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Abstract

The developing visual system of many mammalian species is partially structured and

organized even before the onset of vision. Spontaneous neural activity, which spreads in

waves across the retina, has been suggested to play a major role in these prenatal struc-

turing processes. Recently, it has been shown that when employing an efficient coding

strategy, such as sparse coding, these retinal activity patterns lead to basis functions that

resemble optimal stimuli of simple cells in primary visual cortex (V1).

Here I present the results of applying a coding strategy that optimizes for temporal

slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal

waves. Previously, SFA has been successfully applied in modeling parts of the visual

system, most notably in reproducing a rich set of complex-cell features by training SFA

with natural image sequences. In this work, I was able to obtain units that share a number

of properties with cortical complex-cells by training with simulated retinal waves.

The results support the idea that retinal waves share relevant temporal and spatial

properties with natural visual input. Hence, retinal waves seem suitable training stimuli

to learn invariances and thereby shape the developing early visual system so that it is

best prepared for coding input from the natural world.
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1. Introduction

The brain is an organ of remarkable complexity. In humans, it contains approximately

1010 nerve cells (neurons) each making up to 104 connections to other nerve cells. Thereby,

a network of neurons is formed with a total number of connections in the range of 1014 to

1015. This network defines who we are. It gives rise to all our thoughts, all our feelings,

all our memories, and all our senses. It allows us to form perceptions and, via those

perceptions, experience the world that is around us.

The brain however, does not ”see” or ”hear”. It merely receives electrical signals

(action potentials) from nerve cells that are connected to our sensory organs. It is these

electrical signals that constitute the input to the brain, and form the basis of all neuronal

computations. By means of neurons exchanging action potentials, the brain interprets

the signals that come from our sensory organs and only thereby enables us to hear, to

smell, to taste, and most importantly to see. The computations performed by the brain

when interpreting signals are a result of the physical properties of individual neurons and

of the connectivity patterns between them. While the properties of individual neurons are

rather fixed, the connectivity patterns are subject to change and thereby allow adaption

and learning.

Perhaps for us humans, the dominant sense among all other senses is the sense of

vision. Loosing it causes much more severe impairment than for example loosing the

ability to taste. Hence, it does not come as a surprise that visual areas take up the most

space among the sensory areas1 on the surface of the cortex2. A more comprehensive

introduction into the brain areas involved in visual processing will be given later in this

chapter (see section 1.1). For now it suffices to acknowledge the fact that there are regions

in the brain that are exclusively devoted to the processing of visual information.

The regions involved in the earlier stages of processing have been studied extensively,

one such region being the ”primary visual cortex” (V1). The conjunction of neuroscientific

1Neurons that play a similar functional role, such as being involved in visual perception or in motor
control, usually occupy spatially connected regions, or areas, of the brain. Consequently, those regions
that contain neurons involved in sensory processing are referred to as sensory areas.

2Cerebral cortex, or just cortex, is the out-most layer of the brain. Among other, it is where the higher
cognitive functions such as memory, attention, language, and perceptual awareness are believed to
be localized.
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results and the study of the statistical properties of natural images (i.e. the input to the

visual system) have led to the idea, that neurons found in V1 are actually very well

adapted to the statistical regularities present in natural images (Field [1994]). In fact,

some of their response properties can be regarded near-optimal with respect to certain

efficiency criteria (Olshausen and Field [1996], Bell and Sejnowski [1997], Einhauser et al.

[2002], Berkes and Wiskott [2005]). So it seems that the design of early visual processing

areas, i.e. the connectivity patterns between neurons in these areas, has evolved to cope

best with images provided by the natural environment. This notion agrees very much

with evolutionary theory, so it does not come as too big a surprise. What is interesting

though, is the question of how these well-designed connectivity patterns emerge as the

visual system develops in the newly born (or even unborn) infant.

Two possible answers to that question come to mind:

1. The connectivity patterns are stored in the organism’s genetic code and are ex-

pressed as the organism matures.

2. The connectivity patterns are acquired once the organism is confronted with its

natural input, such that it can adapt the ”wiring” of the visual system to the

regularities in natural images.

Proposition (1) is unlikely to be true for two major reasons. First of all, the sheer

number of connections to be stored would exceed the capacity of the genetic code. There

are simply too many. Second of all, a number of studies point to the fact, that the

visual system needs visual input to fully develop its characteristic properties (Chapman

and Stryker [1993], Chapman et al. [1996]). Proposition (2) is able to accommodate the

arguments brought up against proposition (1). However, it can also not be entirely true,

because there are animals that can see right after birth (Albert et al. [2008]). Furthermore,

there are studies that indicate that some species have a partially functioning visual cortex

before eye-opening (Wiesel and Hubel [1963], Horton and Hocking [1996]).

Essentially, propositions (1) and (2) represent the old debate of nature versus nurture,

or innate versus learned. Perhaps closer to the truth would be a theory about the de-

velopment of the early visual system that can be regarded as half-way between the two

points of view mentioned. Such a theory has been brought forward by Albert, Schnabel

and Field in a publication from 2008, entitled ”Innate visual learning through sponta-

neous activity patterns” (Albert et al. [2008]). This theory proposes an innate learning

approach, based on internally generated retinal input. This internally generated input

drives the development before the onset of vision and thereby prepares the system for
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further refinement that occurs after the onset of vision. In other words, the visual sys-

tem is trained to be best adapted to its input, but the input is first internally generated,

almost like a simulation of what is to be expected once the animal’s eyes open. Next

to the internally generated input, the second important ingredient to the theory is the

learning objective, i.e. the goal that governs what regularities of the input the system

has to adapt to. Albert et al. have chosen an objective that ensures a good representa-

tion of the input while keeping the level of activity (the number of action potentials) of

individual model neurons low, thus minimizing the energy consumption of the system.

This objective can also be interpreted as maximizing the statistical independence of the

outputs of the individual model neurons. In their simulations, such an objective together

with the mentioned internally generated input was able to reproduce important proper-

ties of the early visual system. See section 1.2.1 for a more detailed description of the

relevant concepts.

In my thesis, I want to show that the emergence of specific properties of the visual sys-

tem can be explained using an entirely different learning objective, namely the objective

of ”temporal stability” or ”slowness”. However, before I can go on and make my hypoth-

esis more explicit, I have to make a digression and explain a few more terms and key

concepts concerning the neurobiology of the visual system and a particular class of recent

computational models. The necessary basics of the visual system are provided in section

1.1. Readers who are familiar with terms such as ”V1”, ”simple cells”, and ”complex

cells” as well as their properties may choose to skip this section. A brief introduction

into normative computational models is given in section 1.2. Again, readers familiar

with terms such as ”sparse coding”, ”temporal coherence”, ”slow feature analysis”, and

normative modeling in general may choose to skip this section entirely.

Once these concepts have been introduced, I formulate my thesis hypothesis in a more

detailed fashion and give a brief outline of how I intend to test it in section 1.3.

1.1. The Early Visual System

In this section, I first give a short introduction into the major parts of the early visual

system. The second part of this section introduces retinal waves, which are the pre-onset-

of-vision internally generated stimuli that were mentioned earlier. In both cases, I confine

my descriptions to the parts that are important for the context of this thesis.
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1.1.1. From The Retina To V1

The neural visual system begins in the back of the eye with the retina. After the light

has passed through the lens and entered the eyeball, images form on the back of the

eye were the retina is located. The retina consists of several layers of cell types through

which the light passes before it reaches the light sensitive receptor cells in the last retinal

layer. The layers and their spatial arrangement are schematically depicted in figure 1.1

A. There are two types of light sensitive cells which are called rods and cones due to

their specific shapes. The rods and cones convert the physical stimulus (light intensity)

into changes of their membrane potential, which are passed on to the next layer of cells.

The horizontal cell layer integrates membrane potential changes from several neighboring

receptor cells. A similar function is performed by the layer of amacrine cells. Ultimately,

the membrane potential variations reach the ganglion cell layer in which action potentials

are generated. A single retinal ganglion cell encodes the light intensity detected by all

receptor cells that feed input into it. The ganglion cell thereby signals information about

the light that is received by a spatially confined patch of the retina. This area of the

visual field to which a ganglion cell is responsive is called the receptive field (RV) of the

cell. As visually responsive cells are better stimulated with images that contain structure

(e.g. oriented bars or gratings) the structured images that stimulate a cell are often also

referred to as the cell’s receptive field.

Together, the fibers of the ganglion cells along which the action potentials travel consti-

tute the optic nerve, which leaves the eyeball and projects to the back of the brain. The

path from the retina to the primary visual cortex is called optic tract and is indicated in

figure 1.1 B. At this point, the nerve bundles coming from either eye contain information

about both sides of the visual field, the right and the left side. This changes after the

next station on the optic tract, which is called the optic chiasm. The optic chiasm is a

point of branching and conversion for the fibers that represent the two sides of the visual

field. Coming from the right eye, those fibers that represent the right side of the visual

field cross over to the left side of the brain whereas the fibers that represent the left visual

field remain on the right side of the brain. They are joined by fibers that come from the

left eye and also represent the left visual field. After the optic chiasm, the information

from one side of the visual field now travels on the opposite side of the brain.

The next station on the optic tract is the lateral geniculate nucleus (LGN). The LGN is

considered the first processing center for visual information and is located in the thalamus.

Cells in the LGN have similar receptive fields compared to retinal ganglion cells, see figure

1.2 A. The receptive fields are round with subregions that excite the cells when stimulated

with light and subregions that inhibit the cell when stimulated with light. One subregion
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Figure 1.1.: The early visual system. A Schematic of the different cell type layers that
constitute the retina. Note that the light enters from below in the diagram.
B Visual pathway. The visual information travels from the retina along the
visual pathway to the primary visual cortex. From there it is dispatched to
further processing areas (not shown). Figures are adapted from Dayan and
Abbott [2001]
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usually encloses another, which has lead o the terms ON-center receptive field if the

excitatory subregion is enclosed by an inhibitory one, and OFF-center in the inverse case.

Consequently, the optimal stimulus for an ON-center cell would be a bright dot, while

an OFF-center cell would be best stimulated by bright ring with a dark center. Among

others, one functional role of the LGN is presumed to be the temporal decorrelation of

visual input (Dong and Atick [1995b]).

Primary visual cortex (V1) is the final stage in the early visual system that will be

considered in this introduction. The task of most V1 neurons seems to be the extraction

and representation of low-level image features. Extracting features from images means,

that there are cells that are active only if a certain feature (such as straight lines having a

specific orientation) is present in the image. Examples of receptive fields of these cells are

shown in figure 1.2 B. Orientation is one feature to extract, spatial frequency would be

another. Spatial frequency is a bit more technical and harder to grasp than orientation,

but intuitively speaking it can be understood as the degree of details present in an image.

In order to understand the content of an image, feature extraction is fundamental. After

identifying structures such as edges in images, these can be grouped and understood to

form a shape, which in turn can be interpreted to belong to an actual object. Our entire

perception is constructed from these basic image features.

V1 contains these ”feature detector” cells and they are usually classified into two classes:

simple cells and complex cells. The stimuli that are preferred by simple and complex

cells are images that contain parallel bright and dark lines (figure 1.2 C). In these stimuli

the transition from dark to light follows a sinusoidal function, and therefore they are

called sinusoidal gratings, or planar waves. These gratings are parameterized by their

orientation, spatial frequency3, and phase4. Both, simple and complex cells, generally

show a selectivity for orientation and spatial frequency. However, only simple cells are

also sensitive to the phase of the grating. In other words, while simple cells can encode

the position of an oriented bar within their receptive field, complex cells can only encode

the orientation and width of such a bar stimulus. This invariance with respect to phase

can be regarded as a first level of abstraction, which is an important step towards the

reliable extraction of higher order features including object identity for example. The

3Here the spatial frequency is the frequency of the cosine that marks the transition from light to dark
in the planar wave. Alternatively it can also be understood as the width of the light and dark bars.
Higher spatial frequency means narrower bars.

4The phase of the grating describes a shift in the onset of the light/dark oscillation relative to the
center of the image. This shift is given in radians or alternatively in degrees. A zero degree phase
shift means that the center of the bright bar is in the middle of the image. A 90 degree phase shift
means a shift of half an oscillation period to the right, i.e. now the dark bar is in the center of the
image.
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described phase selectivity in the response of simple cells and phase invariance in the

response of complex cells is illustrated in figure 1.2 E and F, respectively. The plots show

the response as a function of phase varying over time.

Figure 1.2.: A Typical receptive fields of LGN cells. Plus signs denote regions that ex-
cite the cell when illuminated, minus signs denote regions that inhibit the
cell when stimulated with light. B Receptive fields of V1 simple cells. C
Sinusoidal gratings used to stimulate visually responsive V1 cells. Note
the similarity to the receptive fields in B. The right sinusoid has a phase
shift of 90 degrees relative to the left one. E and F Response of simple
(E) and complex cells (F) to changes in phase over time. The right plots
show experimental data and the left plots show an idealization of the re-
sponse properties. Figures A and B taken from Hyvärinen et al. [2009].
Figures E and F are taken from the Scholarpedia article on receptive fields
(www.scholarpedia.org/article/Receptive field).

1.1.2. Retinal Waves

In the introductory paragraphs I have mentioned internally generated input to the de-

veloping early visual system, prior to the onset of vision. Where does this internally

generated input come from?

The immature and yet light-insensitive retina of many species generates spontaneous

bursting activity. This activity occurs in spatiotemporal patterns spreading in waves
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across the retina bringing the spontaneous bursts of neighboring cells into synchrony.

Because of their wave-like shape these spontaneous activity patterns are called retinal

waves. Figure 1.3 depicts the traveling dynamics of one such wave in the top row of

plots.

Figure 1.3.: Retinal waves. Top row: Calcium imaging plots of a ferret retina. The five
plots show the wave-like bursting activity (dark regions) over five consecutive
seconds. Bottom row: Retinal wave domains. Each plot summarizes the
wave activity of one minute in the same retina patch as in the top row plots.
Colored regions are wave domains, i.e. regions within which a single wave
emerged, traveled, and disappeared. Wave domains are not overlapping and
not fixed. Figures are taken from Firth et al. [2005].

The facts and figures of the following three paragraphs, which describe the most im-

portant properties of retinal waves and how they emerge, are taken from the following

review articles: Wong [1999], Thompson [1997], Firth et al. [2005], Blankenship and Feller

[2009].

Retinal waves travel within certain spatial domains. This means that they emerge,

travel some distance, and then fade away all within spatially confined regions of the

retina (see figure 1.3, bottom row of plots). The boundaries of these domains, however,

are not fixed. They change over time, invading all areas of the retina. Hence, there are

no special pace-maker regions from which waves might be sent out. The direction of wave

travel is not predictable, with the exception that waves tend not to spread into domains

that have been recently active, thus establishing bounds of the active domains.

Measured parameters such as speed, size, burst frequency, and burst durations vary
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over species and also over time within a species. In ferrets for example, the burst duration

measured at a fixed location on the retina is 1 to 4 seconds in the first week after birth but

goes up to 2 to 19 seconds in the third week after birth (ferrets open their eyes during

postnatal week 5 and 6 White et al. [2001]). These values are comparable with burst

durations measured in rats and mice. Wave speed has been reported to be in the range

of 0.1 to 0.3 mm/s in ferrets.

The underlying mechanism that give rise to the correlated bursting patterns are rather

complicated and still subject of study. In the developing retina of mice, three different

mechanisms have been identified that generate waves at subsequent developmental stages.

The driving force behind wave initiation seem to be retinal amacrine cells (see figure 1.1

A), which, in the absence of synaptic input, depolarize regularly (approximately every

15 seconds, Zheng et al. [2006]). They, in turn, excite retinal ganglion cells. In the

earliest developmental stages, the amacrine and ganglion cell activity is postulated to

be propagated horizontally via gap junctions (i.e. direct electrical transmission) between

ganglion cells or amacrine cells. In a later stage, the activity is mediated horizontally via

neurotransmitters (acetylcholine) between amacrine cells. Shortly before eye opening the

acetylcholine mediated mechanism is yet again replaced by another. The transmission

is henceforth taken over by bipolar interneurons (also indicated in figure 1.1 A) and

the neurotransmitter glutamate. The variations in the generation mechanism are most

likely the reason for the subtle changes in some wave properties (e.g. slight increase in

propagation speed) as the visual system develops.

Theoretical as well as experimental studies (Willshaw and Von Der Malsburg [1976],

Lowel and Singer [1992], respectively) suggest that spatially correlated input is required

for the proper development of ordered connections from the retina to the LGN and

then to visual cortex. Examples of these ordered connections include retinotopic maps,

ocular dominance columns, and orientation maps in V1. Torborg et al. [2004] report

that retinal waves drive the establishment of orderly connections from the retina to the

LGN. Chemically abolishing retinal waves results in severe developmental impairment of

cortical ocular dominance columns (Wiesel and Hubel [1963], Horton and Hocking [1996])

and orientation selectivity (Chapman and Stryker [1993], Chapman et al. [1996], Weliky

and Katz [1997]). These and other studies indicate that retinal waves indeed seem to be

a necessary condition for the emergence of many important properties of the early visual

system (Thompson [1994, 1997]).

As described above, the underlying mechanisms that give rise to retinal waves have

been studied quite thoroughly. In result, many of the functionally relevant components

and neuronal circuits have been identified. Also, a number of computational models
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have been proposed in order to better understand the emergence of retinal waves (Feller

et al. [1997], Nenadic et al. [2003], Godfrey and Swindale [2007], Hennig et al. [2009]). A

representative of these models, the one by Godfrey and Swindale [2007], is explained in

greater depth in section 2.2.

Please note, that I have only given a simplified textbook account of the presented

topics. For example, the early visual system was introduced as a purely feed-forward

processing stream, where input images from the retina get passed on via the LGN to V1

and then to higher processing areas. What was not mentioned, for example, is the large

portion of feedback connections from higher processing areas back to V1 and to the LGN.

I also could not go into the amount of processing that already takes place on the level of

the retina or the LGN. See, for example, Olshausen and Field [2005] and Carandini et al.

[2005] for comprehensive reviews on these and other matters. Finally, the distinction

between simple and complex is not as clear cut as presented above. The introduced

dichotomy is based to a large degree on a specific measure for the phase selectivity of a

cell, proposed by Skottun et al. [1991]. There is, however, a debate about the validity of

the conclusions that there truly are two distinct classes of cells in V1 (Dean and Tolhurst

[1983], Mechler [2002]). Thus, the given review of the early visual system was by no

means complete. Instead, it was intended to serve as an accessible introduction to the

fundamentals of visual neuroscience that are relevant for the context of this thesis.

1.2. Normative Computational Models

In order to better understand the results of probing any kind of real-life system (e.g.

the visual system or individual neurons therein) in experiments, it has proven useful to

construct a simplified model of the real-life system.

What is a model, or more specifically, a computational model? A computational model

is a formal, and abstract description of how one beliefs a real-life process functions.

First a conceptual idea is formulated about what properties of the system bear relevance

to the experimental question. Thereafter, the conceptual model is first expressed in

mathematical form and then implemented on a computer to simulate the processes that

are assumed to take place in the real-life system. A good model should be able to

reproduce the experimental results, i.e. it should deliver the same output as the real-

life system when presented with the same input. Furthermore, the model should allow

for predictions about how the real-life system will respond to input that it was not yet

presented with or how it will behave in a different experimental paradigm. Finally, in

order to be informative the model should be simple. With a complicated enough structure,

15



any model can reproduce any data and would therefore not be very instructive. This

principle is known as ”Occam’s razor”. In essence, a good model should be simple, yet

have sufficient descriptive as well as predictive power.

An example for a model is the model of retinal waves proposed in Godfrey and Swin-

dale [2007]. The equations of the retinal wave model describe the rate of change of the

membrane potential and the change of the firing threshold of retinal amacrine cells as a

function of various variables, including the activity of neighboring amacrine cells. Numer-

ically integrating these differential equations on a computer (i.e. ”running the model”)

yields time courses of amacrine cell activity which when properly visualized closely resem-

ble retinal waves as described above. The retinal wave model is a classical example of a

descriptive and mechanistic model. It makes reference to relevant biological components

of the corresponding real-life system (the retina) and explicitly describes their interactions

that lead to the emergence of experimentally observed properties (the activity waves).

There is, however, a different kind of modeling approach that has proven rather suc-

cessful in visual neuroscience. Instead of focusing on the question how certain properties

of the real-life system emerge, this approach specifically addresses the question why the

system has the observed properties. Horace Barlow has motivated this approach in a

very intuitive manner in his article from 1961 entitled ”Possible Principles Underlying

the Transformations of Sensory Messages” (Barlow [1961]). He writes

A wing would be a most mystifying structure if one did not know that birds

flew. One might observe that it could be extended a considerable distance,

that it had a smooth covering of feathers with conspicuous markings, that

it was operated by powerful muscles, and that strength and lightness were

prominent features of this construction. These are important facts, but by

themselves they do not tell us that birds fly. Yet without knowing this, and

without understanding something of the principles of flight, a more detailed

examination of the wing itself would probably be unrewarding.

The idea behind this approach is to formulate a hypothesis about the problem that the

system might be solving or the goal it is trying to reach, for example to fly. This goal

is then translated into a mathematical function, which is called the objective function.

The parameters of the objective function may or may not have real-life counterparts,

as these models don’t necessarily have to make reference to biological components. In

the final modeling step, the parameters are tuned to optimize the objective function

using standard optimization tools. After the optimal parameters have been found, they
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describe how the real-life system should behave if it were indeed optimized with respect

to the hypothesized objective. Hence the name normative models.

To make the concept more plastic, I now present two groups of normative models,

which are both highly relevant to the topic of my thesis.

1.2.1. Sparse Coding, Information Maximization, and ICA

In 1996, Bruno Olshausen and David Field published a seminal paper entitled ”Emergence

of simple-cell receptive field properties by learning a sparse code for natural images”

(Olshausen and Field [1996]). The model therein is a normative model of simple cells, as

found in V1.

Olshausen and Field employed the generally accepted assumption, that the computa-

tion performed by simple cells can be described as the dot product between an input

image and the receptive field image (RF) of the simple cell. Upon doing so, the authors

chose the pixel values of the receptive field images to be the parameters of their objec-

tive function. The objective function itself was a combination of two aspects. The first

aspect was how well the input image could be described by the population of the model

simple cells (i.e. the reconstruction error after projection onto the RF image basis). This

is important and intuitive, because, after all, the cells in our visual cortex should be

able to form a representation of the images that enter our visual system. The second

aspect of the objective function was the idea that the activity of the individual cells in

the population should be as statistically independent as possible when exposed to natural

images. However, instead of enforcing statistical independence directly, a different aspect

of the activity of cells was chosen to be maximized, namely sparseness. A sparse coding

of an image means that it is represented with only few active cells (or RF basis function).

The reasoning behind the idea of statistically independent cells, is the conjecture that

natural images are the result of a mixture of a number of independent causes (e.g. ob-

jects, animals, people). Also, a pixel by pixel representation is not very efficient, because

neighboring pixels exhibit large correlations in natural images (Simoncelli and Olshausen

[2001]). Having a representation with statistically independent activities requires a re-

duction of such redundancies, and would thus make the representation more efficient.

A sparse representation is also desirable with respect to metabolic considerations. The

production of action potentials consumes a considerable amount of energy because next

to voltage gated ion channels, there are channels that involve second messenger cascades,

which in turn rely on endergonic chemical processes. Therefore, a sparse code is more

energy efficient than a non-sparse code.
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After having optimized the objective function by adjusting the receptive field images

of the model simple cells, it turned out, that the obtained model receptive fields were

remarkably similar to those found for actual simple cells in cat and monkey primary

visual cortex. The obtained receptive fields resembled localized, oriented filters of various

spatial frequencies, similar to Gabor functions. This finding led to the conclusion that the

specific shape of V1 simple cell receptive fields may have been the result of evolutionary

processes that have optimized the early visual system to form a faithful, yet efficient

representation of natural images.

Bell and Sejnowski [1997] reported similar results using a different objective function.

Their optimization was based on information maximization (Bell and Sejnowski [1995])

and also led to Gabor-like receptive fields and maximally independent filter outputs (i.e.

simple cell activities).

Both objectives, sparse coding as well as information maximization, are examples of

a general class of algorithms that is called independent component analysis (ICA). ICA

algorithms are designed to disentangle (possibly non-linear) mixtures of independent

signals. Their successful application to model the emergence of simple cells supports the

notion, that the early visual system might have evolved to solve a similar task.

There are, however, other normative models that have also shed light on functions that

the early visual system may be optimized to perform. One such other class of normative

models is the topic of the next section.

1.2.2. Temporal Stability, Slowness, and SFA

The class of models presented in this section is also based on the assumption that cortical

neurons are (near-) optimally adapted to the statistics of their natural input (i.e. to the

regularities present therein). However, rather than optimizing the statistical indepen-

dence of a sensory representation, its temporal stability, or slowness, is to be maximized.

The slowness approach is mainly motivated by the observation that behaviorally rele-

vant aspects of the world tend to change their properties on a slower time scale than their

representation in the earliest sensory organs does. In other words, changes that occur in

a visual scene containing objects, animals, or people generally happen on a slower time

scale than variations of the low-level features such luminance values in small areas of the

visual field (e.g. what would be detected by a retinal ganglion cell).

Application of the slowness objective in several flavors has been successfully applied

to model the emergence of V1 complex cells in a number of studies. Földiák [1991] has

used a modified Hebbian learning rule (trace rule) together with moving bar stimuli to
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train an artificial neural network. The network learned invariance to shifts of the bar

images. Körding, Kayser, Einhäuser, and König used more natural stimuli in their study

(Einhauser et al. [2002], Kording et al. [2004]). They mounted a camera onto a cat’s

head and thereby recorded the visual input from the cat’s perspective. A three layered

neural network was trained with the captured ”cat-cam” movies, resulting in units in

the top layer that were not only translation invariant but also showed selectivity for

spatial frequency and receptive field aspect ratio comparable to physiological findings.

Finally, Berkes and Wiskott [2005] presented a model for complex cells which was able to

reproduce a rich set of physiological properties found in cortical complex cells, including

direction selectivity, orientation as well as frequency tuning, end-inhibition, and side-

inhibition.

Next to modeling complex cells found in visual cortex, the slowness hypothesis has been

successfully applied to model other types of cells found in the brain as well. Franzius

et al. [2007] have reported a model for the self-organized emergence of so-called place

cells, head-direction cells, and spatial-view cells. All of these cell types are found in the

hippocampal formation of the rodent brain. Their model consisted of a hierarchical neural

network of slow feature analysis units (see below) and it was trained with simulated, quasi-

natural image sequences. Wyss et al. [2006] also reported a model for hippocampal place

cells based on temporal slowness.

The mentioned studies are all based on slowness, yet use different means to implement

and optimize the objective function. Wiskott and Sejnowski [2002] have proposed an

algorithm that is able to extract slowly varying components from high dimensional input

signals. This algorithm is called Slow Feature Analysis (SFA) and will be described in a

more detailed fashion in section 2.1.

1.3. Thesis Hypothesis

My thesis work is mainly based on two conceptions about the early visual system, which

I have introduced in the previous sections. Firstly, there is the idea that neurons in

primary visual cortex have evolved to be optimally adapted to the regularities present

in their natural inputs (Attneave [1957], Barlow [1961], Field [1994], section 1.2 and

references therein). Secondly, the idea that retinal waves serve as a suitable training

stimulus for the development of the visual system prior to the onset of vision (see Albert

et al. [2008], Sprekeler and Wiskott [2010] and section 1.1.2).

In their control experiments, Berkes and Wiskott [2005] were able to obtain SFA units

that share relevant features with complex cells even if the units were trained with image
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sequences derived from colored noise images with a 1
f2

power spectrum instead of natural

image sequences. These results suggest that spatial second-order statistics are sufficient

to learn SFA units that resemble complex cells. However, some properties of the obtained

SFA units, such as the shape of their optimal stimuli, varied strongly with respect to the

spatial transformations that were applied in order to generate the image sequences. This

empirical finding was supported by analytical considerations reported in Sprekeler and

Wiskott [2010]. In fact, if one assumes that the spatial statistics of the input data do

not vary with respect to the transformations that are applied to generate them, it turns

out that the equations that determine the solution to the SFA optimization problem

are independent of the input statistics. Hence, the observed independence of the SFA

unit properties on higher order spatial correlations and the observed dependence on the

transformation that were used to generate the image sequences. These results led to the

conjecture that complex cell properties can be learned from retinal waves, because the

moving waves could resemble a prenatal analog of translation that is present in natural

image sequences.

Albert et al. [2008] have proposed that there exists an innate learning strategy which

structures the visual system with the same objective before and after the onset vision.

Prior to visual experience the mechanism acts on internally generated input (retinal

waves), whereas after eye-opening the connectivity patters are refined by training with

natural visual input. In their simulations, Albert et al. have used sparse coding as a

learning objective and obtained simple cell receptive fields, similar to those derived from

natural images by Olshausen and Field [1996] and Bell and Sejnowski [1997].

Thesis Hypothesis Applying the objective of temporal slowness to retinal waves leads to

similar results as have been obtained when applying it to (quasi-)natural input sequences

(Einhauser et al. [2002], Berkes and Wiskott [2005], Sprekeler and Wiskott [2010]). Hence,

the slowness approach (Földiák [1991]), as manifested by slow feature analysis (Wiskott

and Sejnowski [2002]), is compatible with the retinal-wave-based, innate learning mech-

anism proposed by Albert et al. and others (Albert et al. [2008], Wong [1999]).

Why is this question an important one? The question of why the early visual system is

structured the way it is has not yet been answered unequivocally. Theoretical arguments

suggest that V1 neurons have evolved to optimally represent natural input. However,

the question ”Optimal with respect to what?” is still unanswered as there are several

possible candidates5. Showing that temporal slowness can also yield meaningful results

5Of course, the individual objectives not necessarily exclude each other.
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when applied to retinal waves would supply further support to the argument that the

brain indeed employs it as coding strategy (possibly amongst others).

Furthermore, the validity of my hypothesis is not obvious. As the slowness approach,

and SFA in particular, rely on the temporal structure for learning a sensory representa-

tion, the claim would imply that retinal waves share relevant features in their spatiotem-

poral structure with that of natural visual input. While the spatiotemporal statistics of

natural movies have been analyzed to some extent (Dong and Atick [1995a,b]), to the

best of my knowledge, similar analyses have not yet been done for retinal waves at all.

All my work was done in simulation and analytically. Firstly, a biological plausible

model of retinal waves (Godfrey and Swindale [2007]) was implemented, which generates

image sequences of a simulated patch of retina. Along with this model, various other

training stimuli were implemented for testing purposes. Then, a network of slow feature

analysis nodes was constructed, similar to that of Berkes and Wiskott [2005]. The network

was then trained with the retinal wave image sequences. Subsequently, the obtained

model neurons were analyzed in a similar fashion as is done in physiological experiments.

Finally, the results are interpreted and compared to experimental findings.
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2. Methods

This section describes slow feature analysis (SFA) introduced by Wiskott and Sejnowski

[2002]. SFA is an algorithm that implements the slowness principle that was motivated

in the introduction. Furthermore, the training stimuli for SFA and the way they are

generated is explained.

2.1. Slow Feature Analysis

The goal of SFA is to find instantaneous input-output functions that extract slowly vary-

ing scalar output signals from a high-dimensional input signal. To ensure that the ex-

tracted output signals are informative, they are required to be uncorrelated and to have

unit variance. The learning objective can be mathematically formalized as follows:

Optimization problem: Given a multidimensional input signal x(t) = (x1(t), . . . , xN(t)),

t ∈ [t0, t1], find a set of real-valued functions g1(x), . . . , gK(x) from a function space F,

such that for the output signals yj(t) := gj(x(t)) the expression

∆(yj) :=
〈
ẏ2j
〉
t

is minimal (2.1)

under the constraints

〈yj〉t = 0 (zero mean), (2.2)〈
y2j
〉
t

= 1 (unit variance), (2.3)

∀i < j, 〈yiyj〉t = 0 (decorrelation and order), (2.4)

with 〈·〉t and ẏ indicating time-averaging and the time derivative of y, respectively.

The expression to be minimized (2.1) is a measure of the temporal slowness of the

signal yj(t), with small ∆-values indicating a slowly varying signal. The trivial solution

is a set of functions that is constant for all t. Constraints (2.2) and (2.3) avoid this trivial

solution and constraint (2.4) ensures that different functions code for different aspects of
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the input signal.

The following subsections outline how the SFA algorithm finds the set of solutions that

optimize the objective function (i.e. the set of functions gj(x(t)) from the function space

F).

Linear Function Space

Consider the case in which the function space F is the space of all linear functions, i.e.

all functions of the form gj(x) = wT
j x =

∑
iwj,ixi. In the first step of the algorithm

the training data is ”sphered”. Sphering means that the data is first centered in the

coordinate system by subtracting the mean and then whitened by linearly transforming

the centered data to have a unit covariance matrix, i.e.
〈
zzT
〉
t

= I, where z denotes the

sphered data. Whitening can be achieved using principal component analysis (PCA).

After such preprocessing of the training data, weight vectors wj have to be found such

that

∆(yj) :=
〈
ẏ2j
〉
t

= wT
j

〈
żżT
〉
t
wj (2.5)

is minimal. The constraints of the optimization problem take on the following form:

〈yj〉t = wT
j 〈z〉t︸︷︷︸

=0

= 0, (2.6)

〈
y2j
〉
t

= wT
j

〈
zzT
〉
t︸ ︷︷ ︸

=I

wj = wT
j wj = 1, (2.7)

∀i < j, 〈yiyj〉t = wT
i

〈
zzT
〉
t︸ ︷︷ ︸

=I

wj = wT
i wj = 0. (2.8)

It follows that after the mentioned preprocessing of the training data the constraints are

fulfilled if and only if the weight vectors wj form an orthonormal set of vectors.

The set of solutions to the optimization problem posed in equation (2.5) is given by

the set of eigenvectors of the matrix
〈
żżT
〉
t
, which is the second moment matrix of

the time derivative of the sphered training data (Wiskott and Sejnowski [2002]). The

resulting eigenvectors are ordered according to slowness by ordering them according to

the corresponding eigenvalues, starting with the smallest. Thus, the eigenvector that

corresponds to the smallest eigenvalue of
〈
żżT
〉
t

constitutes the slowest output signal.

Note that before the weight vectors wj are applied to new data x̃, this data has to

be mapped into the coordinate system of z. This is done by applying the same affine

transformation that was applied to the training data x.
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In summary, if the function space F is confined to linear functions only, the solution

to the optimization problem posed in (2.5) can be found efficiently by solving a simple

eigenvalue problem.

Non-linear Function Space

In some applications it can be useful to consider a non-linear function space F within to

search for the solutions to the SFA problem.

If F has a finite number of basis functions h1, . . . , hM , then every function g ∈ F can

be expressed as a linear combination of these basis functions. For example, the space of

all polynomials of degree n is spanned by all monomials up to the order of n. We can

now map the input x into the non-linear function space via

h(x) := (h1(x), . . . , hM(x))T . (2.9)

We define h to be the expanded input and thereby generate every function g ∈ F as

g(x) =
M∑
k=1

wkhk(x) = wTh(x). (2.10)

This leaves us with a problem formulation in terms of weights belonging to the basis

functions of the specific function space F. Thereby, the problem is cast into a linear form

and can be solved as outlined above, by simply replacing x by h(x).

SFA Algorithm

Given the considerations presented in the previous section, the SFA algorithm can be

summarized in the following steps:

Nonlinear expansion: Map the input data into the selected function space F.

Sphering: Subtract the mean and transform the expanded data to have a covariance

matrix which is the unit matrix I.

Slow feature extraction: Compute the second moment matrix of the temporal deriva-

tive of the sphered training data and solve the eigen-decomposition using standard

linear algebra tools.

The result of SFA is a set of weight vectors wj that constitute the slowly varying output

components g(x)j = wT
j z, with z denoting the expanded and sphered input signal. These

components are also referred to as SFA units.

24



In the present application, the function space F was chosen to be the space of all poly-

nomials up to degree two. Therefore, SFA yields weight vectors which linearly combine

all the monomials up to degree two of all input dimensions. In this case, it is possible to

express the solution in terms of a quadratic form:

g(x) = wTz =
1

2
xTHx + fTx + c (2.11)

The coefficients of H and f are determined by w. Expressing g(x) in terms of a

quadratic form in the input space rather than a linear function in the expanded space

can be instructive when interpreting its response properties to input stimuli.

2.2. Input Data

In order to train the SFA units, image sequences were used that were derived from a

biologically plausible model of retinal waves proposed in Godfrey and Swindale [2007].

The model assumes that spontaneous activity of retinal amacrine cells drives the wave

activity. The wave initiation and propagation mechanism is based on the assumptions

that (1) amacrine cells are spontaneously active, (2) have local excitatory connections,

and (3) that the rate with which spontaneous activity occurs is inversely related the

magnitude of excitatory input during depolarization, i.e. the larger the input was that

caused an amacrine cell to become active, the longer it will take for the next spontaneous

activation to occur.

In the model, the activity of a cell is governed by two variables: one variable repre-

senting the cell’s membrane potential and one variable representing the firing threshold.

Once the potential reaches the threshold, the cell becomes active for a fixed amount of

time. The membrane potential is modeled as a leaky integrator. In the presence of input,

the membrane potential approaches the level of input (thereby possibly exceeding the ac-

tivation threshold) and in the absence of input it will decay to zero. The evolution of the

threshold variable on the other hand depends only partially on the amount of excitatory

input. In the absence of input, the threshold decays linearly to zero with a fixed rate.

Thereby, the cell can become active spontaneously. Once the cell becomes active, the

threshold rises linearly with a fixed rate as long as the cell stays active. If there is input

to the cell while it is active, the increase in threshold is facilitated, leading to a much

higher threshold after activation. Hence, once a cell has been part of an activity wave

(i.e. its neighbors were active congruently) it is harder to activate. The result of this

activity dependent refractoriness is that waves of activation remain confined to certain
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domains and cannot recruit the entire retina. The borders of these domains, however, are

changing as the system evolves in time and thereby produce non-repeating and random

(yet spatially coherent) activity patterns.

In the simulations, the amacrine cells were arranged in a regular grid consisting of 128

by 128 cells. The activity of each cell was represented by an either black or white pixel in a

correspondingly sized image. Each cell received input from other cells that were within a

six cell radius, where the synaptic weights between cells were inversely proportional to the

distance of cell’s respective positions. In order to avoid inhomogeneities at the borders of

the simulated patch of retina1, circular boundary conditions on the connectivity between

cells were imposed. This means, that cells at the image borders also received input from

cells at the opposite image border. The retinal wave model was parameterized such that it

produced waves that are similar in size and velocity to those observed in mice during the

first two weeks after birth. The parameters were taken from Godfrey and Swindale [2007].

However, the parameter that controls the frequency of spontaneous depolarizations was

changed in order to have waves occur more often. With the original parameter value, a

very large portion of the simulated retinal images contained no activity at all and where

therefore useless for the SFA algorithm.

All simulations were started with random membrane potentials and threshold levels

for each cell. After an initial warm-up phase of 30 minutes simulated time, the produced

retinal activity patterns were recorded for another 30 min simulated time, which resulted

in 18000 images (10 per second). The temporal dynamics of the simulated waves is a

property of the wave model and should therefore reflect the dynamics of real retinal

waves. Figure 2.1 A shows four example frames of the full simulated retina. In order

to illustrate the dynamics of the waves, the images in the example sequence are each 20

simulated time steps apart, which corresponds to 2 seconds. So the four depicted images

show 6 seconds of simulated activity. The average amplitude spectrum of the retinal wave

images is shown in figure 2.1 B. The spectrum shows the same amplitude fall-off in all

directions, indicating that on average all orientations are equally present in the training

images. Taking the mean over orientations and plotting the result in log-log coordinates

yields the amplitude spectrum plot in figure 2.1 C. See the discussion section of this thesis

for further remarks regarding the properties of the Fourier spectrum of retinal waves.

The obtained image sequence was then tiled into overlapping receptive fields of size

16 by 16 pixels, with an overlap of 5 pixels. This resulted in 289 image sequences, each

being 18000 images long and having a dimension of 16 · 16 = 256. The dimensionality

1Inhomogeneity effects would otherwise occur, because the cells at the image borders otherwise receive
less input than those that are further away from border.
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Figure 2.1.: Simulated retinal waves. A Four example frames of simulated amacrine cell
activity with a time distance of 20 frames, corresponding to 2 seconds sim-
ulated time. Receptive field size is illustrated by the gray square in the top
left corner of the first frame. B Average amplitude spectrum of all frames of
this simulation run. C Same spectrum as in B, averaged over orientations
and plotted in log-log coordinates.
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was reduced to 50 by applying principal component analysis (PCA) to all receptive field

image sequences. Dimensionality reduction was a necessary step because the number of

dimensions M after quadratic expansion of an N dimensional input signal is given by

M = N + (N2 − N)/2 + N , summing the purely quadratic monomials (x2i ), the mixed

monomials (xixj), and the linear monomials (xi), respectively. For 256 input dimensions,

the number of entries of the second moment matrix of the quadratically expanded signal

is in the order of 109, while for 50 input dimensions the number of entries to compute

is in the order of 106. Yet, even after PCA, the number of parameters to estimate from

the data is still very high and requires a correspondingly large amount of data. For this

reason, the receptive field image sequences were concatenated to yield a single image

sequence of length 289 · 18000 = 5202000 images. This is a permissible course of action,

because the statistical properties of the image sequences of each individual receptive field

are expected to be equal, which is due to the uniform distribution of wave initiation points

over the simulated retina and the circular boundary conditions on the connectivity. This

single retinal wave image sequence then served as a training input to SFA.

Other models exist that also produce retinal waves. Feller et al. [1997] presented a two-

layer model (amacrine and ganglion cell layers), which reproduced observed spatiotem-

poral patterns of retinal waves. In this model also, spontaneous activity and horizontal

coupling in the amacrine cell layer are essential to the emergence of spatially coherent

activity patterns. Recently, Hennig et al. [2009] proposed a theoretical account for early-

stage retinal waves that is based on slow after-hyperpolarization currents occurring after

depolarization, i.e. after an amacrine cell became active. The strength of these currents

depends on the intensity of the depolarizing input. This mechanism is very similar in

spirit to the activity depend refractoriness contained in the model by Godfrey and Swin-

dale (Godfrey and Swindale [2007]). Other retinal wave models have been proposed in

Nenadic et al. [2003], Butts et al. [1999].

Here, the Godfrey and Swindale model was used, because it is straight forward to im-

plement and runs sufficiently fast. Furthermore, the authors provided parameter settings

to simulate waves of different species, which would allow for a comparison of SFA training

results. However, this option has not yet been explored.
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3. Results

After training with the retinal wave image sequence, the first 50 SFA units were analyzed.

Since the SFA output signals are ordered with respect to slowness, those units represent

the 50 most slowly varying components that can be extracted from the training input,

given the restrictions of the chosen function space. The trained SFA units are character-

ized by showing those input images to which the units respond with the largest output

and by visualizing the units’ responses to sinusoidal gratings.

3.1. Receptive Fields

In physiological experiments it is common practice to characterize visually responsive

neurons via their spatial receptive fields. In the introduction (section 1.1) I have men-

tioned, that the term receptive field can be somewhat ambiguous. It is used to refer to

the location in visual space to which a neuron is responsive if a stimulus is presented

there. At the same time, the term receptive field is used to describe the stimulus that

makes the neuron respond most strongly. In order to be consistent with the neuroscience

literature, the latter convention is adopted here: Optimal stimuli of cortical cells and

SFA units are referred to as their receptive fields.

Once the structure of a cortical cell’s receptive field has been estimated in neurophysi-

ological experiments, it allows inferences about the preferred orientation, frequency, and

(in case of simple cells) the preferred phase of the cell. Simple cell receptive fields can be

mapped by computing the spike-triggered average of random dot input stimuli and are

well described by 2D Gabor functions (Daugman [1985], Jones and Palmer [1987b,a]).

Complex cells, on the other hand, require more elaborate schemes for receptive field

mapping, due to their largely non-linear input-output relation. Using methods such as

spike-triggered covariance or second order interaction maps has revealed many insights

about the spatial structure of complex cell receptive fields (Touryan et al. [2005], Sasaki

and Ohzawa [2007], Livingstone and Conway [2003]). For example, just like the ones

of simple cells, the receptive fields of complex cells also posses subregions with opposite

polarity (similar to ON and OFF regions), from which the frequency tuning of the cell
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can be predicted.

Since the trained SFA units are quadratic forms of the pixel intensities, there is an

explicit formulation of the input-output relation. Given a fixed-norm constraint on the

input images, it is therefore possible to compute the optimal excitatory and inhibitory

stimuli (Berkes and Wiskott [2007]). The polarity of the weight vector w that constitutes

an SFA unit is arbitrary, and therefore the sign of the output signal is also arbitrary.

Here, the the units were sign-corrected such that the stimulus that causes the largest-

magnitude response, yields a positive response, i.e. is the maximally excitatory stimulus.

Figure 3.1 A shows the maximally excitatory images for the first 25 SFA units (i.e. the 25

slowest), whereas figure 3.1 B shows the maximally inhibitory images for the same units.

Most of the optimal stimuli (excitatory as well as inhibitory) show spatially segregated

and elongated ON and OFF regions, which is in close correspondence with experimental

data. See figure 3.1 C for a comparison with receptive field structures obtained from

adult cats reported in Touryan et al. [2005].

Figure 3.1.: Optimal stimuli. A Maximally excitatory stimuli, plotted for the first 25
SFA units. B Maximally inhibitory stimuli for the same selection of units as
in A. C For comparison, receptive field structures of complex cells of cats
estimated by Touryan et al. [2005].

3.2. Sinusoidal Test Stimuli

Further response properties of the SFA units are visualized by showing their responses to

sinusoidal gratings. When V1 cells are probed with sinusoidal gratings in neurophysio-

logical experiments, the used gratings are usually parameterized along three dimensions:

orientation, spatial frequency, and phase. In order to compute the response of the SFA
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units to gratings, the orientation and phase were confined to the range from 0 to 2π,

whereas the maximal possible spatial frequency was eight cycles per receptive field, due

to the 16 by 16 pixel size of the receptive field.

For better comparison of the response properties between individual SFA units, the

outputs of each unit were normalized in the following manner: First of all, the response

of the unit to a gray input image was subtracted. Secondly, the entire output was

sign corrected such that the maximal positive output is larger in magnitude than the

maximal negative output. Finally, the output was normalized to have unit variance over

the explored range of input stimulus parameters.

Figure 3.2 depicts the responses of the first 25 SFA unit as a function of orientation and

phase of the input sinusoidal grating. I refer to the plots as orientation/phase response

functions. The spatial frequency of the gratings was set to the value that maximizes the

response of the respective SFA unit. Most of the orientation/phase response functions

exhibit horizontal stripe patterns, indicating that the response varies stronger along the

orientation axis compared to the phase axis. This rather qualitative observation was

quantified using the response modulation index (Skottun et al. [1991]) (also referred to as

F1/F0 ratio) and the orientation selectivity index (OSI) (Chapman and Stryker [1993]),

which measure the response variation with respect to phase and orientation, respectively.

The F1/F0 ratio is a spectral measure of the phase response curve1. Specifically, it is the

ratio of the first harmonic of this curve to its DC component, hence the name F1/F0 ratio.

Cortical cells with F1/F0 ratio smaller than one are classified as complex cells, whereas

cells with a ratio larger than one are classified as simple cells. The OSI is a spectral

measure of the orientation response curve2, and is given by F2
(F0+F2)

∗ 100, where F2 is the

amplitude of the second harmonic and F0 is the DC component of the orientation response

curve. Chapman and Stryker [1993] have reported average OSI values of approximately

40 in adult ferrets and approximately 48 in adult cats.

Figure 3.2 B and C show the respective histograms of the these two measures, computed

for the 50 SFA units of this particular simulation run. The majority of SFA units have a

response modulation index smaller than one. Hence, they would be classified as complex

cells in a physiological experiment. The distribution of orientation selectivity values shows

a wide spread over the possible range of values, which is consistent with experimental

findings (Chapman and Stryker [1993]). However, the comparatively high population

mean (68.7) indicates a rather specific orientation tuning in the majority of the SFA

1The phase response curve corresponds to a horizontal cut through the orientation/phase response
function at the orientation that maximizes the cell’s output.

2The orientation response curve corresponds to a vertical cut through the orientation/phase response
function at the phase that maximizes the response
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Figure 3.2.: A Response of the SFA units to sinusoidal gratings depicted as a function of
orientation (y-axis) and phase (x-axis) of the grating. The spatial frequency
was set to the unit’s preferred value. B Histogram of response modulation
(F1/F0) values, indicating the susceptibility to the phase parameter of the
input grating. A large portion of units from this simulation run (45 out of
50) have an F1/F0 value smaller than one and would thus be classified as
complex-cells in a physiological experiment. C Histogram of orientation selec-
tivity (OSI) values, indicating the susceptibility to the orientation parameter
of the input grating. The OSI values are rather high compared to exper-
imental findings, displayed in D and E. These plots show OSI histograms
obtained from ferrets (Chapman and Stryker [1993]). Eye opening occurs
between postnatal week 5 and 6. See section 4.2 for possible explanations
regarding the very high OSI values of the SFA units.
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units. Some units even reach OSI values above 90, which is much higher than the values

reported for adult cats or ferrets. OSI histograms for ferrets shortly before eye-opening

and shortly afterwards are shown in figure 3.2 D and E, respectively. How exactly SFA

achieves the phase invariance and the large orientation selectivity is an interesting issue

and is considered in more detail in section 4.1.

Figure 3.3 A shows the response of the SFA units as a function of spatial frequency

of the input gratings (averaged over phase). These plots can also be interpreted as the

response of the units in the frequency plane. Ringach et al. [2002] have investigated the

response of V1 cells in macaque monkeys in the same manner. Their results are shown

in figure 3.3 B for comparison. Similar to Ringach et al.’s findings, almost all SFA units

exhibit active inhibition to stimuli that are not orientated in the preferred direction. This

inhibition takes place for orientations orthogonal to the unit’s preferred orientation but

in some units also for non-orthogonal directions.

The orthogonal and non-orthogonal suppression is also visible in typical orientation

tuning polar plots, depicted in figure 3.3 C for the same SFA units. These plots show the

orientation tuning function at the unit’s preferred frequency and phase. Unlike traditional

plots of this kind, here also the negative response (inhibition) of the SFA units is shown.

Excitatory activity is plotted in solid red lines, while inhibition is plotted in dashed blue

lines. The majority of SFA units show a clear orientation preference. There are units

that prefer only a single orientation as well as units that also respond strongly to a

second direction, which is in some cases orthogonal to the first one and in other cases

not. This phenomenon manifests itself in the polar plots as so-called secondary response

lobes, which are also not untypical for cells found in mammalian V1. Figure 3.3 D shows

experimental data obtained by Devalois et al. [1982]. Here only the excitatory response is

plotted, but the different types of responses (not tuned for orientation, single orientation

preference, secondary response lobes) are well exemplified. The inhibitory response of the

SFA units seems to follow similar patterns as the excitatory response. There is inhibition

in a single direction only but also secondary inhibition response lobes as well.
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Figure 3.3.: A Response of the SFA units to sinusoidal gratings depicted as a function
of the gratings’ spatial frequency. B Same information as in A, plotted for
V1 neurons in macaque monkeys (Ringach et al. [2002], fig.2). C SFA unit
response as a function of orientation only. Solid red lines indicate positive
response, dashed blue lines indicate negative (inhibition) response. D Ori-
entation tuning functions of V1 cells of macaque monkey (Devalois et al.
[1982]).
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4. Control Experiments

4.1. Phase Invariance

Most of the SFA units show a large invariance in their response with respect to phase (or

position) of an input grating. In the classical complex cell model (Adelson and Bergen

[1985]) this phase invariance is a direct result of pooling the squared outputs of two

linear Gabor filters that have the same preferred frequency and orientation but are in 90◦

phase shift relative to each other. Such a pair of filters is called a quadrature filter pair

(QFP). Recall that the SFA units are essentially a quadratic form of the pixel intensities,

in which the contribution of the quadratic and the linear terms can be separated (see

section 2). The constant term is of no interest in the analysis, because it cannot convey

any information about a changing stimulus. If x(t) is a sinusoidal grating with a phase

that changes over time, then the output of the linear term (fTx(t)) will be an oscillation

which follows the phase shift. In other words, the linear term alone cannot achieve phase

invariance.

Consider the quadratic form equation from section 2.1:

g(x) =
1

2
xTHx + fTx + c. (4.1)

The equation shows how the quadratic term H, the linear term f, and the constant term

c contribute to the computation of a unit’s response g(x). In figure 4.1, g(x) − c is

shown as a function of phase of the input grating. This plot is called the phase response

curve. Spatial frequency and orientation of the input gratings have been set to the units’

preferred values. The chosen SFA units include the one that exhibits the largest phase

invariance (smallest F1/F0 ratio) and the one that exhibits the smallest phase invariance

(largest F1/F0 ratio), top row and bottom row respectively. The first column in the figure

displays the phase response of the quadratic and the linear term separately, as well as

the sum of the two (which corresponds to g(x)− c). For the most phase invariant unit, it

can be seen that the phase invariant response is mostly carried by the contribution of the

quadratic term. The contribution of the linear term on the other hand is comparatively
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marginal in this case. For the second unit (middle row in the same figure) the response

of the linear term is larger and the phase dependent fluctuations of the quadratic term

seem to compensate those of the linear term. However, for the unit with the lowest phase

invariance, both terms show an almost aligned phase dependence and contribute almost

equally to the overall output, which leads to a very high F1/F0 ratio for g(x), i.e. small

phase invariance.

Figure 4.1.: Emergence of phase invariance. The two top rows correspond to the most
phase invariant SFA units, the bottom row to a unit whose response is phase
dependent. Phase dependence of the linear and the quadratic term as well as
their sum is depicted in the first column. The second column shows the two
ends of the eigenvalue spectrum of H. Eigenvalues are sorted from highest
to lowest, then their absolute values are plotted. Columns three and five
show the eigenvectors that belong to the four largest, respectively smallest,
eigenvalues. Columns four and six show the corresponding Fourier amplitude
spectra.

In order to gain a better understanding of the computation performed by the quadratic

term, it is instructing to consider the eigenvalue decomposition of matrix H, which is given

by the sum over the outer products of its eigenvectors vi, weighted by the corresponding

eigenvalues λi:

H =
∑
i

λiviv
T
i . (4.2)
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In this formulation, the computation of the quadratic term becomes

1

2
xTHx =

1

2
xT

(∑
i

λiviv
T
i

)
x =

1

2

∑
i

λi
(
xTvi

) (
vTi x

)
=

1

2

∑
i

λi
(
xTvi

)2
. (4.3)

Hence, the quadratic term can be regarded as a weighted sum of squared filter outputs to

an input image, where the weights are given by the eigenvalues λi and the corresponding

filters are given by the eigenvectors vi. Figure 4.1 shows the largest-magnitude eigenvalues

and the corresponding eigenvectors for the selected SFA units, plotted as images.

It is noteworthy that for the very phase invariant units, the largest-magnitude eigen-

vectors seem to come in pairs of two. This means, that not only the corresponding

eigenvectors would elicit the largest-magnitude response, but also any linear combina-

tion of the two with appropriately normalized weights (the squared weights of the linear

combination have to sum to one). For those SFA units, interpolating between their two

most excitatory eigenvectors is essentially equivalent to a phase shift. They constitute a

quadrature filter pair. Hence, the output of the quadratic term remains rather constant

when stimulated with a sinusoidal grating with changing phase but constant (preferred)

frequency and orientation. As can be seen in the figure, the two eigenvectors correspond-

ing to the second largest pair of eigenvalues also form a quadrature filter pair. Depending

on their preferred orientation and spatial frequency, their contribution can either lead to

a broadening of orientation tuning (top row SFA unit) or emergence of a second preferred

orientation, i.e. secondary response lobes (middle row SFA unit). The same considerations

apply for the maximally-inhibiting eigenvalue/eigenvector pairs, although the pairing of

eigenvalues is less obvious.

In case of the phase sensitive unit, the paired occurrence of eigenvalue and, more

importantly, the sinusoidal structure of the eigenvectors is a lot less pronounced. Hence

the larger susceptibility to the phase of the input grating.

The observed emergence of quadrature filter pairs is in line with the analytical deriva-

tion of complex cell properties from the slowness principle, presented in Sprekeler and

Wiskott [2006, 2010]. Sprekeler and Wiskott predict the formation of quadrature fil-

ter pairs to ensure slowly varying output signals on training input that is derived from

applying translation to a static input image. At least locally, this seems a reasonable

first-order approximation of retinal waves, because on the receptive field level, the waves

primarily appear as passing white edges. This is of course not true in those cases where a

wave emerges or decays within a receptive field, changes its size and shape, or, for exam-

ple, the wave itself is smaller than the receptive field. These cases occur frequently and

thereby provide an explanation for the fact that not all of the first 50 SFA units can be
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characterized as being a weighted superposition of quadrature filter pairs. However, test

simulations in which SFA units were trained with purely translation-based input stimuli

show that all of the first 50 units indeed have this quadrature filter pair property.

4.2. Orientation Selectivity

The histogram of OSI values in figure 3.2 shows that a large number of SFA units seem

to posses an extremely high, even almost maximal, orientation selectivity. OSI values of

90 and higher are, to the best of my knowledge, not reached by actual cortical neurons.

Values of up to 80 (and equivalent values in other scales) are possible, yet very rare

(Chapman and Stryker [1993], Chapman et al. [1996]).

Mechanistically, the unphysiologically high OSI values can be understood as a direct

result of the rather large active inhibition of non-preferred orientations. In some of the

units, the inhibitory response to the non-preferred orientations is as large as the excitatory

response to preferred orientations. This leads to a very small mean response when the

average is taken over all orientations. Recall the definition of the OSI, which is given by

100 ∗ F2/(F0 + F2), where F2 is the amplitude of the second harmonic and F0 is the

mean. If F0 now becomes small due to the fact that excitation and inhibition cancel each

other out in the average, it becomes evident how the unphysiologically high OSI values

arise. The reason is the balanced, in some units even symmetrical, strength of excitation

and inhibition.

It is not clear how much rotation is present in the retinal wave image sequences that is

detectable within a the receptive field size. The presence of rotation is predicted to lead

to harmonic oscillations in the orientation tuning curve (Wiskott [2003], Sprekeler and

Wiskott [2010]). When visualizing such an orientation tuning in polar plots, the harmonic

oscillation is manifested by inhibitory lobes with amplitudes comparable to the excitatory

lobes. The presence of secondary (and possibly more) excitatory and inhibitory lobes in

the polar plots represent harmonic oscillations of higher frequency. Such orientation

tuning patterns are found in some of the obtained SFA units, indicating that there might

be enough rotation present in the retinal wave input stimuli to have caused them. This,

and the considerations of the previous paragraph can explain the very high OSI values

in light of the theoretical foundations of SFA.

Interestingly, complete absence of rotation in the training input, is predicted to lead to

a rather erratic orientation tuning (Sprekeler and Wiskott [2010]). In the extreme case of

infinitely large receptive fields, the theory predicts that the translation in the input leads

to the emergence of infinitely large quadrature filter pairs, which corresponds to infinitely
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sharp peaks in Fourier space, known as Dirac δ peaks. No rotation in the training input

means there is no incentive for SFA to yield slowly changing output with respect to

rotation. Thus, the predicted orientation tuning curve would be a weighted sum of such

Dirac δ peaks. However, due to the spatially finite receptive fields, the localization in

Fourier space becomes less sharp, leading to a smoothing of the orientation tuning curve.

Hence, if trained with stimuli absent of rotation, a smooth, i.e. somewhat slowly varying,

orientation tuning curve can still be expected, with the smoothness not being caused by

the slowness objective but by finiteness of the receptive field.

In order to get a feeling for the dependence of orientation selectivity on the transfor-

mations present in the training stimuli, simulations were run in which SFA units were

trained with input sequences that contained either only translation, only rotation, or a

combination of both applied to pink-noise images. The type of noise image used, exhibits

the same kind of second order correlation structure as found in natural images (Field

[1994], Simoncelli and Olshausen [2001]). This control experiment is similar in nature to

those performed by Berkes and Wiskott (Berkes and Wiskott [2005]), in which they also

applied SFA to image sequences derived from pink-noise image templates. The image

sequences were obtained by placing a 16 by 16 pixel window in the center of the image

template and then, for each frame, applying a small amount of transformation (trans-

lation, rotation or a mixture of both, depending on the condition) to the window and

record the image content momentarily enclosed by it. The resulting properties of the

trained SFA units are shown in figure 4.2.

When translation is the only transformation present in the training input, then the

optimal stimuli resemble Gabor-patches, the units show almost perfect phase-invariance,

and the orientation tuning is very sharp, see figure 4.2 A. Figure 4.2 B depicts the resulting

properties of SFA units trained with a mixture of rotation and translation of pink noise

images. Here translation was still the dominant transformation, which means that the

image templates were faster translated than rotated to create the image sequence. The

majority of SFA units are just as phase invariant as in the translation-only case. However,

there is a difference with respect to their orientation tuning curves, which have become

much smoother, in some units even sinusoidal. This reflects the rotation component in the

training data, because these SFA units now react with slowly changing output to rotation

in the input. In the case of input stimuli containing only rotation, depicted in figure 4.2 C,

the units exhibit a strong phase-dependence but their orientation tuning curves seldom

fall below 50% activity. As expected, most of these SFA units are characterized by a

strong orientation invariance, which leads to a very unspecific orientation tuning.

Qualitative assessment indicates that the results for retinal waves (see figure 3.2 and
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Figure 4.2.: Translation versus rotation as dominant training input feature. Every plot
group visualizes a different aspect of the trained SFA units and within each
plot group, nine units are shown (every third, starting from the first, up
to SFA unit number 25). Columns from left to right: optimal excitatory
stimuli, orientation/phase response, response in Fourier space, orientation
tuning plots. Rows: A SFA units trained with pink noise images that were
subject to translation only. B Units trained with a mixture of rotation and
translation. C Units trained with input that contained rotation only.
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3.3) fall in between row A and row B of figure 4.2. This is in line with the observation that

retinal wave image sequences locally contain more (or faster) translation than rotation.

4.3. Gabor-patch Quadrature Filter Pair Model

With the experiments described above, two extremes were explored concerning the trans-

formation content of the training input. When SFA is trained with input sequences

containing only translation, the output of the resulting units can be described as linear

combinations of Gabor-patch quadrature filter pairs (Gabor-QFPs). But what happens

if the weights of such a linear combination are chosen randomly, as opposed to SFA find-

ing them to optimize its objective? Such a randomly mixed Gabor-QFP model would

represent a baseline for orientation selectivity against which the training result can be

compared in case of no rotation present in the training data.

The tuning curve of a linear combination of Gabor-QFPs is given by a linear combina-

tion of the tuning curves of the individual Gabor-QFPs. Using this insight and assuming

that the individual tuning curves are equal (except for their preferred orientation), a

compact expression for the OSI of such an ensemble of Gabor-QFPs can be derived (see

appendix A for the derivation):

OSIG−QFP =
100

1 + e
1
2
(πσxf∗)−2

√ ∑N
i,j wiwj∑N

i,j wiwj cos(2(φ
∗
i−φ∗j ))

(4.4)

with f ∗ being the preferred frequency, σx the standard deviation of the Gaussian win-

dow in image space, φ∗i the preferred orientations of the individual Gabor-QFPs, and wi

the respective weights in the linear combination.

When constructing this model, a number of design questions arose:

What frequency preference should they have? The orientation tuning curve can be

regarded as a circular section out of the response surface around the origin, when plotted

in a spatial frequency coordinate system with the axes denoting the spatial frequency in

x and y direction (see figure 3.3 A). The preferred frequency f ∗ of a Gabor-QFP is then

the radius of the circle on which the orientation tuning curve is found. In formulating

the expression for the OSI of Gabor-QFP model, f ∗ thus becomes a parameter. The

value chosen for f ∗ was 3.5 cycles per receptive field. In the retinal wave simulations, the

majority of units had a preferred spatial frequency in the range of 2.5 to 3.5 cycles per

receptive field. 3.5 is approximately the maximal spatial frequency possible after PCA.
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How many Gabor-QFPs to include? Two filters are needed for each QFP and in

constructing the filters, SFA is limited to linear combinations of the PCA components.

Therefore the number of QFPs that each SFA unit can consist of is bounded. In the limit

of infinite receptive field size, PCA becomes equivalent to a Fourier basis Unser [1984].

This means, that in the limit, SFA can create QFPs by combining the two components

of the Fourier basis that have the same frequency vector but different phases. Thus, the

number of PCA components with most power at the preferred frequency was estimated

by comparison of their Fourier transforms1. The resulting number was divided by two,

leading to N = 9.

What orientation preference should they have? The orientation tuning curve of the

linear combination of Gabor-QFPs is the linear combination of the tuning curves of

the individual QFPs. Hence, the positioning of the individual tuning curves (which are

Gaussians) together with their total number constraints the shape of the resulting linear

combination. Preferred orientations were assigned to the Gabor-QFPs such that the full

orientation axis is sampled in equally sized steps. If there are more than 4 Gabor-QFPs

in the linear combination, then this allows in principle for non-orthogonal inhibition and

non-orthogonal side lobes, as observed in physiological experiments and simulations with

retinal wave input.

How to pick the weights for the linear combination? It is not obvious from what

distribution to draw the weights of the linear combination. Assume Gabor-QFPs were

chosen as basis functions for the function space in which SFA searches for solutions to

its objective. The weights of the linear combination would then be determined by linear

SFA on the projected data. The second moment matrices of the projected data and its

temporal derivative would reflect the correlation structure which exists between the QFPs

and which depends on parameters such as their number, their preferred orientation, their

width, and so on. An attempt to find the corresponding distribution for the coefficients of

the generalized eigenvectors analytical was deemed too difficult and, hence, not pursued.

Instead, the weight distribution was approximated by a bootstrapping approach. The H

eigenvalue spectra of SFA units from simulations with translation-only training data were

pooled and then resampled when drawing weights for the Gabor-QFP linear combination2.

As described above, the eigenvalues in these spectra come in pairs of two and can be

1Those PCA components are the most likely candidates for the construction of the QFPs.
2Prior to pooling, the eigenvalue spectra had to be normalized to unit variance, because their range

differed. Such a step seemed admissible, as we were only interested in the relative weighting between
QFPs within an individual SFA unit.
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interpreted as the weights for QFPs composed of the corresponding eigenvectors.

Figure 4.3.: Orientation selectivity index (OSI) histograms of SFA units trained with
different types of stimuli. A Training with pink noise images that were
translated only. B Training with pink noise images that were rotated and
translated. C Training with pink noise images that were rotated only. E
Training with retinal wave image sequences. D OSI distribution of the Gabor-
QFP model. Histograms in A, B, and E were obtained by pooling OSI values
from the first 50 SFA units of 10 simulation runs with identical parameters
for the training input generation. For the histogram in C OSI values from
the first 50 SFA units of a single simulation run were pooled.

Figure 4.3 compares the obtained OSI histograms of the control experiments and of

the retinal wave simulations with the distribution computed for the Gabor-QFP model.

The histograms were obtained by pooling OSI values from the first 50 SFA units of 10

simulation runs with identical parameters for the training input generation.

Training with inputs that contain translation only led to medium range OSI values

(figure 4.3 A). The resulting SFA units exhibit excitation as well as inhibition in their

orientation tuning, which leads to a lower average in activity than in the rotation-only
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case. Due to the lack of rotation in the training data, there is no incentive to achieve

low-frequency harmonic oscillations in the orientation tuning, which would elevate the

F2 component and thereby the OSI. However, the smoothness of the tuning curve which

is caused by the finiteness of the receptive field may have a similar effect, also leading

to a moderate elevation of the F2 component. The OSI distribution of the Gabor-QFP

model, shown in figure 4.3 D, resembles the translation-only histogram quite well, which

indicates that the model indeed approximates the SFA solution for this specific case of

training input.

When the training input contained a mixture of rotation and translation, the shape of

the OSI histogram becomes more similar to the histogram obtained from training with

retinal waves (same figure B and E, respectively). In the mixed-transformation case, the

histogram shows a peak at the high and a peak at the low end of possible OSI values. The

peak at the high end is due the reasons that were elaborated in section 4.2, i.e. that those

units with very high OSI values are best described as a linear combination of Gabor-QFPs

with a specific choice of the weights. The frequency vectors of the Gabors and weights

in the linear combination are chosen by SFA in such a way that harmonic oscillations

in the orientation tuning curve emerge. The Gabor-QFPs cause slowly varying output

with respect to translation while the harmonic oscillations in the orientation tuning lead

to slowly varying output with respect to rotation, thereby optimizing the SFA objective.

The peak at the low end of possible OSI values can be attributed to the SFA units

that are exclusively adjusted to the rotation in the training stimuli, see figure 4.2 B for

comparison.

In fact, the histogram in figure 4.2 B can be regarded as intermediate between the

histograms in A and C of the same figure. Changing the relative contribution of rota-

tion and translation (for example by adjusting the respective speeds) should result in a

morphing of OSI histograms between A, B, and C.

SFA units trained with stimuli that contain only rotation exhibit very low OSI values

(see figure 4.3 A). The units respond to gratings of all orientations with almost equal

strength, which is indicative of a rotation invariance (compare with figure 4.2, bottom

row of plot groups). This is to be expected, because if the training input contains only

rotation, the best SFA can do in order to create slowly varying output is to make the

resulting units rotation invariant.
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4.4. Discrete vs Continuous Training Data

In further control experiments, I have used moving sinusoidal waves and moving Gaussian

blobs as training data. These can, at least locally, be regarded as crude approximations

to retinal waves because they appear as a passing front of activity on the level of receptive

field size.

Training Data

The main parameters of the planar sinusoidal waves are the oscillation frequency, the

orientation of the grating, the traveling direction of the wave, a start point, and a trav-

eling distance. For the simulations, the preferred frequency was drawn from a uniform

distribution over the interval [1.5, 10] oscillations (this corresponds to a wavelength from

5 to 35 pixels). The orientation was drawn from a uniform distribution over the interval

[0, 360] degrees. A single animation consists of a wave with given frequency traveling from

a randomly chosen starting point for a given distance. From one frame to the next, the

wave moved one pixel and when the chosen traveling distance was reached, new param-

eter values were drawn from their respective distributions and a new animation began.

This procedure of animating a wave and resetting the parameters was repeated until a

maximum number of frames was reached. The resulting image sequences contained 5000

images, each image having a size of 64x64 pixels. This image sequence was then tiled

and concatenated in the same manner as the retinal wave image sequences, see section

2.2 for the description of the procedure. Next to the straight planar wave, a circular

wave generation mechanism was also implemented that works in principle similar to the

straight wave generator.

The moving Gaussian blob essentially consists of a 2D Gaussian distribution that is

moved across the image plane. By changing the variances along the two principal axis

of the distribution, different elliptical blob shapes can be obtained. In all simulations,

the trajectory of the blob was a mere straight line. The image size and image sequence

length were the same as for the sinusoidal planar waves.

Both input types (Gaussian blob and sinusoidal waves) were also used in a thresholded

fashion. In case of the Gaussian blob for example, this means that instead of having

a continuous increase of activity as the blob moves across the image, the image was

thresholded to yield full activity in those pixels (or modeled retinal cells) that were above

threshold and no activity in the others. Thresholded and continuous (i.e. unthresholded)

image sequences were used in separate SFA training runs.
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Results

The results for the thresholded input sequences are qualitatively similar to those ob-

tained for retinal wave image sequences. Figure 4.4 A shows the results of training with

the thresholded Gaussian blob image sequences. Depicted are the optimal stimuli (ex-

citatory and inhibitory) and the first invariance computed according to the algorithm

proposed in Berkes and Wiskott [2007]. Most of the optimal stimuli are show a structure

reminiscent of Gabor patches. The first invariances are in most cases phase shifted ver-

sions of the respective optimal stimuli, which indicates a phase invariance. The results

for the thresholded sinusoidal waves (straight and circular) are very similar and thus not

shown.

Figure 4.4.: Optimal stimuli and first invariance of SFA units trained with thresholded
Gaussian blob image sequences (A) and with continuous (i.e. unthresholded)
sinusoidal planar waves (B). Numbers indicate SFA unit index. For each
SFA unit, the most excitatory (inhibitory) stimulus is shown in the upper
left (lower left) and the corresponding first invariance to the right of it.

Interestingly, the results for the continuous Gaussian blobs and sinusoidal waves are

rather different. Figure 4.4 B shows the results of training with unthresholded sinusoidal

waves. The optimal stimuli seem contaminated with high frequency components (almost

like ”salt and pepper noise”). Yet underneath the noise, sinusoidal structure alluding to

Gabor-like optimal stimuli is visible in some of the units. The results for the continuous

Gaussian blobs are similar.

It seems that a too strong fall off of power in the Fourier spectrum leads to units with

optimal stimuli whose high frequency components are very prominent, i.e. the optimal

stimuli appear to be very noisy. When high frequencies are relatively absent in the input,

there is no incentive to suppress them during the optimization for slowness. Hence, they

are not punished in the process of finding the optimal stimulus for a unit.
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5. Discussion

In this thesis, I presented the results of applying slow feature analysis to image sequences

derived from a model of retinal waves. The resulting SFA units share a number of

properties with complex cells, which are found in adult mammalian primary visual cortex.

The defining feature of cortical complex cells is that they respond very well to sinusoidal

gratings and show little variation in their response when the animal is presented with

a grating that moves. This most important feature could be reproduced with the SFA

model, i.e. the response of the SFA units is largely invariant with respect to the phase of

a sinusoidal input grating. Secondly, the optimal stimuli of a large portion of the SFA

units shows structure similar to that found in experimentally observed receptive fields.

All optimal stimuli have ON and OFF regions. Some optimal stimuli resemble Gabor

patches, while others do not. Thirdly, similar to cortical simple- and complex cells, the

SFA units respond stronger to some orientations of the input grating than to others, i.e.

they exhibit an orientation tuning. However, some specifics of their orientation tuning

are not in accordance with physiological observations (see the next paragraph for further

discussion of this issue). Finally, the learned SFA units exhibit frequency tuning, which

is also found to be the case in cortical simple and complex cells.

The results of this study shed some light on the strength and weaknesses of SFA with

respect to biological aspects. The phase invariance of cortical complex cells could be well

reproduced, which seems to render SFA a suitable model for the emergence of such. In

addition to the reproduced properties already mentioned, the modeling study of Berkes

and Wiskott (Berkes and Wiskott [2005]) showed that SFA can also account for more

complex cell features including direction selectivity as well as end- and side-inhibition.

In my study, I did not test for these properties, but visual inspection of the optimal

stimuli indicates that some of the obtained SFA units could also exhibit end- and side-

inhibition. The orientation selectivity exhibited by the SFA units obtained in the present

study is well above experimental findings when measured with the orientation selectivity

index OSI (Chapman and Stryker [1993]). The reasons for such high OSI values have

been investigated in section 4.2. The fact that orientation selectivity is overestimated,

however, does not imply that the slowness hypothesis has to be dismissed. An additional
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objective may be necessary to capture all properties of complex cells. Perhaps a different

preprocessing of the SFA units’ responses needs to be done (e.g. rectification) before

computing the OSI. An alternative explanation might be that the high OSI values arise

as an artifact of the rather abstract implementation of the slowness principle through SFA.

The SFA algorithm as applied in this study is not intended to be biologically plausible

and could thus produce effects that an actual neural system, which also implements the

slowness principle, would not. Neural network implementations of the slowness principle

have been applied in other studies (Einhauser et al. [2002], Kording et al. [2004]) and a

neural implementation of SFA has been proposed in Sprekeler et al. [2007]. When trained

with retinal wave image sequences, those implementations should also reproduce the phase

invariance property. It would be interesting to explore how well these implementations

fare in accounting for other complex cell properties, compared to the SFA algorithm used

in this study.

The retinal wave image sequences used for training the SFA units were derived from a

model of retinal waves proposed by Godfrey and Swindale (Godfrey and Swindale [2007]).

Their model explains the emergence of spatially coherent patterns and their propaga-

tion on the basis of spontaneous depolarization and activity dependent refractoriness of

amacrine cells. Other models of retinal waves exist and have been briefly described in

section 2.2. The results presented in this report, however, should not depend on the

particular choice of the retinal wave model with which the input sequences are generated.

Despite the (sometimes subtle) differences in the wave generation mechanisms, all of the

mentioned models reproduce relevant retinal wave characteristics such as the distribution

of size, speed, and inter-wave-interval, as well as the spatial coherence and the spatially

limited and changing wave domains. The Godfrey and Swindale model was chosen for

practical reasons including the fact that their model was the most recent when the work

in this project began, their model is easily implemented, it runs fairly quickly, and the

authors included parameter settings for retinal waves of several animal species. However,

there is no principal reason for favoring the Godfrey and Swindale model over the others.

The obtained results should not be much different when using a different retinal wave

model, provided that the used model generates waves with a similar statistics.

In the introduction of this thesis I have referred to the work of Albert (Albert et al.

[2008]), in which sparse coding (Olshausen and Field [1996]) was applied to retinal wave

images and resulted in the emergence of basis functions having receptive fields similar to

those found for cortical simple cells. The authors propose that the early visual system

is structured under the same learning objective before and during visual experience. For

retinal waves to be adequate training stimuli under a fixed objective, the waves must
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share relevant statistical properties with input acquired after the onset of vision, i.e. nat-

ural image sequences. The average Fourier amplitude spectrum of the generated retinal

wave images, that were used in this study, shows an exponential fall-off with an expo-

nent of about -1.36. This corresponds to an amplitude to frequency relation of c
f1.36

,

or equivalently to a spectral power to frequency relation of c2

f2.72
, with c being a scaling

constant and f denoting spatial frequency. For natural images, the spectral power to

frequency relation is very well approximated by c2

fn
with n being close to 2 (see Ruder-

man and Bialek [1994], Dong and Atick [1995a], and Simoncelli and Olshausen [2001]).

This suggests, that retinal waves have a similar second-order spatial correlation structure

compared to natural images. Albert et al. [2008] point out that retinal wave images also

contain higher-order correlations similar to natural images, due to their wavefront and

edge-like structure. And it is these higher order correlations, the authors emphasize, that

the visual system may exploit when structuring the receptive fields of cortical simple cells

under the objective of sparse coding. For the slowness objective, on the other hand, the

temporal correlation structure in the training data is of great importance. The temporal

statistics of an image sequence are governed by the spatial statistics and the type of

image transformation that lead from one image to the next. The results presented in this

report, indicate that retinal waves also share relevant temporal statistical properties with

natural visual input.

To the best of my knowledge, there are no studies that describe the properties of

complex cells shortly after or shorty before birth. The results of this thesis, however,

predict that complex cells could already be present at the time of birth, possibly in some

preliminary form. It seems likely that this is the case at least in some animal species,

such as horse or giraffes, because their offspring is born at a very advanced developmental

level. The freshly born foals or calves are able to stand and follow their mother within

the first hour after birth. It seems likely that these animals, even at this young age, can

recognize and differentiate objects (e.g. other members of their species) independently of

their position in the visual field1. Complex cells are a prime candidate for the basis of

position invariant object recognition (Shams and von der Malsburg [2002]) and therefore

it is presumable that the mentioned animal species are born with an, at least partially

developed, complex cell system already in place.

The performed control experiments demonstrate the dependence of the SFA units on

the transformations that are present in the training stimuli. From this, an experimental

prediction can be derived concerning the emergence of simple and complex cells. If one

could disrupt the temporal structure of retinal waves while leaving the spatial proper-

1Possibly using also other sensory cues such as olfactory or auditory signals.
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ties intact, then, according to the theory behind SFA, the development of complex cells

should be impaired. The development of simple cells, on the other hand, should not be

hindered, because the theory of sparse coding is based on spatial statistics only, making

no reference to the temporal properties of the training data. This prediction can be tested

with the following experimental setup: First of all, the naturally occurring endogenous

activity patterns have to be abolished. This can be achieved using pharmacological neu-

rotransmitter blockers to sever the functional connection between amacrine and retinal

ganglion cells as was done, for example, in a study by Chapman (Chapman et al. [1986]).

Then, activity patterns in retinal ganglion cells can be artificially induced using implanted

multi-electrode grids (Alteheld et al. [2004], Rodger et al. [2008]). Such an experimental

setting may still be difficult to achieve, but it is not impossible. Once the natural reti-

nal waves can be fully substituted by artificial ones, their spatiotemporal statistics are

subject to manipulation. As stated above, replaying recorded natural retinal waves in a

randomized order (by shuffling the frames) should impair development of complex cells

but not of simple cells.

In conclusion, I find that my simulation results support the hypothesis stated in the

introduction: The slowness objective, manifested by SFA, is compatible with an innate

learning mechanism that learns on endogenous activity in the same manner as on actual

visual input. A large portion of the SFA units obtained from training with retinal wave

image sequences share relevant properties with cortical complex cells and thereby provide

a theoretical account for their emergence prior to the exposure to natural visual input.
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A. Gabor Quadrature Filter Pair Model

In this section, a formula for the orientation selectivity index (OSI) Chapman and Stryker

[1993] of a linear combination of Gabor quadrature filter pairs (Gabor-QFPs) is derived.

The orientation tuning curve of the ith Gabor-QFP, here denoted by ti(φ), is a one

dimensional function of the input grating’s orientation angle. The curve has two maxima,

one at φ∗i < π and one at φ∗∗i = φ∗i + π, and it is obtained by a circular section through

the amplitude spectrum of one of the Gabor filters1 at the preferred frequency f ∗. By

evaluating the amplitude spectrum in polar coordinates, i.e. as a function of frequency f

and orientation φ, here denoted by A(f, φ), the tuning curve is given by ti(φ) = Ai(f
∗, φ).

The Fourier amplitude spectrum of a 2d Gabor function is equal to the sum of two

Gaussians in Fourier space, centered at the points (f ∗, φ∗) and (f ∗, φ∗∗). The width of

the Gaussians in Fourier space σf is inversely proportional to the width of the Gaussian

envelope of the Gabor function in image space σx, i.e. σf = 1
2πσx

. The curved section

through the 2d Gaussians in Fourier space can be approximated by a straight line section,

which is a 1d Gaussian of width σf . Thus, ti(φ) is modeled with two Gaussians, centered

at φ∗i and φ∗∗i , respectively.

Recall the definition of the OSI: 100 ∗ F2
F2+F0

= 100
1+F0

F2

, with F0 being the mean value

and F2 the amplitude of the second harmonic. Because the Gabor-QFP tuning curve is

periodic function with a period of π radians (or 180◦), it is equivalent to consider ti(φ)

only in the range from 0 to π and to compute F0 and F1 of ti(φ) confined to this interval.

The tuning curve of a linear combination of Gabor-QFP is the linear combination of the

individual tuning curves, i.e. t(φ) =
∑N

i witi(φ). In order to compute the OSI for t(φ),

an expression for its complex Fourier spectrum, Ft(f) is required. Once the spectrum is

obtained, the amplitudes are given by the absolute value of the complex Fourier spectrum,

e.g F1 = |Ft(1)| with |Ft| =
√
FtF t. Thus, an expression for Ft is required.

First of all, the linearity of the Fourier transform is applied to yield an expression for Ft
in terms of the Fourier transforms of the individual tuning curves Fti , and the respective

1Both filters of a quadrature filter pair have the same Fourier amplitude spectrum. They only differ in
their phase spectrum.
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weights wi

Ft =
N∑
i

wiFti . (A.1)

Because all ti(φ) are shifted versions of each other, each ti can be expressed as the

result of the convolution of a Gaussian, centered at 0◦, with a shifted Dirac δ function,

i.e. ti(φ) = t0(φ) ∗ δi(φ), where ∗ denotes convolution and δi(φ) = δ(φ − φ∗i ). This

simplifies equation A.1, because we can apply the convolution theorem, which expresses

the Fourier transform of a convolution of two functions as the product of the Fourier

transformed functions. Fti therefore becomes Ft0 · Fδi , which decomposes Ft further into

Ft =
N∑
i

wiFti =
N∑
i

wiFt0Fδi = Ft0
N∑
i

wiFδi . (A.2)

Now an expression for |Ft| in terms of Ft0 and Fδi can be formulated:

|Ft| =
√
FtF t =

√√√√Ft0 N∑
i

wiFδi Ft0
N∑
j

wjFδj =

√√√√Ft0Ft0 N∑
i,j

wiwjFδiFδj . (A.3)

In order to plug in actual values, expressions for Ft0 and Fδi are given next. The zero-

centered tuning curve, normalized to unit amplitude, is given by t0(φ) = exp
(
−1

2
( φ
σφ

)2
)

,

with σφ =
σf
πf∗

= 1
2π2σxf∗

. Note that σφ is given as a fraction of 1, not in radians or

degrees. Likewise, σx is specified in units of image side length, not in pixels. The Fourier

transform of t0(φ) is also a Gaussian:

Ft0(f) = Ft0(f) =
√

2πσ2
φ exp

(
−1

2
(2πσφf)2

)
. (A.4)

The Fourier transform of Fδi is a complex sinusoid in frequency space:

Fδi(f) = exp (−i2φ∗i f) . (A.5)

Equations A.4 and A.5 can now be substituted into equation A.3:

|Ft(f)| = 2πσ2
φ exp

(
− (2πσφf)2

) N∑
i,j

wiwj exp
(
i2f
(
φ∗j − φ∗i

))
(A.6)

= 2πσ2
φ exp

(
− (2πσφf)2

) N∑
i,j

wiwj cos
(
2f
(
φ∗j − φ∗i

))
. (A.7)

The complex exponential in the sum simplifies to a cosine, because summand (i,j) is
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the complex conjugate of summand (j,i), canceling out the imaginary part. All that is

left now, is to evaluate the ratio of |Ft(f)| for f = 0 and f = 1, and to substitute this

ratio in the OSI definition. By using equation A.7 and the definition of the OSI, we have

OSIG−QFP =
100

1 + F0
F1

(A.8)

=
100

1 + |Ft(0)|
|Ft(1)|

(A.9)

=
100

1 + exp
(
2π2σ2

φ

) √ ∑N
i,j wiwj∑N

i,j wiwj cos(2(φ∗j−φ∗i ))

(A.10)

=
100

1 + exp
(

1
2(πσxf∗)

2

) √ ∑N
i,j wiwj∑N

i,j wiwj cos(2(φ∗j−φ∗i ))

(A.11)

Equation A.11 gives the orientation selectivity index of a linear combination of Gabor

quadrature filter pairs in terms of their respective weights wi and the parameters σx and

f ∗.

There is an interesting consequence that follows from equation A.10. According to the

textbook view, the orientation tuning curve of actual visual responsive neurons can be

well described by a Gaussian function Dayan and Abbott [2001]. This corresponds to the

tuning curve of a G-QFP model with N = 1. In that case, the term under the square root

in equation A.10 becomes 1 and only the exponential remains. The OSI now only depends

on the (fitted) standard deviation σφ. Since σφ is always positive, the exponential in the

OSI equation will always be larger or equal to 1, causing the denominator to be larger or

equal to 2. Thus, the OSI cannot exceed 50, thereby exhausting only half the range of

possible values!
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