
Independent Component Analysis and Slow Feature
Analysis: Relations and Combination

D I S S E R T A T I O N

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät I

der Humboldt-Universität zu Berlin

von
Herrn Dipl.-Phys. Tobias Blaschke

geboren am 02.10.1972 in Rüsselsheim

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jürgen Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I:
Prof. Thomas Buckhout, PhD

Gutachter:

1. Dr. Laurenz Wiskott
2. Prof. Dr. Klaus Obermayer
3. Prof. Dr. Lutz Schimansky-Geier

eingereicht am: 25. August 2004
Tag der mündlichen Prüfung: 02. Februar 2005





Independent Component Analysis and Slow Feature Analysis:
Relations and Combination

Tobias Blaschke





Abstract

Within this thesis, we focus on the relation between independent component analysis (ICA) and slow feature
analysis (SFA). To allow a comparison between both methods we introduce CuBICA2, an ICA algorithm
based on second-order statistics only, i.e. cross-correlations. In contrast to algorithms based on higher-order
statistics not only instantaneous cross-correlations but also time-delayed cross correlations are considered
for minimization. CuBICA2 requires signal components with auto-correlation like in SFA, and has the
ability to separate source signal components that have a Gaussian distribution. Furthermore, we derive an
alternative formulation of the SFA objective function and compare it with that of CuBICA2. In the case of a
linear mixture the two methods are equivalent if a single time delay is taken into account. The comparison
can not be extended to the case of several time delays. For ICA a straightforward extension can be derived,
but a similar extension to SFA yields an objective function that can not be interpreted in the sense of SFA.
However, a useful extension in the sense of SFA to more than one time delay can be derived. This extended
SFA reveals the close connection between the slowness objective of SFA and temporal predictability.

Furthermore, we combine CuBICA2 and SFA. The result can be interpreted from two perspectives.
From the ICA point of view the combination leads to an algorithm that solves the nonlinear blind source
separation problem. From the SFA point of view the combination of ICA and SFA is an extension to SFA
in terms of statistical independence. Standard SFA extracts slowly varying signal components that are un-
correlated meaning they are statistically independent up to second-order. The integration of ICA leads to
signal components that are more or less statistically independent.
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Zusammenfassung

Der Fokus dieser Dissertation liegt auf den Verbindungen zwischen ICA (Independent Component Ana-
lysis - Unabhängige Komponenten Analyse) und SFA (Slow Feature Analysis - Langsame Eigenschaften
Analyse). Um einen Vergleich zwischen beiden Methoden zu ermöglichen wird CuBICA2, ein ICA Algo-
rithmus basierend nur auf Statistik zweiter Ordnung, d.h. Kreuzkorrelationen, vorgestellt. Dieses Verfah-
ren minimiert zeitverzögerte Korrelationen zwischen Signalkomponenten, um die statistische Abhängigkeit
zwischen denselben zu reduzieren. Zusätzlich wird eine alternative SFA-Formulierung vorgestellt, die mit
CuBICA2 verglichen werden kann. Im Falle linearer Gemische sind beide Methoden äquivalent falls nur
eine einzige Zeitverzögerung berücksichtigt wird. Dieser Vergleich kann allerdings nicht auf mehrere Zeit-
verzögerungen erweitert werden. Für ICA lässt sich zwar eine einfache Erweiterung herleiten, aber ein
ähnliche SFA-Erweiterung kann nicht im originären SFA-Sinne (SFA extrahiert die am langsamsten vari-
ierenden Signalkomponenten aus einem gegebenen Eingangssignal) interpretiert werden. Allerdings kann
eine im SFA-Sinne sinnvolle Erweiterung hergeleitet werden, welche die enge Verbindung zwischen der
Langsamkeit eines Signales (SFA) und der zeitlichen Vorhersehbarkeit desselben verdeutlich.

Im Weiteren wird CuBICA2 und SFA kombiniert. Das Resultat kann aus zwei Perspektiven interpre-
tiert werden. Vom ICA-Standpunkt aus führt die Kombination von CuBICA2 und SFA zu einem Algo-
rithmus, der das Problem der nichtlinearen blinden Signalquellentrennung löst. Vom SFA-Standpunkt aus
ist die Kombination eine Erweiterung der standard SFA. Die standard SFA extrahiert langsam variierende
Signalkomponenten die untereinander unkorreliert sind, dass heißt statistisch unabhängig bis zur zweiten
Ordnung. Die Integration von ICA führt nun zu Signalkomponenten die mehr oder weniger statistisch un-
abhängig sind.

Schlagwörter:
Unabhängige Komponenten Analyse, Langsame Komponenten Analyse, Nicthlineare Blinde Signalquel-
lentrennung, Langsamkeit
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1

Introduction
The Family Celebration Problem

Imagine you are a granddaddy, or a grandma if you like, at a family celebration. All of your near relatives,
second-grade, and remote relatives are gathered together. You are having a good time. There is tasty food,
nice people, good wine. Some of your remote relatives suddenly fetch their music instruments and start
playing an old waltz.

For this special event you have put on your hearing aid. None of this fancy new hearing aids that can
even switch between classical music and single speaker mode. You bought it a couple of years ago and
since then it always worked well. At least if you are at home and listening to the television or your wife
(husband).

But, here at the celebration: everyone is talking, the remote relatives are still playing tunes in three
quarter time and your neighbor to the right, probably some second cousin, tries to draw your attention to
his one year old crying baby.

Since your hearing aid amplifies every sound from any direction in an equivalent way all you hear is a
mixture of all this sounds. You just do not know on which of this sounds to concentrate! There are just too
many people talking, too loud music, too many signals coming from too many different directions. And of
course the sweet red wine...

What you really need is a hearing aid that is able to separate the received mixture into its original source
components. But, what is the clue that helps to discriminate different signals from different sources? How
can we blindly separate the sources? The assumption we can make is that those signals are independent
from each other. Independent means that different relatives will speak differently and different words,
independently of all others. Adding the fact that different audio signals superimpose linearly we can show
that the separation of the received mixture into independent components reveals the original source signals.
In the following we will call the problem of finding the source signal components Blind Source Separation
(BSS) and the method that exactly performs this separation task Independent Component Analysis (ICA).

The first two parts of this work addresses the linear blind separation task as stated above and independent
component analysis, its solution. To be more concise, after an introductionary part two ICA algorithms are
introduced and studied. Additionally, their performance is underlined with some example simulations. We
do not want to give a full overview over the complex research field of ICA. Instead, we want to concentrate
on those algorithms and their mathematical foundation. A thorough introduction to ICA is given in [Lee,
1998], [Hyvärinen et al., 2001b] and [Cichocki and Amari, 2002].

ICA is a relatively young research topic. The first publication on ICA, written by Herault and Jutten,
dates back to 1986. Comon [1994b] was the first to formulate ICA in a consistent mathematical framework.
However, ICA became popular with the paper by Bell and Sejnowski [1995], where they analyzed ICA
from an information maximization point of view (for a detailed history refer to Chapter 4. Since then it has

1



2 CHAPTER 1. INTRODUCTION

turned out to be a useful method in a number of application areas, including

• medical data analysis (e.g. EEG, MEG, fMRI) (e.g. [Jung et al., 2000; McKeown et al., 1998]),

• computational neuroscience (e.g. [Doi et al., 2003; Hyvärinen et al., 2003, 2001a])

• bioinformatics (e.g. [Liebermeister, 2002; Scholz et al., 2004]),

• automated music analysis (e.g. [Abdallah and Plumbley, 2003; Feng et al., 2002]).

In this work, we concentrate on cumulant-based algorithms, especially two algorithms based on higher-
order cumulants and on second-order cumulants respectively. The use of higher-order cumulants in ICA
has been around since the work by Comon [1994a] while the second-order cumulant-approach is due
to Molgedey and Schuster [1994].

Hmm! After reading the first two parts of this work you visit your preferable hearing aid seller and
ask for a hearing aid with integrated ICA algorithm. But, unfortunately, no one at the shop has ever heard
something called independent component analysis. So you will have to wait until someone recognizes the
market chance of such devices and starts to do research in that direction (there are actually attempts to use
ICA in hearing aids).

What, if the voices, sounds and noise you hear are superimposed nonlinearly rather than linearly? What
would be the clue to separate the source signal components in this case? Of course, it is unlikely that you
will perceive this kind of mixture at the family celebration. However, there are situations where you actually
observe nonlinear mixtures, for example in the field of biomedical data recording [Ziehe et al., 2000]. As we
will see, this more general problem needs additional assumptions about the source signal. The independence
assumption made about the source signal components in the linear case is not sufficient to extract them from
a nonlinear mixture. At this point slow feature analysis (SFA) comes into play. In general, the goal of SFA
is to extract a slowly varying signal out of the input signal (e.g. the mixture of sounds, voices, etc. as
described above), where the input signal is usually more quickly varying as the extracted one (a detailed
description of SFA will be given in Chapter 5). The integration of the independence objective of ICA and
the slowness objective of SFA leads to an algorithm that is on one hand able to solve the nonlinear BSS
problem. On the other hand it is an extension of SFA in the sense that the SFA output signal has statistically
independent components. Studying the properties of this nonlinear BSS algorithm as well as the relations
between ICA and SFA in general will be the main topic of the third part of this work.

Overview

Before we start with some basic concepts in higher-order statistics let us briefly give an overview over
the different parts of this work. Part I lays the foundation of the fundamental concepts that build the
basis for linear and non-linear independent component analysis and slow feature analysis. It starts with an
introduction to the concept of higher-order statistics, mainly expressed in terms of cumulants and moments
and their properties, in Chapter 2. Chapter 3 establishes mutual information as a fundamental measure of
statistical independence, building the basis for several methods performing independent component analysis
respectively blind source separation. These two concepts are then briefly described in the following chapter
and a historical overview is given. Also Chapter 5 completes the first part with a review of the principles
underlying slow feature analysis.

The second part of this thesis introduces two algorithms performing linear independent component
analysis/blind source separation. The first, CuBICA, is an ICA algorithm based on higher-order statistics
involving cumulants of order three and four (Chapter 6). The second algorithm, CuBICA2, is based on
second-order statistics (Chapter 7).

The last part of this work is dedicated to the combination of SFA and ICA. In Chapter 8 SFA and ICA
are compared and possible similarities and relations are pointed out. Using these relations a nonlinear BSS
method is introduced in Chapter 9 that combines the two concepts of independence and slowness. The
last chapter provides a summary and a discussion of the results and suggestions for future research. The
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Appendices B.1 to D contain the derivation of mathematical constants that are not necessary for the reader
to follow the main plot of this thesis.





Part I

Basic Concepts





2

Statistics
This chapter provides some basics in statistics that are needed to understand the second part of this thesis.
We start with the definition of higher-order moments and cumulants in Section 2.2. Furthermore, we derive
the relation between moments and cumulants and list some of their properties that are necessary in order
to perform independent component analysis. The connection between the probability density function and
cumulants is established in Section 2.3. Section 2.4 points out that the shape of the probability density
function can be described by cumulants up to fourth order. Some example probability density functions and
their moments and cumulants up to fourth order are given in Section 2.4.1. The chapter concludes with a
short summary in Section 2.5.

2.1 Characteristic Functions

Definition 2.1.1 (Expectation) Given a scalar random variable X with probability density function (p.d.f.)
pX (x), the expectation of the function f (x) is defined by

〈 f (x)〉 :=
∫

∞

−∞

f (x) pX (x)dx . (2.1)

If the distribution of x is discrete, the integral is replaced by a sum. In the multivariate case the integral over
R1 is replaced by an integral over Rp.

Definition 2.1.2 (First Characteristic Function) The first characteristic function LX (ω) of the scalar ran-
dom variable X is defined as the Fourier transform of the probability density function pX (x):

LX (ω) :=
∫

∞

−∞

exp(iωx) pX (x)dx , (2.2)

where i =
√
−1 and ω is the transformed variable (frequency) corresponding to x.

Using Definition (2.1) LX (ω) can be written as the expected value of exp(iωx)

LX (ω) = 〈exp(iωx)〉 . (2.3)

In the multivariate case LX (ωωω), with ω = [ω1, ω2, . . . , ωN ], is given by

LX (ωωω) =
〈
exp
(
iωωωT x

)〉
. (2.4)

7
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Definition 2.1.3 (Second Characteristic Function) The second characteristic function KX (ω) is given by
the natural logarithm of the first characteristic function

KX (ω) = ln(LX (ω)) . (2.5)

In the multivariate case KX (ωωω) is defined analogous to (2.4) as

KX (ωωω) = ln(LX (ωωω)) . (2.6)

2.2 Moments and Cumulants

The concept of Moments was taken into Statistics from Mechanics by Karl Pearson when he treated the
frequency-curve as the sheet enclosed by the curve and the horizontal axis (e.g. [Pearson, 1893]).

Cumulants where first defined by the Danish astronomer Thorvald Nicolai Thiele in his work from
1889 [Thiele, 1889] (the book is written in danish, a reprint of an English exposition is given in [Thiele,
1931]). Fisher rediscovered cumulants in 1929 [Fisher, 1929] and called them cumulative moment func-
tions. He also described the computation of cumulants via sample averaging and noticed the superiority
over moments. For a short overview of the history of cumulants and Thiele’s contributions to statistics
see [Lauritzen, 1999].

The properties of cumulants and moments are for example described in [McCullagh, 1987] and [De Lath-
auwer, 1997]. We briefly list the properties that are most important to us. They are the basis for all inde-
pendent component analysis models throughout this thesis.

In the following we will denote a scalar random variable with X j where we sometimes drop the index
for simplicity. Vectorial random variables will be denoted by bold X = [X1, ,X2, . . . , XN ].

2.2.1 Moments

Definition 2.2.1 (Moments) Moments m(X)
n of order n of a scalar random variable X are defined by

m(X)
n := 〈Xn〉 :=

∫
∞

−∞

xn pX (x)dx , (2.7)

This is just the special case of Equation (2.1) where f (X) is the nth power of X. Cross-moments are defined
correspondingly by

mom(X1, . . . , Xn) = 〈X1 · . . . ·Xn〉=
∫

∞

−∞

(x1 · . . . · xn) pX (x1, . . . ,xn)dx . (2.8)

The first-order moment m(X)
1 is called mean of x whereas the second-order moment is called correlation

m(X)
2 =

〈
X2〉 , (2.9)

respectively cross-correlation
mom(X j,Xk) =

〈
X jXk

〉
. (2.10)

The nth-order moments are just the partial derivatives of LX (ω), defined in (2.3), evaluated at ω = 0

m(X)
n =

1
in

∂ nLX (ω)
∂ωn

∣∣∣∣
ω=0

, (2.11)

Cross-moments are derived correspondingly

mom(X1, . . . , Xn) =
1
in

∂ nLX (ω)
∂ω1 . . .∂ωn

∣∣∣∣
ω=0

. (2.12)
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Using (2.12) we can write the expansion of the first characteristic function (2.4) as

LX (ωωω) = 1+
N

∑
i=1

(ωi mom(Xi))+
1
2!

N

∑
i=1

N

∑
j=1

(ωiω j mom(Xi, X j)) +

1
3!

N

∑
i

N

∑
j

N

∑
k

(ωiω jωk mom(Xi, X j, Xk)) + . . . . (2.13)

Due to this fact the first characteristic function is often called the moment generating function.

2.2.2 Cumulants

Definition 2.2.2 (Cumulants) Cumulants c(X)
n of order n are defined via the partial derivatives of the sec-

ond characteristic function (2.5)

c(X)
n =

1
in

∂ nKX (ω)
∂ωn

∣∣∣∣
ω=0

. (2.14)

In the multivariate case the cross cumulants are defined by

cum(X1, . . . , Xn) =
1
in

∂ nKX (ω)
∂ω1 . . .∂ωn

∣∣∣∣
ω=0

, (2.15)

using the multivariate second characteristic function (2.6). Similar to Equation (2.13) we can expand the
second characteristic function (2.6) using (2.15) to obtain

KX (ωωω) = 1+
N

∑
i=1

(ωi cum(Xi))+
1
2!

N

∑
i=1

N

∑
j=1

(ωiω j cum(Xi, X j)) +

1
3!

N

∑
i

N

∑
j

N

∑
k

(ωiω jωk cum(Xi, X j, Xk)) + . . . . (2.16)

The second characteristic function is called cumulant generating function.
The first-order cumulant c(X)

1 denotes the mean of X. The second-order cumulant corresponds to the
variance

c(X)
2 =

〈
(X−〈X〉)2

〉
(2.17)

of X. In the multivariate case second-order cross-cumulants are called covariance

cum(X j, Xk) =
〈(

X j −
〈
X j
〉)

(Xk −〈Xk〉)
〉

. (2.18)

All second-order cumulants form the covariance matrix of X = [X1, . . . , Xn]
T given by

C(X)
2 =

〈
(X−〈X〉)(X−〈X〉)T

〉
, (2.19)

where the index 2 stands for cumulant of order two. In general, all auto- and cross-cumulants of nth-order
together form an nth-order tensor [De Lathauwer, 1997] (the covariance matrix is a tensor of second-order).

Definition 2.2.3 (Standardized Cumulants, Skewness and Kurtosis) A standardized cumulant of order
n of a scalar random variable X is defined as

κ
(X)
n =

(
1

c(X)
2

) n
2

c(X)
n . (2.20)

Skewness and kurtosis are defined as the standardized cumulants of order 3 and 4.
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2.2.3 Relations between Moments and Cumulants

The Taylor expansion of LX (ωωω) = exp(KX (ωωω)) is given by

LX (ωωω) = 1+KX (ωωω)+
1
2!

KX (ωωω)2 + . . .+
1
n!

KX (ωωω)n + . . . . (2.21)

We can now insert the expansion (2.16) of KX (ωωω) on the right hand side of (2.21) and the expansion of
LX (ωωω) (2.13) on the left hand side. After combining terms and using symmetry we obtain the definition of
the cumulants as functions of the moments by comparing the coefficients of both sides of Equation (2.21).
We show the relations up to fourth-order

cum(Xi) = mom(Xi) , (2.22)
cum(Xi,X j) = mom(Xi,X j)−mom(Xi)mom(X j) , (2.23)

cum(Xi,X j,Xk) = mom(Xi,X j,Xk)−mom(Xi)mom(X j,Xk)−mom(X j)mom(Xi,Xk)
−mom(Xk)mom(Xi,X j)+2mom(Xi)mom(X j)mom(Xk) , (2.24)

cum(Xi,X j,Xk,Xl) = mom(Xi,X j,Xk,Xl)−mom(Xi)mom(X j,Xk,Xl)
−mom(X j)mom(Xi,Xk,Xl)−mom(Xk)mom(Xi,X j,Xl)
−mom(Xl)mom(Xi,X j,Xk)−mom(Xi,X j)mom(Xk,Xl)
−mom(Xi,Xk)mom(X j,Xl)−mom(Xi,Xl)mom(X j,Xk)
+2mom(Xi)mom(X j)mom(Xk,Xl)+2mom(Xi)mom(Xk)mom(X j,Xl)
+2mom(Xi)mom(Xl)mom(X j,Xk)+2mom(X j)mom(Xk)mom(Xi,Xl)
+2mom(X j)mom(Xl)mom(Xi,Xk)+2mom(Xk)mom(Xl)mom(Xi,X j)
−6mom(Xi)mom(X j)mom(Xk)mom(Xl) . (2.25)

If we consider all X j to have zero mean (m(X j)
1 = 0) this shortens to

cum(Xi) = 0 , (2.26)
cum(Xi,X j) = mom(Xi,X j) , (2.27)

cum(Xi,X j,Xk) = mom(Xi,X j,Xk) , (2.28)
cum(Xi,X j,Xk,Xl) = mom(Xi,X j,Xk,Xl)−mom(Xi,X j)mom(Xk,Xl)

−mom(Xi,Xk)mom(X j,Xl)−mom(Xi,Xl)mom(X j,Xk) . (2.29)

Moments and cumulants are entirely equivalent, since first and second characteristic function carry the
same information. Intuitively, for cumulants of a given order, redundant information of lower orders are
subtracted, leading to insensitivity to lower order cumulants (see Sec. 2.2.9) as well as to different behavior
with respect to partitioning and translation. This is in contrast to moments, which also contain information
about lower order statistics.

2.2.4 Properties of Moments and Cumulants

At first sight, moments might seem more interesting than cumulants, due to their intuitive Definition (2.7).
However, cumulants have a number of important properties that are not shared by moments and make them
easier to handle. Thus they are used more frequently in higher-order statistics. We list some of the most
interesting properties of moments and cumulants.

Property 2.2.1 (Scaling) If the random variable X is multiplied by factor a an nth-order moment and cu-
mulant transforms as

m(aX)
n = anm(X)

n , (2.30)

c(aX)
n = anc(X)

n . (2.31)
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Property 2.2.2 (Sum) Moments or cumulants of a sum are the sum of the moments or cumulants

mom(X1 +Y,X2, . . . ,Xn) = mom(X1,X2, . . . ,Xn)+mom(Y,X2, . . . ,Xn) , (2.32)
cum(X1 +Y,X2, . . . ,Xn) = cum(X1,X2, . . . ,Xn)+ cum(Y,X2, . . . ,Xn) . (2.33)

Property 2.2.3 (Linear Transformation) Let

Y = AX , (2.34)

be a linear transformation of a random variable X to a random variable Y, where a single component Yj
depends on X like

Yj = ∑
α

A jα Xα . (2.35)

The transformed moments up to third order are

mom(Yj) = ∑
α

A jα mom(Xα) , (2.36)

mom(Yj,Yk) = ∑
αβ

A jα Akβ mom
(
Xα ,Xβ

)
, (2.37)

mom(Yj,Yk,Yl) = ∑
αβγ

A jα Akβ Alγ mom
(
Xα ,Xβ ,Xγ

)
. (2.38)

Cumulants transform like

cum(Yj) = ∑
α

A jα cum(Xα) , (2.39)

cum(Yj,Yk) = ∑
αβ

A jα Akβ cum
(
Xα ,Xβ

)
, (2.40)

cum(Yj,Yk,Yl) = ∑
αβγ

A jα Akβ Alγ cum
(
Xα ,Xβ ,Xγ

)
. (2.41)

This property is called multilinearity and follows directly from the scaling property 2.2.1 and sum prop-
erty 2.2.2.

Property 2.2.4 (Translation) If we consider a translation of one component X j of a vectorial random
variable X by an arbitrary constant a j such that

Yr = δr ja j +Xr ∀r , (2.42)

the transformed moments are

mom(Y1, Y2, . . . , Yn) = mom(X1,X2, . . . ,X j +a j, . . . ,Xn) (2.43)
= a jmom

(
X1, . . . ,X j−1,X j+1, . . . ,Xn

)
+mom(X1, . . . ,Xn) , (2.44)

and the cumulants are

cum(a j +X j) = a j + cum(X j) , (2.45)
cum(X1, . . . ,X j +a j, . . . ,Xn) = cum(X1, . . . ,X j, . . . ,Xn) . (2.46)
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The translation only affects cumulants of first order. For this reason cumulants are sometimes called semi-
invariant. In contrast, the translation of an nth-order moment involves moments with lower order than n.
For a translation by a vector a = [a1, . . . ,an]

T with ar 6= 0∀ r ∈ {1, . . . ,n} moments of all orders up to n are
needed to describe the transformation.

Property 2.2.5 (Symmetry) Moments and cumulants are symmetric in their arguments, i.e.

mom(X1,X2, . . . ,Xn) = mom(XP1 ,XP2 , . . . ,XPn) , (2.47)
cum(X1,X2, . . . ,Xn) = cum(XP1 ,XP2 , . . . ,XPn) , (2.48)

where P is a permutation of [1,2, . . . ,n] and Pi is the ith element of P.

Property 2.2.6 (Even Distribution) If a random variable X has an even distribution pX (x) around the
origin, all cumulants and moments of odd order vanish.

Property 2.2.7 (Partitioning) Given a number of random variables X1, . . . ,Xn that can be partitioned into
two independent blocks, then all cross cumulants involving indices from both blocks are zero.

cum(X1,X2, . . . ,Xn) = 0 . (2.49)

We give a short example. Consider four random variables X1, X2 and X3, X4, where the first two are inde-
pendent of the second two. If all of them have zero mean, then their fourth order moments and cumulants
can be written as

mom(X1,X2,X3,X4) = mom(X1,X2)mom(X3,X4) , (2.50)
cum(X1,X2,X3,X4) = mom(X1,X2,X3,X4)−mom(X1,X2)mom(X3,X4)

−mom(X1,X3)mom(X2,X4)−mom(X1,X4)mom(X2,X3) , (2.51)
= mom(X1,X2)mom(X3,X4)−mom(X1,X2)mom(X3,X4)

−mom(X1)mom(X3)mom(X2)mom(X4)
−mom(X1)mom(X4)mom(X2)mom(X3)

= 0 . (2.52)

Here we use the fact that the joint probability function of two statistically independent variables factorizes
into its marginals, e.g. pX (X2, X3) = pX (X2) pX (X3), which results in factorized cross-moments. Note, that
even if X1 and X2 are independent

cum(X1,X2,X1X2) 6= 0 . (2.53)

Property 2.2.7 is in general not shared by moments. As a consequence of this property all cross-
cumulants of all orders of a vectorial random-variable X with statistically independent components X j
vanish. Thus, a tensor formed by cumulants of X of a given order n > 1 is diagonal. This property builds
the basis of an independent component analysis algorithm developed in Chapter 6.

Property 2.2.8 (Sums of Independent Variables) Consider two independent vector-valued random vari-
ables X and Y, where X has components X1, . . . ,Xn and Y has components Y1, . . . ,Yn. One of the most
important properties of cumulants is that the cumulants of U = X+Y are just the sums of the corresponding
cumulants of the individual variables,

cum(U1, . . . ,Un) = cum(X1, . . . ,Xn)+ cum(Y1, . . . ,Yn) . (2.54)



2.3 GRAM-CHARLIER / EDGEWORTH EXPANSION 13

This property is not shared by moments.

Property 2.2.9 (Non-Gaussianity) Given a Gaussian random variable Y with the same mean and variance
as a random variable X, then for n ≥ 3 it holds that

c(X)
n = m(X)

n −m(Y)
n . (2.55)

Higher order cumulants of Gaussian random variables are zero. Equation (2.55) together with Property 2.2.2
implies that higher order cumulants are insensitive to Gaussian noise. This can be used as a basis for noise
reduction [Feng and Kammeyer, 1997].

2.2.5 Estimating Moments and Cumulants

Given P samples x (t) (1 ≤ t ≤ P) of a random variable X, the nth order moment can be estimated via the
average m(X)

n (t)

m(X)
n (t) =

1
P

P

∑
t=1

x (t)n . (2.56)

For P → ∞ the average m(X)
n (t) converges to the moment m(X)

n with probability 1 [McCullagh, 1987]. Fur-
thermore m(X)

n (t) is unbiased since
〈

m(X)
n (t)

〉
= m(X)

n .
Sample cumulants can be estimated from the estimated moments via the relations (2.22 - 2.25). The

third- and fourth-order sample cumulants of a mean free random variable X with unit variance are therefore
given by

c(X)
3 =

P

∑
t=1

x (t)3 , (2.57)

c(X)
4 =

P

∑
t=1

x (t)4−3 . (2.58)

Cumulant estimates are in general biased. Compensation leads to the definition of κ-statistics [McCullagh,
1987]. Using the results of κ-statistics one can define the variance of a higher-order sample cumulant
and thus the number of independent samples that is required to obtain a cumulant estimate with a given
absolute precision. A detailed description goes beyond the scope of this thesis and is for example given
in [McCullagh, 1987].

2.3 Gram-Charlier / Edgeworth Expansion

The relationship between cumulants and probability density function of a random variable x is often ex-
pressed via the Gram-Charlier or Edgeworth expansion of the p.d.f pX (x) around its best Gaussian approx-
imation φX (x) with same mean and variance.

Definition 2.3.1 (Gram-Charlier Expansion) The Gram-Charlier expansion of a probability density pX (x)
around its best Gaussian approximation is given by

pX (x)
φX (x)

= 1+
1
3!

c(X)
3 h3 (x)+

1
4!

c(X)
4 h4 (x)+

1
5!

c(X)
5 h5 (x)

+
1
6!

(
c(X)

6 +10c(X)
3 c(X)

3

)
h6 (x)+ . . . , (2.59)

where hn (x) denotes the nth Hermite polynomial.
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The standard Hermite polynomials (c(1)
X = 0, c(2)

X = 1) are

h1 (x) = 2x , (2.60)
h2 (x) = 4x2−2 , (2.61)
h3 (x) = 8x3−12x , (2.62)
h4 (x) = 16x4−48x2 +12 , (2.63)
h5 (x) = 32x5−160x3 +120x , (2.64)
h6 (x) = 64x6−480x4 +720x2−120 . (2.65)

The Hermite polynomials form a set of orthogonal polynomials. The orthogonality is defined by a scalar
product with the Gaussian distribution as weighting function∫

φX (x)hi (x)h j (x)dx =
{

i!, if i = j
0, if i 6= j . (2.66)

Note, if X is a sum of r independent random variables normalized to unit variance with finite cumulants,
then the central limit theorem [Wallace, 1958] states that the nth-order cumulant is of order r(

2−n
2 ). Thus,

the first four successive correction terms in the Gram-Charlier expansion (2.59) are of orders r−1/2, r−1,
r−3/2 and r−1 and these are not monotonously decreasing in r. Re-ordering the correction terms in (2.59)
in decreasing order and collecting terms of same order in r leads to the Edgeworth expansion:

Definition 2.3.2 (Edgeworth Expansion) The Edgeworth expansion of a probability density pX j (x j) around
its best Gaussian approximation [McCullagh, 1987] up to order O

(
r−2
)

is defined by

pX (x)
φX (x)

= 1

+
1
3!

c(X)
3 h3 (x)

+
[

1
4!

c(X)
4 h4 (x)+10

1
6!

c(X)
3 c(X)

3 h6 (x)
]

+
[

1
5!

c(X)
5 h5 (x)+35

1
7!

c(X)
3 c(X)

4 h7 (x)+
1
9!

c(X)
3 c(X)

3 c(X)
3 h9 (x)

]
+O

(
r−2) . (2.67)

The correction terms are sorted in decreasing order in r. Terms that are of equal order in r are grouped
together.

The infinite versions of these two expansions are identical. They only differ if they are truncated after a
fixed number of terms. The Edgeworth expansion is often preferred for statistical calculations. In Chapter 3
it is used to derive a measure of statistical independence.

2.4 Cumulants and Probability Density Functions

Since we will use cumulants in various situations throughout this thesis we will sometimes use a different,
and simpler notation defined by

C(x)
j := cum(X j) , (2.68)

C(x)
jk := cum(X j,Xk) , (2.69)

C(x)
2 := C(X)

2 , (2.70)

C(x)
jkl := cum(X j,Xk,Xl) , (2.71)

C(x)
jklm := cum(X j,Xk,Xl ,Xm) , (2.72)
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where we drop the difference between a random variable and its actual realization.
We have seen in the previous section that cumulants are closely connected to the probability density

function. The connection is revealed by the Edgeworth expansion. We also know from (2.16) that cumulants
of a random variable X can be derived from an expansion of its second characteristic or cumulant generating
function. The second characteristic function is defined as the Fourier transform of the probability density
function pX (x) of x (see (2.5)). Therefore, cumulants up to order four are usually used to describe the main
properties of a given probability density function pX (x) of X:

• Mean C(x)
j : The auto-cumulant of first order denotes the mean of x j.

• Variance C(x)
j j : The auto-cumulant of second order defines the variance of x j. The variance gives a

quadratic measure of the distance between pX (x j) evaluated at x j and x j = C(x)
j .

• Skewness C(x)
j j j: Due to Property 2.2.6 all cumulants of odd order of an asymmetric distribution vanish.

Therefore C(x)
j j j is an indicator for asymmetric pX (x j). If C(x)

j j j < 0 ( C(x)
j j j > 0) then pX (x j) is bend

towards negative (positive) x j (see Fig. 2.4 (a)).

• Kurtosis C(x)
j j j j: The kurtosis C(x)

j j j j is usually used as a measure of the non-Gaussianity of the proba-
bility density pX (x j). If the even part of a distribution has heavier tails than a Gaussian distribution
and a peak at C(x)

j then C(x)
j j j j is positive. Such distributions are called super-Gaussian distributions.

For flatter distributions where the even part has lighter tails C(x)
j j j j is negative. Such distributions are

called sub-Gaussian distributions (see Fig. 2.4 (b)).

C
jjj
(x)>0

C
jjj
(x)<0

C
jjj
(x)=0

(a)

C
jjjj
(x)>0

C
jjjj
(x)<0

C
jjjj
(x)=0

(b)

Figure 2.1: Possible values for (a) skewness and (b) kurtosis. All distributions shown in (a) resp. (b) have
zero mean and same variance.

2.4.1 Examples of Probability Density Functions and their Higher-Order Cumulants

Table 2.4.1 shows examples of probability functions (uniform distribution, Gaussian distribution, and ex-
ponential distribution) and their cumulants up to fourth order.

2.5 Summary

We have seen that moments and cumulants are two different descriptions of the same reality. Nevertheless
it is preferable to work with cumulants rather than with moments because:
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Uniform distribution

−a a

(1/2a)

p
X

(x)

x  

pX (x) = 1
2a (x ∈ [−a, a])

n m(X)
n c(X)

n

1 0 0

2 a2/3 a2/3

3 0 0

4 a4/5 −2a4/15

Gaussian distribution

p
X

(x) 

xσ  

pX (x) = 1√
2πσ2 exp

(
− x2

2σ2

)
n m(X)

n c(X)
n

1 0 0

2 σ2 σ2

3 0 0

4 3σ4 0

Exponential distribution

p
X

(x

a−

) 

x  

pX (x) = aexp(−ax) (x ≥ 0)

n m(X)
n c(X)

n

1 1/a 1/a

2 2/a2 1/a2

3 6/a3 2/a3

4 24/a4 6/a6

Table 2.1: Example distributions and their moments and cumulants up to fourth order. From top to bottom:
uniform distribution, Gaussian distribution, and exponential distribution.
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a. For independent random variables the cumulants of a sum are the sum of the cumulants.

b. Cross-cumulants of statistically independent random variables are zero. Therefore cumulant tensor of
independent random variables are diagonal. This is the most important property of cumulants since
it forms the basis of a wide range of algorithms performing independent component analysis. One of
them is introduced in Chapter 4.

c. Higher-order cumulants of a random variable with Gaussian distribution are zero.

d. Higher-order cumulants are insensitive to Gaussian noise (a consequence of a and b).

e. Cumulants change in a multilinear way under arbitrary affine transformations since second- and
higher order cumulants are insensitive to the mean of a random variable.





3

Measures of Independence and their
Approximations

As the term independent component analysis suggests, one needs a measure of statistical dependence in
order to formulate an adequate algorithm. Here we introduce mutual information as a measure of the de-
pendence between random variables. It is always non-negative, and vanishes if and only if the variables are
statistically independent. In practical ICA algorithms mutual information builds the basis of an objective
function, subject to optimization, such that the mutual information is minimized. In this way the original
source signal can be estimated. However, mutual information is a function of the probability density func-
tion of the estimated source signal (3.11), which is usually unknown. Using the Edgeworth expansion of the
probability density functions (2.3) we can approximate the mutual information as a function of higher-order
cumulants. This allows the formulation of a practical measure of statistical dependence (3.27).

As a side product a relation between mutual information and negentropy (3.17) can be established
leading directly to a connection between minimization of mutual information and maximization of kurtosis.

3.1 Entropy

Shannon [Shannon, 1948] developed the concept of entropy to measure the uncertainty of a discrete random
variable.

Definition 3.1.1 (Entropy, Joint Entropy) The differential entropy H (X) of a random variable X with
probability density pX (x) is defined by [Shannon, 1948]

H (X) =−
∫

pX (x) log pX (x)dx . (3.1)

In the multidimensional case the differential entropy of a vectorial random variable X = [X1, . . . ,XN ]T with
joint probability density pX (x) is defined as

H (X) =−
∫

pX (x) log pX (x)dx . (3.2)

The differential entropy can be interpreted as the degree of information the observation of a random variable
gives. For a fixed variance it is maximal if pX (x) is a Gaussian probability density [Cover and Thomas,
1991]. For any other distribution, the differential entropy is strictly smaller. The transformation property of
entropy can be expressed by

19
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Property 3.1.1 (Entropy Under Linear Transforamtion) If the random variable X with entropy H (X) is
transformed by an invertible linear transformation U = RX the entropy transforms according to

H (U) = H (X)− log |detR| , (3.3)

which can be directly verified using (3.2) and the relation pU (u) = pX (x)/|detR|.

Definition 3.1.2 (Marginal Entropy) The marginal entropy H (X1) of a scalar random variable X1 out of
X = [X1,X2] is defined by

H (X1) =−
∫

pX (x) log pX (x1)dx =−
∫

pX (x1) log pX (x1)dx1, , (3.4)

where pX (x1) is the marginal probability density of X1.

3.2 Kullback Leibler Divergence and Mutual Information

While the entropy of a variable is a measure of the uncertainty in its distribution, the relative entropy or
Kullback Leibler divergence is a measure of the statistical distance between two distributions.

Definition 3.2.1 (Kullback Leibler Divergence) The Kullback Leibler (KL) divergence KL(pX (x) , pX (x))
or relative entropy between two probability density functions pX (x) and qX (x) is defined as

KL(pX (x) , qX (x)) =
∫

pX (x) log
pX (x)
qX (x)

dx . (3.5)

The KL divergence is not a real distance measure because it is not symmetric (KL(pX (x) , qX (x)) 6=
KL(qX (x) , pX (x))). In statistics the KL divergence appears as the expected value of the log likelihood
ratio. The KL divergence is always nonnegative, and zero if and only if the two distributions are equal. This
fact can be shown using Jensen’s inequality [Rudin, 1987]

〈 f (y)〉 ≥ f (〈y〉) . (3.6)

Setting f (y) =− log(y) and y = qX (x)/pX (x) in Equation (3.6) we can derive

〈 f (y)〉 = −
∫

pX (x) log
qX (x)
pX (x)

dx (3.7)

= KL(pX (x) , qX (x)) (3.8)

≥ log
(∫

pX (x)
qX (x)
pX (x)

dx
)

(3.9)

= log
(∫

qX (x)dx
)

= log1 = 0 , (3.10)

where we used the inequality (3.6) from (3.8) to (3.9). Since the logarithm is a strictly concave function,
the equality holds if and only if pX (x)/qX (x) = const., i.e. pX (x) = qX (x).

In the case of independent component analysis we can use the fact that the probability density of a ran-
dom variable U with independent components U j factorizes, i.e. pU (u) = ∏ j pU j (u j). The KL divergence
KL
(

pU (u) ,∏ j pU j (u j)
)

therefore vanishes and is thus a good measure for statistical independence.

Definition 3.2.2 (Mutual Information) The mutual information I (X j,Xk) between two random variables
X j and Xk is the KL divergence between their joint distribution and the product of their marginals

I (X j,Xk) =
∫

pX (x) log
pX (x)

pX (x j) pX (xk)
dx , (3.11)

with X = [X j,Xk]
T .
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The mutual information is symmetric, i.e. I (X j,Xk) = I (Xk,X j). Since the mutual information is derived
directly from the KL divergence it is always positive and it is equal zero if and only if X j and Xk are statisti-
cally independent [Cover and Thomas, 1991]. The extension to the multidimensional case is straightforward
and called multi information.

Definition 3.2.3 (Multi Information) Given a random vector X = [X1, . . . ,XN ] the multi information is
given by the KL divergence between the joint distribution pX (x) and the product of the marginal distribu-
tions pX (x j)

I (X) =
∫

pX (x) log
pX (x)

∏ j pX (x j)
dx . (3.12)

Rewriting Equation 3.12 using the definition of entropy 3.1 we can derive

I (X) = ∑
j

H (X j)−H (X) , (3.13)

where H (X j) are the entropies of the marginals X j (3.4).
Note, that by Property 3.1.1, we have for an invertible linear transformation U = RX

I (U1,U2, . . . ,Un) = ∑
i

H (Ui)−H (RX) = ∑
i

H (Ui)−H (X)− log |detR| . (3.14)

This property is for example used in the ICA algorithms introduced by [Bell and Sejnowski, 1995] and [Lee
et al., 1999], where R is learned, such that it minimizes (3.14). This results in statistically independent Ui.

3.3 Negentropy and Mutual Information

Definition 3.3.1 (Negentropy) The negentropy J of a vectorial random variable X with probability density
pX (x) is defined as

J (X) = H (Xgauss)−H (X) , (3.15)

where Xgauss is a Gaussian random variable with same covariance matrix as X.

Since the entropy of a Gaussian variable is maximal, the negentropy is always nonnegative and zero if X
has Gaussian components, too. Thus, it is a measure of non-Gaussianity of the probability density pX (x).
Additionally, it has the important property of being invariant under linear invertible transformations which
can be seen by using Property 3.1.1 in (3.15).

The relation between negentropy and mutual information can be established by noting that

J (X)−∑
j

J (X j) = H (Xgauss)−H (X)−∑
j

H
(

Xgauss
j

)
+∑

j
H (X j)

= I (X)+H (Xgauss)−∑
j

H
(

Xgauss
j

)
, (3.16)

where we have used (3.13) and H (X j) are the marginal entropies (3.4). The marginal negentropies J (X j)

are defined correspondingly. If X has uncorrelated components then H (Xgauss) = ∑ j H
(

Xgauss
j

)
and (3.16)

simplifies to
I (X) = J (X)−∑

j
J (X j) . (3.17)

Taking into account that the first term on the right hand side in Equation (3.17) is constant under invertible
linear transformations [Comon, 1994b], minimization of I (X) is equivalent to maximizing the marginal
negentropies of the components X j. This is equivalent to maximizing the non-Gaussianity of the marginal
probabilities pX (x j). Thus, minimizing the mutual information is equality to the maximization of the non-
Gaussianity of the estimated signal components (see e.g. (6.3)).
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3.4 Approximation of the Negentropy

All measures presented up to now use statistical information of all orders since they all use the exact
probability densities. Normally we do not know these distributions and thus such measures are not useful for
real applications. However, we can use the approximations to a probability density introduced in Section 2.3
to define an approximate measure of independence that is applicable. This measure can then be used to form
the basis of a possible ICA algorithm. We will show an example at the end of this section.

In Equation (3.15) the negentropy is defined as a function of entropies. Inserting the definition of
entropy (3.1) into (3.15) we derive

J (X j) =−
∫

φX j (x j) logφX j (x j)dx j +
∫

pX j (x j) log pX j (x j)dx j . (3.18)

The probability densities in (3.18) can be expanded using the Edgeworth expansion (2.67). We consider the
first three terms of the Edgeworth expansion of pX j (x j). These are given by

pX j (x j) ≈ φX j (x j)
(

1+
1
3!

c(
X j)

3 h3 (x j)+
1
4!

c(
X j)

4 h4 (x j)
)

=: φX j (x j)(1+ν (x j)) , (3.19)

where we introduced the definition in the second line for simplification. Inserting (3.19) into (3.18) we can
derive

J (X j) ≈ −
∫

φX j (x j) logφX j (x j)dx j +
∫

φX j (x j)(1+ν) log
(
φX j (x j)(1+ν)

)
dx j

= −
∫

φX j (x j) logφX j (x j)dx j +
∫

φX j (x j)(1+ν) logφX j (x j)dx j

+
∫

φX j (x j)(1+ν) log(1+ν)dx j (3.20)

=
∫

φX j (x j)ν logφX j (x j)dx j +
∫

φX j (x j)(1+ν) log(1+ν)dx j , (3.21)

where from (3.20) to (3.21) we summed up the first and the third term on the right hand side. The first term
on the right hand side of Equation (3.21) vanishes which can be proved by simply inserting the definitions
of Hermite polynomials (2.65) and using the fact that logφX j (x j) is a polynomial of second order.

To simplify the second term on the right hand side of (3.21) we make a further approximation. Since
the expansion of pX j (x j) is taken in the vicinity of its best Gaussian approximation φX j (x j) and we assume
the correction terms to be small we can approximate

log(1+ν)≈ ν − ν2

2
. (3.22)

Using approximation (3.22) we can rewrite (3.21) as

J (X j)≈
∫

φX j (x j)(1+ν)
(

ν − ν2

2

)
dx j . (3.23)

After reinserting the expressions from (3.19) for ν this integral can be calculated explicitly. For further
simplification we consider higher order terms to be negligible and take only terms into account with cumu-
lants up to order O

(
r−2
)

(see central limit theorem in Section (2.3)). Furthermore we use the orthogonality
property 2.66 plus two additional properties of Hermite polynomials derived by [Comon, 1994b]∫

φx j (x j)h2
3 (x j)h4 (x j)dx j = (3!)3 , (3.24)∫

φx j (x j)h3
3 (x j)dx j = 0 . (3.25)
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Inserting (3.19) into (3.23) and using the Properties 3.24 and 3.25 the negentropy can be expressed as

J (X j) =
1

12

(
c(

X j)
3

)2

+
1
48

(
c(

X j)
4

)2

− 1
8

(
c(

X j)
3

)2

c(
X j)

4 +O
(
i−2) , (3.26)

where we only considered terms up to O
(
i−2
)
. Finally we use relation (3.17) and arrive at an approximated

formula for mutual information

I (X)≈ J (X)− 1
12 ∑

j

(
c(

X j)
3

)2

− 1
48 ∑

j

(
c(

X j)
4

)2

+
1
8 ∑

j

(
c(

X j)
3

)2

c(
X j)

4 . (3.27)

Since in the area of standard ICA we are mostly interested in finding linear invertible transformations J (X)
is a constant in such cases and can be neglected. We therefore do not compute an approximated version of
J (X).

We will conclude with a simple example: Consider two random variables X1 and X2 and their real-
izations x1 and x2. Assume we want to minimize the mutual information between x1 and x2 via a linear
transformation Q such that y = Qx, where x = [x1, x2]

T . The mutual information can be written as

I (Y1, Y2) = J (Y)− 1
12

2

∑
j=1

(
c(

Y j)
3

)2

− 1
48

2

∑
j=1

(
c(

Y j)
4

)2

+
1
8

2

∑
j=1

(
c(

Y j)
3

)2

c(
Y j)

4 . (3.28)

The first term on the right hand side of Equation (3.28) is a constant and can be neglected in the minimization
procedure. Furthermore instead of minimizing I (Y1, Y2) we can maximize −I (Y1, Y2). Thus we arrive at an
objective, subject to maximization

Ψ =
1

12

2

∑
j=1

(
c(

Y j)
3

)2

+
1
48

2

∑
j=1

(
c(

Y j)
4

)2

− 1
8

2

∑
j=1

(
c(

Y j)
3

)2

c(
Y j)

4

=
1
12

2

∑
j=1

(
C(y)

j j j

)2
+

1
48

2

∑
j=1

(
C(y)

j j j j

)2
− 1

8

2

∑
j=1

(
C(y)

j j j

)2
C(y)

j j j j . (3.29)

This is essentially the objective function used in the ICA algorithm introduced in Chapter 6.

3.5 Conclusion

We have derived an approximated version of the mutual information I (X) that allows to define a simple
measure of statistical independence between them. Usually, it is used to measure the mutual independence
between two scalar random variables X j and Xk. The expression for I (X j,Xk) is given by Equation (3.28).
The approximation (3.19) of course only holds when pX j (x j) is not far from the Gaussian distribution
φX j (x j). Therefore other approximations for mutual information that are not based on higher-order cumu-
lants, but use more general measures of non-Gaussianity have been developed [Hyvärinen, 1997].
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Blind Source Separation and
Independent Component Analysis

In this chapter we like to introduce the basic concepts of independent component analysis (ICA) and blind
source separation (BSS). We start with a short introduction to principal component analysis in the next
section, since it is the most common method using second-order statistics and builds the core of the first
step of the ICA and BSS algorithms introduced in this thesis. Thereafter we give a brief introduction and
historical overview of BSS and ICA in Section 4.3. ICA algorithms often use a two-stage approach where
the second stage consists of optimizing a contrast function. This method is explained in detail in Section 4.3.
A different ICA approach, based on second-order statistics, will be described in Section 4.4. A nonlinear
extension to the standard linear BSS problem is introduced in Section 4.5. In Section 4.6 we address the
problem of matrix-diagonalization, an important tool used in several ICA/BSS algorithm. We conclude with
the definition of a performance measure in Section 4.7. Such a measure allows to quantify performances of
ICA/BSS algorithms based on the knowledge of the underlying mixing-matrix.

4.1 Principal Component Analysis

Principal component analysis (PCA), sometimes called Karhunen-Loève transform, is the most common
method used in signal processing, statistics, and neural computing. It is a second-order statistical method
based on the work by Pearson [1901]. PCA finds a linear representation y of an observed signal x =
[x1,x2, . . . ,xN ] such that the components yi are uncorrelated and have variances that are extremes (maxima
and minima) along the new coordinate axes. The name PCA comes from the principal axes of an ellipsoid
which are just the coordinate axes in question.

Given the covariance matrix C(x)
2 of x as defined in 2.70 we can calculate an orthogonal basis by finding

its n eigenvalues λi and corresponding eigenvectors vi. They are solutions of the eigenvalue problem

C(x)
2 vi = λivi , (4.1)

where we assume that the λi are distinct. Ordering the eigenvectors by descending eigenvalues (starting
with the largest), we can build an orthogonal basis with the first eigenvector having the direction of largest
variance of the data and each succeeding eigenvector accounts for as much of the remaining variance, as
possible. Since we will use it in the next section we also define the eigenvalue problem in matrix formulation

C(x)
2 V = VD , (4.2)

where V is an N ×N matrix with the eigenvectors of the covariance matrix as its column vectors V =
[v1,v2, . . . ,vN ]. D is a diagonal matrix with the ordered eigenvalues on its main diagonal.
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Now, consider a transformation
y := VT x , (4.3)

where we assume, that x has zero mean. The components of y are the coordinates in the orthogonal base,
and thus, the components yi are uncorrelated. We can reconstruct the original data x from y by

x = Vy , (4.4)

since for orthogonal matrices VT = V−1.
Instead of using all n eigenvectors of the covariance matrix, we may think of a matrix Vl with only the

first l eigenvectors as its column vectors. A similar transformation can be created

y = VT
l x . (4.5)

The inverse transformation yields
x̃ = Vly . (4.6)

Thus, we project the original N-dimensional data vector x on an l-dimensional coordinate system and map
the vector back by a transformation, which is a linear combination of the orthogonal basis vectors vi, to
obtain x̃. PCA minimizes the mean-square error between the original data x and the representation x̃ with
less eigenvectors.

This operation provides a way to compress data without loosing much information. By taking the
eigenvectors with largest variance as little information as possible, in the mean-square sense, is lost [Jolliffe,
1986].

It is important to notice that, since y has zero mean and the covariance matrix of y is diagonal, the
components of y are already statistically independent up to second order (cf. Prop. 2.2.7).

Thus, PCA consists of computing the eigenvectors and eigenvalues of the covariance matrix of the
observed signal and a transformation given by Equation (4.3).

4.2 Linear Blind Source Separation and Independent Component
Analysis

In signal processing one often has to deal with high dimensional data such as a vectorial signal x(t) =
[x1 (t)(t), . . . ,xM (t)(t)]T . To facilitate the interpretation of such a signal a useful representation of the data
in terms of a linear or nonlinear transformation has to be found. Depending on the purpose there exist
many different, mostly linear, transformations e.g. Fourier transformation, principal component analysis,
and factor analysis. Relatively new are two additional methods: Blind source separation and independent
component analysis.

The vectorial signal x(t) to be analyzed, which we will refer to as input signal, is often a mixture of
some underlying signal components si (t) coming from different sources. For instance, the sound we hear
is usually a superposition of several sound sources, such as a person speaking and a phone ringing. In a
simple model of this data generation process, it is assumed that there are as many sources as input signal
components, that at most one si (t) is normally distributed, and that the mixing is linear and noise free,
yielding the relation

x(t) = As(t) , (4.7)

with an invertible N×N mixing matrix A and source signal s(t) = [s1 (t)(t), . . . ,sN (t)(t)]T . In the following
we will drop the reference to time, and simply assume some sets of source and input data related by (4.7).
We also assume for simplicity that the source signal and input signal have zero mean.

The goal of blind source separation (BSS) is to recover the unknown source signal s(t) from the observ-
able x(t) without any prior information, this is the reason why it is called blind. The only assumption is that
the source signal components (person and phone) are statistically independent. Given only the observed
signal x(t) we want to find a matrix R such that the components of

u(t) = Rx(t) , (4.8)
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are mutually statistically independent.
The method of finding a representation of the observed data such that the components are mutually

statistically independent is called independent component analysis (ICA). It has been proven that ICA
solves the linear BSS problem, apart from the fact that the source signal components can only be recovered
up to a multiplication of the source signal components xi (t) by constants (or multiplication of x(t) by a
diagonal matrix ΛΛΛ) and permutation (multiplication with a permutation matrixP) [Comon, 1994b]. Thus
the relation between R and mixing matrix is given by R = ΛΛΛPA.

The seminal work on independent component analysis was by Herault and Jutten [1986]. They in-
troduced a simple neural network with feedback that was able to separate unknown independent source
signal components and were the first to introduce the term independent components analysis (see [Comon,
1994b]). They further developed the orginial model [Jutten and Herault, 1991] and gave a first mathem-
taical interpretation [Comon et al., 1991]. Comon [1994b] was the first to give the concept its statistical
framework and introduced the concept of contrast functions.

Parallel to these studies on independent component analysis, mostly coming from France, Bell and
Sejnowski [1995] put the the blind source separation problem into an information-theoretic framework by
proposing an algorithm based on the Infomax principle introduced by Linsker [1989]. The objective of [Bell
and Sejnowski, 1995] was to maximize the mutual information between the inputs and outputs of a neural
network. This work has been subject of many scientific publications and led to further improvements,
for example the concept of natural-gradient introduced by Amari [1998] which significantly improved the
convergence of the Infomax learning rule.

Since then a large amount of algorithms has been proposed with extended Infomax [Lee et al., 1999],
FastICA [Hyvärinen, 1999], JADE [Cardoso and Souloumiac, 1993], SOBI [Belouchrani et al., 1997], and
TDSEP [Ziehe and Müller, 1998] being the most popular. Here, we do not give a generall overview over
ICA, rather introduce the basic ICA-knowledge needed in the subsequent chapters. For a good introduction
to ICA refer to the text-books [Lee, 1998], [Hyvärinen et al., 2001b] and [Cichocki and Amari, 2002].

It is important to make a clear distinction between ICA and BSS: ICA finds a representation u(t) of
an observed signal x(t) such that the signal components ui (t) are mutually statistically independent. BSS
finds a representation u(t) such that the signal components ui (t) coincide with the original source signal
components s(t) i, underlying the observed signal. This can be done up to permutation and scaling. In the
linear case ICA and BSS are analogous methods. But, considering the more general BSS/ICA problem,
where the observed signal x(t) is the result of a nonlinear transformation of the source signal s(t), the
two methods (ICA and BSS) are no longer equivalent. This is because the independence assumption is
not enough to regain the original source signal out of a nonlinear mixture. We will discuss this issue in
Section 4.5. Thus, the notions BSS and ICA denote two distinct methods in the nonlinear case, although the
extracted source signal components have to be mutually independent in the linear as well as in the nonlinear
case.

4.3 Linear Independent Component Analysis

The goal of ICA is to find a representation of an observed signal such that the components of the transformed
signal are mutually statistically independent. It can be understood as an extension to PCA. ICA not only
decorrelates the observed signal, which requires second-order statistics, but it also minimizes higher-order
statistical dependencies, forcing all signal components to be as independent as possible.

4.3.1 A two-stage Approach

The classical approach to ICA proceeds in two steps: Sphering/whitening of the input signal y(t) = Wx(t)
with a whitening matrix W is followed by an orthogonal transformation (rotation) u(t) = Qy(t). Thus the
unmixing matrix R is R = QW and the ICA model (4.8) can be written as

u(t) = Rx(t) = QWx(t) = Qy(t) , (4.9)
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where y(t) denotes the whitened signal. Besides this classical approach there exist algorithms that estimate
the (non-orthogonal) unmixing transformation in a single step without a prewhitening (see e.g. [Akuzawa,
2001; De Lathauwer et al., 1995]). But, since the ICA algorithms introduced in this thesis follow the
classical approach we will focus on it and give a short introduction in the following.

Whitening

A common linear preprocessing step in many ICA algorithms as well as in linear SFA is the whitening of the
input signal x(t) = [x1 (t) ,x2 (t) , . . . ,xN (t)]T , where we assume from now on, without loss of generality,
that x(t) has zero mean components. Whitening is a linear transformation y(t) = Wx(t) resulting in a
signal with mutually uncorrelated components yk (t) with unit variance. Thus they fulfill the constraints

〈yk (t)〉 = 0 (zero mean), (4.10)〈
(yk (t))2

〉
= 1 (unit variance), (4.11)

〈yk (t)yl (t)〉 = 0 (decorrelation). (4.12)

Therefore, the components yk (t) of the whitened signal y(t) have

• vanishing first-order cumulants

C(y)
k = 〈yk (t)〉= 0 ∀k ∈ {1, . . . , N} (4.13)

• vanishing second-order cross-cumulants

C(y)
kl = 〈[yk (t) − 〈yk (t)〉] [yl (t) − 〈yl (t)〉]〉= 0 ∀k, l ∈ {1, . . . , N}∧ k 6= l (4.14)

Thus, y(t) has statistically independent components up to second order (cf. Prop. 2.2.7).
Because whitening is decorrelation plus normalization it is in fact similar to PCA. Using the matrix

of eigenvectors V and the diagonal matrix D with corresponding eigenvalues λ1,λ2, . . . ,λN on the main
diagonal as computed by PCA (cf. (4.2)), the whitening matrix is given by

W = D−1/2VT . (4.15)

It can be easily shown that W defines indeed a whitening transformation. Using (4.15) and y(t) = Wx(t)
we can derive 〈

y(t)y(t)T
〉

= W
〈

x(t)x(t)T
〉

WT (4.16)

= D−1/2VT
〈

x(t)x(t)T
〉

VD−1/2 (4.17)

= D−1/2VT C(x)
2 VD−1/2 (4.18)(

C(x)
2 =

〈
x(t)x(t)T

〉
(cf. (2.19))

)
= D−1/2VT VDVT VD−1/2 = I (4.19)(

C(x)
2 = VDVT (cf. (4.2))

)
,

where I denotes the N ×N identity matrix. Thus the covariance matrix of y(t) is the identity matrix, and
therefore y(t) is white.

This exact diagonalization of the covariance matrix of y(t) is preserved under any orthogonal transfor-
mations Q, i.e. a pure rotation possibly plus reflections, because〈

u(t)u(t)T
〉

= Q
〈

y(t)y(t)T
〉

QT = QIQT = I , (4.20)
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where we have used the orthogonality of Q. Since
〈

u(t)u(t)T
〉

= I also the unit variance of the whitened
data y(t) is preserved. An additional property of W can be derived using the relation〈

y(t)y(t)T
〉

= W
〈

x(t)x(t)T
〉

WT = WA
〈

s(t)s(t)T
〉

AT WT = I . (4.21)

If we assume that the source signal components have unit variance this implies WAAT WT = I.
Sometimes whitening is referred to as sphering. The term sphering originates from probability density

functions that have spherical symmetry (e.g. a random variable with multivariate Gaussian probability den-
sity function with zero mean and unit covariance matrix). However, it is also used for probability density
functions that show no spherical symmetry.

Usually W is an N×N matrix. But the whitening step can also be used to reduce the dimensionality of
the observed signal. This can be done like in PCA (cf. (4.5)). Instead of using all eigenvectors and -values
only the first l are taken into account. Vl is therefore an N × l matrix and D an l× l matrix resulting in a
whitening transformation W which is an l×N matrix. Thus, we derive an l-dimensional whitened signal
y(t).

Determining Q from Higher-Order Statistics

It can be shown that after the whitening step an orthogonal transformation Q on y(t) is sufficient to yield
independent components [Comon, 1994b]. Thus the linear unmixing of x(t) can be achieved by the two
transformations W and Q yielding the desired independent estimated source-signal-components

u(t) = QWx(t) = Qy(t) . (4.22)

The ICA algorithm presented in Chapter 6 is a typical example for such a two-step ICA algorithm. After
the whitening of the observed signal the orthogonal transformation Q is computed via an approximate
diagonalization of higher-order cumulant-tensors. The connection between Q and cumulants in this case is
established via the multilinearity property 2.41 of cumulants under linear transformations.

4.3.2 Contrast Function

Often, the linear transformation defining the unmixing is estimated through optimization of a contrast func-
tion. Gassiat [1988] first introduced contrast functions in the context of scalar blind deconvolution. It has
been adapted by Comon [1994b] in the framework of independent component analysis. There are several
ICA algorithms based on contrast optimization the first being from Comon [1994b]. For an overview of
possible contrasts for ICA see [Comon, 2004].

Definition 4.3.1 (Contrast Function) A contrast function for ICA is a mapping Ψ from the set of proba-
bility density functions {px (x)|x ∈ RN} to R such that the following holds:

a. Ψ(px (x)) is invariant under permutation and scale changing of the components of x

Ψ(px (x)) = Ψ(pΛΛΛPx (ΛΛΛPx)) , (4.23)

with ΛΛΛ being a diagonal matrix and P a permutation matrix.

b. If x has independent components xi, then

Ψ(px (x))≥ Ψ(pAx (Ax)) , (4.24)

for all invertible matrices A.

c. If x has independent components xi, then

Ψ(px (x)) = Ψ(pAx (Ax)) (4.25)

if and only if A is of the form A = ΛΛΛP with ΛΛΛ and P as defined in Property 1.
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In the following we will use the abbreviated notation Ψ(x) instead of Ψ(px (x)).
An example for a possible contrast function is given by

Ψ(x) :=−I (x) , (4.26)

with I (x) being the multi information (3.12) of the components xi of the random variable x. Ψ(x) defines
a contrast over all orthogonal matrices with unit covariance [Comon, 1994b]. Since this contrast uses the
information of all higher-order statistics it is not useful as a basis for ICA algorithms. In Chapter 3 we
introduced an approximated version of (4.26) which allows the formulation of a simple intuitive contrast
function (3.29). This contrast builds the basis for the ICA algorithm derived in the second part of this thesis.

The concept of contrast functions can only be understood in the framework of ICA since it needs a
proper definition of statistical independence. In cases where Definition (4.3.1) can not be applied we will
use the term objective function instead. For example the objective function of CuBICA2 (7.13), a method for
solving the ICA problem based on second-order statistics, has not been proven to fulfill the conditions (4.23-
4.25).

4.4 Independent Component Analysis Based on Second-Order Statis-
tics

There exists a variety of algorithms performing ICA and therefore BSS. They can be divided into two
classes [Cardoso, 2001]: (i) independence is achieved by optimizing a criterion that requires higher order
statistics; (ii) the optimization criterion requires auto-correlations or non-stationarity of the source signal
components. For the second class of ICA algorithms second-order statistics is sufficient. In the following,
we will call these kind of algorithms second-order ICA.

Consider a signal component without any temporal auto-correlation (e.g. white noise) and a second
signal component which is the first signal component shifted slightly in time. Applying the measure of
independence as mentioned above (3.17), the two signal components appear independent, although they are
intuitively strongly dependent. By using a different measure based upon cross correlations instead, one will
discover that these two components are dependent.

The second-order independent component analysis algorithm which we will discuss in Chapter 7 uses
this latter measure of independence. Two signal components are considered statistically independent if
they have zero time-delayed cross-correlations. There are several algorithms performing second-order
ICA ([Belouchrani et al., 1997; Molgedey and Schuster, 1994; Nuzillard and Nuzillard, 2003; Zibulevsky
and Pearlmutter, 2000; Ziehe and Müller, 1998]). Note, that the source signal components need to have
auto-correlations in order to recover them from an unknown mixture. But, since the method does not de-
pend on higher-order statistics it is also able to recover signal components with a Gaussian distribution.

Usually the algorithms follow the same two-stage approach like those based on higher-order statistics,
i.e. first the input signal is whitened, and then the orthogonal matrix is estimated by optimizing an objective
function leading to mutually independent signal components (see Sec. 4.3.1). However, there are also
algorithms that estimate the unmixing matrix in a single step, e.g. [Yeredor, 2002] and [Ziehe et al., 2003a].

4.5 Nonlinear Blind Source Separation

An obvious extension to the linear mixing model (4.7) has the form

x(t) = F (s(t)) , (4.27)

with a nonlinear function F (·) RN →RM that maps N-dimensional source vectors s(t) onto M-dimensional
signal vectors x(t). The components xi (t) of the observable are a nonlinear mixture of the sources and like
in the linear case source signal components si (t) are assumed to be mutually statistically independent.
Extracting the source signal is in general only possible if F (·) is an invertible function.
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The equivalence of BSS and ICA in the linear case does generally not hold for a nonlinear function
F (·) [Hyvärinen and Pajunen, 1999; Jutten and Karhunen, 2003]. For example, given statistically indepen-
dent components u1 (t) and u2 (t), any nonlinear functions h1 (u1 (t)) and h2 (u2 (t)) also lead to components
that are statistically independent. Figure 4.1 gives a simple example of this indeterminacy.
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Figure 4.1: Mutual information between components of the signal z(t) = h(u(t)) :=[
u1 (t) ,u2 (t) ,u2

1 (t) ,u1 (t)u2 (t) ,u2
2 (t)

]
. Large filled boxes denote high values of mutual information

between the respective signal components (the components are statistically dependent, e.g. u1 (t) and
u2

1 (t)), small filled boxes denote small values of mutual information, (the components are mutually
independent, e.g. u1 (t) and u2 (t)). Thus, u1 (t) is independent of u2 (t) and also of u2

2 (t). Assume, that
u1 (t) and u2 (t) are the solutions to the nonlinear BSS problem (4.27). A nonlinear ICA algorithm is not
able to distinguish between u1 (t) resp. u2 (t) and the squared components u2

1 (t) resp. u2 (t)2 because it
is solely based on the assumption of mutual statistical independence between source signal components.
ICA will therefore equally likely find the squared signal components as well as the original source signal
components. To resolve this indeterminacy additional information about the source signal or the nonlinear
mapping (4.27) is needed.

Thus, mutual independence of the extracted signal components is a necessary but not a sufficient condition
to solve the nonlinear BSS problem. Moreover, a nonlinear mixture of u1 (t) and u2 (t) can still have statis-
tically independent components (for an example see [Jutten and Karhunen, 2003]). To solve the nonlinear
BSS problem additional assumptions about the mapping F (·) or the source signal are needed. We list some
of the known methods:

• Constraints on the mapping F (·):

– F (·) is a smooth mapping [Almeida, 2004; Hyvärinen and Pajunen, 1999]

– F (·) is a post nonlinear (PNL) mapping [Taleb, 2002; Taleb and Jutten, 1997, 1999; Yang et al.,
1998; Ziehe et al., 2003b]

• Prior information about the source signal components:

– source signal components are bounded [Babaie-Zadeh et al., 2002]

– source signal components have time-delayed cross-correlations (referred to as temporal corre-
lations) [Hosseini and Jutten, 2003]
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– source signal components are those that are extracted in the presence of injected noise [Harmel-
ing et al., 2003]

4.6 Diagonalization Scheme

Assume, a vectorial signal u(t) with statistically independent components ui (t) is given. Furthermore,
assume that all sample cumulants C(u)

... of all orders can be computed. We know from Section 2.2.2 that
all cumulants of a given order n form an nth-order tensor. Additionally, the Property 2.2.7 states that such
a tensor with n > 1 is diagonal, e.g. if the signal components ui (t) have zero mean and are uncorrelated
(all cross-cumulants or covariances of second-order vanish) their covariance matrix (the corresponding
second-order tensor) is diagonal. Since ICA algorithms search for signals with independent components
it is therefore useful to define a diagonalizing scheme for cumulant tensors of different orders. Several
ICA algorithms adopt such a scheme. The basic ICA algorithm presented in Chapter 6 for example jointly
diagonalizes the third- and fourth-order cumulant-tensor of the whitened observed signal. JADE, an ICA
algorithm by Cardoso and Souloumiac [1993] diagonalizes several fourth-order cumulant-matrices and
CuBICA2 (see Chapter 7) as well as most ICA methods based on second-order statistics e.g. [Belouchrani
et al., 1997; Ziehe and Müller, 1998] jointly diagonalize time delayed correlation matrices of the observed
signal.

The Diagonalization scheme for all those algorithms is based on successive applications of Givens or
plane rotations. The scheme for diagonalizing a single matrix is based on work by Jacobi, an extension
to several matrices has been introduced by Cardoso and Souloumiac [1996]. Comon [1994a] extended the
method to the diagonalization of higher-order cumulant-tensors. All these methods have in common that
they need to compute the rotation angle that defines each Givens rotation.

In the following we introduce the concept of Givens rotations and the Jacobi method to diagonalize
a matrix. Furthermore, we derive a way to calculate the rotation angle of a Givens rotation in a linear
way, independent of whether we want to calculate Givens rotations for matrices or third- or fourth-order
cumulants. This is in contrast to the methods introduced by [Cardoso and Souloumiac, 1996] and [Comon,
1994a]. In [Cardoso and Souloumiac, 1996] a two-dimensional eigenvalue problem has to be solved to
calculate a single rotation angle. This includes finding the roots of polynomials of degree two. In the case
of fourth-order tensor diagonalization (cf. [Comon, 1994a]) the roots of degree four polynomials have to be
computed.

4.6.1 Givens Rotations

Definition 4.6.1 (Givens Rotation) A Givens rotation is a rotation around the origin within the plane of
two selected components µ and ν and has the matrix form

Qµν :=



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · sin(θ) · · · 0
...

...
. . .

...
...

0 · · · −sin(θ) · · · cos(θ) · · ·
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (4.28)
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with entries defined by

Qµν

i j :=


cos(φ) for (i, j) ∈ {(µ,µ) ,(ν ,ν)}
sin(φ) for (i, j) ∈ {(µ,ν)}

−sin(φ) for (i, j) ∈ {(ν ,µ)}
δi j otherwise

(4.29)

with Kronecker symbol δi j and rotation angle φ .

Any orthogonal N×N matrix such as Q can be written as a product of N(N−1)/2 (or more) Givens rotation
matrices Qµν (for the rotation part) as defined above and a diagonal matrix with diagonal elements ±1 (for
the reflection part). Since reflections do not matter in our case we only consider the Givens rotations.

4.6.2 Jacobi Method

The Jacobi method of diagonalizing a matrix M can be described as the iterative optimization of a diago-
nality criterion under Givens rotations. We first define the diagonality criterion:

Definition 4.6.2 (Off) The off of an N×N matrix M is defined by

off(M) =
N

∑
i, j=1
i6= j

|Mi j|2 , (4.30)

where Mi j are the matrix entries.

In the ideal case if off(M) = 0, matrix M is diagonal, since the sum of the squared off-diagonal entries
vanishes. Using (4.30) we can define an objective, subject to minimization, that diagonalizes matrix M
when applying a rotation matrix Q

Ψdiag = off
(
QMQT ) . (4.31)

Minimization is achieved by successively applying Givens rotations Qµν in all possible planes. The global
rotation Q is given by

Q = ∏
µ,ν

Qµν , (4.32)

where usually several sweeps of Givens rotations Qµν have to be applied.
The calculation of the optimal rotation angle for each Givens rotation is straightforward. First, consider

for simplicity N = 2. The Givens rotation matrix Q1,2 = Q looks like

Q(φ) =
[

cos(φ) sin(φ)
−sin(φ) cos(φ)

]
. (4.33)

Write the diagonalization objective function as

Ψdiag = off
(
QMQT ) (4.34)

=
2

∑
i, j=1
i6= j

(
2

∑
kl

QikQ jlMkl

)2

. (4.35)

Now insert (4.33) into (4.35) to obtain

Ψdiag =
2

∑
i=0

ci

(
cos(φ)4−i sin(φ)i +(−1)i sin(φ)4−i cos(φ)i

)
. (4.36)
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The derivation of this relation is described and the constants therein are defined in Appendix A.1. Further
simplifications lead to

Ψdiag (φ) = A0 +A4 cos(4φ +φ4) , (4.37)

with constants defined in Appendix A.1. The Givens rotation angle which minimizes Ψdiag (φmin) is there-
fore given by

φmin =−φ4/4 . (4.38)

Thus, the optimal angle minimizing (4.35) can be computed in closed form in a linear fashion, which is in
contrast to the formulation of [Cardoso and Souloumiac, 1996].

In Chapter 6 we derive a similar Givens-rotation-objective as (4.37) for the simultaneous diagonalization
of third- and fourth-order cumulant-tensors. To diagonalize N ×N matrices we can construct the global
rotation matrix according to (4.32). In Chapter 7 we will use this method in order to diagonalize several
matrices simultaneously. The extension to the case of simultaneous diagonalization is straightforward and
will be explained there.

4.6.3 Invariances under Givens Rotations

Applying a Givens rotation Qµν in the µν-plane changes all covariances C(u)
.. (τ) with at least one of the

indices equal to µ or ν . There exist two invariances under such transformation which can be described as(
C(u)

µi (τ)
)2

+
(

C(u)
ν i (τ)

)2
= const. ∀ i 6∈ {µ, ν} , (4.39)(

C(u)
µµ (τ)

)2
+
(

C(u)
µν (τ)

)2
+
(

C(u)
νµ (τ)

)2
+
(

C(u)
νν (τ)

)2
= const. . (4.40)

See Appendix A.2 for the exact derivation of the two invariances.

4.7 Performance Measure

A perfect performance in the sense of ICA is achieved if the product of the estimated unmixing matrix R
and the mixing matrix A equals the identity matrix plus arbitrary permutations and scaling

RA = PΛΛΛ , (4.41)

where P is a permutation matrix and ΛΛΛ a diagonal matrix. The product of these two matrices is called the
performance matrix Mperf = RA [Amari et al., 1995].

To quantify the performances we slightly modified an error measure proposed by Amari et al. [1995]
and define the unmixing error

E=
1

N2

 N

∑
i=1

 N

∑
j=1

∣∣∣Mperf
i j

∣∣∣
maxk

∣∣∣Mperf
ik

∣∣∣ −1

+
N

∑
j=1

 N

∑
i=1

∣∣∣Mperf
i j

∣∣∣
maxk

∣∣∣Mperf
k j

∣∣∣ −1

 , (4.42)

where Mperf
.. denote the entries of Mperf. Unmixing error E measures the difference between performance

matrix Mperf and a permutation matrix, where the entries of Mperf are normalized to take scaling into
account. E indicates good unmixing by low values and vanishes for perfect unmixing.

Of course the mixing matrix A must be known if we want to apply this performance measure. Thus, it
only works for artificial mixtures. Since we know that independence is a sufficient criterion for recovering
the original source signal in the linear case, we can apply a measure of statistical independence, like mu-
tual information, to quantify the unmixing performance for real world data. In Chapter 9 we use a crude
approximation of mutual information (9.12), namely the sum over squared cross-cumulants of fourth order,
for this purpose. This kind of performance measure is not applicable in the nonlinear case.
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Slow Feature Analysis
Slow Feature Analysis (SFA) is a method to determine functions that extract slowly varying signals from
quickly varying, observed signals. This is generally achieved in a non-linear fashion. SFA has been devel-
oped for unsupervised learning of invariances in the framework of biological modeling [Wiskott and Se-
jnowski, 2002]. Early descriptions of the principle are given in [Hinton, 1989], [Földiák, 1991], and [Mitchi-
son, 1991].

There exist several applications: In [Wiskott and Sejnowski, 2002] SFA has been used in a simple hier-
archical model of the visual system and was able to learn invariances like translation, scale or contrast in-
variance. Berkes and Wiskott [2003] have trained SFA on image sequences and learned functions that share
many properties with complex cells of the primary visual cortex. Additionally SFA was successfully ap-
plied to pattern recognition [Berkes, 2004] and to the estimation of driving forces underlying non-stationary
time series [Wiskott, 2003a]. A toolkit for SFA implemented in Matlab is available online [Berkes, 2003].

This chapter gives a short description of the method as developed in [Wiskott and Sejnowski, 2002].
The next chapter will point out the relation between SFA and second-order ICA as discussed in [Blaschke
et al., 2004], providing the means to find a simple objective function for our nonlinear BSS method.

5.1 Mathematical Formulation

Assume a vectorial input signal x(t) = [x1(t), . . . ,xM(t)]T is given. The objective of SFA is to find an in
general nonlinear input-output function g(x) = [g1 (x) , . . . , gL (x)]T such that the components of u(t) =
g(x(t)) are varying as slowly as possible. This can be achieved by minimizing the objective function

∆(ui) :=
〈
u̇2

i (t)
〉
, (5.1)

successively for each ui (t) under the constraints

〈ui (t)〉 = 0 (zero mean), (5.2)〈
(ui (t))

2
〉

= 1 (unit variance), (5.3)〈
ui (t)u j (t)

〉
= 0 ∀ j < i (decorrelation and order), (5.4)

where 〈· 〉 denotes averaging over time. As a measure of slowness we use the variance of the first derivative
of ui (t) (5.1). Minimal ∆(ui) therefore indicates a signal component with on average small slope. Con-
straints (5.2) and (5.3) ensure that the solution will not be the trivial solution ui (t) = const. Constraint (5.4)
provides uncorrelated output signal components and thus guarantees that different components carry differ-
ent information.

35
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To make the optimization problem easier to solve we consider the components gi (·) of the input-output
function to be a linear combination of a finite set of nonlinear functions. We can then split the optimization
procedure into two parts: (i) nonlinear expansion of the input signal x(t) into a high-dimensional feature
space, and (ii) solving the optimization problem in the feature space linearly.

5.1.1 Nonlinear Expansion

A common method to make nonlinear problems solvable in a linear fashion is nonlinear expansion. The
observed signal components xi (t) are mapped into a high-dimensional feature-space according to

z(t) = h(x(t)) . (5.5)

The dimension L of z(t) is typically much larger than that of the original signal. A common mapping is
given by the monomials of degree one and two

h(x) = [x1, . . . , xM, x1x1, x1x2, . . . , xMxM]T −h0, (5.6)

when given an M-dimensional signal x(t). The dimensionality of the feature space for the monomials of
first and second degree is L = M+M (M +1)/2. Of course it is possible to take monomials of higher degree
or other nonlinear functions. The constant vector h0 can be used to make the expanded signal mean free.

5.1.2 Solution of the Linear Optimization Problem

Given the nonlinear expansion, the nonlinear input-output function g(x) can be written as

g(x) = Rh(x) = Rz , (5.7)

where R is an L×L matrix which is subject to optimization. To simplify the optimization procedure we (i)
choose the nonlinearities h(·) such that z(t) is mean free and (ii) first find a transformation y(t) = Wz(t)
to obtain mutually decorrelated components yi (t) with zero mean. Matrix W is a whitening matrix as in
normal ICA:

u(t) = Qy(t) = QWz(t) = Rz(t) = g(x(t)) , (5.8)

where y(t) is the nonlinearly expanded and whitened signal with
〈

y(t)y(t)T
〉

= I. To fulfill constraint (5.2)
an appropriate constant term h0 can be chosen. The constraints (5.3), and (5.4) are fulfilled trivially if the
transformation Q, subject to learning, is an orthogonal matrix. This can be shown as follows. Define
qi := [Qi1,Qi2, . . . ,QiN ]T to be the ith row vector of Q. Using (5.8) we can derive〈

uiu j
〉

= qT
i

〈
y(t)y(t)T

〉
q j = qT

i q j = δi j (5.9)

where we have used the orthonormality of the qi. Thus, constraints (5.4) and (5.4) are fulfilled.
To solve the optimization problem we rewrite the slowness objective (5.1)

∆(ui) = qT
i
〈
ẏẏT 〉qi =: qT

i Eqi . (5.10)

For this optimization problem there exists a unique solution. For i = 1 the optimal weight vector is the
normalized eigenvector that corresponds to the smallest eigenvalue of E. The eigenvectors of the next
higher eigenvalues produce the next slow components (u2,u3, . . . and so forth).

Thus, to extract all slow components the minimization problem can be formulated as an eigenvalue
problem

EQ = QΛΛΛ (5.11)

where ΛΛΛ denotes a diagonal matrix with Λii the ith eigenvalue belonging to the eigenvector qi.
With this we can define a simple schedule for an SFA algorithm
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Figure 5.1: Illustration of the optimization problem solved by slow feature analysis. The observed signal
x(t) varies quickly. Slow feature analysis finds the optimal input-output function g(x) such that the output
signal u(t) = g(x(t)) varies slowly. Figure courtesy of Dr. Laurenz Wiskott.

• Nonlinearly expand the input signal x into the feature space to obtain z. Choose the nonlinearity such,
that all components zi have zero mean.

• Apply a whitening transformation y = Wz.

• Solve the eigenvalue problem EQ =
〈
ẏẏT
〉

Q = QΛΛΛ to obtain the slowly varying signal components
u = Qy.

• Sort the components of u by slowness.

5.2 Simple Example

To illustrate the SFA procedure we will give a simple example adopted from [Wiskott and Sejnowski, 2002].
Assume the input signal x to SFA is given with components defined by

x1 (t) = sin(t)+ cos2 (11t) , (5.12)
x2 (t) = cos(11t) , (5.13)

with t ∈ [0,2π]. The signal sin(t) is the slowly varying signal we want to extract from x(t). The SFA
procedure is illustrated in Figure 5.2.
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Figure 5.2: Illustration of SFA by means of a simple example (5.13). (a) Input signal x is given by
Equation (5.13), sin(t) denotes the slowly varying signal. (b) Expanded signal is defined as z(t) :=[
x1 (t) , x2 (t) , x1 (t)x2 (t) , x2

1 (t) , x2
2 (t)

]T only three of which are shown. (c) Sphered signal y(t) with zero
mean and unit covariance matrix. (d) Time derivative signal ẏ(t). The direction of minimal variance is de-
fined by q1. In this direction the sphered signal y(t) varies most slowly. The axes of next higher variances
define q2 and q3. They are shown as dashed lines. (e) The Projection of z(t) onto the q1-axis gives the first
output signal component u1, which is sin(t). (f) The first component of the input-output function g1 (x1,x2)
is shown. Adapted from Wiskott and Sejnowski [2002].
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Linear ICA based on Third- and
Fourth-Order Cumulants

In this chapter we extend the cumulant based methods for ICA and present an improved algorithm that
takes third- and fourth-order cumulants into account simultaneously. At the same time it is simpler and
faster than Comon’s algorithm [1994a], which our algorithm is based upon. Beside Comon’s algorithm
there exist other methods based on higher-order Cumulants, e.g. the earliest method proposed for BSS resp.
ICA is based on the cancellation of high-order cross moments [Comon et al., 1991; Jutten and Herault,
1991]. Also Yellin and Weinstein [1996] and Girolami and Fyfe [1996] use higher-order statistics in order
to recover the source signal. The well known FastICA algorithm [Hyvärinen, 1999] can be formulated
based on kurtosis, too.

The new algorithm is described in Section 6.1. An approximation of the contrast function, building the
basis of the algorithm, is introduced in Section 6.2. Section 6.3 provides with a new visualization of the
contrast function for a three-dimensional ICA problem. A performance comparison with other algorithms
is given in Section 6.4. We conclude with a brief discussion in Section 6.5. All simulations were done with
Matlab (Version 6.0); analytical calculations were supported by Mathematica (Version 5.0), both working
on Linux. The results presented in this chapter have partly been published in [Blaschke and Wiskott, 2002]
and [Blaschke and Wiskott, 2004].

6.1 Improved ICA Algorithm

6.1.1 Cumulants and Independence

We start with a rather intuitive approach. Consider the standard linear ICA model as described in Section 4.2

u = Rx = RAs , (6.1)

where x = [x1,x2, . . . ,xN ] is a linear mixture of the source signal s = [s1,s2, . . . ,sN ], and u = [u1,u2, . . . ,uN ]
is the estimated source signal with statistically independent components ui.

We can calculate higher-order cumulants C(u)
... of the estimated source signal components ui as explained

in Section 2.2.2. Cumulants of a given order form a tensor (see Section 2.2.2). The off-diagonal elements or
cross-cumulants (e.g. all cumulants with i jkl 6= iiii in the case of fourth-order cumulants) characterize the
statistical dependencies between components. If and only if all components ui are statistically independent,
the off-diagonal elements vanish and the cumulant tensors (of all orders) are diagonal (see Prop. 2.2.7).

Thus, a possible ICA algorithm finds an unmixing matrix that diagonalizes the cumulant tensors C(u)
... of

all orders of the output data ui, at least approximately. The first order cumulant tensor is a vector and does

41
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not have off-diagonal elements. The second order cumulant tensor can be diagonalized easily by whitening
the input data as defined in Section 4.3.1. Referring to the second step in the approach described in the same
section we now need to diagonalize higher-order cumulants, where we will only include cumulants up to
fourth order. In general there is no orthogonal matrix that diagonalizes the third- or fourth-order cumulant
tensor, thus the diagonalization of these tensors can only be done approximately. Therefore we need to
define an optimization criterion for this approximate diagonalization which is done in the next section. The
criterion is a simple extension of the diagonalization scheme developed in Section 4.6. The difference is
that we now want to diagonalize a cumulant tensor and not a matrix.

6.1.2 Contrast Function

In order to formalize the approximate diagonalization of the cumulant tensors of order three and four we
define the following criterion

Ψ̄34(u):=
1
3!

N

∑
i jk 6=iii

(
C(u)

i jk

)2
+

1
4!

N

∑
i jkl 6=iiii

(
C(u)

i jkl

)2
, (6.2)

which is simply the sum over the squared third- and fourth-order off-diagonal elements and needs to be
minimized. The factors 1

3! and 1
4! arise from the expansion of the Kullback Leibler divergence as developed

in Section 2.3. The Kullback Leibler divergence provides an information theoretic approach to the ICA
problem different to the more intuitive interpretation of cumulant-tensor diagonalization (see also Eq. (6.4)).

Since the square sum over all elements of a cumulant tensor is preserved under any orthogonal trans-
formation Q of the underlying data y [Deco and Obradovic, 1996], one can equally well maximize the sum
over the diagonal elements,

Ψ34(u) :=
1
3!

N

∑
i=1

(
C(u)

iii

)2
+

1
4!

N

∑
i=1

(
C(u)

iiii

)2
, (6.3)

instead of minimizing the sum over the off-diagonal elements (6.2). Ψ34(u) is obviously much simpler

than Ψ̄34(u). Notice that this is a contrast as defined in Section 4.3.2 because all functionals ∑i

(
C(u)

ii...i

)2
of

cumulants of order ≥ 2 are contrasts and their sum Ψ34(u) is a contrast, too [Comon, 2002]. For a more
general approach to contrast functions see [Moreau and Thirion-Moreau, 1999].

We can interpret these findings in the sense of information theory by referring to the expression for the
approximated mutual information (3.27) derived in Section 3.4

I (u)≈ J (u)− 1
12

N

∑
i=1

(
C(x)

iii

)2
− 1
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N

∑
i=1

(
C(x)

iiii

)2
. (6.4)

I (u) is minimal for a signal u with independent components. Since J (u) = J (y), because of the invariance
of the negentropy under linear invertible transformations (cf. 3.3), we can neglect this term in an optimiza-
tion procedure. And furthermore, instead of minimizing I (u) we can equally well maximize −I (u). Thus,
we derive the same objective function as (6.3).

Due to the multilinearity of the cumulants C(u)
... (cf. Property 2.2.3) in C(y)

... , (6.3) can be rewritten as

Ψ34(Q,y)=
1
3!

N

∑
i=1

( N

∑
jkl=1

Qi jQikQilC
(y)
jkl︸ ︷︷ ︸

C(u)
iii

)2
+

1
4!

N

∑
i=1

( N

∑
jklm=1

Qi jQikQilQimC(y)
jklm︸ ︷︷ ︸

C(u)
iiii

)2
. (6.5)

C(y)
... are the cumulants of the whitened data set y and Q.. are the elements of the rotation matrix Q. With

u = Qy Equations (6.3) and (6.5) are formally related by Ψ34(u) = Ψ34(I,u) = Ψ34(Q,y). Ψ34(Q,y) is
now subject to an optimization procedure to find the orthogonal matrix Q that maximizes it.
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6.1.3 Givens Rotations

As mentioned above maximizing the objective in (6.5) is equivalent to diagonalizing the third- and fourth-
order cumulant tensor simultaneously. This simply arises from the fact that we want to minimize all off-
diagonal elements or cross-cumulants of both tensors. Furthermore, since we are searching for an orthog-
onal matrix Q, we can derive a diagonalization scheme for higher-order cumulants, analogously to that
developed in Chapter 4.6 for matrix diagonalization.

For simplicity and without loss of generality we now consider only the subspace of two selected com-
ponents, so that the Givens rotation matrix becomes

Qµν =
[

cos(φ) sin(φ)
−sin(φ) cos(φ)

]
. (6.6)

Contrast function (6.5) can then be rewritten as Ψ34 (φ ,y) = Ψ3 (φ ,y)+Ψ4 (φ ,y) with

Ψn (φ ,y):=
1
n!

n

∑
i=0

dni

(
cos(φ)(2n−i) sin(φ)i

)
+

1
n!

n

∑
i=0

dni

(
cos(φ)i (−sin(φ))(2n−i)

)
(6.7)

with some constants dni that depend only on the cumulants C(y)
... before rotation (see Appendix B.1.1). To

simplify this equation Comon [1994a] defined some auxiliary variables θ := tan(φ) and ξ := θ − 1
θ

and
derived

Ψ3 (θ ,y)=
1
3!

(
θ +

1
θ

)−3 3

∑
i=1

ai

(
θ

i− (−θ)−i
)

, (6.8)

Ψ4 (ξ ,y)=
1
4!
(
ξ

2 +4
)−2

4

∑
i=0

biξ
i (6.9)

for (6.7), with some constants ai and bi depending on the cumulants before rotation. To maximize (6.8) or
(6.9) one has to take their derivative and find the root giving the largest value for Ψ3 or Ψ4, respectively.
With this formulation only either the third-order or the fourth-order diagonal cumulants can be maximized
but not both simultaneously.

In a more direct approach and after some quite involved calculations using various trigonometric theo-
rems, we were able to derive a contrast function that (i) combines third- and fourth-order cumulants, (ii) is
mathematically much simpler, (iii) has a more intuitive interpretation, and (iv) is therefore easier to optimize
and approximate. We found

Ψ34 (φ ,y) = A0 +A4 cos(4φ +φ4)+A8 cos(8φ +φ8) (6.10)

with some constants A0,A4,A8 and φ4,φ8 that depend only on the cumulants C(y)
... before rotation (see Ap-

pendix B.1.2). The third term comes from the fourth order cumulants only while the first two terms incorpo-
rate information from the third- and the fourth-order cumulants. Contrast functions for third- or fourth-order
cumulants only, i.e. Ψ3 or Ψ4, can be easily obtained by setting all fourth- or third-order cumulants to zero,
respectively.

It is actually relatively easy to see that it is possible to write the contrast in such a simple form. Firstly,
rotation by multiples of π

2 corresponds to a permutation of the two components possibly plus sign changes,
which does not affect the value of the contrast. Therefore, Ψ34 has a periodicity of π

2 and can be written
as a sum of cosine-functions with frequencies 0, 4, 8, 12, 16, etc. Secondly, the terms in (6.7) are products
of at most eight sin(φ) and cos(φ) functions, which can lead at most to a frequency of 8. Taking together
these two arguments it is clear that only the frequencies 0, 4, and 8 are present and the contrast can be
written in the form of (6.10). Because of the π

2 periodicity it suffices to evaluate the contrast in the interval
[φ4− π

4 ,φ4 + π

4 ].
De Lathauwer et al. [1996] derived a related formula for third-order cumulants only that is quadratic in

sin(2φ) and cos(2φ) and can be transformed to an expression similar to (6.10).
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6.1.4 Unmixing Algorithm

Unmixing for a whitened signal y with N = 2 components can now be achieved in four steps:

(i) Compute the constants in (6.10),

(ii) Find the angle φmax that maximizes Ψ34 (φ ,y) in (6.10),

(iii) Calculate the Givens rotation-matrix Qµν according to (6.6), and

(iv) Apply it to the whitened signal y to obtain estimated source signal u = Qµν y.

Since Ψ34 is maximal, the cumulant tensors C(u)
i jk and C(u)

i jkl are as diagonal as possible according to contrast
(6.5) and the estimated signal components ui are maximally statistically independent.

There are different ways to find the angle φmax that maximizes Ψ34 (φ ,y). Since all constants in Equa-
tion (6.10) are known and φmax has to lie in the interval

[
φ4− π

4 , φ4 + π

4

]
we simply calculate Ψ34 (φ ,y) for

1000 equidistant values of φ covering this interval and took the angle with largest value. We also tested the
Matlab built-in function fminbnd (Matlab 6.0) based on Golden Section search and parabolic interpolation,
which was significantly slower, but found no difference in the unmixing performance.

For N > 2 the contrast maximization follows directly from the N = 2 case. We denote the contrast
function for a selected pair µ,ν of components by Ψ

µν

34 (φ µν ,y). Note that pairwise statistical independence
of the signal components implies mutual independence of all signal components [Comon, 1994b]. Therefore
it is sufficient to iteratively maximize all Ψ

µν

34 like in the case of N = 2 until φ
µν
max is smaller then a given

threshold ε for every pair µ,ν . In practice this can take several sweeps through all pairs. Every sweep
consists of N (N−1)/2 rotations.

After centering and whitening, a maximization schedule for N > 2 can be as follows:

(a) Initialize auxiliary variables Q′ = In and y′ = y

(b) Choose a pair of components µ and ν (randomly or in any given order)

(c) Calculate the Cumulants that are needed for Ψ
µν

34 (φ µν ,y′)

(d) Find the angle φ
µν
max such that Ψ

µν

34

(
φ

µν
max,y′

)
is maximal

(e) If φ
µν
max > ε update Q′ according to Q′ → Qµν Q′

(f) Rotate the signal components: y′ → Qµν y′

(g) Go to step (b) unless all possible φ
µν
max ≤ ε with ε � 1

(h) Set Q = Q′ and u = Qy.

In the simulations presented below we will not use the ε criterion but simply set ε = 0 and go through all
possible pairs a fixed number of times in order to have a common criterion for all cumulant based methods
(see below).

We refer to this algorithm as CuBICA (Cumulant Based Independent Component Analysis) and indicate
the different variants by appending the order of cumulants used in the contrast. For example a variant with
a contrast function based on 3rd and 4th order information is called CuBICA34. Approximate contrast
functions (see below) are indicated by an additional ’a’, e.g. CuBICA34a.



6.2 APPROXIMATION OF Ψ34 45

6.1.5 Convergence of CuBICA

Since Ψ34 is a contrast it has the property

Ψ34 (Eu)≤ Ψ34 (u) ∀E orthogonal, (6.11)

if u has maximally independent components (cf. second property in Definition 4.3.1). In the algorithm one
can divide Ψ34(Qµν ,y′) in (6.5) for every new Givens rotation Qµν into two parts. One part is not affected
by the rotation and the other is Ψ

µν

34 (φ ,y′). Since Ψ
µν

34 (φ ,y′) is maximized, Ψ34(Qµν ,y′) and therefore also
Ψ34 (Q′,y) have to increase monotonically with every rotation. But Ψ34 (Q′,y) has an upper bound, and
thus will converge to a maximum. Of course we cannot rule out that there might be local maxima although
they have not been observed.

6.2 Approximation of Ψ34

6.2.1 Empirical Approach

Empirically we have found that the third term, A8, in (6.10) is small compared to the second one. In fact the
amplitude of the third term is about one magnitude smaller than that of the second term, A4, independently
of the chosen data sets (see Fig. 6.1). This suggests to neglect the third term and write as an approximate
criterion

Ψ̃34(φ ,y) = A0 +A4 cos(4φ +φ4) . (6.12)

Note that Ψ̃34 still takes third- and fourth-order cumulants into account. As in the exact case, unmixing
criteria restricted to fourth-order cumulants, i.e. Ψ̃4, can be easily obtained by setting all third-order cu-
mulants to zero. The contrast function for third-order cumulants order only, Ψ̃3, remains the same in the
approximate form (6.12) since A8 in (6.10) contains no information of third-order cumulants. Finding the
maxima φmax of (6.12) is trivial. They are the angles satisfying the condition

φmax = n
π

2
− φ4

4
, n ∈ {0,±1,±2,±3, . . .} . (6.13)

The maximum we chose is simply φmax =− φ4
4 .

6.2.2 Analytical Simplifications

Since after whitening via y = Wx we get uncorrelated signal components yi with unit variance and zero
mean, we know that finding the unknown source signal components can now be achieved by an orthogonal
transformation u = Qy. This also means, that the whitened signal y can be expressed as y = Ms where M
defines an orthogonal transformation with M = ΛΛΛPQT . The diagonal matrix ΛΛΛ defines possible scaling and
P defines a permutation matrix.

Now, consider the case with two source signal components (N = 2). Furthermore, we neglect possible
reflections and scaling. M then defines a rotation around the angle θ given by

M =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
. (6.14)

All cumulants in y can therefore be written as a function of the rotation angle θ and the cumulants in s.
Thus, we can transform the cumulants in y involved in the objective function Ψ

µν

34 (y) according to 2.2.3 as

C(y)
i jkl = ∑

α,β ,γ,δ=1,2
Mi,α M j,β Mk,γ Ml,δC(s)

αβγδ
. (6.15)
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Figure 6.1: Plot of amplitude A8 versus A4 for all rotations in two simulations with different data sets. The
diagonal lines indicate A8 = 0.1 ∗A4. (a) Simulation with data set (v) (symmetrically distributed sources)
and contrast function Ψ4. Similar results were obtained by using Ψ34 as a contrast. Note the logarithmic
axes. A8 is about one magnitude smaller than A4. Less than 1% of all values for A8

A4
exceed the 0.1-line.

(b) Simulation with data set (ii) (non-symmetrically distributed sources) and contrast function Ψ34. In this
case the difference is even greater since for non-symmetrically distributed sources A4 has additional terms
from third order cumulants which do not appear in A8.

Since s has only independent components, all cumulants in s except the auto-cumulants are zero and we can
simplify to

C(y)
i jkl = ∑

α=1,2
Mi,α M j,α Mk,α Ml,αC(s)

αααα . (6.16)

After some calculations (see Appendix B.1.3) we can derive the phases φ4 and φ8 of the objective (6.10) as
functions of the rotation angle θ . They are given by

φ4 = 4θ , (6.17)
φ8 = 8θ . (6.18)

Thus the contrast function (6.10) can be written as

Ψ34 (φ) = A0 +A4 cos(4φ +4θ)+A8 cos(8φ +8θ) , (6.19)

where the constants are combinations of cumulants in s (see Appendix B.1.3) and not of cumulants in y
like in (6.10). However, the two contrast functions (6.10) and (6.19) are identical if y = Ms and the source
signal s has independent components. If not all source signal components are mutually independent this
simplification will not work, since the approximations are due to the symmetry of the source signal (see
(6.16)). The equivalence of φ4 and φ8 ((6.17)-(6.18)) implies that the second and third term on the right
hand side of (6.19) reach their minima at the same rotation angle φ , namely at φ =−θ . Figure 6.2 shows the
relation between φ4 and φ8 as calculated during an ICA simulation. However, the relation is not exact. This
has at least two reasons: (i) the source signal components used in the simulation are not exactly independent
(this would only be possible for signal components with infinite length); (ii) the relation (6.16) holds for
exact cumulants, while in the simulation we are using sample cumulants. Due to frequency doubling, the
third term has additional minima. But these minima always correspond to the maxima of the second term
and can therefore be neglected. Thus, finding the absolute minimum of the objective function (6.19) is
equivalent to finding the absolute minimum of

Ψ̄34 (φ) = A4 cos(4(φ +θ)) , (6.20)
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where we also omitted A0, which is a constant term.
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Figure 6.2: (a) Scatterplot of phases φ4 versus φ8 of an ICA simulation. Phases where calculated for each
Givens rotation step during the unmixing of 50 arbitrary mixtures of dataset (i). For each unmixing process
45 Givens rotations have been evaluated. The linear correlation between φ4 and φ8 can be seen easily. Since
cos(4φ −φ4) = cos(4(φ −θ)) and cos(8φ −φ8) = cos(8(φ −θ)) the relation between the two is simply
φ8 = 2φ4. The sidebands result from a shift of φ4 by ±π . This is equivalent to a ±2π shift of φ8. Since the
contrast function (6.19) has a π/4 symmetry, the values in the sidebands correspond to the same minima as
those in the mainband. The analytical result requires an exact correspondence between φ4 and φ8. (b) Same
scatterplot but all |φ4|> π/2 are shifted by ±π .

6.3 Visualization of the Contrast

Assuming whitened data y, the contrast function based on cumulants in u can be written as a function of a
rotation Q of the contrast based on cumulants in s. For a specific rotation the contrast reaches its maximum,
which implies u = PΛΛΛs.

If y is a two-dimensional whitened mixture the ICA problem can be solved directly by computing
the two-dimensional rotation Q1,2 (cf. (6.6)) that maximizes the contrast function Ψ

(2)
34 := Ψ34 (u,N = 2),

defined in Equation (6.3). The 2 stands for two-dimensional u. The rotation Q1,2 in the u1-u2-plane can
be parametrized by the angle φ . Thus, Ψ

(2)
34 = Ψ

(2)
34 (φ) is a function of the single rotation angle φ and can

be easily visualized. Figure 6.3 shows Ψ
(2)
34 (φ) as a function of φ . The π/2-periodicity of the contrast,

as pointed out in Section 6.1.3, can be easily verified. Thus, there exist four equally good solutions to the
ICA problem. The contrast in Figure 6.3 is virtually identical to a single cosine-function. This is in good
accordance with the equivalent formulation of the contrast (6.3) defined in (6.10) if we neglect the last term,
which can be done if the amplitude A8 is small compared to A4.

If x has three components there exist three possible rotation planes. The optimization of the corre-
sponding contrast function Ψ

(3)
34 := Ψ34 (u,N = 3) can be achieved by finding a 3×3 rotation matrix Q that

maximizes Ψ
(3)
34 . In three dimensions such a rotation can be parametrized by Euler angles and therefore a

four-dimensional plot is necessary to visualize the shape of the contrast function Ψ
(3)
34 . In general, given

an N-dimensional whitened signal y, a N (N−1)/2-dimensional plot is needed to visualize the respective
shape of the contrast function.

Since it is still an open question whether the contrast function (6.3) has local optima for N > 2 such
plots may be a good way to give some insights about the shape of the performance surface. Flockton
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Figure 6.3: Plot of the contrast function Ψ
(2)
34 (φ) as a function of φ , with y being a whitened mixture of two

source signal components. The π/2-periodicity of Ψ
(2)
34 can be easily verified.

et al. [1996] showed the contrast surface in the case of N = 3. To circumvent the problem of visualizing
a four-dimensional plot they considered the case where one of the three rotation angles (e.g. θ ) was kept
fixed. To get an impression of the whole contrast function several of such plots with different values of θ

where used.
Here we use a method that allows us to show the main features of a contrast function of a three-

dimensional ICA problem in a single three-dimensional plot. To simplify matters we first address the

two-dimensional case (N = 2). For N = 2 The contrast is the sum of the two squared cumulants
(

C(u)
1111

)2

and
(

C(u)
2222

)2
plus a constant, that we neglect. We rotate the coordinate axes u1 and u2 by an angle φ . For

each rotation angle φ the intersection of the rotated coordinate axes and the contrast is defined by the values
of the respective squared cumulant (see Fig. 6.4). If we apply this method for every possible rotation angle
we get a closed surface, we call the cumulant-energy surface. To read out the value of the contrast for a
given rotation angle one has to add up the values determined by the intersection of the rotated coordinate
axes with the cumulant-energy surface. The maximum of the contrast is reached at the point where the sur-
face has maximal total distance from the origin. Obviously the contrast that can be read out from Figure 6.4
shows no local optima as we already know from (6.10). The maximum is reached for φ = 0, π/2, π, 3/2π .
Thus, as seen in Figure 6.3, there are four equally good solutions to this ICA problem. Figure 6.5 shows the
cumulant-energy surface if the underlying source signal consists of three super-Gaussian components. It is
highly symmetrical and shows no local minima. Since there exist six possible permutations of u1, u2 and
u3 and eight possible sign reversals there are 48 equivalent maxima of Ψ

(3)
34 and thus solutions to the ICA

problem. As can be easily seen a successive maximization of the contrast function Ψ
(3)
34 by Givens rotations

will always lead to a global maximum, independently of the starting point. Now, assume u1 has a sub-
and u2 has a super-Gaussian distribution. A rotation in the u1-u2-plane by π/2 simply exchanges u1 and u2.
Since u1 (u2) goes from negative (positive) kurtosis to positive (negative) kurtosis during such a rotation the
cumulant energy-surface has to cross zero in the u1-u2-plane. This effect can be seen in Figure 6.6 where the
cumulant energy-surface of two super-Gaussian and one sub-Gaussian components is shown. Note that the
analytical approximation of the contrast function (6.20) postulates line symmetry of the two-dimensional
contrast for exactly independent source signal components. Therefore, the two-dimensional energy-surface
lying on each possible Givens rotation plane should also show line symmetry. However, the energy-surface
in Figure 6.5 shows point symmetry. Thus, the underlying source signal components are not exactly inde-
pendent. But, since this effect is small the contrast (6.20) is still a good approximation. In principle for
large differences of the two phases φ4 and φ8 local maxima can emerge, but have not been observed.



6.3 VISUALIZATION OF THE CONTRAST 49

(C
2222
(s) )2 

(C
1111
(s) )2 

(C
1111
(u) )2 

(C
2222
(u) )2 

φ 

s
2

s
1

u
1u

2
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at each possible angle forms the shape of the surface. To read out the

value of the contrast at a given angle one needs to add up the values determined by the intersection of the
rotated coordinate axes with the figure. For φ = 0, π/2, π, 3/2π the contrast reaches its maximum. In this
case u = PΛΛΛs, where P is a permutation matrix and ΛΛΛ is a diagonal matrix with entries |Λii|= 1.
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Figure 6.5: Cumulant-energy surface of three super-Gaussian distributed signal components. a Front view.
b Side view. The coordinate axes show the reference coordinate system defined by unit vectors in the
directions of s1, s2 and s3. The maximal total distance of the surface from the origin is reached if the
coordinate axes lie along these three unit vectors. Considering all possible permutations and reflections of
s1, s2 and s3 it can be seen that there exist 48 equally good maxima and therefore also equally good solutions
to the ICA problem.

Figure 6.6: Cumulant energy-surface of two signal components with super-Gaussian and one component
with sub-Gaussian distribution.

This highly symmetrical form of the cumulant energy-surface in three dimensions may be a hint that
also for higher dimensional surfaces symmetries exist that prevent the cumulant energy-surface from having
local optima.

6.4 Comparison with Other Algorithms

We compared four variants of CuBICA 1 with Comon’s original algorithm based on Ψ4(ξ ,y) [1994a], with
the JADE algorithm [Cardoso and Souloumiac, 1993], which diagonalizes 4th order cumulant matrices,
with the Infomax Algorithm [Lee et al., 1999], and with the FastICA package [Hyvärinen, 1999] using a
fixed-point algorithm with different nonlinearities. In all cases we have used original software provided by
the authors 2.

1 CuBICA34 (based on Ψ34(φ ,y)), CuBICA34a (based on Ψ̃34(φ ,y)), CuBICA4 (based on Ψ4(φ ,y)), and CuBICA4a (based on
Ψ̃4(φ ,y))

2Comon’s algorithm: http://www.i3s.unice.fr/~comon/codesICA.txt (Version 6 of March 1992, downloaded De-
cember 12th, 2001); JADE: ftp://tsi.enst.fr/pub/jfc/Algo/Jade/jadeR.m (Version 1.5 of December 1997, down-
loaded March 6th, 2001); FastICA: http://www.cis.hut.fi/projects/ica/fastica/loadcode.shtml (Version 2.1
of January 15th, 2001, downloaded January 15th, 2001); Infomax: http://www.cnl.salk.edu/~tewon/ICA/Code/ext_
ica_download.html (Version 2.0 of August 23rd, 1998, downloaded March 6th, 2001); CuBICA: http://itb.biologie.
hu-berlin.de/~blaschke (Version 1.6 of February 22th, 2002)

http://www.i3s.unice.fr/~comon/codesICA.txt
ftp://tsi.enst.fr/pub/jfc/Algo/Jade/jadeR.m
http://www.cis.hut.fi/projects/ica/fastica/loadcode.shtml
http://www.cnl.salk.edu/~tewon/ICA/Code/ext_ica_download.html
http://www.cnl.salk.edu/~tewon/ICA/Code/ext_ica_download.html
http://itb.biologie.hu-berlin.de/~blaschke
http://itb.biologie.hu-berlin.de/~blaschke


52 CHAPTER 6. LINEAR ICA BASED ON THIRD- AND FOURTH-ORDER CUMULANTS

It is interesting to note that the different algorithms make different assumptions about the distributions
of the sources. Infomax uses a one-parametric symmetrical model for the distributions of the sources and
thus makes the assumptions very explicit. It is not clear to us which deviations of the true distribution from
the model can degrade the unmixing performance and to what extent. Cumulant based methods, on the other
hand, make no explicit assumptions about the source distributions. However, by focusing only on cumulants
of low order and since cumulants of different order do not mix under a linear transformation, these methods
are completely blind to higher order cumulants. Thus there is an implicit assumption that the distributions
are such that low order cumulants contain enough information for the unmixing. Therefore considering
fourth-order cumulants only is equivalent to a one-parametric model of the source distribution whereas
considering third- and fourth-order cumulants results in a two-parametric family of functions. FastICA is
similar in this respect using a one-parametric approach, although it is not restricted to cumulants but can
also be derived using non-polynomial functions.

6.4.1 Simulations

We assembled five different data sets of length 44218. Data set (i) contained real acoustic sources from [John
Fitzgerald Kennedy Library, Boston, 1996] and [Pearlmutter, 1996]. Data set (ii) contained non-symmet-
rically distributed sources and (v) was composed of different symmetrically distributed sub- and super-
Gaussian sources, both sets were generated synthetically. Set (iii) and (iv) were mixtures of real acoustic
and synthetic sources. For further details see Table 6.1. Each data set was mixed by a randomly chosen
mixing matrix with entries chosen uniformly from [−1,1].

To simplify the comparison between the algorithms we used the same stopping criterion for all four cu-
mulant based methods, namely we stopped after M sweeps through all possible pairs of signal components,
where M is the nearest integer to 1 +

√
N and N is the number of source components. Unmixing perfor-

mance did not depend significantly on the stopping criterion, but comparison of the time performances is
clearer with a common stopping criterion. Since it is not easy to define a similar criterion for FastICA and
Infomax we did not change these algorithms.

To quantify the performances we use the measure E defined in Section 4.7. An example of the develop-
ment of E during a simulation is shown in Figure 6.7.

Figure 6.7: Development of the unmixing error for data set (v) from Table 6.1 with N = 40 using Ψ34 as
a contrast. The algorithm was stopped after 7 sweeps through all N ∗ (N−1)/2 = 780 possible pairs of
signal components.

Infomax and FastICA required some manual assistance, while the other algorithms could be applied
blindly. For Infomax we usually applied the algorithm to the data twice with different parameter settings.
The first run did a rough unmixing which was then refined in the second run on the already roughly un-
mixed data. Several test runs were necessary to find appropriate parameter settings, which was quite time
consuming. For FastICA we had to do test runs to determine the nonlinearity yielding best performance.
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In both cases the error criterion (4.42) guided the parameter selection, so that the results were not obtained
completely unsupervised but with some supervision. Since the data sets were sufficiently long to rule out
over-fitting, we did not use separate training and test sets in these experiments.

To investigate the dependency of the algorithms on the length of the data set, we also did simulations on
data set (v) with different numbers of data points and compared the unmixing errors (see Fig. 6.8). Data set
(v) was split into 11 subsets of length T , with T ∈ {40,80,160,320, 640,1280,2560,5120,10240,20480}
(for T = 5120, 10240, and 20480, there were only 8, 4, and 2 pieces, respectively). The first subset was
used to optimize the parameters of FastICA and Infomax for one given mixing matrix. Then all algorithms
were tested with ten different mixing matrices on each of the remaining subsets.

6.4.2 Results

We measured unmixing errors and the elapsed time for all 8 different algorithms and 5 data sets of full
length (see Table 6.1). Since additional simulations with different mixing matrices showed no significant
variations in the results, we only give here the mean values for unmixing error and time consumption.

For symmetrically distributed sources, all algorithms performed similarly well (data sets (i), (iv), (v)).
If the sources were skew-symmetric, the additional third order information was crucial and CuBICA34,
CuBICA34a, and FastICA using a corresponding nonlinearity clearly gave better results (data set (ii)). In
case where the sources were both symmetric and skew-symmetric, only CuBICA34 and CuBICA34a with
contrast function Ψ34 and Ψ̃34, respectively, could discriminate between the different distributions (data set
(iii)). Thus, the comparison in Table 6.1 suggests that different ICA-algorithms perform similarly well as
long as their contrast functions are sensitive to the properties of the source distributions. Methods blind to
skew-symmetric distributions fail on data set (ii) and only the methods that take third- and fourth- order
cumulants into account can deal with mixtures of symmetric and skew-symmetric distributions (data set
(iii)). The CuBICA-algorithms with approximate unmixing criterion gave similar unmixing errors as the
algorithms using the exact contrast. This suggests that A8 in Equation (6.12) is indeed negligible. However,
since there is no advantage over the algorithms using the exact contrast in terms of CPU-time, this is mainly
of theoretical interest.

The complexity of Comon’s algorithm and CuBICA is of the same order. A significant difference is the
way how the optimal rotation angle φ µν is found. Comon’s algorithm uses a Matlab function to numerically
find the root of a polynomial of degree four in each step whereas CuBICA generates an array of function
values and searches for the maximal value. In Matlab implementation CuBICA performs faster and gives in
general slightly smaller unmixing errors. JADE is an algorithm based on kurtosis-maximization. It uses a
matrix-approximation for cumulant tensors of 4th order. This may explain the less accurate performance on
data set (v) but is also responsible for the relatively high speed, since matrices can be processed efficiently
in the Matlab implementation. This speed advantage might be less significant in a C implementation, for
instance, and vanishes for larger N (see data set (v)) because JADE needs to compute all N4 possible
cumulants of 4th order at least once. Comon’s algorithm and CuBICA, on the other hand, only need
to compute cumulants with at most two different indices. FastICA is significantly faster and Infomax is
much slower than the cumulant based methods. Both algorithms have in common that in our experiments
they needed some manual assistance. In FastICA we had to decide which nonlinearity should be used.
This decision was guided by the unmixing error, a measure that is usually not available in more realistic
applications. Infomax required some parameter tuning and repeated application to the data with different
parameter sets which made the algorithm inconvenient to use. It also seems questionable whether the speed
advantages of JADE and FastICA are worth the worse performance and the required manual assistance,
respectively.

By comparing unmixing errors of the different algorithms depending on the number of data points N
one can see from Figure 6.8 that all methods degrade similarly with shortened length of the data sets. One
marked difference however was that Infomax had a large variance, while all other algorithms gave virtually
identical results over different simulation runs. Thus although Infomax yielded best performance in some
runs it performed worst in others and we found it to be unreliable, particularly on the short data sets. On
the long data sets used for Table 6.1 Infomax was nearly as reliable as the other algorithms.
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Unmixing error (E)

contrast function/ data sets, # of components (N)

algorithm (i) (ii) (iii) (iv) (v)

N=6 N=6 N=7 N=12 N=40

CuBICA34 0.017 0.039 0.041 0.038 0.039
CuBICA34a 0.018 0.040 0.042 0.038 0.038
CuBICA4 0.017 0.31 0.11 0.035 0.039
CuBICA4a 0.017 0.32 0.12 0.037 0.038
Comon 0.017 0.25 0.14 0.049 0.061
JADE 0.016 0.30 0.11 0.035 0.10

Infomax 0.018 0.47 0.17 0.043 0.035
FastICA 0.016 0.040 0.11 0.042 0.037

Elapsed time / sec

contrast function/ data sets, # of components (N)

algorithm (i) (ii) (iii) (iv) (v)

N=6 N=6 N=7 N=12 N=40

CuBICA34 1.5 1.4 2.8 10.1 230.3

CuBICA34a 1.4 1.4 2.7 9.8 227.6

CuBICA4 1.3 1.3 2.6 9.5 223.8

CuBICA4a 1.4 1.4 2.7 9.8 237.1

Comon 2.4 2.3 4.3 14.1 300.2

JADE 0.7 0.7 1.1 5.4 404.6

Infomax 48.1 49.3 57.8 112.1 512.3

FastICA 1.7 0.5 0.5 6.2 16.8

Table 6.1: Unmixing error (E) and CPU-time in seconds for different algorithms and data sets. Data
sets: (i) 5 real acoustic sources from [John Fitzgerald Kennedy Library, Boston, 1996] + 1 normally dis-
tributed source (N (0,1)), (ii) 5 skew-normally distributed sources [Azzalini, 1985] + 1 normally distributed
source, (iii) 3 music sources from [Pearlmutter, 1996] + 3 skew-normally distributed sources + 1 nor-
mally distributed source, (iv) 6 real acoustic sources (3 speech + 3 music sources) from [John Fitzgerald
Kennedy Library, Boston, 1996] and [Pearlmutter, 1996] + 3 Laplace distributed sources + 1 normally
distributed source + 1 skew-normally distributed source + 1 sin(0.05∗ t), (v) 10 Beta distributed sources
(super-Gaussian) + 10 Cauchy distributed sources (sub-Gaussian) + 10 Laplace distributed sources (super-
Gaussian) + 10 Student-t distributed sources (sub-Gaussian). The number of data points for all data sets
was T=44218. Additional 20 simulations with different mixing matrices showed no significant variations in
the unmixing errors. Low values of E indicate good performance. Times have been measured on a 1.8 GHz
Pentium IV PC using Matlab 6.0 implementation. Relatively small unmixing errors and short CPU-times
are set bold face.
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Figure 6.8: Mean unmixing errors for data set (v) from Table 6.1 with N = 40 components and different
numbers of data points T with T ∈ {40,80,160,320,640,1280,2560,5120,10240,20480}. For each T
we took 10 different samples and performed 10 simulations on each, every simulation with a different
mixing matrix. For T = 5120,10240, and 20480 we used 7, 3, and 1 different samples, respectively, due
to the length of the whole data set (v). One additional sample was used to train Infomax and FastICA.
The standard deviation of the unmixing errors was less then 0.01 for all algorithms except Infomax. For
Infomax the parameter set with smallest unmixing error was found on a training set mixed with a single
mixing matrix. We used only one mixing matrix because finding a good parameter set for several mixing
matrices was too time consuming since the algorithm did often not converge on one of the matrices. Results
shown here are for the same test data sets as for the other algorithms. The error bars denote twice the
standard deviation of the unmixing error of Infomax.

6.5 Summary

We have proposed CuBICA, an improved cumulant based method for independent component analysis. In
contrast to Comon’s method [1994a] and other algorithms (FastICA, Infomax, and JADE) it takes third- and
fourth-order statistics into account simultaneously (CuBICA34) and is thus able to handle linear mixtures
of symmetrically and skew-symmetrically distributed source signal components. Due to its mathematically
simple formulation and since A8 in Equation (6.12) is small compared to A4, approximate algorithms,
CuBICA34a and CuBICA4a, can be derived easily, which show equal performances. Although, this is
mainly of theoretical interest, since the approximate algorithms are not significantly faster. Furthermore, in
contrast to FastICA and Infomax, CuBICA can be used without any parameter adjustments.

Since CuBICA can handle symmetric and asymmetric distributed sources, is easy to use, and shows
good performance, it may be a good general algorithm for performing ICA.





7

Linear ICA Based on Cumulants of
Order Two

In this chapter we introduce an algorithm for linear ICA that, in contrast to the algorithms derived in the
previous chapter, is based on second-order statistics. The measure of independence used for CuBICA34 is
based on higher order statistics (see Section 6.1.2) and is thus not applicable in the case of second-order ICA.
Therefore we use a different measure of statistical independence as described in Section 4.4. Nevertheless
the method is also based on successive Givens rotations in order to obtain statistically independent output
components. Starting with a brief introduction to the basic method in Section 7.1 the algorithm is described
in Section 7.2 for a single time delay and in Section 7.3 for several time delays. A comparison with TDSEP,
an algorithm that also uses second-order statistics, is given in Section 7.4.

7.1 Time Delayed Correlations

Molgedey and Schuster [1994] have been the first to propose an algorithm for linear ICA solely based
on second-order cumulants. Analogously to the previous chapter one could consider to diagonalize the
correlation matrix (cumulant tensor of second-order)

〈
x(t)x(t)T

〉
of the mixture x(t). This is equivalent

to a whitening (see Sec. 4.3.1). But, we know from [Comon, 1994b] that this is not sufficient to find the
original source signal components. Furthermore, the unmixing matrix R solving the linear ICA problem
u(t) = Rx(t) is generally non-symmetric whereas the correlation matrix

〈
u(t)u(t)T

〉
is symmetric. Thus

for an ICA method based on second-order statistics it is not sufficient to consider only the symmetric
correlation matrix. Jutten et al. [1988] therefore proposed to additionally measure nonlinear, non symmetric
correlations like

〈
ui (t)(u j (t))

3
〉

.
Instead Molgedey and Schuster [1994] suggested to simultaneously diagonalize the correlation matrix〈

x(t)x(t)T
〉

plus the time delayed correlation matrix
〈

x(t)x(t + τ)T
〉

with time delay τ . This is in con-
trast to other approaches where the required asymmetry is achieved by introducing nonlinearities in PCA
like in [Karhunen and Joutsensalo, 1994]. Assuming that x(t) has zero mean, the ICA problem introduced
by Molgedey and Schuster can be formulated as a generalized eigenvalue problem [Molgedey and Schuster,
1994]

C(x)
2 (τ)R = C(x)

2 RΛΛΛ , (7.1)

where R is the unmixing matrix, subject to learning, C(x)
2 is the covariance matrix as defined in 2.19, and

C(x)
2 (τ) is the time delayed correlation matrix of the mixed signal x(t) defined similar to the covariance

57



58 CHAPTER 7. LINEAR ICA BASED ON CUMULANTS OF ORDER TWO

matrix by

C(x) (τ) :=
〈

x(t)x(t + τ)T
〉

, (7.2)

C(x)
i j (τ) :=

〈
xi (t)x j (t + τ)

〉
. (7.3)

with τ being the time delay between two signal components. Equation (7.1) can be solved by standard
numerical linear algebra. Molgedey and Schuster also proposed a simple neural network (see Fig.7.1) that
is able to solve this kind of blind source separation.

If there exist degenerate eigenvalues in Equation (7.1) the method will fail to extract all source signal
components. Nevertheless, Tong et al. [1991] have shown that under some assumptions there exists a τ

such that the source signal components can be recovered.

u (t+1)1

2u (t+1)

T   u (t)21   2

T   u (t)12   1

x (t)2

x (t)1

Figure 7.1: Neural network with lateral inhibition that solves the source separation problem for a linear mix-
ture of two source signal components. Inhibitory synapses are shown as open arrows, excitatory synapses
are shown as filled arrows. The output of the network can be described by u(t +1) =−Tu(t)+x(t). The
weights T12 and T21 define the strength of the inhibitory synapses. The diagonal elements of the weight
matrix are zero (T11 = T22 = 0). Matrix T is related to the unmixing matrix R via R = I+T, with identity
matrix I.

7.2 CuBICA2 with a Single Time Delay

Molgedey and Schuster introduced time delayed correlations in order to achieve non symmetric unmixing
matrices. If we consider the alternative measure of independence described in Section 4.4 signal compo-
nents are considered statistically independent if they have vanishing time-delayed cross-correlations. That
means, that in the ideal case all time-delayed correlation-matrices are diagonal. Here the symmetrized
version of a cross correlation matrix is used because the non symmetric matrices can have complex eigen-
values and eigenvectors, which can cause problems during diagonalization (see e.g. [Ziehe and Müller,
1998] where the objective function is not shown in the paper but the Matlab implementation made available
by the authors makes use of this symmetric form). The symmetrized form of (7.1) reads

C(x) (τ) =
1
2

〈
x(t)x(t + τ)T +x(t + τ)x(t)T

〉
(7.4)

C(x)
i j (τ) =

1
2
〈
xi (t)x j (t + τ)+ xi (t + τ)x j (t)

〉
. (7.5)

Eigenvalue problem (7.1) can be reformulated similar to that in the previous chapter which also allows a
straightforward extension to the use of several time lags. First divide the unmixing matrix according to
Section 4.3.1 and as done in the previous chapter into two parts, namely R = QW. W denotes a whitening
transformation and Q is an orthogonal transformation.
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Now, assume that the input signal y(t) = Wx(t) is whitened. Then the generalized eigenvalue prob-
lem (7.1) reduces to a normal one

C(y)
2 (τ)Q = QΛΛΛ , (7.6)

with remaining orthogonal transformation Q. From Equation (7.6) follows

QT C(y)
2 (τ)Q = C(u)

2 (τ) = ΛΛΛ . (7.7)

Thus Q diagonalizes C(u)
2 (τ), Therefore the eigenvalue problem can be described as an diagonalization

problem. Using the definition for matrix-diagonalization from Section 4.6.2 we can define a simple objec-
tive function

Ψ2 =
N

∑
i, j=1
i6= j

(
C(u)

i j (τ)
)2

(7.8)

=
N

∑
i,i=1
i6= j

(
qT

i C(y) (τ)q j

)2
, (7.9)

where qi := [Qi1,Qi2, . . . ,QiN ]T is the i-th row of Q. Subscript 2 stands for second-order ICA. This objective
function can be maximized by applying successive Givens rotations similar to the optimization procedure
for CuBICA34. In Section 4.6.2 we have derived a closed expression for the rotation angle φ of a single
Givens rotation in the case of N = 2. We can use (4.37) and solve the optimization problem by minimizing

Ψ2 = A0τ +A4τ cos(4φ +φ4τ) , (7.10)

with the constants as defined in Appendix B.2.1. A τ in the subscripts of A0τ , A4τ and φ4τ show their
dependency on the time delay τ . Using the same argument as in Section 6.1.2 the minimization of the sum
of the squared off-diagonal elements of the time-delayed correlation-matrix as in (7.9) is equivalent to the
maximization of the sum of the squared time-delayed auto-correlations. This leads to an objective function
equivalent to (7.10) but with different constants. The minimum of (7.10) is given by φmin =−φ4/4. Thus,
reformulating the eigenvalue problem (7.6) as a diagonalization problem we obtain an objective function
that is easy to evaluate and the optimal rotation angle can be calculated in a very simple way. If the number
of mixed source signal components N is N > 2 the unmixing can be achieved resorting to the method
proposed in 6.1.4.

7.3 CuBICA2 with Several Time Delays

From [Tong et al., 1991] we know that second-order ICA can always be solved with a single time delay.
However, the delay τ has to be chosen properly so that all eigenvalues of C(y) (τ) are distinct. To ob-
tain a more robust method one can consider a certain number T of time-delayed correlation-matrices with
respective time delays τ = 1,2, . . . ,T and diagonalize them jointly. Belouchrani et al. [1997] derived an
algorithm for blind source separation based on simultaneous diagonalization of several time delayed cor-
relation matrices. Ziehe and Müller [1998] proposed a similar algorithm as an extension to the original
approach by Molgedey and Schuster. Extending the objective (7.9) to several time delays is straightforward

Ψ2j :=
T

∑
τ=1

κτ Ψ2 (τ) (7.11)

=
T

∑
τ=1

κτ

N

∑
i, j=1
i 6= j

(
C(u)

i j (τ)
)2

(7.12)

=
T

∑
τ=1

κτ

N

∑
i, j=1
i 6= j

(
qT

i C(y) (τ)qi

)2
, (7.13)
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where we additionally introduced factors κτ , which allows us to weight correlation matrices with different
time delays differently. Again time dependencies are denoted by a τ as a subscript. The j in 2j stands for
joint diagonalization. Note that κτ should all be positive if Ψ2j is minimized.

Extending the objective function of ICA in this way yields a joint diagonalization of several correlation
matrices with different time delays, thus decorrelation is achieved over a small time window of length T . It
is intuitively clear that by enlarging the window length the unmixing performance should improve.

Equation (7.10) described the objective function for second-order ICA for a single time delay τ and
N = 2. For each arbitrary time delay there will be a similar objective function, distinct only by its constants.
If we put (7.10) into the first line of Equation (7.13) and denote the explicit τ-dependencies of the constants
we arrive at

Ψ2j =
T

∑
τ=1

[A0τ +A4τ cos(4φ +φ4τ)] (7.14)

=
T

∑
τ=1

A0τ +
T

∑
τ=1

A4τ cos(4φ +φ4τ) . (7.15)

We can simplify objective function (7.15) using some trigonometric identities and derive a very simple
objective function, subject to minimization

Ψ2j (φ) = Ā0τ + Ā4τ cos
(
4φ + φ̄4τ

)
, (7.16)

with constant as defined in Appendix B.2.2. The minimum of Ψ2j is reached for angles φmin satisfying the
condition

φmin = π/4− φ̄4τ/4 . (7.17)

In contrast, the calculation of the rotation angle in TDSEP [Ziehe and Müller, 1998] and SOBI [Be-
louchrani et al., 1997] involves a two-dimensional eigenvalue problem plus taking a square-root [Cardoso
and Souloumiac, 1996].

7.4 Simulation

We carried out a simulation to compare CuBICA2 with TDSEP [Ziehe and Müller, 1998], a different ICA
method based on the same principle. As a source signal we used dataset (i) from Chapter 6. For TDSEP we
have used original software provided by the authors 1. The data set was mixed by a randomly chosen mixing
matrix with entries chosen uniformly from [−1,1]. We used different numbers of time delays T , namely
all 1 ≤ T ≤ 50. The unmixing performance was measured by the measure introduced in Section 4.7. The
results are shown in Figure 7.2. There is virtually no difference between the two algorithms with respect
to the unmixing error. Comparing the two by means of the elapsed CPU-time the simulation showed that
CuBICA2 is faster than TDSEP by a factor of two. We also tested an implementation of TDSEP with
similar routines to that of CuBICA2 which showed no difference in time consumption.

7.5 Summary

CuBICA2, a method for independent component analysis based solely on second-order statistics, has been
proposed. In contrast to TDSEP [Ziehe and Müller, 1998], an algorithm based on the same principle, the
calculation of the rotation angle for each Givens rotation can be computed in a linear fashion. Comparing
CuBICA2 and TDSEP shows that, while both algorithms show identical unmixing performance, CuBICA2
is a factor of two faster than TDSEP. The elegant way of computing the rotation angle gives the possibility
to easily develop ICA algorithms that combine second-order and higher-order statistics. Such combined

1TDSEP: http://wwwold.first.fhg.de/~ziehe/download.html (Version 2.01 of February 14th, 1999, down-
loaded August 6th, 2004)

http://wwwold.first.fhg.de/~ziehe/download.html
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Figure 7.2: Comparison of TDSEP and CuBICA in terms of (a) elapsed time and (b) unmixing performance
of the respective algorithm. Different numbers of time delays T have been tested (1≤ T ≤ 50). TDSEP and
CuBICA2 perform virtually identically with respect to the unmixing error, however CuBICA2 is faster by a
factor of two. The difference in the performance for T = 1 is due to the fact that in this case TDSEP solves
the ICA problem via the generalized eigenvalue problem. This method shows better performance than the
Jacobi method.

algorithms can be helpful in cases, where some components of the source signal have no auto-correlation
and others lack higher-order statistics. A work in this direction is [Müller et al., 1999].

Furthermore CuBICA2 allows us to derive an algorithm for nonlinear blind source separation in com-
bination with SFA, which we will describe in the next part of this thesis.
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Relations between ICA and SFA in the
linear Case

In data analysis when dealing with vectorial signals it is often useful to find a suitable representation to gain
as much information as possible about the underlying processes. For example, consider two people speaking
simultaneously while being recorded with two microphones. The observed signal is a mixture of their voices
and a useful representation would be one where each signal component contains only information of a single
speaker. For visual input data, for instance, one might be interested in a representation that is invariant to
typical transformations, such as translation or zoom. A variety of linear and nonlinear methods are known,
depending on the task, to extract the interesting features from an observed signal.

In the first and second part of this thesis we have introduced the concepts of BSS/ICA and slow feature
analysis (SFA), two possible methods that are able to extract some of the interesting features from an
observed signal. ICA finds a representation of the data such that signal components are mutually statistically
independent, which can be used to separate the two speakers in the example above. SFA extracts slowly
varying features, which can be used in the second example for learning visual invariances. At first glance
these two perspectives to analyze multivariate signals are very different and actually seem to be conflicting,
since two slowly varying signals of finite length are more likely to have statistical dependencies than quickly
varying ones. But as we will see ICA, and SFA do have common properties which we want to point out by
comparing the two algorithms mathematically.

SFA is constrained to signals with temporal structure like speech signals and it is based on second-order
statistics. For a comparison with ICA we therefore consider the ICA algorithm introduced in Chapter 7 that
only uses second order information and also needs a temporally structured signal.

SFA is generally a nonlinear method. It uses a nonlinear expansion to map the input signal into a feature
space and solves the linear problem in the feature space, whereas ICA is typically a linear method (although
there exist some nonlinear approaches). To make a comparison between the two methods possible, we will
restrict SFA to the linear case. Nevertheless all calculations in the following are essentially the same for
linear or nonlinear SFA.

Throughout this chapter we will follow the two-stage approach (cf. Sec. 4.3.1). After the whitening-
stage, the first stage, (see Sec. 4.3.1) an orthogonal transformation Q on y, which mainly corresponds to
a rotation, is sufficient to yield independent components [Comon, 1994b] or slowly varying features (cf.
Sec. 5.1.2). Thus the output signal u(t) can be obtained by combining the whitening matrix W and a
rotation matrix Q

u(t) = Qy(t) = QWx(t) . (8.1)

In the following we will always assume whitened data y(t) and focus on finding Q for unmixing. Notice,
that for whitened data properties zero mean (4.10), unit variance (4.11), and decorrelation (4.12) constraints
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hold. Since these properties are preserved under any orthogonal transformation it is obvious that the compo-
nents of u(t) also satisfy these conditions (5.2-5.4) imposed by SFA. For ICA, these properties are essential
too, since they force the yi (t) to be statistically independent in first, and second order (cf. Sec. 4.3.1).

In order to compare SFA and BSS/ICA we recapitulate the objective function of CuBICA2 with a single
time delay τ , subject to minimization (7.9)

Ψ2 =
N

∑
i, j=1
i 6= j

(
C(u)

i j (τ)
)2

(8.2)

=
N

∑
i, j=1
i 6= j

(
qT

i C(y) (τ)q j

)2
, (8.3)

where qi = [Qi1,Qi2, . . . ,QiN ]T is the i-th row of Q. Ψ2 is a function of the qi which are subject to learning
and the whitened signal components y are given. Keeping the ICA objective (8.3) in mind we will now
derive an SFA objective function in the following, that allows a comparison between SFA and second-order
ICA.

In Section 8.1 we derive similarities between ICA and SFA first in the case of a single time delay. Pos-
sible extensions to several time delays are derived in Section 8.2. The chapter concludes with a comparison
in Section 8.3 and a summary in Section 8.4.

8.1 Linear Slow Feature Analysis

Assume a whitened input signal y(t) = [y1(t), . . . ,yN(t)]T is given. Linear SFA finds a rotation matrix Q
such that the components ui of the output signal u(t) = Qy(t) are varying as slowly as possible, the first
one being the slowest possible, the second one the next slowest uncorrelated to the first, etc. As a measure
of slowness we define (small values indicating slowly varying signals) (cf. 5.1)

∆(ui) :=
〈
(u̇i (t))

2
〉

. (8.4)

Searching for the slowest components we want to minimize ∆(ui). Because of the prewhitening and since
Q is orthogonal, ui (t) has zero mean and unit variance. This ensures that the solution will not be the trivial
solution ui (t) = const. Decorrelation of the signal components, the third property due to the prewhitening,
guarantees that different components carry different information (see also Sec. 5.1).

We will first show how to solve the optimization problem of SFA in a way similar to that described in
Chapter 5 and then establish a mathematical link between SFA and ICA in a way inspired by second-order
ICA.

Since we have discrete time series, we need an approximation of u̇(t). As a first order approximation
of the first derivative of u(t) we define

u(t)≈ u(t +1)−u(t) . (8.5)

With this approximation we can compute
〈
u̇2

i
〉

as〈
u̇2

i
〉

≈ 〈[ui (t +1)−ui (t)] [ui (t +1)−ui (t)]〉 (8.6)
= [〈ui (t +1)ui (t +1)〉+ 〈ui (t)ui (t)〉]−

[〈ui (t)ui (t +1)〉+ 〈ui (t +1)ui (t)〉] (8.7)
= 2〈ui (t)ui (t)〉−〈ui (t)ui (t +1)+ui (t +1)ui (t)〉 (8.8)

(〈ui (t +1)ui (t +1)〉= 〈ui (t)ui (t)〉 because averaging is over all t )
= 2−〈ui (t)ui (t +1)+ui (t +1)ui (t)〉 (8.9)

(〈ui (t)ui (t)〉= 1 because u(t) is white ) .
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Since the constant factor does not matter during optimization we can make a simplification. Instead of
minimizing ∆(ui), we can maximize

∆̃(ui) := 1− 1
2

∆(ui) (8.10)

=
1
2
〈ui (t)ui (t +1)+ui (t +1)ui (t)〉 (8.11)

= C(u)
ii (1) (8.12)

= qT
i C(y) (1)qi , (8.13)

where we notice that ∆̃(ui) is a function of the orthogonal Q and thus we are searching for the normed
weight vectors qi that maximize ∆̃(ui) in (8.13). The solution for i = 1 is the eigenvector of the time-delayed
correlation-matrix C(y) (1) that belongs to the largest eigenvalue. This eigenvector produces the slowest
component u1 (t). The eigenvectors of the next higher eigenvalues produce the next slowest components
(u2 (t) ,u3 (t) , . . . and so forth).

Thus, to extract all slow components the maximization problem (8.13) can be formulated as an eigen-
value problem (cf. (5.1.2))

C(y) (1)Q = QΛΛΛ (8.14)

where ΛΛΛ denotes a diagonal matrix with Λii the ith eigenvalue belonging to the eigenvector qi. Solving
the eigenvalue problem (8.14) yields the eigenvalues and eigenvectors of C(y) (1) but without the preferred
order. Therefore the eigenvectors must be sorted by their corresponding eigenvalues in decreasing order. In
this way the extracted signal components ui (t) are arranged according to slowness with u1 being the slowest
component.

In order to allow a better comparison with second-order ICA, we now want to deduce an alternative
formulation of SFA, i.e. we want to construct an objective function similar to that of second-order ICA.
First we show the equivalence of solving the eigenvalue problem (8.14) and the diagonalization of C(u) (1).
If we multiply both sides of (8.14) with QT we obtain

QT C(y) (1)Q =
1
2

〈
u(t)u(t +1)T +u(t +1)u(t)T

〉
= C(u) (1) = ΛΛΛ . (8.15)

Since ΛΛΛ is diagonal, C(u) (1) is diagonal, too. Therefore solving the eigenvalue problem is equivalent to
finding a matrix Q with u(t) = Qy(t) such that the time-delayed correlation-matrix C(u) (1) is diagonal
(cf. [Wiskott, 2003b]). To perform the diagonalization we use the same Jacobi scheme as for second-
order ICA, namely we minimize all off-diagonal entries of C(u) (1) (see Sec. 7.2) and derive the following
objective function for SFA to be minimized

Ψ̃SFA :=
N

∑
i, j=1
i 6= j

(
C(u)

i j (1)
)2

. (8.16)

Interestingly this objective function is identical to the one for second-order ICA (8.3). Thus we arrive at the
important result that in the linear case, second-order ICA and SFA are equivalent in the case of one time
delay.

To bring (8.16) into a form that can be understood more intuitively in the sense of SFA we can use the
fact that the sum of all squared entries of correlation matrices with a given time delay τ is invariant under
orthogonal transformations

N

∑
i, j=1

(
C(u)

i j (τ)
)2

=
N

∑
i, j=1

(
C(y)

i j (τ)
)2

= const. (8.17)

We can split this sum into two terms
N

∑
i, j=1

(
C(u)

i j (τ)
)2

=
N

∑
i=1

(
C(u)

ii (τ)
)2

+
N

∑
i, j=1
i6= j

(
C(u)

i j (τ)
)2

= const. , (8.18)
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so that it is easy to see that minimization of Ψ̃SFA is equivalent to maximization of

ΨSFA :=
N

∑
i=1

(
C(u)

ii (1)
)2

(8.19)

=
N

∑
i=1

(
qT

i C(y) (1)qi

)2
. (8.20)

Thus, having started from minimizing temporal variations (8.4) as an objective for SFA we now conclude
with an objective for maximizing auto-correlations (8.20). This relation can be interpreted intuitively: a
signal component with large auto-correlation has a high temporal predictability. Predictability on the other
hand means that the signal component has to vary slowly.

Maximizing (8.20) produces the same slow components u1 (t) , . . . ,uN (t) as obtained by the eigenvalue
problem (8.14), again not ordered by slowness. Thus, if an order of the slow components is needed, a
further sorting step has to be applied to the components when using the Jacobi method (cf. 4.6).

What if C(u)
ii (1) < 0? This could happen if for example ui (t) has alternating signs for successive data

points, e.g. define a signal component by

ui (t) :=
{

-1 for t odd
1 for t even

, (8.21)

with 1 ≤ t ≤ P. This signal component has zero mean and unit variance and thus fulfills Constraints (5.2)
and (5.3). Furthermore it is favourable in terms of the objective (8.20), since C(u)

ii (1) has a large absolute
value. But it is a very fast varying component which seems paradoxical, since maximizing (8.20) should re-
sult in slowly varying components. This apparent contradiction can be resolved by studying the constraints
imposed on the optimization of (8.20). Since Q is an orthogonal matrix, the trace of C(u) (1) is invariant
under the transformation u(t) = Qy(t) [Zurmühl and Falk, 1997]. Thus, if we consider all N possible com-
ponents in the optimization procedure, the decrease of one correlation C(u)

ii (1) implies that at least one other
correlation C(u)

j j (1) with j 6= i is increased. Therefore extracting quickly varying components implies that
other extracted components are slowly varying signals. Hence, it is reasonable to further minimize negative
correlations since this in turn implies that other correlations will be maximized.

8.2 More than one Time Delay

8.2.1 Second-Order ICA

A straightforward extension of objective (8.3) to several time delays subject to minimization is given
by (7.13). We give the definition

Ψ2j :=
T

∑
τ=1

κτ Ψ2 (τ) (8.22)

=
T

∑
τ=1

κτ

N

∑
i, j=1
i 6= j

(
C(u)

i j (τ)
)2

(8.23)

=
T

∑
τ=1

κτ

N

∑
i, j=1
i 6= j

(
qT

i C(y) (τ)q j

)2
, (8.24)

with κτ that allow to weight correlation matrices with different time delays differently. Note that κτ should
all be positive if Ψ2j is minimized.
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8.2.2 SFA

Joint Diagonalization

To extend SFA to more than a single time delay, we can use a similar argument as for second-order ICA.
Adding more time-delayed auto-correlations increases the temporal predictability of the signal, that is,
knowing the amplitude of a signal at a given time point, we can give a good prediction of the next T time
points since they are strongly correlated. Signals with large temporal predictability in turn are likely to be
slowly varying. Thus, an intuitive extension of the normal SFA objective (8.20), subject to maximization,
is

ΨSFAj :=
T

∑
τ=1

κτ ΨSFA (τ) (8.25)

=
T

∑
τ=1

κτ

N

∑
i=1

(
C(u)

ii (τ)
)2

. (8.26)

=
T

∑
τ=1

κτ

N

∑
i=1

(
qT

i C(y) (τ)qi

)2
. (8.27)

Again, the j in SFAj stands for joint diagonalization. Like in (8.24) we introduced weighting factors κτ

for each time-delayed correlation-matrix with time delay τ . Note that this is again equivalent to the ICA
objective (8.24) due to the constancy of the sum of all squared entries of each time-delayed correlation-
matrix (8.18).

We have to be careful with this definition, though, for two reasons.
Firstly, while the definition of slowness based on C(u)

ii (1) corresponds to our intuition of what a slow
signal is, C(u)

ii (2) can have a large value for signal components that we would not consider to be slow at all.
In fact, the alternating signal defined at the end of Section 8.1 would yield a maximal value of C(u)

ii (2).
Secondly, consider the case where two time-delayed auto-correlations have different sign, e.g. C(u)

ii (1) <

0 and C(u)
ii (2) > 0. Maximizing objective function (8.26) would favor a decreasing value of C(u)

ii (1) (since
it is negative) and an increasing value of C(u)

ii (2). The former would intuitively tend to make the signal
faster while the latter would make it slower. Thus, if the auto-correlations of a component have different
signs for different time-delays, the objective function seems to be inconsistent, at least for this component.
This conflict cannot be solved as easily as the conflict discussed at the end of Section 8.1. However, one
can at least monitor the signs of the auto-correlations and diagnose the inconsistent cases.

It is not clear to us to what extent these two problems matter in practice. We believe that by weighting
the first auto-correlation stronger than the other ones, e.g. with an exponential decay of the weights, the
inconsistencies can be largely avoided.

Linear Filtering

An alternative to the joint diagonalization of several correlation matrices with different time delays, as is
done also for second-order ICA, is to average over a range of time delays within one correlation matrix and
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diagonalize just this one matrix. To do so, we introduce the following new measure of slowness:

Σ(ui) :=
1
2

〈
ui (t)

(
T

∑
τ=1

κτ ui (t + τ)

)
+

(
T

∑
τ=1

κτ ui (t + τ)

)
ui (t)

〉
(8.28)

=
T

∑
τ=1

κτ

1
2
〈ui (t)ui (t + τ)+ui (t + τ)ui (t)〉 (8.29)

=
T

∑
τ=1

κτC(u)
ii (τ) (8.30)

= qT
i

(
T

∑
τ=1

κτ C(y) (τ)

)
qi (8.31)

=: qT
i C̃(y)qi , (8.32)

with constants κτ that weight different time delays differently. This definition (8.28) differs from (8.11) in
that ui (t) should not only be well correlated to the next data point but to a weighted average over the next T
data points. This is a straightforward way of taking several time scales into account. Note that the weighted
averaging is a linear-filter operation. Like in the joint-diagonalization extension exponentially decaying
weights κτ := exp(−γτ) for different time delays seems to be a suitable choice. With such weights this
measure of slowness is similar to the objective of temporal smoothness used by Stone [1995] and somewhat
related also to the trace learning rules first introduced by Földiák [1991].

Because of the formal similarity of (8.32) with (8.13) we can apply the analogous steps that led from (8.13)
to (8.20) and derive the following objective function to be maximized

ΨSFAl :=
N

∑
i=1

(
C̃(u)

ii

)2
(8.33)

=
N

∑
i=1

(
qT

i C̃(y)qi

)2
, (8.34)

where SFAl stands for linear-filtering SFA. Since this objective function is based on just one correlation
matrix, it does not have the problems mentioned above for the joint-diagonalization extension.

Higher Derivatives

We have also considered extending SFA by simultaneously minimizing not only the variance of the first but
also of higher-order derivatives. This also leads to equation (8.34), because approximations of higher-order
derivatives involve multiple time delays.

First, define an objective function using the nth derivative instead of the first derivative used in (8.4) as

∆n(ui) :=
〈(

u(n)
i

)2
〉

, (8.35)

where u(n)
i denotes the nth derivative of ui. We can now define an extended objective function for SFA

including several derivatives, which is subject to minimization

Σ(ui) :=
T

∑
n=0

αn∆n(ui) =
T

∑
n=0

αn

〈(
u(n)

i

)2
〉

, (8.36)

where T is the highest derivative taken into account, and αn are factors that weight the different derivatives.
Corresponding to the approximated first derivative of ui (8.5) we can also define appropriate approximations
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for all other derivatives u(n)
i (see Appendix C.1). Using these we can write the approximated objective

function, subject to minimization

Σ(ui) ≈
T

∑
n=0

αn

n

∑
τ=0

βnτC(u)
ii (τ) (8.37)

=
T

∑
τ=0

δτ C(u)
ii (τ) . (8.38)

Constants βnτ are due to the approximated derivatives (see Appendix C.2) and listed in Table 8.0(a) up to
order four. From Table 8.0(a) we can identify two interesting properties of the βnτ :

(i) βnτ are larger for larger n.

(ii) βnτ have alternating signs for successive time delays.

Due to property (i) higher derivatives would dominate the objective function (8.38). Therefore we intro-
duced the additional constants αn which can compensate for this imbalance. Combining the βnτ and αn
results in constants δτ (see Appendix C.3).

Since the correlation matrix with zero time delay is constant under orthogonal transformations we can
neglect it and derive, similar to (8.11), an objective function, subject to maximization

Σ̃(ui) := −
T

∑
τ=1

δτC(u)
ii (τ) (8.39)

= qT
i

(
−

T

∑
τ=1

δτ C(y) (τ)

)
qi (8.40)

=: qT
i C(y)qi . (8.41)

Equation (8.41) is formally similar to (8.13). Thus, we can apply the analogous steps that led from (8.13)
to (8.20) and derive the following objective function, subject to maximization

ΨSFAh :=
N

∑
i=1

(
−

T

∑
τ=1

δτC(u)
ii (τ)

)2

(8.42)

=
N

∑
i=1

(
C(u)

ii

)2
(8.43)

=
N

∑
i=1

(
qT

i C(y)qi

)2
, (8.44)

where SFAh stands for higher derivatives.
The constants δτ in (8.42) depend on the choice of αn (cf. Appendix C.3). Setting

αn =
1

∑
n
τ=0 |βnτ |

∀n ∈ {0, 1, . . . , T} (8.45)

results in weighting constants δτ shown in Table 8.0(b). It can be seen that all δτ used in the objective
function (8.42) (those with 1 ≤ τ ≤ T ) decrease almost exponentially in τ for a given T .

The weights αn of different derivatives need to be positive, otherwise some of the ∆n (ui) will be min-
imized and some will be maximized. Therefore the constants δτ share property (ii) with βnτ . Thus, by
maximizing ΨSFAh of Equation (8.44) a sum of time-delayed auto-correlations C(u)

ii (τ) with positive δτ (τ
odd) and negative δτ (τ even) will be optimized (one could only force the δτ to have the same sign for all τ

by choosing αn in a counterintuitive way, e.g. in the case of T = 4 using [α1,α2,α3,α4] = [−10,15,−7,1]
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(a) Constants βnτ

n ↓ τ → 0 1 2 3 4
0 1/2 0 0 0 0
1 1 -1 0 0 0
2 3 -4 1 0 0
3 10 -15 6 -1 0
4 35 -56 28 -8 1

(b) Constants δτ

T ↓ τ → 0 1 2 3 4 factor
0 1 ×2
1 3 -1 ×1/2
2 15 -8 1 ×1/8
3 70 -47 10 -1 ×1/32
4 315 -244 68 -12 1 ×1/128

Table 8.1: (a) Constants βnτ arising from the linear approximation of the first four derivatives of ui. Sub-
script n denotes the order of derivative. (b) Constants δτ arising from the linear approximation of the
first four derivatives of ui, if all derivatives are weighted corresponding to αn = 1/(∑n

τ=0 |βnτ |) ∀ n ∈
{0, 1, . . . , T}. Additionally we omitted common factors of all constants in a single row, since only the
relative weighting of the time-delayed correlations is relevant, they are shown in the last column of each
row. All derivatives up to order T are summed up. Note, that the number of time delays equals the order of
the highest derivative taken into account. For detailed calculations see Appendix C.2.

all T time-delayed correlation-matrices in (8.44) will be weighted equally and have the same sign (δτ = 1)).
This is counterintuitive and hints at a flaw of this approach. Higher derivatives, even though their approxi-
mation involves several time delays, do not focus on longer time scales but on the fine structure on shorter
time scales, which are estimated based on several successive data points. Conceptually, this seems to be the
wrong direction to go, even though unmixing performance was actually good in some simple examples.

8.3 Comparison of SFA and ICA

We have seen, that the objective functions for second-order ICA and linear SFA are identical for a single
time delay. Even if SFA and ICA have the same objective function the two algorithms are designed to solve
different problems. Therefore they are based on different assumptions of the source signal and the mixture
model. It is worth discussing these assumptions needed to perform SFA resp. ICA.

For second-order ICA it can be shown that given a linear mixture x(t) = As(t) of source signal compo-
nents source separation can be achieved if the source signal components s j (t) are (i) uncorrelated, and (ii)
have different auto-correlations at some time delay τ > 0 (Theorem 2 in [Tong et al., 1991]). SFA needs (i)
uncorrelated source signal components and (ii) uncorrelated first derivatives. The decorrelation condition
is always fulfilled for both methods since we always apply a whitening step first. To compare the second
conditions we again use the linear approximation (8.5) to see that decorrelation of the derivatives of the
source signal components is approximately equal to decorrelation of the time-delayed signal-components
(
〈
si (t)s j (t + τ)

〉
= 0) with the given time delay τ = 1 (8.9). The difference between the two methods is

that for SFA the time delay is given and the source signal components must have different auto-correlations
at this point, whereas for second-order ICA the right time delay can be chosen properly.

The case of several time delays e.g. TDSEP [Belouchrani et al., 1997], and SOBI [Ziehe and Müller,
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1998], which is a way to circumvent the problem in second-order ICA of finding the right time delay, has a
correspondence in the joint-diagonalization approach of SFA, called SFAj (8.27).

However since ICA is a linear method the equivalence of SFA and second-order ICA only holds for
linear SFA. SFA will produce accurate results, namely the slowest components that can be achieved, no
matter if linear or the nonlinear SFA is used whereas ICA can recover only linearly mixed source signal
components.

8.4 Summary

To summarize differences and similarities between the second-order ICA and SFA one can state that (i)
since ICA is a linear method whereas SFA can be linear and nonlinear a reasonable comparison can only
be done with linear SFA, (ii) in the case of a single time delay τ = 1 the two algorithms are equivalent,
cf. (8.2) and (8.16); (iii) in case of several time delays a formulation of SFA (8.27) similar to ICA (8.24)
can be found, but is known not to work in all cases. Instead a different extension (8.34) is introduced, that
provides a proper extension of the slowness criterion (8.11) to several time scales.
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Independent Slow Feature Analysis
In this chapter we will concentrate on nonlinear blind source separation (BSS) (cf. Sec. 4.5). While the
linear BSS problem can be solved by resorting to independent component analysis (ICA) (cf. Sec. 4.2) this
is not possible in the nonlinear case.

The objective of this chapter is to show that the nonlinear BSS problem can be solved by combining
ICA and SFA. After a short introduction in Section 9.1 we will introduce independent slow feature analysis
(ISFA) in Section 9.2, a combination of ICA and SFA, that solves the nonlinear BSS problem. After
some simple simulations in Section 9.3, demonstrating the performance of ISFA, we conclude with a brief
discussion in Section 9.4.

9.1 A New Approach to Nonlinear BSS

Starting from the nonlinear mixing model (4.27)

x(t) = F (s(t)) , (9.1)

with a nonlinear function F (·) RN →RM , we want to extract the original source signal s(t) when only x(t)
is observed. There are several known methods that try to solve this nonlinear BSS problem (cf. Sec. 4.5).
They can roughly be divided into algorithms with a parametric approach (Fig. 9.1 (a)) and algorithms with
a nonlinear-expansion approach (Fig. 9.1 (b)). With the parametric model the nonlinearity of the mixture is
estimated by parametrized nonlinearities (see e.g. [Almeida, 2004]). In the nonlinear-expansion approach
the observed mixture is mapped into a high dimensional feature space and afterwards a linear method is
applied to the expanded data, a common technique to turn a non-linear problem into a linear one.

In our approach we do not follow the parametric approach but adopt a nonlinear-expansion approach.
With respect to the source signal components we make the assumption that they have significant auto-
correlation, which makes them vary on a relatively slow time scale. Nonlinear mixtures of such sig-
nal components are typically more quickly varying than the original components. Assume for exam-
ple a sinusoidal signal component xi (t) = sin(t) and a second component that is the square of the first
x j (t) = xi (t)

2 = 0.5(1− cos(2t)) are given. The second component is more quickly varying due to the
frequency doubling induced by the squaring. To extract the right source signal components one should
therefore prefer the slowly varying ones. Considering this we propose, in order to perform nonlinear BSS,
to complement the independence objective of pure ICA with a slowness objective. The basis of this slow-
ness objective builds SFA as defined in Chapter 5.

In Chapter 8 we developed an alternative objective for SFA showing the direct relation between ICA
and SFA. This has been done for the linear case. In the nonlinear case this relation can not be established,
but the alternative formulation at least permits a simple integration of the SFA and ICA objectives. Here
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z=h(x) u=Rz

s

nonlinear
expansion

linear unmixing
and projection

x=F(s)

nonlinear
mixing

nonlinear unmixing
parametrized Φu=    (x)α

(b)

(a)

Figure 9.1: Sketch of two different approaches to nonlinear ICA. (a) Parametric approach: Learn a nonlinear
function Φα with parameter set α to find the inverse of F (·). (b) Nonlinear expansion approach: The
mixture x is mapped into a high dimensional feature space to obtain z. Linear ICA is applied to z. Results
are projected back into input space to obtain the estimated source signal u.

again the reformulation (8.19)of the SFA objective, subject to maximization

ΨSFA (Q) =
M

∑
i=1

(
C(u)

ii (τ)
)2

=
M

∑
i=1

(
M

∑
k,l=1

QikQilC
(y)
kl (τ)

)2

. (9.2)

Note that with τ = 1 this objective yields exactly the same slowly varying signals as with the original
objective (5.1).

9.2 Independent Slow Feature Analysis

The nonlinear BSS method proposed in this section combines the principle of independence known from
linear second-order BSS methods with the principle of slowness as described above. Because of the com-
bination of ICA and SFA we refer to this method as Independent Slow Feature Analysis (ISFA). As already
explained, second-order ICA tends to make the output components independent and SFA tends to make
them slow. Since we are dealing with a nonlinear mixture we first compute a nonlinearly expanded signal
z(t) = h(x(t)) with h(·) RM →RL being some nonlinear function chosen such that z(t) has zero mean. In
a second step z(t) is whitened to obtain y(t) = Wz(t). Finally we apply linear ICA combined with linear
SFA on y(t) in order to find the estimated source signal u(t). Because of the whitening we know that ISFA,
like ICA and SFA, is solved by finding an orthogonal L×L matrix Q. We write the estimated source signal
u(t) as

v(t) :=
[

u(t)
ũ(t)

]
= Qy(t) = QWz(t) = QWh(x(t)) , (9.3)

where we introduced auxiliary variables v(t) and ũ(t) since R, the dimension of the estimated source signal
u(t), is usually much smaller than L, the dimension of the expanded signal. While the ui (t) are statistically
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independent and slowly varying the components ũi (t) are more quickly varying and may be statistically
dependent on each other as well as on the selected components ui (t). The ũi (t) are irrelevant for the final
result but important during the optimization procedure, see below.

To summarize, we have an M-dimensional input x(t), an L-dimensional nonlinearly expanded and
whitened y(t), and an R-dimensional estimated source signal u(t). ISFA finds an R dimensional subspace
such that the ui (t) are independent and slowly varying. This is achieved at the expense of all ũi (t).

9.2.1 Objective Function

To recover R source signal components ui, i = 1, . . . ,R out of an L-dimensional expanded and whitened
signal y the objective reads

ΨISFA (u1, . . . ,uR;τ) := bICA

R

∑
i, j=1,
i6= j

(
C(u)

i j (τ)
)2
−bSFA

R

∑
i=1

(
C(u)

ii (τ)
)2

, (9.4)

where we simply combine the ICA objective as defined in (7.9) and SFA objective (9.2) weighted by the
factors bICA and bSFA, respectively. Note that the ICA objective is usually applied to the linear case to
unmix the linear whitened mixture y = Wx whereas here it is used on the nonlinearly expanded whitened
signal y = Wz. ISFA minimizes ΨISFA, which is the reason why the SFA part has a negative sign.

9.2.2 Optimization Procedure

From (9.3) we know that C(u) (τ) in (9.4) depends on the orthogonal matrix Q. There are several ways to
find the orthogonal matrix that minimizes the objective function. Here we apply successive Givens rotations,
as defined in Section 4.6.1, to obtain Q. The objective (9.4) as a function of a Givens rotation Qµν within
the plane of two selected components µ and ν reads

Ψ
µν

ISFA (Qµν) = bICA

R

∑
i, j=1,
i 6= j

(
L

∑
k,l=1

Qµν

ik Qµν

jl C(y)
kl (τ)

)2

−bSFA

R

∑
i=1

(
L

∑
k,l=1

Qµν

ik Qµν

il C(y)
kl (τ)

)2

. (9.5)

Applying a Givens rotation Qµν in the µν-plane changes all covariances C(y)
.. (τ) with at least one of the

indices equal to µ or ν . For each Givens rotation there exists an angle φmin with minimal Ψ
µν

ISFA. Successive
application of Givens rotations Qµν with rotation angle φmin leads to the final rotation matrix Q yielding

QT C(y) (τ)Q =

[
C(u) (τ) C(u,ũ) (τ)

C(ũ,u) (τ)
T C(ũ) (τ)

]
, (9.6)

with r× (L− r) dimensional C(u,ũ) (τ) with entries

C(u,ũ)
i j (τ) =

〈
ui (t) ũ j (t + τ)+ ũi (t)u j (t + τ)

〉
. (9.7)

In the ideal case C(u) (τ) is diagonal with a large trace ∑i C
(u)
ii (τ).

Assume we want to minimize ΨISFA for a given R, where R denotes the number of signal components
we want to unmix. Applying a Givens rotation Qµν we have to distinguish three cases

• Case 1 Both axes, µ and ν , lie inside the subspace spanned by the first R axes (µ,ν ≤ R) (see Fig. 9.2
(a)):
The sum over all squared cross correlations of all signal components that lie outside the subspace is
constant as well as those of all signal components inside the subspace. The former holds because of
the first invariance (4.39) and the latter because of the first (4.39) and second invariance (4.40). There
is no interaction between inside and outside, in fact the objective function is exactly the objective for
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Figure 9.2: The three possible cases during successive plane rotations. Each square represents a squared

cross or auto-correlation
(

C(v)
i j

)2
(v(t) = [u(t) , ũ(t)]T ) where index i ( j) denotes the row (column) of the

square. Dark squares indicate all entries that are changed by a rotation in the µ-ν-plane. L is the dimen-
sionality of the expanded signal v and R the number of signal components ui (t) subject to optimization.
The entries corresponding to the correlations that are incorporated in the objective function are located
in the upper left corner. The dashed line separates these entries from all others. (a) The rotation plane
spanned by the µ- and ν-axis lies inside the subspace covered by the objective function. As we have seen
in Equations (4.39) and (4.40) the correlations outside the subspace are changing such that their squares
are pairwise constant. Therefore the sum over all entries outside the dashed square (and therefore also
inside) stays constant. There is no interaction between inside and outside and optimization corresponds
to the classical ICA- or SFA-case. (b) One of the axes spanning the rotation plane is outside (ν) and the
other (µ) inside the subspace covered by the objective function. This is the only case where the entries
within the dashed square can be optimized at the expense of those outside. For instance, according to (4.39)(

C(u)
µi

)2
can be optimized at the expense of

(
C(ũ)

ν i

)2
with i ∈ {1, . . . ,R}; according to (4.40)

(
C(u)

µµ

)2
can

be optimized at the expense of
(

C(ũ)
µν

)2
,
(

C(ũ)
νµ

)2
, and

(
C(ũ)

νν

)2
. (c) The objective function stays constant,

since all correlations affected by the rotation are outside the subspace.
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an ICA algorithm based on second-order statistics, e.g. TDSEP or SOBI [Belouchrani et al., 1997;
Ziehe and Müller, 1998]. In Section 8.1 it has been shown that this is equivalent to SFA in the case
of a single time delay.

• Case 2 Only one axis, w.l.o.g. µ , lies inside the subspace; the other, ν , lies outside (µ ≤ R < ν) (see
Fig. 9.2 (b)):
Since one axis of the rotation plane lies outside the subspace, uµ in the objective function can be
optimized at the expense of the ũν outside the subspace. A rotation of π/2, for instance, would
simply exchange components uµ and ũν . This gives the possibility to find the slowest and most
independent components in the whole space spanned by all L axes in contrast to Case 1 where the
minimum is searched within the subspace spanned by the first R axes considered in the objective
function.

• Case 3 Both axes lie outside the subspace (R < µ,ν) (see Fig. 9.2 (c)):
A Givens rotation with the two rotation axes outside the relevant subspace does not affect the objective
function and can therefore be disregarded.

To optimize the objective function of ISFA (9.4) we need to calculate the explicit form of the objective
function Ψ

µν

ISFA in (9.5) for Cases 1 and 2. By inserting the Givens rotation matrix (4.29) into the objective
function (9.5) we can write the latter as a function of the rotation angle φ

Case 1: Ψ
µν

ISFA (φ) =

(
2

∑
α=0

dα

(
cos(φ)(4−α) sin(φ)α +

cos(φ)(α) (−sin(φ))(4−α)
)

+dc

)
, (9.8)

Case 2: Ψ
µν

ISFA (φ) =

(
4

∑
α=0

dα

(
cos(φ)(4−α) sin(φ)α

)
+dc

)
+(

2

∑
β=0

eβ

(
cos(φ)(2−β ) sin(φ)β

)
+ ec

)
, (9.9)

with constants that depend only on the C(y)
kl before rotation (see the appendix). It can be shown that like in

Section 6.1.3 these objective functions can always be written in the form

Case 1: Ψ
µν

ISFA (φ) = A0 +A4 cos(4φ +φ4) , (9.10)

Case 2: Ψ
µν

ISFA (φ) = A0 +A2 cos(2φ +φ2)+A4 cos(4φ +φ4) , (9.11)

with a single minimum (if w.l.o.g. φ ∈
[
−π

2 , π

2

]
) that can easily be calculated (see e.g. [Blaschke and

Wiskott, 2004]). The derivation of (9.10) and (9.11) involves various trigonometric identities and, because
of its length, is documented in Appendix D.1. Interestingly Equations (9.10) and (9.11) do not change (of
course the constants do) if we consider more than one time delay (cf. Appendix D.1).

It is easy to see why it is possible to write both objective functions (9.10) and (9.11) in such a simple
form. Firstly, the terms in (9.8) and (9.9) are products of at most four sin(φ) and cos(φ) functions which
allows, at most, a frequency of 4. Secondly, in Case 1 Ψ

µν

ISFA has a periodicity of π/2 because rotations by
multiples of π/2 correspond to a permutation (possibly plus sign change) of the two components. Since both
components are inside the subspace, permutations do not change the objective function and the objective
function has a π/2 periodicity. Thus we conclude that only frequencies of 0 and 4 can be present in (9.10).
In Case 2, since one component lies outside the subspace, an exchange of components will change the
objective function (9.11). A rotation by multiples of π however, which results only in a possible sign
change, will leave the objective function unchanged, resulting in an objective function with π-periodicity
and therefore frequencies of 0, 2 and 4.

The iterative approach with successive Givens rotations can be described by
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(a) Initialize Q′ = I and y(t)′ = y(t) and compute C(y′).

(b) Choose two axes µ and ν with µ ≤ R (either randomly or in a pseudo-random order).

(c) Determine the optimal rotation angle φ
µν

min for the selected axes from (9.10) or (9.11).

(d) Compute the Givens rotation matrix Qµν
(
φ

µν

min

)
defined by (4.29).

(e) Update C(y′) using C(y′) → (Qµν)T C(y′)Qµν .

(f) Update Q′ according to Q′ → Qµν Q′.

(g) Go to b until all rotation angles φ
µν

min of a sweep through all possible rotation planes are below ε .

(h) Set Q = Q′ and v(t) = Qy(t).

In Step (b) it is important to notice that the rotation planes of the Givens rotations are selected from the
whole L-dimensional space (although we avoid the irrelevant Case 3 by requiring µ ≤ R; see Fig. 9.2(c))
whereas the objective function only uses information of correlations among the first R signal components
ui. Steps (e) and (f) do not require a full matrix-multiplication but can be efficiently computed since Qµν

is very sparse. After convergence the additional components ũ j ( j = R+1, . . . ,L) can be discarded. There
is no proof that the final minimum is also the global one. However, local minima can be avoided by the
method used in the next section.

9.2.3 Incremental Extracting of Independent Components

It is possible to find the number of independent source signal components R by successively increasing the
number of components to be extracted. In each step the objective function (9.4) is optimized for a fixed
R. First a single signal component is extracted (R = 1), which can be achieved by plain SFA. Then an
additional component is considered in the objective function (R = 2). The following scheme gives a sketch
of the incremental procedure.

(a) Optimize ΨISFA on y(t) with R = 1 yielding an initial v(t).

(b) Set R → R+1, k = R, and y = v = [u, ũ]T .

(c) Exchange components yk (t) and yR (t) (this has no effect in the first iteration of k).

(d) Optimize objective function ΨISFA on y(t) yielding a new v(t).

(e) If optimization has yielded an additional independent signal uR (t) (according to some measure of
independence; see below) go to step b.

(f) Set k → k+1.

(g) If k > L stop algorithm; the number of extracted source signal components is R.

(h) Go to Step c

The permutation of components (Step (c)) is necessary to circumvent the problem of getting stuck in local
optima of the objective function (9.4). Instead of going through the components (index k) systematically
one can choose a pseudo-random sequence. The algorithm is stopped when no additional signal component
can be extracted. In Step (e) any suitable measure of independence can be applied; we used the sum over
squared cross-cumulants of fourth order

Φ = ∑
i

∑
j>i

∑
k> j

∑
l>k

C(u)
i jkl . (9.12)

In our artificial examples this value is typically small for independent components and increases by two or-
ders of magnitudes if the number of components to be extracted is greater than the number of original source
signal components. In real world applications the decision will probably be less clear and an appropriate
heuristics for the threshold must be adopted.
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9.3 Simulations

9.3.1 Simple Example

Here we show a simple example with two nonlinearly mixed signal components as shown in Figure 9.3.
The mixture reads

x1 (t) = s1 +2∗ s2
2 (9.13)

x2 (t) = s2 . (9.14)

As nonlinearities we used monomials up to second degree. To weight the SFA and the ICA part in Equa-
tion (9.4) we used [bSFA, bICA] = [1, 100] throughout the simulation. The number of time delays was T = 20.
The results are shown in Table 9.1. CuBICA34 was not able to extract the source signal components,
whereas ISFA obtained good results. For an illustration see Figure 9.3.
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Figure 9.3: Waveforms of (a) the original source signal components si, (b) the nonlinear mixture (9.14) and
(c) recovered components with nonlinear ISFA (ui). As an unmixing nonlinearity we used all monomials
up to degree 2.

9.3.2 Twisted Speech Data

This is a more complex example introduced by Harmeling et al. [2003]. We chose it to allow a direct
comparison with kTDSEP. The mixture is defined by

x1 (t) = (s2 (t)+3s1 (t)+6)cos(1.5πs1 (t)) (9.15)
x2 (t) = (s2 (t)+3s1 (t)+6)sin(1.5πs1 (t)) . (9.16)
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linear degree 2
u1 u2 u1 u2

s1 -0.558 -0.581 0.996 -0.004
s2 0.726 -0.687 -0.007 -0.989

Table 9.1: Correlation coefficients of extracted (u1 and u2) and original (s1 and s2) source signal components
of the mixture described in Equation (9.14) for linear CuBICA34 (first column) and ISFA using monomials
up to second degree. Weighting constants are [bSFA, bICA] = [1, 100] and the number of time delays is
T = 20.

We used the ISFA algorithm with different nonlinearities (see Tab. 9.2). Again, we weighted the SFA and
ICA parts like [bSFA, bICA] = [1, 100] and set the number of time delays to T = 20. Already a nonlinear
expansion with monomials up to degree three was sufficient to give good results in extracting the original
source signal. In all cases ISFA did find exactly two independent signal components. Using all monomials
up to degree five led to results that showed virtually no difference between estimated and true source signal
(see Fig. 9.4). A linear BSS method failed completely to find a good unmixing matrix.

For comparison we also give the results of kTDSEP, a nonlinear BSS approach by Harmeling et al.
[2003] with a similar design as ISFA. With kTDSEP the nonlinear BSS problem is solved using a two step
approach, too. First the observed signal is mapped to a high-dimensional kernel-feature-space and then
linear second-order ICA is applied to this signal. To select the right components to be extracted this method
is applied twice in succession and components that have strong correlations to those of the first sweep are
assumed to be the true source signal components. The assumption made here is that the true source signal
components are more reliable, that is they appear again after a second pass of the algorithm. For linear ICA
this seems to be a reasonable assumption [Harmeling et al., 2004] and it works well in the examples shown
in [Harmeling et al., 2003].

linear degree 2 degree 3
u1 u2 u1 u2 u1 u2

s1 -0.890 0.215 0.936 0.013 0.001 0.988
s2 -0.011 -0.065 -0.027 0.149 -0.977 0.006

degree 4 degree 5 kTDSEP
u1 u2 u1 u2 u1 u2

s1 0.002 -0.996 0.998 -0.000 0.990 -
s2 0.983 -0.000 -0.000 0.994 - 0.947

Table 9.2: Correlation coefficients of extracted (u1 and u2) and original (s1 and s2) source signal components
for CuBICA34 (first column) and ISFA with different nonlinearities. Weighting constants are [bSFA, bICA] =
[1, 100] and the number of time delays is T = 20. Shown are results with monomials up to degree 2, 3, 4 and
5. Note, that the source signal can only be estimated up to permutation and scaling, resulting in different
signs and permutations of u1 and u2. The correlation coefficients for kTDSEP were taken from Harmeling
et al. [2003] with same mixture but different source signal. The kernel used in kTDSEP was a Gaussian
RBF.
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Figure 9.4: Waveforms of (a) the original source signal components si (t), (b) the nonlinear mixture (9.16)
(c) recovered components with nonlinear ISFA (ui (t)), and (d) with CuBICA34 (ui (t)

lin). As an unmixing
nonlinearity we used all monomials up to degree 5.

9.4 Conclusion

We have shown that combining the ideas of independent component analysis and slow feature analysis
into ISFA is a possible way to solve the nonlinear blind source separation problem for signals with auto-
correlations. SFA favors independent components that are slowly varying, which seems to be a good way to
discriminate between the original and nonlinearly distorted source signal components. A simple simulation
showed that ISFA is able to extract the original source signal out of a nonlinear mixture. Furthermore
ISFA can predict the number of source signal components via an incremental optimization scheme. Note
that from the SFA point of view ISFA is a natural extension to standard SFA. While in standard SFA all
extracted slowly varying signal components are uncorrelated or statistically independent up to second order,
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(a) (b) (c)

(d) (e) (f) (g)

Figure 9.5: Scatter plot of source signal components s1 and s2, nonlinear mixture components x1 and x2
of mixture (9.16), and extracted components u1 and u2 with different nonlinearities. (a) source signal
components; (b) mixture components; (c) results of linear ICA; (d - g) results of ISFA using (d) monomials
up to degree 2, (e) monomials up to degree 3, (f) monomials up to degree 4, (g) monomials up to degree 5.

the extracted signal components in ISFA are statistically independent also for higher orders.
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Conclusions
Within this thesis, we focused on the relation between independent component analysis (ICA) and slow

feature analysis (SFA). For that purpose, we first introduced the two methods and provided the reader with
the necessary tools to make a comparison possible. For example, we have derived a suitable ICA algorithm
and an alternative formulation of SFA. In the following we list the results of the main Chapters 6-9.

In Chapter 6, we introduced an improved ICA algorithm, called CuBICA (Cumulant Based Independent
Component Analysis), based on higher-order cumulants. It is similar to the original algorithm by Comon
[1994a] but implements some important improvements. First, the contrast function of CuBICA integrates
cumulants of third- and of fourth-order. Thus, it is able to separate linear mixtures of symmetrically and
skew-symmetrically distributed source signal components. Second, the contrast function can be formulated
in a simple mathematical way. For example the contrast for an ICA task with only two signal components
can be expressed as a simple cosine-function with the angle being the only optimization parameter. This
allows to compute the optimal solution in a single step. CuBICA is not a suitable algorithm if one wants to
compare ICA and SFA. Most of all because it is insensitive to any time structure of the input signal while
SFA needs signals with non-vanishing auto-correlation. However, CuBICA is a nice ICA algorithm with a
wide range of possible applications, in any case.

In Chapter 7, we focused on a different ICA algorithm, based on second-order statistics only, i.e. cross-
correlations. In contrast to algorithms based on higher-order statistics like CuBICA not only instantaneous
cross-correlations but also time-delayed cross correlations are considered for minimization. Some imple-
mentations of this method exist in the literature, some using a single time delay (e.g. [Molgedey and Schus-
ter, 1994]) or several time delays (e.g. [Belouchrani et al., 1997; Nuzillard and Nuzillard, 2003; Zibulevsky
and Pearlmutter, 2000; Ziehe and Müller, 1998]). Their common property is their requirement of signal
components with auto-correlation like in SFA, and the ability to separate source signal components that
have a Gaussian distribution. In this chapter we could derive an improved version called CuBICA2. The
mathematical derivation of its cost function is similar to that of CuBICA that has been introduced in the
previous chapter, and again the resulting formula has a very simple form allowing for easy optimization.
A comparison with a similar algorithm like TDSEP [Ziehe and Müller, 1998] showed significant improve-
ments in terms of time consumption.

In Chapter 8, we investigated the relation between ICA based on second-order statistics and SFA. For
this purpose we derived an alternative formulation of the SFA objective function and compared it with that of
CuBICA2. We used CuBICA2 because of its similarities with SFA, namely both algorithms are exclusively
based on second-order statistics, and both rquire signals that have non-vanishing auto-correlation. It turned
out, that in the case of a linear mixture the two methods are equivalent if a single time delay is taken into
account. The comparison could not be extended to the case of several time delays. For ICA a straightforward
extension could be derived in the previous section. A similar extension to SFA yields an objective function
that can not be interpreted in the sense of SFA, which is defined as extracting the slowly varying signal from
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a given input signal. However, a useful extension in the sense of SFA to more than one time delay could be
derived. This extended SFA is nearly equivalent to a different ICA algorithm introduced by Stone [2001]
using the objective of temporal predictability. Thus, there exists a close connection between the slowness
objective of SFA and temporal predictability, which can be interpreted intuitively: a signal component with
large auto-correlation has a high temporal predictability. Predictability on the other hand means that the
signal component has to vary slowly.

In Chapter 9, the aim was to combine ICA and SFA. Again, this has been done using the second-order
ICA algorithm introduced in Chapter 7. The result can be interpreted from two perspectives. From the
ICA point of view the combination leads to an algorithm that solves the nonlinear blind source separation
problem. We know from linear blind source separation (BSS) that mutual statistical independence of the
source signal components is a sufficient criterion to solve the BSS task. However, for nonlinear BSS
this is no longer the case. Further assumptions about the source signal components have to be made.
The integration of SFA adds the assumption that correct output-signal-components have non-vanishing
auto-correlations. From the SFA point of view the combination of ICA and SFA is an extension to SFA
in terms of statistical independence. Standard SFA extracts slowly varying signal components that are
uncorrelated meaning they are statistically independent up to second-order. The integration of ICA leads to
signal components that are more or less statistically independent.

We have shown that the two objectives independence and slowness are strongly connected, in fact
they are equivalent under certain conditions. The combination of ICA and SFA leads to an algorithm for
nonlinear blind source separation respectively to extended SFA, where extracted signal components are
statistically independent. Furthermore, we have derived an easy to use improved ICA algorithm that can
handle symmetric and asymmetric distributed sources. Additionally it shows good performance and thus,
may be a good general algorithm for performing ICA.



A

Givens Rotations
A.1 Derivation of Equation (4.37)

Lets insert (4.33) into (4.35) to obtain

Ψdiag =
[
cos(φ)2 M12− cos(φ)sin(φ)M11 + cos(φ)sin(φ)M22− sin(φ)2 M21

]2
+[

sin(φ)2 M21− cos(φ)sin(φ)M11 + cos(φ)sin(φ)M22− cos(φ)2 M12

]2
. (A.1)

After carrying out all multiplications and rearranging the terms we derive

Ψdiag =
(

cos(φ)4 + sin(φ)4
)(

M2
12 +M2

21
)

+(
cos(φ)3 sin(φ)− sin(φ)3 cos(φ)

)
(−2M11M12−2M11M21 +2M12M22 +2M21M22)+(

(cos(φ)2 sin(φ)2 + cos(φ)2 sin(φ)2
)(

M2
11−2M12M21−2M11M22 +M2

22
)

. (A.2)

Defining constants

c0 :=
(
M2

12 +M2
21
)

, (A.3)
c1 := (−2M11M12−2M11M21 +2M12M22 +2M21M22) , (A.4)
c2 :=

(
M2

11−2M12M21−2M11M22 +M2
22
)

, (A.5)

Equation (A.2) can be rewritten as

Ψdiag =
(

cos(φ)4 + sin(φ)4
)

c0 +
(

cos(φ)3 sin(φ)− sin(φ)3 cos(φ)
)

c1 +(
(cos(φ)2 sin(φ)2 + cos(φ)2 sin(φ)2

)
c2 (A.6)

=
2

∑
i=0

ci

(
cos(φ)4−i sin(φ)i +(−1)i sin(φ)4−i cos(φ)i

)
. (A.7)

Using some trigonometric relations (
cos(φ)4 + sin(φ)4

)
=

1
4

(cos(4φ)+3) , (A.8)(
cos(φ)3 sin(φ)− sin(φ)3 cos(φ)

)
=

1
4

sin(4φ) , (A.9)(
(cos(φ)2 sin(φ)2 + cos(φ)2 sin(φ)2

)
=

1
4

(1− cos(4φ)) , (A.10)

85



86 CHAPTER A. GIVENS ROTATIONS

and some rearrangement of terms we arrive at

Ψdiag =
3
4

c0 +
1
4

c2 +
1
4

c1 sin(4φ)+
1
4

cos(4φ)(c0− c2) , (A.11)

Finally we can put together the sine- and cosine-term on the right hand side of (A.11) and derive

Ψdiag = A0 +A4 cos(4φ +φ4) , (A.12)

with constants defined by

A0 :=
1
4

(3c0 + c2) , (A.13)

A4 :=
1
4

√
(c0− c2)

2 + c2
1 , (A.14)

− tan(φ4) :=
c1

c0− c2
. (A.15)

A.2 Derivation of Invariances (4.39) and (4.40)

Given a vectorial signal y we consider a Givens rotation u = Qµν y within the µ,ν plane and a matrix
representation as defined in (4.29). Cumulant tensors in y of all order show some invariances under such
transformations. We show here only second-order cumulant matrices C(y), since this is the simplest non-
trivial case.

Constants under rotation in this plane with rotation angle φ are

(
C(u)

µα

)2
+
(

C(u)
να

)2
=

[
N

∑
β ,γ=1

Qµβ QαγC(y)
βγ

]2

+

[
N

∑
β ,γ=1

Qνβ QαγC(y)
βγ

]2

=
(

cos(φ)C(y)
µα + sin(φ)C(y)

να

)2
+
(

cos(φ)C(y)
να − sin(φ)C(y)

µα

)2

=
[
cos(φ)2 + sin(φ)2

](
C(y)

µα

)2
+
[
cos(φ)2 + sin(φ)2

](
C(y)

να

)2

+2 [cos(φ)sin(φ)− cos(φ)sin(φ)]C(y)
µαC(y)

να

=
(

C(y)
µα

)2
+
(

C(y)
να

)2
, (A.16)

where α 6= µ,ν . This sum is therefore constant under rotation in the µν-plane. There is a second constant
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under the same rotation

(
C(u)

µµ

)2
+2
(

C(u)
µν

)2
+
(

C(u)
νν

)2
=

[
N

∑
β ,γ=1

Qµβ QµγC(y)
βγ

]2

+2

[
N

∑
β ,γ=1

Qµβ QνγC(y)
βγ

]2

+

[
N

∑
β ,γ=1

Qνβ QνγC(y)
βγ

]2

=
(

cos(φ)2 C(y)
µµ +2cos(φ)sin(φ)C(y)

µν + sin(φ)2 C(y)
νν

)2

+2
(

cos(φ)2 C(y)
µν − cos(φ)sin(φ)C(y)

µµ

+cos(φ)sin(φ)C(y)
νν − sin(φ)2 C(y)

νµ

)2

+
(

sin(φ)2 C(y)
µµ −2sin(φ)cos(φ)C(y)

µν + cos(φ)2 C(y)
νν

)2

=
(

cos(φ)4 + sin(φ)4 +2cos(φ)2 cos(φ)2
)((

C(y)
µµ

)2
+2
(

C(y)
µν

)2
+
(

C(y)
νν

)2
)

=
(

cos(φ)2 + sin(φ)2
)2
((

C(y)
µµ

)2
+2
(

C(y)
µν

)2
+
(

C(y)
νν

)2
)

=
(

C(y)
µµ

)2
+2
(

C(y)
µν

)2
+
(

C(y)
νν

)2
, (A.17)

where we used the fact, that C(y) and C(u) are symmetric matrices.





B

Constants in Linear ICA
B.1 Constants in CuBICA34, CuBICA4, CuBICA34a and CuBICA4a

B.1.1 Constants in Equation (6.7)

The definitions of dni follow directly from the multilinearity of C(u)
... :

d30:=
(

C(y)
111

2
+C(y)

222
2
)

, (B.1)

d31:=6
(

C(y)
111C(y)

112−C(y)
122C(y)

222

)
, (B.2)

d32:=9
(

C(y)
112

2
+C(y)

122
2
)

+6
(

C(y)
111C(y)

122 +C(y)
112C(y)

222

)
, (B.3)

d33:=2C(y)
111C(y)

222 +18C(y)
112C(y)

122 , (B.4)

d40:=
(

C(y)
1111

2
+C(y)

2222
2
)

, (B.5)

d41:=8
(

C(y)
1111C(y)

1112−C(y)
1222C(y)

2222

)
, (B.6)

d42:=16
(

C(y)
1112

2
+C(y)

1222
2
)

+12
(

C(y)
1111C(y)

1122 +C(y)
1122C(y)

2222

)
, (B.7)

d43:=48
(

C(y)
1112C(y)

1122−C(y)
1122C(y)

1222

)
+8
(

C(y)
1111C(y)

1222−C(y)
1112C(y)

2222

)
, (B.8)

d44:=36C(y)
1122

2
+32C(y)

1112C(y)
1222 +2C(y)

1111C(y)
2222 . (B.9)

B.1.2 Constants in Equation (6.10)

From (6.7) one can derive

Ψn (φ ,y)=an0 + sn4 sin(4φ)+ cn4 cos(4φ)+ sn8 sin(8φ)+ cn8 cos(8φ) for n ∈ {3,4} , (B.10)
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with

a30:=
1
3!

1
8

[
5
(

C(y)
111

2
+C(y)

222
2
)

+ 9
(

C(y)
112

2
+C(y)

122
2
)

+6
(

C(y)
111C(y)

122 +C(y)
112C(y)

222

)]
, (B.11)

a40:=
1
4!

1
64

[
35
(

C(y)
1111

2
+C(y)

2222
2
)

+ 80
(

C(y)
1112

2
+C(y)

1222
2
)

+60
(

C(y)
1111C(y)

1122 +C(y)
1122C(y)

2222

)
+ 108C(y)

1122
2
+96C(y)

1112C(y)
1222 +6C(y)

1111C(y)
2222

]
, (B.12)

s34:=
1
3!

1
4

[
6
(

C(y)
111C(y)

112−C(y)
122C(y)

222

)]
, (B.13)

c34:=
1
3!

1
8

[
3
(

C(y)
111

2
+C(y)

222
2
)

− 9
(

C(y)
112

2
+C(y)

122
2
)
−6
(

C(y)
111C(y)

122 +C(y)
112C(y)

222

)]
, (B.14)

s44:=
1
4!

1
32

[
56
(

C(y)
1111C(y)

1112−C(y)
1222C(y)

2222

)
+ 48

(
C(y)

1112C(y)
1122−C(y)

1122C(y)
1222

)
+8
(

C(y)
1111C(y)

1222−C(y)
1112C(y)

2222

)]
, (B.15)

c44:=
1
4!

1
16

[
7
(

C(y)
1111

2
+C(y)

2222
2
)
− 16

(
C(y)

1112
2
+C(y)

1222
2
)

−12
(

C(y)
1111C(y)

1122 +C(y)
1122C(y)

2222

)
− 36C(y)

1122
2
−32C(y)

1112C(y)
1222−2C(y)

1111C(y)
2222

]
, (B.16)

s38:=0 , (B.17)
c38:=0 , (B.18)

s48:=
1
4!

1
64

[
8
(

C(y)
1111C(y)

1112−C(y)
1222C(y)

2222

)
−48

(
C(y)

1112C(y)
1122−C(y)

1122C(y)
1222

)
−8
(

C(y)
1111C(y)

1222−C(y)
1112C(y)

2222

)]
, (B.19)

c48:=
1
4!

1
64

[(
C(y)

1111
2
+C(y)

2222
2
)
−16

(
C(y)

1112
2
+C(y)

1222
2
)

−12
(

C(y)
1111C(y)

1122 +C(y)
1122C(y)

2222

)
+ 36C(y)

1122
2
+32C(y)

1112C(y)
1222 +2C(y)

1111C(y)
2222

]
. (B.20)
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With this it is trivial to determine the constants for Ψ34 (φ ,y) = Ψ3 (φ ,y)+ Ψ4 (φ ,y) in the form given in
(6.10). We find:

A0:=a30 +a40 , (B.21)

A4:=
√

(c34 + c44)
2 +(s34 + s44)

2 , (B.22)

A8:=
√

c2
48 + s2

48 , (B.23)

tan(φ4):=−
s34 + s44

c34 + c44
, (B.24)

tan(φ8):=−
s48

c48
. (B.25)

The coefficients A0,A4 and φ4 are functions of the cumulants of 3rd and 4th order of the centered and
whitened signal y. A8 and φ8 depend only on the 4th order cumulants.

B.1.3 Analytical Simplification of ψ
µν

34

The cumulants in y can always be written as a combination of the cumulants in s

C(y)
i jkl = ∑

α,β ,γ,δ=1,2
Mi,α M j,β Mk,γ Ml,δC(s)

αβγδ
, (B.26)

where Mi, j are the entries of the rotation matrix defined in Equation (6.14). Since s has independent com-
ponents this simplifies to

C(y)
i jkl = ∑

α=1,2
Mi,α M j,α Mk,α Ml,αC(s)

αααα . (B.27)

Substituting this expression into the previous equation we arrive at the following relations

C(y)
111 = cos(θ)3 C(s)

111 + sin(θ)3 C(s)
222 , (B.28)

C(y)
112 = −cos(θ)2 sin(θ)C(s)

111 + sin(θ)2 cos(θ)C(s)
222 , (B.29)

C(y)
122 = cos(θ)sin(θ)2 C(s)

111 + sin(θ)cos(θ)2 C(s)
222 , (B.30)

C(y)
222 = sin(θ)3 C(s)

111 + cos(θ)3 C(s)
222 , (B.31)

C(y)
1111 = cos(θ)4 C(s)

1111 + sin(θ)4 C(s)
2222 , (B.32)

C(y)
1112 = −cos(θ)3 sin(θ)C(s)

1111 + sin(θ)3 cos(θ)C(s)
2222 , (B.33)

C(y)
1122 = cos(θ)2 sin(θ)2 C(s)

1111 + sin(θ)2 cos(θ)2 C(s)
2222 , (B.34)

C(y)
1222 = −cos(θ)sin(θ)3 C(s)

1111 + sin(θ)cos(θ)3 C(s)
2222 , (B.35)

C(y)
2222 = sin(θ)4 C(s)

1111 + cos(θ)4 C(s)
2222 . (B.36)
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The constants c34,c44,c48,s34,s44 and s48 in (B.10) now become dependent on the rotation angle θ and the
cumulants of the source signal. They are

a30 =
1
3!

5
8

((
C(s)

111

)2
+
(

C(s)
222

)2
)

, (B.37)

a40 =
1
4!

1
64

(
3
(

C(s)
1111 +C(s)

2222

)2
+32

((
C(s)

1111

)2
+
(

C(s)
2222

)2
))

, (B.38)

c34 =
1
3!

3
8

((
C(s)

111

)2
+
(

C(s)
222

)2
)

cos(4θ) (B.39)

:= e34 cos(4θ) , (B.40)

s34 = − 1
3!

3
8

((
C(s)

111

)2
+
(

C(s)
222

)2
)

sin(4θ) (B.41)

= −e34 sin(4θ) , (B.42)

c44 =
1
4!

1
16

(
7
(

C(s)
1111

)2
−2C(s)

1111C(s)
2222 +7

(
C(s)

2222

)2
)

cos(4θ) (B.43)

:= e44 cos(4θ) , (B.44)

s44 = − 1
4!

1
16

(
7
(

C(s)
1111

)2
−2C(s)

1111C(s)
2222 +7

(
C(s)

2222

)2
)

sin(4θ) (B.45)

= −e44 sin(4θ) , (B.46)

c48 =
1
4!

1
64

(
C(s)

1111 +C(s)
2222

)2
cos(8θ) (B.47)

:= e48 cos(8θ) , (B.48)

s48 = − 1
4!

1
64

(
C(s)

1111 +C(s)
2222

)2
sin(8θ) (B.49)

= −c48 sin(8θ) . (B.50)
(B.51)

Due to these dependencies, the contrast function (6.10) is therefore additionally a function of θ . The
amplitudes A4 and A8 in (6.10) are given by (cf. (B.21)-(B.23))

A0 = a30 +a40 , (B.52)

A4 =
√

(e34 cos(4θ)+ e44 cos(4θ))2 +(−e34 sin(4θ)− e44 sin(4θ))2

=
√

2(e34 + e44)
2 , (B.53)

A8 =
√

(e48 cos(8θ))2 +(−e48 sin(8θ))2

=
√

e2
48 . (B.54)

Thus, the amplitudes are independent of θ and remain constant. The phases φ4 and φ8 are (cf. (B.24)-(B.25))

− tan(φ4) =
s34 + s44

c34 + c44
=− e34 sin(4θ)+ e44 sin(4θ)

e34 cos(4θ)+ e44 cos(4θ)
=− tan(4θ) , (B.55)

− tan(φ8) =
s48

c48
=− e48 sin(8θ)

e48 cos(8θ)
=− tan(8θ) , (B.56)

resulting in the phase-relations

φ4 = 4θ , (B.57)
φ8 = 8θ . (B.58)
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B.2 Constants in CuBICA2

B.2.1 Constants in Equation (7.10)

Starting from the definition of the objective function

Ψ2 =
N

∑
i, j=1
i6= j

(
C(u)

i j (τ)
)2

, (B.59)

we can derive (N = 2)

Ψ2 =
[(

3
4

d20 (τ)+
1
4

d22 (τ)
)

+
(

1
4

d20 (τ)− 1
4

d22 (τ)
)

cos(4φ)+
1
4

d21 (τ)sin(4φ)
]

, (B.60)

with constants defined by (we drop the reference to τ to make the equations easy to read)

d20 :=
(

2
(

C(y)
12

)2
)

, (B.61)

d21 := 4
(

C(y)
12 C(y)

22 −C(y)
12 C(y)

11

)
, (B.62)

d22 := 2
((

C(y)
11

)2
−2C(y)

11 C(y)
22 +C(y)

22
2
)

. (B.63)

Equation (B.60) can be further simplified to obtain

Ψ2 = a20 + s24 sin(4φ)+ c24 cos(4φ) , (B.64)

with constants

a20 =
1
4

(3d20 +d22) , (B.65)

s24 =
1
4

d21 , (B.66)

c24 =
1
4

(d20−d22) . (B.67)

Further simplification leads to

Ψ2 = A0τ +A4τ cos(4φ +φ4τ) , (B.68)

with constants

A0τ := a20 , (B.69)

A4τ :=
√

c2
24 + s2

24 , (B.70)

tan(φ4τ) := − s24

c24
. (B.71)

Note that these constants are all functions of τ .
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B.2.2 Constants in Equation (7.16)

Using Equation (7.15) and some trigonometrics we can easily derive

Ā0τ =
T

∑
τ=1

A0τ , (B.72)

Ā4τ =

√√√√( T

∑
τ=1

A4τ sin(φ4τ)

)2

+

(
T

∑
τ=1

A4τ cos(φ4τ)

)2

, (B.73)

tan
(
φ̄4τ

)
= ∑

T
τ=1 A4τ sin(φ4τ)

∑
T
τ=1 A4τ cos(φ4τ)

. (B.74)



C

Constants in Linear SFA with Higher
Derivatives

C.1 Approximating Higher Derivatives of y(t)

The difference quotients belonging to the first four derivatives (we also denote here the original signal as
the ’zeroth’ derivative) can be written as

y(t)(0) = y(t) , (C.1)

y(t)(1) ≈ y(t +1)−y(t) , (C.2)

y(t)(2) ≈ y(t +2)−2y(t +1)+y(t) , (C.3)

y(t)(3) ≈ y(t +3)−3y(t +2)+3y(t +1)−y(t) , (C.4)

y(t)(4) ≈ y(t +4)−4y(t +3)+6y(t +2)−4y(t +1)+y(t) , (C.5)

where the denominator is set to one.
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C.2 Computing Constants βnτ

Using the difference quotients defined in (C.1 - C.5) we can calculate the average of the square of these
quotients as〈

y(t)(0)
(

y(t)(0)
)T
〉

=
1
2

〈
y(t)y(t)T +y(t)y(t)T

〉
, (C.6)〈

y(t)(1)
(

y(t)(1)
)T
〉

≈
〈

y(t)y(t)T +y(t)y(t)T
〉
−
〈

y(t +1)y(t)T +y(t)y(t +1)T
〉

, (C.7)〈
y(t)(2)

(
y(t)(2)

)T
〉

≈ 3
〈

y(t)y(t)T +y(t)y(t)T
〉
−4
〈

y(t +1)y(t)T +y(t)y(t +1)T
〉

+
〈

y(t +2)y(t)T +y(t)y(t +2)T
〉

, (C.8)〈
y(t)(3)

(
y(t)(3)

)T
〉

≈ 10
〈

y(t)y(t)T +y(t)y(t)T
〉
−15

〈
y(t +1)y(t)T +y(t)y(t +1)T

〉
+6
〈

y(t +2)y(t)T +y(t)y(t +2)T
〉

−
〈

y(t +3)y(t)T +y(t)y(t +3)T
〉

, (C.9)〈
y(t)(4)

(
y(t)(4)

)T
〉

≈ 35
〈

y(t)y(t)T +y(t)y(t)T
〉
−56

〈
y(t +1)y(t)T +y(t)y(t +1)T

〉
+28

〈
y(t +2)y(t)T +y(t)y(t +2)T

〉
−8
〈

y(t +3)y(t)T +y(t)y(t +3)T
〉

+〈
y(t +4)y(t)T +y(t)y(t +4)T

〉
, (C.10)

where terms like
〈

y(t + v)y(t +w)T +y(t +w)y(t + v)T
〉

with w ≥ v are shifted to〈
y(t + v−w)y(t)T +y(t)y(t + v−w)T

〉
w.l.o.g. We are now able to rewrite ∆n (ui) as

∆n(ui) :=
〈(

u(n)
i

)2
〉

,

=
[

qT
i

〈
y(n)

(
y(n)
)T
〉

qi

]
,

≈
n

∑
τ=0

βnτ

[
qT

i

〈
y(t + τ)y(t)T +y(t)y(t + τ)T

〉
qi

]
,

=
n

∑
τ=0

βnτC(u)
ii (τ) , (C.11)

where the constants βnτ can be taken directly from (C.6 - C.10). Putting all ∆n (ui) together results in

Σ(ui) :=
T

∑
n=0

αn∆n (ui)≈
T

∑
n=0

αn

n

∑
τ=0

βnτC(u)
ii (τ) =

T

∑
τ=0

δτC(u)
ii (τ) , (C.12)

where T is the number of derivatives taken into account. The factors βnτ are shown in Table 8.0(a).

C.3 Computing Constants δτ

The constants δτ are calculated according to

δτ =
T

∑
n=τ

αnβnτ . (C.13)
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The first δτ up to T = 4 are listed in Table 8.0(b) where all derivatives are weighted equally (αn = 1∀n ∈
{1,2 . . . ,T}).





D

Constants in ISFA
D.1 Constants in Equations (9.10) and (9.11)

The definitions of the constants dn and en of Case 1 (9.8) and 2 (9.9) follow directly from the multilinearity
of C(u)

... (τ). They are given in Table D.1. Using trigonometrics we can derive simpler objective functions as
in (9.8) and (9.9) of the form

Case 1: Ψ
µν

ISFA (φ ,τ = 1) = a20 + c24 cos(4φ)+ s24 sin(4φ) , (D.1)

Case 2: Ψ
µν

ISFA (φ ,τ = 1) = a20 + c22 cos(2φ)+ s22 sin(2φ)+ c24 cos(4φ)+ s24 sin(4φ) , (D.2)

with constants defined in Table D.2. In the next step these objective functions are further simplified by
putting the sine term and cosine term together in a single cosine term. This results in

Case 1: Ψ
µν

ISFA (φ ,τ = 1) = Ã0 + Ã4 cos
(
4φ + φ̃4

)
, (D.3)

Case 2: Ψ
µν

ISFA (φ ,τ = 1) = Ã0 + Ã2 cos
(
2φ + φ̃2

)
+ Ã4 cos

(
4φ + φ̃4

)
, (D.4)

with constants defined in Table D.3.
Up to now we only considered a single time delayed correlation matrix. We may also want to use

more than one time delay and possibly also give different weight to correlation matrices with different time
delays. Note, that all constants from the objective function (D.3) and (D.4) are all depending on τ . The
weight for correlation matrix with time delay τ is given by κτ . This results in an objective

Case 1: Ψ
µν

ISFA (φ ,K) =
K

∑
τ=1

κτ Ψ(φ ,τ) =
K

∑
τ=1

κτ

[
Ã0 (τ)+ Ã4 (τ)cos

(
4φ + φ̃4 (τ)

)]
(D.5)

= A0 +A4 cos(4φ +φ4) , (D.6)

Case 2: Ψ
µν

ISFA (φ ,K) =
K

∑
τ=1

κτ Ψ(φ ,τ) =
K

∑
τ=1

κτ

[
Ã0 (τ)+ Ã2 (τ)cos

(
2φ + φ̃2 (τ)

)]
+

K

∑
τ=1

κτ

(
Ã4 (τ)cos

(
4φ + φ̃4 (τ)

))
(D.7)

= A0 +A2 cos(2φ +φ2)+A4 cos(4φ +φ4) , (D.8)

where K is the maximal time delay. The constants are defined in Table D.4.
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Case 1 Case 2

a20
1
4 (4d3 +d2 +3d0) 1

8 (3d0 +d2 +3d4 +8(dc + ec)+4(e0 + e2))

c22 - 1
2 (d0−d4 + e0− e2)

s22 - 1
4 (d1 +d3−2e2)

c24
1
4 (d0−d2) 1

8 (d0 +d4−d2)

s24
1
4 d1

1
8 (d1−d3)

Table D.2: Constants in Equation (9.8) and (9.9) as a function of the di and ei.

Case 1 Case 2

Ã0 a20 a20

Ã2 -
√

c2
22 + s2

22

Ã4

√
c2

24 + s2
24

√
c2

24 + s2
24

tan
(
φ̃2
)

- − s22
c22

tan
(
φ̃4
)

− s24
c24

− s24
c24

Table D.3: Constants of the further simplified objectives Ψµν .

Case 1 Case 2

A0 ∑
K
τ=1 κτ Ã0 (τ)

A2 -
√(

∑
K
τ=1 κτ Ã2 (τ)cos

(
φ̃2 (τ)

))2 +
(
∑

K
τ=1 κτ Ã2 (τ)sin

(
φ̃2 (τ)

))2

A4

√(
∑

K
τ=1 κτ Ã4 (τ)cos

(
φ̃4 (τ)

))2 +
(
∑

K
τ=1 κτ Ã4 (τ)sin

(
φ̃4 (τ)

))2

tan(φ2) - ∑
K
τ=1 κτ Ã2 (τ)sin

(
φ̃2 (τ)

)
/∑

K
τ=1 κτ Ã2 (τ)cos

(
φ̃2 (τ)

)
tan(φ4) ∑

K
τ=1 κτ Ã4 (τ)sin

(
φ̃4 (τ)

)
/∑

K
τ=1 κτ Ã4 (τ)cos

(
φ̃4 (τ)

)
Table D.4: Constants for the objective Ψµν with more than one time delay.
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