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From Grids to Places

M. Franzius∗, R. Vollgraf†, L. Wiskott∗

Hafting et al. (2005) described grid cells in
the dorsocaudal region of the medial enthori-
nal cortex (dMEC). These cells show a strik-
ingly regular grid-like �ring-pattern as a func-
tion of the position of a rat in an enclosure.
Since the dMEC projects to the hippocampal
areas containing the well-known place cells,
the question arises whether and how the local-
ized responses of the latter can emerge based
on the output of grid cells. Here, we show
that, starting with simulated grid-cells, a sim-
ple linear transformation maximizing sparse-
ness leads to a localized representation similar
to place �elds.

As reported by Hafting et al. (2005) grid cells in
the dMEC show spatial �ring patterns in the form of
hexagonal grids with frequencies within one octave
(39 to 73 cm mean distance), random phase shifts,
and random orientations. The �ring patterns of place
cells in the hippocampus, on the other hand, are lo-
calized spots (Muller, 1996). Our hypothesis is that
the latter can be generated from the former simply
by sparsi�cation, which is consistent with evidence
that �ring patterns in hippocampal regions CA1 and
CA3 are sparser than in entorhinal cortex (O'Reilly
and McClelland, 1994).

To show that place �elds can be derived from grid-
cells by sparsi�cation we simulated a fully connected
linear two-layer network. The input units were 100
simulated grid-cells of a virtual rat with activity pat-
terns synthesized by Gaussians arranged on a hexag-
onal grid (Fig. 1 A). Some positional jitter, random
anisotropy, and amplitude variation of the Gaussians
was introduced, and white noise was added to qualita-
tively match the slightly irregular experimental data.

Let gi(~r) denote the activity of grid-cell gi as a
function of location ~r. Given a virtual path ~r(t) of a
rat within the enclosure, the input into the hippocam-
pus coming from the grid-cells is xi(t) := gi(~r(t)).
To achieve sparseness we applied independent com-
ponent analysis (ICA) (Hyvärinen, 1999b) on a set
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of 200.000 time points on the full set of 100 inputs
by subtracting the mean and using the CuBICA al-
gorithm, which attempts to diagonalize the tensors
of third and fourth order cumulants (Blaschke and
Wiskott, 2004), but we have obtained similar results
with other sparsi�cation algorithms, such as FastICA
(Hyvärinen, 1999a) or simply maximizing peak activ-
ity under a unit variance, zero mean, and decorrela-
tion constraint. The sign of each output unit, which
is arbitrary for ICA, was chosen such that the value
with the largest magnitude is positive, and then con-
stants cj were added to ensure nonnegative values.
This yielded an a�ne transformation with matrix T
producing 100 output signals yj(t) :=

∑
i Tjixi(t)+cj

that are maximally independent and signi�cantly
sparser than the input signals (kurtosis increased on
average from 2.8 for the input units to 27.3 for the
output units). The output-unit activities as a func-
tion of location are pj(~r) :=

∑
i Tjigi(~r) + cj and

show localized place �elds (Fig. 1, G). We measured
the number of peaks in a unit's output by counting
the number of distinct contiguous areas containing
pixels with at least 50% of the unit's maximum ac-
tivity. A large proportion of output units (75%) show
a single spot of activity (Fig. 1 G, units 1, 25, 50, 75),
some units (6%) show few spots (Fig. 1 G, unit 79),
both being consistent with the patterns of physiolog-
ical place-cells. Only few output units (19%) show
patterns of activity without clear structure (Fig. 1
G, unit 100). The size of the resulting place �elds
is similar for most units and comparable to the size
of the smallest grid-cell �elds, but it also depends on
the number of grid cell inputs. More inputs lead to
more localized output �elds, while too few inputs can
increase the number of �elds per output unit (note
that the number output units is always the same as
the number of input units and the connectivity is
complete).

There are di�erent ways of achieving sparseness
and localized place �elds. We have used ICA here
and have obtained similar results by maximizing peak
activity. For a more biological plausible implementa-
tion, we use competitive learning (CL). The weights
of the units are initialized with the �ring rate of the
grid cells at a particular location, with a di�erent lo-
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Figure 1: A: Spatial �ring pattern (SFP) of the input units

representing grid-cells. Three out of 100 units are shown. B:

SFP of 1st, 50th, and 100th output computed by principal

component analysis, ordered by eigenvalues. C: SFP of 1st,

50th and 100th output computed by Slow Feature Analysis,

ordered by slowness. D: SFP of three out of 100 typical out-

put units computed by random mixtures of the inputs. E:

SFP of 1st, 50th and 100th output after initialization with

sample vectors. Units are ordered by decreasing sparseness

(kurtosis). F: 1st, 50th and 100th output after competitive

learning, ordered by kurtosis. G: SFP of six out of 100 out-

put units computed by independent component analysis as

a means of sparsi�cation, ordered by kurtosis. Place �elds

of sparser units tend to have higher peak activity and are

more often located at the border of the enclosure, whereas

less sparse units tend to have multiple place �elds. Activities

are color coded: red-high, green-medium, blue-zero activity.

The full set of results can be viewed at http://itb.biologie.hu-

berlin.de/~franzius/gridsToPlaces/

cation for each unit. This is to avoid �dead units�, i.e.
units that never win the competition and thus never
learn, but since in any given environment a signi�-
cant proportion of place cells is inactive, a random
initialization leading to some �dead units� might be
considered realistic as well. In our case, the result-
ing code already is fairly sparse and localized (mean
kurtosis: 9.9, number of units with single peak: 49,
see Fig. 1 E). After competitive learning, kurtosis
increases to 10.2 and the number of units with sin-
gle peaks increases to 60 (Fig. 1 F). Furthermore,
the output units are less correlated after competitive
learning than before (mean absolute correlation 0.189
vs. 0.014).

There are other linear transformations, however,
that do not lead to localized place �elds. As controls
we have applied random mixtures, principal compo-
nent analysis (PCA), and slow feature analysis (SFA;
Wiskott and Sejnowski, 2002) to the grid cell input.
The latter minimizes the mean squared time deriva-
tive of the outputs and has been chosen because Wyss
et al. (2006) have presented a model based on the
slowness principle that was able learn localized place
cells. As one would expect, with random rotations of
the input the results retain some grid structure but
are less regular than the input (Fig. 1 D) and no unit
has one single or two peaks of activity. With PCA the
�rst units (i.e. those with highest variance) are highly
structured and have large amplitudes, much like the
grid cells themselves, while the later low-variance
units have low amplitudes and are noise-like (Fig. 1
B). None of these units had a single or two peaks
of activity. From the temporal slowness objective
we would expect patterns with low spatial frequen-
cies �rst, and high-frequency non-localized patterns
later, when outputs are sorted by slowness (Fig. 1 C).
None of these outputs have only one or two peaks of
activity. None of these three alternative linear trans-
formations (Fig. 1 B-D) leads to localized place �elds.
Di�erent starting conditions may lead to di�erent re-
sults, but 5 out of 5 simulations showed the same
qualitative behavior.

We conclude that sparse coding is a simple and ef-
�cient computational approach for the generation of
place cells from grid cells. The mean kurtosis and
percentage of localized place �elds increase from 9.9
and 49% for the simple initialization with input vec-
tors over 10.2 and 60% after competitive learning to
27.3 and 75% for the ICA algorithm, respectively.
Other methods we have tested, such as random ro-
tations, PCA, and SFA fail completely in generat-
ing localized place �elds. The fact that SFA fails in
our simulations is inconsistent with the results from
Wyss et al. (2006). Possibly, their model contains
some hidden mechanisms that favor sparseness in ad-
dition to slowness. The simple initialization with in-
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put vectors is extremely quick and already fairly ef-
�cient (cf. McNaughton et al., 2006). Such a simple
mechanism might be a way for the almost instanta-
neous formation of place �elds in a new environment.
However, competitive learning still improves on that
signi�cantly while preserving many of the place �elds
chosen by the initialization process (Units 1 and 100
in Figure 1 E and F maintained their place �eld while
Unit 50 did not). Thus, competitive learning (or any
other sparsi�cation method) could be used as a re-
�nement. ICA once again improves on the results of
competitive learning but is biologically less plausible.
There is some indication that grid cells reshu�e their
phases if the animal is placed in a new environment
(McNaughton, 2006). We have found that this results
in output units like those with random rotations even
if the place �elds were localized before the reshu�ing.
Thus, in our linear mode, for a successful remapping
either the phases would have to change in some coher-
ent way or the connectivity has to readapt. We be-
lieve the latter is more likely and we have seen above
that it can be done rather quickly. However, even if
sparseness is e�cient in creating place �elds from grid
cells, the complexity of place-�eld formation is now
only shifted to the computation of grid-cell behavior
and still open for discussion.
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