain*.

Acknowledgements

I would like to thank:

Prof. Dr. Laurenz Wiskott for supervising this thesis and supporting me during the past years with his sharp analytical thinking. I am grateful for his openness and flexibility giving me the freedom to pursue my own ways in research.

Prof. Dr. Denis Manahan-Vaughan for being my second supervisor and dean of studies at the IGSN. She provided me with insight from a perspective of an experimental researcher and she gave me the opportunity to discuss my work with members of her lab.

Prof. Dr. Sen Cheng for very fruitful collaboration, in particular in the last year. Without him, most of the work would not exist.

The International Graduate School of Neuroscience (IGSN) for providing a very helpful infrastructure and meeting place for young researchers from all areas in neuroscience. I am proud of being a member of this great community. In particular I thank Ursula Heiler and Gisela Stephan for their generous help in administration.

The Institute for Neural Computation with all its members for providing a very work friendly environment and excellent lectures and seminars. Especially thanks to my colleagues Fabian Schönfeld, Björn Weghenkel,
Stefan Richthofer, Jean-Stephane Jolkeit, Stephan Zibner and Dr. Aydin Demircioglu.

The members of the Mercator Research Group "Structure of Memory" for creating a friendly and productive atmosphere. Thank you Rami Aijan, Dr. Amir Azizi, Mehdi Bayati, Selver Demic, Jing Fang, Richard G" orler, Satish Kumar and Dr. Martin Pyka. I enjoyed working with you very much.

Sebastian Forster, Sophie Tashiro, Johanna Busse, Jakob Jäger and Na-Rhee Scherfling for you being such supporting friends. It was a superb time with you in Bochum.

Last but not least, Heinz and Marlies Neher for being wonderful parents.

The work was supported financially by the IGSN, by the Institute for Neural Computation, by the Mercator Research Group "Structure of Memory", and by the German Research Society (Deutsche Forschungsgemeinschaft, DFG) within the SFB 874 projects B2 and B3.