
Invariant Object Recognition with
Slow Feature Analysis

M. Franzius1, N. Wilbert1, L. Wiskott1

Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany

Abstract. Primates are very good at recognizing objects independently
of viewing angle or retinal position and outperform existing computer
vision systems by far. But invariant object recognition is only one pre-
requisite for successful interaction with the environment. An animal also
needs to assess an object’s position and relative rotational angle. We
propose here a model that is able to extract object identity, position,
and rotation angles, where each code is independent of all others. We
demonstrate the model behavior on complex three-dimensional objects
under translation and in-depth rotation on homogeneous backgrounds. A
similar model has previously been shown to extract hippocampal spatial
codes from quasi-natural videos. The rigorous mathematical analysis of
this earlier application carries over to the scenario of invariant object
recognition.

1 Introduction

Sensory signals convey information about the world surrounding an animal. How-
ever, a visual signal can change dramatically even when only a single object is
slightly moved or rotated. The visual signal from the retina, for example, varies
strongly when distance, position, viewing angle, or lighting conditions change.
A high-level representation of object identity in the brain should, however, re-
main constant or invariant under these different conditions. How could the brain
extract this abstract information from the highly variable stimuli it perceives?
How can this task be learned from the statistics of the visual stimuli in an
unsupervised way?
The primate visual system is organized hierarchically with increasing recep-

tive field sizes, increasing stimulus specificity and invariance towards to top of the
(ventral) hierarchy, where many neurons are coding for objects with an extreme
amount of invariance to position, angle, scale etc.
Many models of invariant object recognition have been proposed in the last

decades [1]. However, many approaches fail or have not been shown to work
for natural stimuli and complex transformations like in-depth rotations. But
invariant object recognition is only one task the (primate) brain has to achieve
in order to successfully interact with the environment. We do not only need to
extract the identity of an object (“what is seen?”) independently of its position
and view direction, we also want to extract the position of an object (“where
is it?”) independently of its identity or viewing angle. The relative rotational

�����4VSG���XL�-RXP�'SRJ�SR�%VXMÅGMEP�2IYVEP�2IX[SVOW
0IGXYVI�2SXIW�MR�'SQTYXIV�7GMIRGI��������������



angle of a viewed object can be just as crucial (“does the tiger look at me?”). In
principle, we might want a representation of any aspect (i.e., size, viewing angle,
lighting direction etc.) independently of all the others and optimally, all these
tasks should be solved with a single computational principle. In the following
we will refer to the configuration of position and angles relative to the viewer
as the configuration of an object (sometimes also called a pose). We will call a
2D image of an object in a specific configuration a view. In general, the process
of extracting the configuration of an object from a view is very hard to solve,
especially in the presence of a cluttered background and many different possible
objects. In this work we use high-dimensional views of complex objects but
restrict the problem to the cases of only one object present at any time point
and a static homogeneous background. A good model should also generalize
to previously unseen configurations, i.e., it should learn the relevant statistics
of transformations rather than just memorizing specific views. It should also
generalize to new objects, e.g., it should successfully estimate the position and
orientation1 of an object that was never shown before.
We apply here a hierarchical model based on the learning principle of temporal

slowness. The structure of the resulting representation solely depends on the
statistics of presentation of the training views. This information is encoded in
an analytically predictable way and very simple to decode by linear regression.
Except for minor changes, the model used here is identical to that used earlier for
the modeling of place cells and head direction cells in the hippocampal formation
from quasi-natural videos [2].

2 Methods

2.1 Stimulus Generation

The model was trained and tested with image sequences containing views of
different objects. OpenGL was used to render the views of the objects as textured
3D-models in front of a white homogenous background. To prevent the model
from relying on simple color cues (especially for object classification) we only
used grayscale views for the results presented here. Two different object classes
were used that are described below. For each object class the model was trained
with five objects. In the testing phase we added five new objects, which the
model had never seen during training.
In the first experiment the objects were clusters of textured spheres as shown

in Figure 1 (a), which provide a difficult but generic task. The same six textured
spheres (textures from VisTex database [3]) were used in different spatial ar-
rangements for all the objects. For each object the spheres were randomly fixed
on a hexagonal lattice of size 2×2×3. As the examples in Figure 1 (a) illustrate,
identifying the rotation angles and identities for such objects is quite difficult
even for human observers. Using spheres has the advantage that the outline does

1 Generally, there is no canonical “0◦”-view of an object, thus a random phase offset
of absolute phase for a new object is to be expected.



Fig. 1. Objects used for stimulus generation. Part (a) shows the sphere objects
(each cluster of 6 spheres is one object). The first two views show the same object
under different in-depth rotation angles, while the third view shows a different object.
In part (b) the five fish objects used for training are shown with examples for the effect
of in-depth rotation. The fish model on the bottom right is one of the five untrained
fish used for testing. Part (c) shows some examples for the training and testing images.

not give a simple clue for the in-plane rotation angle. In the second experiment,
models of different fish (see Figure 1 (b)) were used to provide more natural
stimuli from a single object class (all models taken from [4]).

For sphere objects, the x-coordinate, the y-coordinate (vertical image coor-
dinate), the in-depth rotation angle φy and the in-plane rotation angle φz were
chosen as configuration variables. x and y range from 0 to 1, φy and φz from
0◦ to 360◦. Another configuration variable was the object identity ranging from
one to ten, with objects one to five being the training objects. So the transfor-
mations the model had to learn consisted of translations in the plane, rotations
along the y and z axes (with the in-depth rotation coming first) and changes of
object identity. For the fish objects, the configuration variables were x, y, z, φy
and object identity. So compared to the sphere objects we added translations in
depth along the z-axis and removed the in-plane rotations. A pure z-translation
changes both the object size and the position in the frame, due to the perspective
projection.

The configurations for the training sequences were generated as a random
walk procedure like in [2]. To generate a configuration in the sequence we add a
random term to the current spatial and angular velocities of the currently shown
object. By adjusting the magnitude of the velocity updates one can effectively
choose the timescales of the changes which are relevant for SFA. The position
and angles are then updated according to these velocities. In each step the ob-
ject identity was changed with low probability (p = 0.001). A blank frame was
inserted in between if a switch took place. This procedure adds some realism,



because in natural scenes a change in object identity without any changes in
other configuration variables generally does not occur.

2.2 Slow Feature Analysis

Slow Feature Analysis solves the following learning task: Given a multidimen-
sional input signal we want to find instantaneous scalar input-output functions
that generate output signals that vary as slowly as possible but still carry sig-
nificant information. To ensure the latter we require the output signals to be
uncorrelated and have unit variance. In mathematical terms, this can be stated
as follows:

Definition 1 (Optimization problem). Given a function space F and an I-
dimensional input signal x(t) find a set of J real-valued input-output functions
gj(x) ∈ F such that the output signals yj(t) := gj(x(t))

minimizeΔ(yj) := 〈ẏ
2
j 〉t (1)

under the constraints

〈yj〉t = 0 (zero mean), (2)

〈y2j 〉t = 1 (unit variance), (3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order), (4)

with 〈∙〉t and ẏ indicating temporal averaging and the derivative of y, respectively.

Equation (1) introduces the Δ-value, which is a measure of the temporal
slowness of the signal y(t). It is given by the mean square of the signal’s temporal
derivative, so that smallΔ-values indicate slowly varying signals. The constraints
(2) and (3) avoid the trivial constant solution and constraint (4) ensures that
different functions gj code for different aspects of the input.
It is important to note that although the objective is slowness, the functions

gj are instantaneous functions of the input, so that slowness cannot be enforced
by low-pass filtering. Slow output signals can only be obtained if the input signal
contains slowly varying features that can be extracted instantaneously by the
functions gj . Note also that for the same reason, once trained, the system works
fast, not slowly.
In the computationally relevant case where F is finite-dimensional the solu-

tion to the optimization problem can be found by means of Slow Feature Analysis
[5, 6]. This algorithm, which is based on an eigenvector approach, is guaranteed
to find the global optimum. Biologically more plausible learning rules for the op-
timization problem, both for graded response and spiking units exist [7, 8]. If the
function space is infinite-dimensional, the problem requires variational calculus
and will in general be difficult to solve. In [2] it has been shown that the opti-
mization problem for the high-dimensional visual input can be reformulated for
the low-dimensional configuration input. This provides very useful predictions



for the SFA-output of our model (even though it is only based on the finite-
dimensional SFA algorithm). We use these predictions for the postprocessing of
our model output (see 2.4). For the detailed predictions and their derivations
see [9] or [2].

2.3 Network Architecture

The computational model consists of a converging hierarchy of layers of SFA
nodes (see Figure 2). Each SFA node finds the slowest output features from its
input according to the SFA algorithm and performs the following sequence of
operations: linear SFA for dimensionality reduction, quadratic expansion with
subsequent additive Gaussian white noise (with a variance of 0.05), another
linear SFA step for slow-feature extraction, and clipping of extreme values at
±64 (Figure 2). Effectively, a node implements a subset of full quadratic SFA.
The clipping removes extreme values that can occur on test data very different
from training data.

In the following, the part of the input image that influences a node’s output
will be denoted as its receptive field. On the lowest layer, the receptive field of
each node consists of an image patch of 10 by 10 grayscale pixels that jointly
cover the input image of 128 by 128 pixels. The nodes form a regular (i.e., non-
foveated) 24 by 24 grid with partially overlapping receptive fields. The second
layer contains 11 by 11 nodes, each receiving input from 4 by 4 layer 1 nodes
with neighboring receptive fields, resembling a retinotopical layout. The third
layer contains 4 by 4 nodes, each receiving input from 5 by 5 layer 2 nodes with
neighboring receptive fields, again in a retinotopical layout. All 4 by 4 layer 3
outputs converge onto a single node in layer 4, whose output we call SFA-output.
The output of each node consists of the 32 slowest outputs (called units), except
for the top layer where 512 dimensions are used. Thus, the hierarchical organi-
zation of the model captures two important aspects of cortical visual processing:
increasing receptive field sizes and accumulating computational power at higher
layers.

The layers are trained sequentially from bottom to top (with slightly faster
varying views for the top layers). For computational efficiency, we train only
one node with stimuli from all node locations in its layer and replicate this
node throughout the layer. This mechanism effectively implements a weight-
sharing constraint. However, the system performance does not critically depend
on this mechanism. To the contrary, individually learned nodes improve the
overall performance.

For our simulations, we use 100,000 time points for the training of each layer.
Since training time of the entire model on a single PC is on the order of multiple
days, the implementation is parallelized and training times thus reduced to hours.
The simulated views are generated from its configuration (position, angles, and
object identity). The network is implemented in Python using the MDP toolbox
[10], and the code is available upon request.



Fig. 2. Model architecture and stimuli. An input image is fed into the hierarchical
network. The circles in each layer denote the overlapping receptive fields for the SFA-
nodes and converge towards the top layer. The same set of steps is applied on each
layer, which is visualized on the right hand side.

2.4 Feature Extraction with Linear Regression

The function space available to the model is large but limited (a subset of poly-
nomials of degree 24 = 16), which will generally lead to deviations from the
theoretical predictions. This causes linear mixing of features in the SFA-output
which is practically impossible to avoid in complex applications. Therefore we
extracted the individual configuration features in a separate post-processing step.

Our main objective here was to show that the relevant features were indeed
extracted from the raw image data. The easiest way to do this is by calculating a
multivariate linear regression of the SFA-output against the known configuration
values. While the regression procedure is obviously supervised, it nevertheless
shows that the relevant signals are easily accessible. Extracting this information
from the raw image data linearly is not possible (especially for the angles and
object identity). One should note, that the dimension of the model output is
smaller than the raw image data by two orders of magnitude. We also checked
that the nonlinear expansions without SFA reduces the regression performance
to almost chance level.

Since the predicted SFA solutions are cosine functions of the position values
(see [9]), one has to map the reference values correspondingly before calculating
the regression. The results from the regression are then mapped with the inverse
function. For those SFA solutions that code for rotational angles, the theory
predicts both sine and cosine functions of the angle value. Therefore we did
regressions for both mappings and then calculated the angles via the arctangent.
If multiple objects are trained and separated with a blank (see 2.1), the solutions
will in general be object dependent. This rules out global regressions for all
objects. The easiest way around this is to perform individual regressions for all
objects. While this procedure sacrifices the object invariance it does not affect
the invariance under all other transformations.



The object identity of N different objects is optimally encoded (under the
SFA objective) by up to N − 1 uncorrelated step functions, which are invariant
under all other transformations. In the SFA-output this should lead to separated
clusters for the trained objects. For untrained objects, those SFA-outputs coding
for object identity should take new values, thereby separating all objects. To ex-
plore the potential classification ability of the model we applied two very simple
classifiers on the SFA-output: a k-nearest-neighbour and a Gaussian classifier.

3 Results

The stimulus set used for testing consisted of 100,000 views (about 10,000 per
object), which were generated in the same way as the training data. Half of this
data was used to calculate the regressions or to train the classifiers, the other
half for testing2.

Fig. 3. Regression results for position and angle. For the first untrained sphere
object the feature values that were calculated with linear regression are plotted against
the correct reference values. The green dots are data points, the red line is the mean and
the gray area shows ± one standard deviation around the mean value. The regression
of the x coordinate was based on all five training objects.

Position and Rotational Angles. To extract the x and y object coordinates
from the model SFA-output we used multivariate linear regression, as described
in Section 2.4. As one can see in Figure 3 and Table 1, this works well for the
sphere objects, with a standard deviation of 5% for trained objects and 7% for
untrained objects. For the trained fish we achieve the same performance as for
the trained sphere objects. For untrained fish the additional size variations from
the z-transformations take their toll and pull the performance down to 14% for
the y-coordinate.

2 The detailed results are available at www.nikowilbert.de/supplements.



Table 1. Standard deviations for the coordinate regressions. The values are
given in percent relative to the coordinate range. The chance level is 28.9%. For exam-
ple, the x-coordinate of trained sphere objects on test data was reconstructed with an
RMSE of 5%.

Spheres Fish
trained new trained new

x 5% 7% 5% 12%
y 5% 7% 5% 14%

Table 2. Mean standard deviations for the angles and the z coordinate over
all ten objects. For the fish we give in φ∗y the mean absolute error for φy, since a large
part of the error is systematic due to the 180◦ pseudo-symmetry. The chance level is
104◦.

Spheres φz φy Fish φy φy z

14.8◦ 15.8◦ 36.4◦ 23.4◦ 0.11%

To extract the in-plane and in-depth rotation angles for the spheres, an indi-
vidual regression for each object was calculated. This still requires invariance of
the representations under the other transformations (including the other rota-
tion type). As the results in Table 2 show, both rotational angles were extracted
with about 15◦ standard deviation.

For the fish, the standard deviations are about twice as large as for the
spheres, mostly due to systematic errors. The fish models have a very similar
front and back view and therefore the model has difficulties to differentiate
between those two views. When taking the mean absolute error instead (see
Figure 2), the performance gap to the spheres is smaller because of the reduced
influence of outliers. As for the angles, individual regressions for all objects were
used to calculate the z coordinate for the fish objects (z-transformations were
not used for the sphere objects).

Classification. To quantify the classification ability of the model, two classifiers
were used on the SFA-output. The classifiers were trained with about 5000 data
points per object (i.e., half of the data, as for the regressions). A random fraction
of the remaining data points (about 150 per object) was then used to test the
classifier performance. The k-nearest-neighbour classifier generally performed
with about 96% hit rate (see Table 3). As expected, the Gaussian classifier
performed not as well, with a hit rate between 88% and 96%.



Table 3. Classifier hit rates in percent. The columns labeled with “KNN” refer to
the k-nearest-neighbour classifier (k = 8), while those with “G” refer to the Gaussian
classifier. Chance level is 10% for all objects and 20% on the sets of training or test
objects.

trained objects test objects all objects
KNN G KNN G KNN G

spheres 96.4 88.3 96.6 95.7 95.0 89.2
fish 97.7 94.6 99.2 88.1 96.7 88.8

4 Discussion

In the previous section we have shown how the hierarchical model learns indepen-
dent representations of object position, angle, and identity from quasi-natural
stimuli. The simultaneous extraction of all these different features is one novelty
of our model. This capability is made possible by the invariance of one extracted
feature with respect to the others (only limited with respect to object identity).

Related Work. The slowness principle has been applied in many models of
the visual system in the past [11, 12, 13, 5, 6, 2]. VisNet is the most promi-
nent example of hierarchical feed-forward neural network models of the primate
ventral visual system [1]. Weights in this model are adapted according to the
trace rule [11, 14, 15], which is closely related to Slow Feature Analysis [8]. Like
our model, VisNet can learn a position-invariant (or view-invariant) but object-
specific code. In contrast to our model, only a single invariant representation is
extracted (i.e., object identity) and the other parameters (e.g., object position,
rotation angles, lighting direction) are discarded. The ability of our model to
code for more than object identity in a structured way is therefore the greatest
functional difference.

Conclusion and Outlook. The model proposed here learns invariant object
representations based on the statistics of the presented stimuli during the train-
ing phase. Specifically, representations of transformations that occur slowly or
seldom are formed, while information on other transformations that occur most
often or quickly are discarded. An advantage of such a system is that no invari-
ances have to be “hard-wired”. Instead we use only generic SFA units on all
network layers. The unsupervised learning of the system can be described by a
comprehensive mathematical analysis that predicts specific output signal com-
ponents. However, if many transformations occur simultaneously and on similar
timescales, solutions tend to mix. In this case a final step of linear regression or
a simple classifier reconstructs the relevant transformations.
We show that the system generalizes well to previously unseen configurations

(i.e., shows no overfitting for test positions and viewing angles of objects) and



to previously unseen objects. However, the system behavior for completely dif-
ferent configurations, like for two simultaneously presented objects, cannot be
predicted with our current theory. The performance of the network for cluttered
background also remains to be tested.

References

[1] Rolls, E.T., Deco, G.: The Computational Neuroscience of Vision. Oxford Uni-
versity Press, New York (2002)

[2] Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place,
head-diretion and spatial-view cells. Public Library of Science (PLoS) Computa-
tional Biology 3(8) (2007) e166

[3] Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., Campbell, L.: Vision
texture. Downloaded from http://vismod.media.mit.edu/vismod/imagery/

VisionTexture/vistex.html (2002)
[4] Toucan Corporation: Toucan virtual museum. http://toucan.web.infoseek.

co.jp/3DCG/3ds/FishModelsE.html (2005)
[5] Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of in-
variances. Neural Computation 14(4) (2002) 715–770

[6] Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex
cell properties. Journal of Vision 5(6) (2005) 579–602 http://journalofvision.
org/5/6/9/, doi:10.1167/5.6.9.

[7] Hashimoto, W.: Quadratic forms in natural images. Network: Computation in
Neural Systems 14(4) (2003) 765–788

[8] Sprekeler, H., Michaelis, C., Wiskott, L.: Slowness: An objective for spike-timing-
plasticity? PLoS Computational Biology 3(6) (2007) e112

[9] Wiskott, L.: Slow feature analysis: A theoretical analysis of optimal free responses.
Neural Computation 15(9) (2003) 2147–2177

[10] Berkes, P., Zito, T.: Modular toolkit for data processing (version 2.0). http:

//mdp-toolkit.sourceforge.net (2005)
[11] Földiák, P.: Learning invariance from transformation sequences. Neural Compu-

tation 3 (1991) 194–200
[12] Stone, J.V., Bray, A.: A learning rule for extracting spatio-temporal invariances.

Network: Computation in Neural Systems 6 (1995) 429–436
[13] Kayser, C., Einhäuser, W., Dümmer, O., König, P., Körding, K.: Extracting slow

subspaces from natural videos leads to complex cells. Artificial Neural Networks
- ICANN 2001 Proceedings (2001) 1075–1080

[14] Rolls, E.T.: Neurophysiological mechanisms underlying face processing within
and beyond the temporal cortical visual areas. Philosophical Transactions of the
Royal Society 335 (1992) 11–21

[15] Wallis, G., Rolls, E.T.: Invariant face and object recognition in the visual system.
Progress in Neurobiology 51(2) (1997) 167–194


