
Heuristic Evaluation of Expansions for
Non-Linear Hierarchical Slow Feature Analysis

Alberto N. Escalante-B.
Institut für Neuroinformatik

Ruhr-University of Bochum, Germany
e-mail: alberto.escalante@ini.rub.de

Laurenz Wiskott
Institut für Neuroinformatik

Ruhr-University of Bochum, Germany
e-mail: laurenz.wiskott@ini.rub.de

Abstract—Slow Feature Analysis (SFA) is a feature extraction
algorithm based on the slowness principle with applications
to both supervised and unsupervised learning. When imple-
mented hierarchically, it allows for efficient processing of high-
dimensional data, such as images. Expansion plays a crucial role
in the implementation of non-linear SFA. In this paper, a fast
heuristic method for the evaluation of expansions is proposed,
consisting of tests on seven problems and two metrics. Several
expansions with different complexities are evaluated. It is shown
that the method allows predictions of the performance of SFA
on a concrete data set, and the use of normalized expansions
is justified. The proposed method is useful for the design of
powerful expansions that allow the extraction of complex high-
level features and provide better generalization.

I. INTRODUCTION

One important problem in machine learning is the devel-
opment of algorithms for dimensionality reduction (cf. [1]).
Noticeable examples of algorithms for linear dimensionality
reduction (or linear transformations) are Principal Component
Analysis (PCA), Independent Component Analysis (ICA), and
Linear Discriminant Analysis (LDA) [2]. These algorithms can
be applied to several other tasks, such as data compression,
signal unmixing, prediction, classification, and regression.
Their popularity and effectiveness is remarkable given that
they all rely on a simple linear model, and all of them can be
regarded as feature extraction algorithms that optimally solve
a particular feature extraction problem when restricted to a
linear feature space.

In many realistic scenarios, feature extraction problems
(e.g., dimensionality reduction) cannot be satisfactorily solved
by linear models. Thus, several non-linear variations of the
algorithms above have been proposed [1]. For instance, in
the field of image processing, feature extraction from an
object is generally a non-linear problem if non-homogeneous
backgrounds are used and if invariance to the position of
the object is desired. Pose-normalization and other types of
preprocessing are helpful to reduce the complexity of the
underlying problem, but do not guarantee linearization.

Slow Feature Analysis (SFA) [3] is a promising learning
algorithm for feature extraction inspired by biology (i.e., by
the visual system) based on the slowness principle (cf. [4]).
Given a multi-dimensional signal as a function of time, the
objective of SFA is to extract those features that change
as slowly as possible over time, while feature extraction is

done instantaneously. These features are called slow features
and additionally satisfy a few normalization and decorrelation
restrictions (see Section III-A).

Hierarchical SFA is one form of implementing SFA that
allows processing high-dimensional data such as images. In
this paper, we study the design of various types of non-
linear expansions that are particularly suitable for hierarchical
SFA. We concentrate on the heuristic evaluation of non-linear
expansions that allow complex and effective feature extraction
(dimensionality reduction) while at the same time offering
resistance against the frequent problems of overfitting and
outlier amplification (see Section III-E). For this purpose, we
make use of a theoretical analysis on SFA [5] and of empirical
observations gained after long lasting experimentation with
the algorithm at solving several feature extraction problems.
The proposed method might be also applicable to non-linear
hierarchical implementations of PCA, ICA, or LDA.

II. PREVIOUS WORK

SFA is typically a non-linear algorithm that can be im-
plemented in two ways. The most sophisticated one relies
on the introduction of kernels [6], [7] and is possible due
to the kernel trick. This allows the consideration of large
or even infinite feature spaces. In practice, however, kernel
SFA has been used less. This might be explained by the
difficulty of choosing a good kernel or by high compu-
tational costs for large data sets. The second way, which
is the one followed in this paper, consists in the appli-
cation of linear SFA after the data has been transformed
by an explicit non-linear expansion [3]. A widely used
expansion is the Quadratic Expansion (QExp), as follows:
Given some data sample x = (x1, x2, . . . , xI), QExp(x)

def
=

(I(x),QM (x)), that is, QExp is the vectorial concatena-
tion of I(x)

def
= (x1, x2, . . . , xI), the identity function, and

QM (x)
def
= (x21, x1x2, . . . , x1xI , x

2
2, . . . , x2xI , x

2
3, . . . , x

2
I),

all the quadratic monomials, (i.e., all the products of pairs of
elements of x). Higher degree expansions can be defined anal-
ogously. For example, CExp(x)

def
= (I(x),QM (x),CM (x))

is a cubic expansion, where CM are all cubic monomials.
We now review previous architectures based on SFA, the

expansions that were used, and the measures employed to
reduce overfitting. Franzius et al. [8] developed a hierarchical

SFA network capable of learning pose and object identity from
synthetic fish images. The expansion QExp was used, and a
clipping step was introduced to keep signal amplitudes within
the range (−4, 4). Moreover, Gaussian noise was added to
improve generalization.

Berkes et al. [4] analyzed sequences of pairs of patches
taken from natural images with (quadratic) SFA. It was
demonstrated that the features extracted by SFA show the
same properties as complex cells found in the visual cortex
(e.g., direction selectivity). The structure of their system was:
dimensionality reduction with PCA, followed by QExp and
SFA. Overfitting was avoided through the preprocessing step
with PCA and through the use of a large amount of training
data (about 400,000 samples).

Escalante et al. [9] developed a linear and a non-linear
hierarchical network for SFA. Both networks were capa-
ble of accurately estimating the age and gender of artifi-
cial subjects generated from 3-D face models under con-
stant pose and expression. A new expansion for the non-
linear network was proposed: 0.8Exp(x)

def
= (I(x), |x|0.8) =

(x1, x2, . . . , xI , |x1|0.8, |x2|0.8, . . . , |xI |0.8). This simple ex-
pansion overcame the problem of uncontrolled outlier am-
plification without resorting to clipping. However, the linear
network still outperformed the non-linear one on test data due
to insufficient training data.

Later, Escalante et al. (cf. [10, Appendix A]) developed
SFA networks with expansions similar to 0.8Exp and applied
them to various feature extraction problems on frontal face
photographs, such as the estimation of position and size of a
face in an image patch. This was consolidated in a system for
face detection. For the problems addressed, linear SFA gave
poor performance. Non-linear SFA, however, performed much
better, confirming that these problems are highly non-linear
and showing that even a modest expansion repeated in several
layers is capable of untangling the underlying problem.

III. LINEAR AND NON-LINEAR SFA

A. SFA Optimization Problem

The SFA problem [3], [4] can be stated as follows.
Given an I-dimensional signal x(t) = (x1(t), . . . , xI(t))T ,
find a set of real-valued instantaneous functions g(x) =
(g1(x), . . . , gJ(x)) lying in a function space F so that for
each component yj(t) of the output signal y(t)

def
= g(x(t)),

for 1 ≤ j ≤ J , the following holds:

∆(yj)
def
= 〈ẏj(t)2〉 is minimal (objective function) (1)

under the constraints

〈yj(t)〉 = 0 (zero mean) , (2)

〈yj(t)2〉 = 1 (unit variance) , (3)
〈yj(t)yj′(t)〉 = 0,∀j′ < j (decorrelation). (4)

The constraints (2–4) assure that the output signals are not
constant and code different information of the input signal.
Notice that the delta value ∆(yj) is defined as the average

energy of the temporal derivative of yj and is therefore a
measure of the temporal variation of such signal. The problem
is solved iteratively beginning with y1 and ending with yJ .

In some theoretical analysis (e.g., [5]), it is common to let
g belong to an unrestricted function space. In practice, g is
often limited to the function space of all quadratic functions.

B. Linear SFA Algorithm

The SFA algorithm [3] takes advantage of the fact that
the optimal linear solutions to the optimization problem only
depend on the covariance matrix C

def
= 〈xxT 〉 of the training

signal x(t), where the mean of x(t) was removed, and on
the second-moment matrix Ċ

def
= 〈ẋẋT 〉 of the time derivative

ẋ(t) of the training signal. In practice, discrete time is used.
Therefore, the training signal becomes a sequence of samples,
and ẋ is approximated by the difference of consecutive sam-
ples: ẋ(t)

def
= x(t + 1)− x(t). The matrix C is consequently

approximated by its corresponding sample covariance matrix:
C = 1

N−1
∑N

t=1(x(t) − x̄)(x(t) − x̄)T , and Ċ is computed
as Ċ = 1

N−1
∑N−1

t=1 (x(t+ 1)− x(t))(x(t+ 1)− x(t))T .
In the linear function space, the outputs can be written

as yj(t) = gj(x(t)) = wT
j x, and the SFA problem can be

reduced to a generalized eigenvalue problem (cf. [4]). That
is, weights W = {wj} are computed such that WTCW = I
and ĊW = WΛ, where Λ is a diagonal matrix with diagonal
λ1 ≤ λ2 ≤ · · · ≤ λJ . Hence, efficient algorithms for solving
the latter problem can be used, and the SFA algorithm has a
complexity similar to PCA.

C. Hierarchical Slow Feature Analysis

For high-dimensional data, the direct use of linear SFA
might be too expensive since it has a computational complexity
of O(NI2+I3) where N is the number of samples and I is the
input dimensionality. An expansion would make this problem
even more severe. Hierarchical SFA is a greedy implementa-
tion of SFA that allows to cope with high-dimensional data by
dividing it in lower-dimensional chunks (e.g., 2 chunks of N
samples of dimensionality I/2) that are separately processed
by SFA instances, called nodes, in a layer, cf. [11]. Afterwards,
the resulting slow signals computed by each node are grouped
together and further processed by an SFA node in the next
layer. This process can be repeated in a cascade and the nodes
can be organized in a multi-layer network, where each layer
is trained separately from the bottom to the top, and the top
layer contains a single node.

D. Non-Linear Hierarchical SFA Networks

In a non-linear SFA network each (linear) SFA node is
preceded by an expansion node. The increase in dimensionality
of the data chunk depends on the expansion that was applied,
which might be different for each SFA node. The number of
slow signals preserved by the SFA nodes is kept similar as in
the linear case to avoid an explosion in their number.

In principle, the larger the expansion is, the more complex
the features learned by SFA might be and, thus, a large ex-
pansion might allow the extraction of slower features. Ideally,

 Input Image
 135x135 pixels

27x27 SFA nodes
 output dim: 16

 9x9 SFA nodes
 output dim: 30

3x3 SFA nodes
output dim: 30

SF
A

SF
A

SF
A

SF
A1 SFA node

output dim: 30

Fig. 1. Example of a hierarchical network, where the inputs are 135 by
135-pixel images and the outputs are 30 slow features.

it would be desirable to allow full polynomial expansion
of the data, and let linear SFA find an appropriate linear
combination of the expanded data. The feature space available
to SFA would contain all polynomial functions, and could,
thus, extract extremely complex non-linear features. On the
other hand, large expansions drastically increase the number of
dimensions of the data, and consequently, increase the number
of free parameters in the model to be learned, which under
normal conditions gives rise to overfitting and prohibitive
computational costs.

E. Overfitting and Outlier Amplification

Overfitting is the over-adaptation of a model to the peculiar-
ities of the training data as opposed to the true distribution of
the data, resulting in poor performance on new test data. This
problem is more evident when a large expansion is used or
when the number of training samples is small. In the context
of SFA, the performance can be measured in terms of the delta
values ∆(yj), for 1 ≤ j ≤ J , of the extracted features.

Another recurrent problem found when using some expan-
sions is outlier amplification, in which test samples less similar
to the samples seen during training are mapped into even more
atypical features, for example, by the quadratic terms of QExp.
In hierarchical implementations, this problem accumulates
across layers, resulting in an uncontrolled explosion of the
magnitude of the signals for particular samples. For example,
on test data we have frequently seen features with amplitudes
of 1060, whereas on training data the features have zero mean
and unit variance and are rarely larger than 20 in amplitude.
We remark that this problem only occurs in a fraction of the
samples of the test data, and is directly related but different
from the problem of overfitting. Clipping (e.g. [8]) can reduce
this problem, but is a suboptimal solution because feature
extraction is impaired due to information loss.

Overfitting and outlier amplification in the context of expan-
sions can be measured with heuristics proposed in Section V.

IV. EXPANSIONS AND BASIS FUNCTIONS

Let us assume that an SFA node is trained with data
containing an underlying (hidden) slow parameter that mono-
tonically increases as a function of time, and that the parameter
can be accurately computed from each data sample (with

an unknown arbitrarily complex function). Then, the theory
of optimal free SFA responses [5] predicts that the slowest
feature learned by SFA with an unrestricted function space is
a half-cosine function (with arbitrary sign) ±

√
2 cos(πt/T),

for 0 ≤ t ≤ T . In principle, since such a signal is also
monotonically increasing (or decreasing) in this interval, a
mapping from the slowest signal to the slow parameter can
be found. When restricted function spaces are used, such as
in quadratic SFA, we cannot expect the extraction of the half-
cosine function exactly, but we can expect a distorted and
noisy version of this function.

When SFA is implemented as an expansion followed by
linear SFA, linear SFA finds an optimal linear combination
of the expanded signal, such that the slowness is minimized.
Basically, the expansion is playing the role of a basis that
defines a feature space, from which SFA linearly chooses the
slowest possible function. If the expansion is rich enough, the
slowest output of SFA will closely resemble the optimally slow
function ideally found by unrestricted SFA.

Not all expansions are equally useful. This is a direct
consequence of the richness of the different feature spaces
defined by different expansions, and of the fact that in hi-
erarchical networks the input to each node has a particular
distribution. Recall that the input to an SFA node is the
concatenation of the outputs of previous SFA nodes, which
must satisfy normalization and decorrelation constraints (2–4).
Thus, the definition of an expansion is mostly relevant where
the probability density of the input is significant, and not on
the whole possible input domain RI .

The polynomial expansion (polynomial basis), PExp(x)
def
=

(1, I(x),QM (x),CM (x), · · ·), describes a great function
space that allows fitting to any function at an arbitrary number
of points. In practice, infinite expansions cannot be used, and
they should be truncated. In this paper, we truncate by keeping
functions up to a given degree. Clearly, QExp and CExp are
just truncated versions of PExp. The main disadvantage of
PExp is that its functions (e.g. x21x

3
2) typically grow at a fast

pace resulting in bad function fitting for test samples that are
too different from training samples.

A. Generation of Expansions
(Truncated) polynomial expansions are very useful because

they allow the derivation of various families of expansions
with normalization properties that improve generalization.
Here we propose two of them given an expansion Exp:
• Let q(x) a positive scalar function. Then, Exp(x)/q(x) is

a (component-wise) normalized expansion. In this paper,
we use Exp ∈ {QExp,CExp} and q2(x) = 1 + ||x||2.
Notice that QExp(x)/q2(x) includes components (e.g.,
x21/(1+||x||2)) that at most saturate to 1 for input vectors
x with a large norm and behave as QExp for smaller x.

• Let m(x) be a bijective mapping of vectors. Then,
Exp(m(x)) is a useful expansion. In this paper we
use QExp(x∗0.4) and CExp(x∗0.3), where x∗k

def
=

x∗k1 , . . . , x∗kI , and x∗ki
def
= sgn(xi)|xi|k is an invertible

sign-preserving exponential function of xi, for k > 0.

Of course, more expansions can be defined by starting from
expansions other than QExp or CExp and by using other
functions for q(x) or m(x). The expansions evaluated in this
paper are listed in Table I.

V. HEURISTIC EVALUATION OF EXPANSIONS

For concrete data, a good choice of an expansion for SFA
(one achieving high slowness) depends on the peculiarities
of the data (number of samples, dimensionality, type of data,
etc.). Different expansions could be tested for each SFA node
of a network to locally achieve top slowness. However, such an
optimization procedure would be computationally expensive
because it requires training each node for every particular
expansion. Therefore, here we propose a heuristic method
to evaluate expansions without requiring concrete training of
SFA. This method is intended to aid in the design of good
expansions for a great variety of natural problems.

In a concrete execution of SFA, when the data originates
from a single monotonically increasing parameter, the outputs
ordered in decreasing slowness are ideally equal to the optimal
free responses (ignoring polarity w.l.o.g.): c1(t) =

√
2 cos(t),

c2(t) =
√

2 cos(2t), c3(t) =
√

2 cos(3t), etc., for 0 ≤ t ≤ π.
That is, in an ideal case SFA computes cosine functions
c(t) = (c1(t), . . . , cJ(t)) of increasing frequencies from the
samples x(t). When appropriate expansions are employed,
the computation of noisy versions of these signals has been
empirically verified, particularly at the top nodes [8], [9].

In a simple model, we approximate the input signals of
a node (e.g., extracted by a previous node) as x̃i(t) = ai ·
(ci(t) + ni(t)), where ai is a normalization constant assuring
unit variance and ni(t) is Gaussian noise with variance σ2

i and
zero mean. The input to a node in a network is typically the
concatenation of the outputs of many nodes, but for simplicity
we view the input as if it only originated from a single one.
In practice, noise variance is smaller for the slower changing
signals than for the faster changing ones. For simplicity, we
consider here all variances σ2

i to be constant and equal to σ2.
Roughly speaking, it can be conceived that an SFA net-

work attempts to compute c(t) from the training data. This
computation is performed on each layer yielding very crude
estimations at the first layers and more accurate estimations at
the top node. The signal c1 (or a noisy version of it) is the most
important one because it allows the computation of the slow
parameter, and it is coded distributedly and redundantly in the
signals x̃1, . . . , x̃I . Of course, x̃1 provides more information
about c1 than any other component of the input, however, due
to noise, the other components also contain useful information
that might be exploited after a non-linear transformation to
better approximate c1. Thus, in hierarchical processing, the
non-linearities should be powerful enough to allow the com-
putation of versions of cj , for 1 ≤ j ≤ J , and particularly of
c1, as faithfully as possible from the input signals x̃1, . . . , x̃I .

Based on previous empirical observations, we postulate that
a good expansion Exp is characterized by its capability to
linearize a particular set of problems P1–P7, see below. By

P: (x1, . . . , xI) 7→ y we denote the problem of approxi-
mating a given function y(t) from the input data x(t)

def
=

(x1(t), . . . , xI(t)). In the context of a particular expansion
Exp, one approximates y(t) as `(t) def

= (1,Exp(x(t))) · w,
where w is a weight column vector. The constant 1 compen-
sates for feature means different from zero, and w is computed
with linear regression to best fit y. The goal is to approximate
y(t) linearly as closely as possible from Exp(x(t)). The
quality of an approximation `(t) is measured in terms of the
Root Mean Squared Error (RMSE) between y(t) and `(t). We
propose the following function approximation problems to test
the computational richness of an expansion (from the point of
view of SFA).

P1: x̃1 7→ x̃1; (Identity function) That is, linearly
approximate/compute x̃1 from (the expansion of) x̃1.
P2: x̃1 7→ c2; (Frequency doubler) Compute c2 from x̃1.
P3: x̃1, x̃2 7→ c3; Approximate c3 from x̃1 and x̃2.
P4: x̃1 7→ sin(t); Approximate sin(t) from a noisy
version of cos(t), where 0 ≤ t ≤ π.
P5: x̃2, x̃3 7→ c1; Approximate c1 from higher frequency
noisy harmonics x̃2 and x̃3.
P6: x̃2, x̃3, x̃4 7→ c1. Similar to P5.
P7: x̃3, x̃4, x̃5 7→ c1. Also similar to P5.

Each one of these problems is motivated by specific reasons
that might facilitate the extraction of slow features. Suppose
that a particular node extracts a very slow signal, then a good
performance on P1 ensures that a subsequent SFA node in
the network is at least able to preserve such a signal after
expansion. A good performance on P2 and P3 indicates that
a node is capable of generating (or reducing the noise of)
higher frequency harmonics given access to lower frequency
ones. Thus, improving the approximation of later components
of the ideal output c. P4 ensures that the output signals could
be cleared from sine components, if needed. (c is free from
sine components.) A good performance on P5, P6, and P7
indicates that lower frequency (slower) harmonics might be
generated (or its noise reduced) from higher frequency ones.

The problems above are representative and subsume a larger
number of problems, for instance x̃1 7→ x̃1 is equivalent to
x̃i 7→ x̃i, whereas x̃2, x̃3 7→ c1 is equivalent to x̃2·i, x̃3·i 7→ ci,
and x̃1 7→ sin(t) is equivalent to x̃i 7→ sin(it), where i ∈ N.

In the context of SFA, overfitting might be defined as the
difference (or ratio) between the delta values of the slowest
signals extracted from training and test data, but computing
this requires training of SFA. We propose a simple and prac-
tical way of measuring overfitting for non-linear expansions.
The basic idea is to use the expanded data to attempt to linearly
learn a random zero-mean signal. Since the labels are random,
the best fit is to always output the constant 0 for any data
sample. A zero complexity algorithm achieves this by always
yielding 0. Thus, any deviation of the learned output from 0
for training and test data is purely due to overfitting and is
easy to measure.

More concretely, let x̃(t) be the simulated input to SFA (be-
fore expansion), and let s(t) = Π(c1(t)) be a randomly time-

Name Definition Example of functions contained Expanded dimensionality
Identity I(x) x1, x2, xI I
QExp (I(x),QM (x)) x1, x2, xI , x

2
1, x1x2, x2

2, x
2
I I(I + 3)/2

CExp (I(x),QM (x),CM (x)) x1, xI , x
2
1, x1x2, x2

I , x
3
1, x1x2x3, x2

3x4, x3
I I(I2 + 6I + 11)/6

QExp/q2 q2(x) = (1 + ||x||2) x1/q2(x), x1x2/q2(x), x2
I/q2(x) I(I + 3)/2

CExp/q3 q3(x) = (1 + ||x||2) x1/q3(x), x1x2/q3(x), x2
I/q3(x), x3

I/q3(x) I(I2 + 6I + 11)/6
QExp∗0.4 QExp(x∗0.4) x∗0.4

1 , x∗0.4
2 , |x1|0.8, (x1x2)∗0.4, |xI |0.8 I(I + 3)/2

CExp∗0.3 CExp(x∗0.3) x∗.3
1 , x∗0.3

2 , |x1|0.6, (x1x2)∗0.3, x∗0.9
1 , (x1x2x3)∗0.3, x∗0.9

I I(I2 + 6I + 11)/6
0.8Exp (I(x), |x|0.8) x1, x2, xI , |x1|0.8, |x2|0.8, |xI |0.8 2I
SExp (I(x),x2) x1, x2, xI , x

2
1, x

2
2, x

2
I 2I

TABLE I
LIST OF EXPANSIONS EVALUATED IN THIS PAPER.

shuffled version of c1(t) (shuffling is possible because time
is discrete when using samples). A function f approximating
s(t) from x̃(t) is found as f(x̃)

def
= Exp(1, x̃(t)) ·w ≈ s(t),

where the column vector w is computed with linear regression.
Let x̃′(t) be the test data (with the same distribution as x̃(t)),
and ỹ′(t) def

= f(x̃′(t)) be the estimated labels for the test data.
Then, overfitting is defined as:

Ov(Exp, x̃(t), x̃′(t))
def
=

√
〈(ỹ′)2〉, (5)

where 〈·〉 indicates temporal averaging.
We also present a metric to quantify outlier amplification,

where extreme/atypical outputs computed at different layers
of the network are magnified, which is particularly notorious
for test data (cf. Section III-E). Roughly speaking, the metric
compares the scaled amplitude of extreme samples in the data
before and after expansion. Let X

def
= (x(1), ...,x(N)) be the

training samples, and Exp the expansion we want to evaluate.
Let X′

def
= W(X) and Y′

def
= W(Exp((X)) be whitened

versions of X and the expanded samples, respectively. Let
S be a set of vectors (samples or expanded samples), and
A(v)

def
= ‖v‖/

√
D be a scaled norm (amplitude) of a D-

dimensional vector v. A vector v ∈ S is called an outlier if
A(v) is in the top 5% among all vectors v′ ∈ S, and OS ⊂ S
denotes the set of all outliers of S. Outlier amplification is
defined as

Oamp(Exp,X)
def
=

∑
y∈OY′ A(y)∑
x∈OX′ A(x)

(6)

and can be interpreted as the ratio between the scaled norm of
the outliers after and before expansion, in both cases including
a whitening step.

Due to whitening, this metric is invariant to linear trans-
formations, and due to the scaling of the norm by

√
D,

it provides some robustness to the expanded dimensionality.
Various definitions of outliers exist, such as distance- or
density-based [12], which might lead to alternative definitions
of A(v). For instance, A(v) could be the distance to the
nearest neighbour of v. However this might be less efficient
for a high number of samples and dimensions.

VI. EXPERIMENTAL RESULTS

It has been observed that the inputs to SFA nodes in a
network are typically much more noisy and distorted at the

lower layers than at the top layers. Based on this observation,
we considered three scenarios to evaluate the expansions. In
each scenario, the input signals before expansion x̃i(t) are
modelled as cosine functions of increasing frequency including
additive Gaussian noise with variance ranging from a large
variance σ2 = 0.752 for the bottom layers, to σ2 = 0.52 for
the middle layers, and a small variance σ2 = 0.252 for the
top layers.

The performance for problems P2 to P7 and Ov was
measured on test data generated with the same distribution
as the training data. For P1 and Oamp , only training data was
used because the corresponding problem does not demand test
data. In order to obtain realistic results, parameters were set
similar to those used in previous experiments with real data
and SFA networks; 10,000 simulated samples were used and
the data dimensionality before expansion was set to 60.

Table II presents the performances of each expansion on
each problem, metric, and on real data. Results were averaged
over σ2 ∈ {0.252, 0.52, 0.752}, except for Oamp , where only
σ2 = 0.752 was relevant (large noise is useful to introduce and
measure outliers). The expansions QExp/q2 and QExp∗0.4

gave poor performance on P1. This could be corrected by
including the identity function in them. For problems P2–P7,
quadratic expansions provided good performance in general,
whereas cubic expansions performed excellent, however the
latter are inappropriate in this setup because the expanded
dimensionality is too high compared to the number of samples
(consequently, they would be strongly penalized by Ov). In
contrast, expansions 0.8Exp and SExp are only good at P2
and P4. For the metrics Ov and Oamp , the expanded dimen-
sion for the cubic expansions (39,711) was larger than the
number of samples and would cause extreme overfitting and
computational complications. Thus, Ov and Oamp were not
evaluated for cubic expansions. Ov strongly depended on the
expanded dimensionality and the particular expansion played
a less important role. In the case of outlier amplification, the
opposite was observed: The concrete shapes of the expansion
functions are determinant, while the expanded dimensionality
is less important.

To validate the heuristics on real data, the expansions were
tested in a concrete hierarchical network to learn and estimate
the horizontal position of a face in face photographs. Similar
to [10, Appendix A], the resulting estimation was robust

Identity QExp CExp QExp/q2 CExp/q3 QExp∗0.4 CExp∗0.3 0.8Exp SExp

P1 0.0000 0.0000 0.0000 0.3777 0.1122 0.2648 0.0122 0.0000 0.0000
P2 1.0000 0.7810 0.7810 0.7348 0.7815 0.7431 0.7498 0.7431 0.7810
P3 1.0000 0.7071 0.7032 0.6706 0.6421 0.7225 0.6659 1.0001 1.0001
P4 1.0000 0.7933 0.7934 0.7725 0.8259 0.7766 0.7853 0.7766 0.7933
P5 1.0000 0.8209 0.7755 0.8084 0.7118 0.8202 0.7251 1.0000 1.0000
P6 1.0000 0.7137 0.6962 0.6603 0.6134 0.6673 0.6099 1.0000 1.0000
P7 1.0000 0.7163 0.6599 0.6608 0.5518 0.6607 0.5574 1.0001 1.0000
Ov 0.9969 1.0959 � 1 1.0946 � 1 1.0938 � 1 0.9970 0.9977

Oamp 1.0000 1.0520 — 0.9631 — 0.9793 — 0.9854 1.0872
∆(y1) training (real data) 1.0460 0.1844 — 0.0588 — 0.0283 — 0.2829 0.5176

∆(y1) test (real data) 1.0701 275.3278 — 0.1555 — 0.1154 — 0.2855 12.7479
Estimation error [pixels] 17.96 27.54 — 5.85 — 6.18 — 6.16 16.44

TABLE II
PERFORMANCE OF EACH EXPANSION ON EACH PROBLEM, METRIC, AND ON REAL DATA. THE PERFORMANCE FOR PROBLEMS P1–P7 AND THE

ESTIMATION ERROR ARE REPORTED IN TERMS OF THE RMSE. FOR ALL TESTS, SMALLER VALUES ARE BETTER.

to the face’s size, vertical position, expression, illumination,
background, etc. It was verified that a good performance on
problems P1–P7 is related to slower extracted features for
training data (see “∆(y1) training” in Table II). It was also
verified that the metric Oamp is a good predictor of outlier
amplification for test data (which occurred for QExp and
SExp). Whenever Oamp ≤ 1, Ov showed correlation with
overfitting when expressed as the ratio between delta values
for test and training data.

VII. CONCLUSION

In this paper, a method for the heuristic evaluation of
expansions used in non-linear hierarchical SFA was proposed.
It consists of tests on seven different problems and two metrics.
Expansions are crucial for the quality of the features extracted
in terms of noise, generalization to new data, and accuracy
when used in supervised learning setups.

It was verified experimentally with a concrete subproblem
on face detection that a good performance on problems P1–P7
is related to the richness of the spanned feature space and, thus,
to the computational capabilities of SFA. The metric Oamp

provides a simple way to predict (and avoid) the occurrence
of the outlier amplification phenomenon. The metric Ov in
conjunction with Oamp provides a rough way to predict high
overfitting.

The main advantage of the method is that it allows for
very fast evaluation of expansions because it does not require
training of SFA or the use of real data. The method can be
easily applied to efficiently tune parameterized expansions,
such as QExp/(a+ ||x||b) for good choices of a and b.

The method has the disadvantage that it is less realistic
for the lower layers of the hierarchical network, in which
the extracted signals typically do not resemble noisy cosine
functions, but the results are still consistent with real data.

One open problem is the computation of a single numer-
ical score from all individual tests, which would ease the
automated refinement of expansions. In future work, we are
interested in using this method for the guided design of pow-
erful expansions with good scores on all considered problems
and metrics, but with a small expanded dimensionality. For

instance, we would like to select a small subset of the functions
of a normalized cubic expansion (e.g., of size of about 120)
that provides a complex feature space and allows for efficient
training.

The results on outlier amplification suggest the use of
normalized expansions with functions that saturate or grow
at most linearly for large inputs (e.g., in contrast to QExp) in
order to achieve better performances.

REFERENCES

[1] I. K. Fodor, “A survey of dimension reduction techniques,” Communi-
cations of The ACM, 2002.

[2] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals Eugen., vol. 7, pp. 179–188, 1936.

[3] L. Wiskott and T. Sejnowski, “Slow feature analysis: Unsupervised
learning of invariances.” Neural Computation, vol. 14, no. 4, pp. 715–
770, 2002.

[4] P. Berkes and L. Wiskott, “Slow feature analysis yields a rich repertoire
of complex cell properties,” J. Vis., vol. 5, no. 6, pp. 579–602, 2005.

[5] L. Wiskott, “Slow feature analysis: A theoretical analysis of optimal
free responses,” Neural Computation, vol. 15, no. 9, pp. 2147–2177,
Sep. 2003.

[6] A. Bray and D. Martinez, “Kernel-based extraction of slow features:
Complex cells learn disparity and translation invariance from natural
images.” in Proc. Advances in neural information processing systems
(NIPS’03), vol. 15. Cambridge, MA: MIT Press, 2003, pp. 253–260.

[7] R. Vollgraf and K. Obermayer, “Sparse optimization for second order
kernel methods,” in Proc. IJCNN’06, 2006, pp. 145 – 152.

[8] M. Franzius, N. Wilbert, and L. Wiskott, “Invariant object recognition
with slow feature analysis,” in Proc. 18th Intl. Conf. on Artificial Neural
Networks, ser. LNCS, vol. 5163. Springer, Sep. 2008, pp. 961–970.

[9] A. Escalante and L. Wiskott, “Gender and age estimation from synthetic
face images with hierarchical slow feature analysis,” in International
Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, 2010, pp. 240–249.

[10] N. M. Mohamed and H. Mahdi, “A simple evaluation of face detection
algorithms using unpublished static images,” in 10th International
Conference on Intelligent Systems Design and Applications, ISDA, 2010,
pp. 1–5.

[11] M. Franzius, H. Sprekeler, and L. Wiskott, “Slowness and sparseness
lead to place, head-direction, and spatial-view cells,” PLoS Computa-
tional Biology, vol. 3, no. 8, p. e166, Aug. 2007.

[12] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, “Online outlier detection in sensor data using non-
parametric models,” in Proc. 32nd international conference on Very large
data bases, ser. VLDB ’06. VLDB Endowment, 2006, pp. 187–198.

