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Abstract

Temporal slowness is a learning principle that allows learning of invariant representations by extract-
ing slowly varying features from quickly varying input signals. Slow feature analysis (SFA) is an efficient
algorithm based on this principle, which has been applied to the learning of translation, scale, and other
invariances in a simple model of the visual system. Here a theoretical analysis of the optimization prob-
lem solved by SFA is presented, which provides a deeper understanding of the simulation results obtained
in previous studies.

1 Introduction

Temporal slowness as a learning principle is based on the observation that the environment, primary sensory
signals, and internal representations of the environment change on different time scales. Our environment,
e.g. the objects we see around us, changes usually on a slow time scale of several seconds. Primary sensory
signals on the other hand, such as the responses of single receptors in the retina, change on a faster time
scale, because even a small eye movement or shift of a textured object may lead to a rapid change of light
intensity received by a receptor neuron. The internal representation of the environment, finally, should vary
on a similar time scale as the environment itself, i.e. on a slow time scale. The sensory system does not
have access to the environment but only to the primary sensory signal. The learning principle now assumes
the following: If we succeed in extracting slowly varying features from the quickly varying sensory signal
in a non-trivial way, then it is likely that we obtain a useful representation of the environment, which is
in addition invariant or at least robust to frequent transformations of the sensory input, such as visual
translation, scaling, rotation, or zoom.
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This approach to unsupervised learning of invariant representations has been taken by a number of
researchers since the early 90s (FOLDIAK, 1991; MITCHISON, 1991; BECKER & HINTON, 1992; O’REILLY
& JOHNSON, 1994; STONE & BrAv, 1995; WaLLIS & RoLLs, 1997; PENG ET AL., 1998; KAYSER ET AL.,
2001; WISKOTT & SEINOWSKI, 2002) and an earlier description of the principle can be found in (HINTON,
1989, p. 208). Computational models based on the principle of temporal slowness have been quite successful
in learning invariances in a number of contexts (see references above) and in reproducing receptive field
properties of the primary visual cortex (KAYSER ET AL., 2001; BERKES & WISKOTT, 2002). However, there
have been no attempts to also investigate the learning principle analytically in order to determine what kind
of responses one might ideally expect from such a system. The paper presented here is a direct supplement
to the paper (WISKOTT & SEJNOWSKI, 2002) and attempts to understand analytically some of the results
that have been found numerically.

The paper is structured as follows: First the learning problem is stated in its full complexity as an
optimization problem of variational calculus. Then a simplified optimization problem is derived that is more
amenable to analytical treatment. A direct variational calculus approach for finding optimal solutions of the
simplified optimization problem is given in Section 4. Section 5 presents an alternative algebraic approach.
In Section 6 optimal responses are derived for a number of different boundary conditions. This includes a
fairly detailed analysis of the results obtained in (WISKOTT & SEJNOWSKI, 2002, Examples 4, 5). The paper
concludes with Section 7.

2 The Full Optimization Problem

The problem of extracting slow features from a quickly varying input signal can be formally stated as follows:

Optimization Problem 1 Given an I-dimensional input signal x(t) = (z1(t),...,z1(t))T with time t €
[ta,tg] and (...)T indicating the transpose. Find an input-output function g(x) = ( 1(%), .o, g7 (x)T gen-
erating the J-dimensional output signal y(t) = (y1(t),...,ys ()T with y;(t) := g;(x(t)) such that for each
jed{l,...,J}

A= A(yy) = <y]2) is minimal (1)

under the constraints

(y;) 0 (zero mean), (2)
(y?) =1 (unit variance), (3)
Vk<j: (yey;) = 0 (decorrelation) , (4)

where the dot in y; indicates the temporal derivative and angle brackets indicate temporal averaging, i.e

(f) =2 2 () dt.

Equation (1) expresses the primary objective of temporal slowness by minimizing the temporal variation
of the output signal. Constraints (2) and (3) help avoiding the trivial solution y;(t) = const. Constraint (4)
guarantees that different output signal components carry different information and do not simply reproduce
each other. It also induces an order, so that y;(¢) is the optimal output signal component, while y»(t) is a
less optimal one, since it obeys the additional constraint (y; y2) = 0. Thus, A(yx) < A(y;) if k < j.

3 The Simplified Optimization Problem

Optimization Problem 1 is too difficult to solve analytically in most practical cases. To simplify the problem
we will now ignore the input signal and determine the optimal free output signal. The term free shall indicate
the lack of constraints from an input signal or a class of input-output functions, but it permits constraints
on the output signal itself, such as cyclic boundary conditions. Thereby we can investigate theoretically how
the system would respond under idealized conditions. We formulate the simpler



Optimization Problem 2 Find a J-dimensional output signal y(t) = (yi(t),...,ys(t))T with t € [ta,tp]
such that for each j € {1,...,J}

Aj = Aly;) == (y?) is minimal (5)
under the constraints

(y;) 0 (zero mean), (6)
(y]2> =1 (unit variance), (7)
Vk<j: (yey;) = 0 (decorrelation), (8)

and possibly some boundary conditions, such as
yi(ta) = wyja, (9)
yits) = yiB. (10)

This problem can be analyzed with different methods. We will first apply standard variational calculus
and then develop an alternative algebraic approach. In the following the term response will be used as a
synonym for the term output signal component for brevity. In context of theoretical considerations responses
are continuous functions, while in computer simulations they are discretely sampled.

4 Variational Calculus Approach

The direct and most general approach is variational calculus. From Objective (5) and Constraints (6-8) we
derive the Lagrangian function for y;:

. 1. 1
L(t, yj, 955 Ajos Njjs Ajk) = gy?(t) + Ajoy; () + /\jj§y]2‘(t) + Z Ay (O)yr(t) (11)

k<j

where Objective (5) and Constraint (7) have been multiplied by a factor of 1/2 for mathematical convenience
without loss of generality. The corresponding Euler-Lagrange equation is

0 d o
o L=\ Coag. ) — s =0. 12
0y; dt 9y; Ajo + Aji5(t) + k§<j Ajkyk(t) — §5(t) =0 (12)

Any solution of Optimization Problem 2 solves this differential equation. The free parameters Ajo, A;; and Ajy
have to be chosen such that the constraints and boundary conditions are fulfilled. If no boundary conditions
are given, they have to be varied to find the optimal solution. Notice that there may be solutions to (12),
which are not solutions of Optimization Problem 2, because the Euler-Lagrange equation is only a necessary
condition but not a sufficient one. If several solutions of the Euler-Lagrange equation exist, the optimal one
has to be selected by additional considerations. The family of functions solving the Euler-Lagrange equation
is given by

Theorem 1 The optimal free responses for Optimization Problem 2 have the form
—Cj//\jj—FCLj sin( —)\jj t) —|—bj COS( —/\jj t) if )\jj <0
yit) = diyn(t) +{ ¢ 1?/2 +a; +b,t if \j; =0 (13)
k<j 7Cj/)\jj+aj exp(Jr,/)\jj t)+bj exp(f\/)\jj t) if )‘jj >0
with Cj = ()\j() — Zk<j djk)\ko) and djk chosen such that ()\jjdjk + )\jk) = Zl<j djl)\lk: for all k < ]

Proof First we notice that the Euler-Lagrange equation (12) is an inhomogeneous linear differential equa-
tion with constant coefficients. Thus its general solution y; is the sum of a particular solution y,; of
the inhomogeneous equation and the general solution yg; of the corresponding homogeneous equation, i.e.
y;(t) = yp; (t) + yg;(t). Since the Euler-Lagrange equation is of second order, the general solution y,; of the



homogeneous equation is an arbitrary linear combination of two linearly independent functions. y,; is easy
to find and has the same form for all j:

a; Sin( _)‘jj t) + bj COS( _)‘jj t) if )‘jj <0
ygj (t) = Clj + bj t if )\jj =0 (14)
ajexp(+y/Ajjt) +bjexp(—/Aj;t)  if ;>0

Which of these three types of solutions is the correct one depends on the boundary conditions y;(ta) = y;a
and y;(tp) = y;5. Numerical analysis of several examples indicate that in general the exponential solution
is the correct one if one or both of the boundary values y;4 and y;p are large in magnitude and that the
oscillatory solution is the correct one if the boundary values are close to zero or can be optimized freely.
If at least one boundary value y;4 or y;p is large, the unit variance constraint requires the response to
quickly go close to zero and stay there most of the time, which leads to the exponential solution. If none of
the boundary values is constrained to be large, the oscillatory solution is preferable, because then the steep
sections of the response, which are expensive in terms of the primary objective of slowness, are near zero,
where they are most efficient in increasing the variance of the signal to fulfill the unit variance constraint.
The linear solution marks the transition between these two cases. These are only intuitive arguments, of
course, but since later we will use this variational calculus approach merely in a suggestive way to guess the
right solutions, a more rigorous treatment of this issue is not necessary here. In this paper the boundary
values are usually either close to zero or free to be optimized, so that the oscillatory solution is the common
one.

The particular solutions y,; can be derived by mathematical induction.

Part 1 (basis of induction): For j = 1 it is easy to show® that

{ — ke if A1 #0

15
Moy2  if N\ =0 (15)

Yp1(t)

is a particular solution of the Euler-Lagrange equation (12).

I For j = 1 there is no k < j and the Euler-Lagrange equation (12) for yp1 simplifies to
A10 + A1Yp1(t) — Gp1(t) = 0.

Inserting yp1 and its second derivative

.. 0 if \11 #0
ypl(t) { Ao if Aj1 =0
yields the true statements
A
A10 + A11 (_710)_0 = 0 if \11 #0,
A11
A10 o B . _
Ao+ A1 —t“—Xio = O if \11 =0.
~—~ 2



Part 2 (inductive step): Assume Theorem 1 is true for all y, with & < j. It can then be shown? that a
particular solution of the Euler-Lagrange equation (12) for j is given by

- , —¢i/Aj; A #0
Ypj (t) T ;jdjkyk(t) =+ { ¢ t2/2 if )\jj =0 ° (16)

if the parameters c; and d;; are chosen according to Theorem 1. Adding the particular solution y,; to the
general solution y,; defined by (14) yields y; as defined by (13). ]

This variational calculus approach shows that the optimal free responses are typically oscillatory (or
exponential, if the boundary values are large in magnitude). However, this kind of analysis is difficult for
later responses with higher index j and more complex boundary conditions, e.g. if the solution has to be
constant over a certain time interval. Thus in the next section we take a different approach that turns out
to be simpler and more powerful.

5 Algebraic Approach

In the variational calculus approach the goal was to find optimal responses within an infinite-dimensional
function space. In the algebraic approach we confine our analysis to a finite-dimensional space with dimen-
sionality N. This is not a serious limitation, since in computer simulations the output signals have a finite
dimensionality in any case and the dimensionality of our analysis can be arbitrarily high. Furthermore we
assume that the responses are continuous functions (to exclude steps), piecewise differentiable and of Lo
(so that we may define an inner product of the form [ a(t)b(¢)dt). For simplicity we also assume that the
responses we are looking for span the whole N-dimensional signal space, which implies J = N. This is again

2 Inserting yp; and its second derivative

) ) 0 ifA; #£0
Ups(t) = Zdj’“y’“(tH{ ¢ if/\j;io

k<j

into the Euler-Lagrange equation (12) yields

Xjo + Njjyps (t) + Z Ajkyk(t) — ipj ()

k<j
= No—ci+ Y (Agsdik+Ak) vk() = Y dyiji(t)  (this holds for Aj; =0 and Ay # 0)
k<j k<j
= Z d]k)\k() + Z )\]dek + Ajk yk Z djkyk smce Cj = ()\j() — Ek<j djk)\k()))
k<j k<j k<j
= Z djkAko + Z Z dji ke () — Z djr g (t)
k<j k<j 1<j k<j

(since we chose djj such that (/\jjdjk + )\jk) = Zl<]. dji Ny for all k < j)

= Zdjk)\k() + Z Zdjlklkyk(t) — Zd]kyk(t) (since )\lk =0foralll < k)

k<j I<j k<l k<j

Z djkAko + Z djk Z Aryr () — Z djrijr(t)
k<j k<j 1<k k<j

Z djk <)\k0 + Aeryr(t) + Z Ay (t) — iJk(ﬂ)
k<j 1<k

=0
= 0 (since each yj solves its corresponding Euler-Lagrange equation (12))

To determine the (J — 1) free parameters d;j, a linear system of (J — 1) equations must be solved. For such a system a
solution always exists. If the equations are not all linearly independent, the solution may not be unique. Thus also y,; may
not be uniquely determined. However, this is not a problem since we need only one particular solution to the Euler-Lagrange
equation (12).



no real limitation, since earlier responses are not affected in any way by later ones and we can always discard
later ones, if we are not interested in that many responses. These restrictions permit a much more elegant
and powerful analysis with algebraic methods following closely the logic of the SFA-Algorithm (WISKOTT
& SEIJNOWSKI, 2002).

Assume the J-dimensional space of responses we consider is given by a basis of linearly independent
functions aq(t),...,as(t) with zero mean. From such a basis we can always derive an orthonormal basis

b1(t),...,bs(t) with the inner product defined by (ab) := ﬁ ttf a(t)b(t) dt. Let C denote the covariance
matrix with Cmn = (bmb,) and C denote the matrix of the inner products of the time derivatives with

Con = (bmbn> C7 like C, has full rank, because the i)m are linearly independent, since they are derived
from the linearly independent b, by an invertible linear transformation. Notice also that C is not a covariance
matrix of the time derivatives, because the latter do not necessarily have zero mean. Since the functions b,,
are orthonormal, they have not only zero mean, but also unit variance, and are mutually orthogonal, i.e.
uncorrelated, so that C = 1, with 1 indicating the unit matrix. The orientation of the orthonormal basis in
space, however, is arbitrary.

Any valid response y; is a linear combination of the basis functions, i.e. y;(t) = >, wimbn(t), with
weight vector w; = (wj1,...,w;;)T. For a complete set of weight vectors w;,j € {1,...,J} Optimization
Problem 2 simplifies as follows:

minimize Aj = (y?) = ngm<bmbn>w]n = W;"FCWJ‘ (17)

under the constraints

(yj) = Z Wi, (b)) =0 (zero mean) , (18)
™ A
=0
(y]2> = ijm(bmbn)wjn = W;‘-F C w;= ijwj =1 (unit variance), (19)
mn =1
Vk<j: (wy;) = ijm@mbn)wkn = W;‘.F C wy = W;‘.ka =0 (decorrelation). (20)
mn =1

Constraint (18) is fulfilled automatically, since the basis functions have zero mean. Constraints (19) and (20)
are fulfilled if and only if the weight vectors are orthonormal. A; is obviously minimal, if the (normalized)
weight vector w; is eigenvector of C with smallest eigenvalue. ws has to be chosen to correspond to the
eigenvector with the second smallest eigenvalue (assuming non-degenerate eigenvalues), in order to yield a
minimal value for As under the decorrelation constraint (20). Similar arguments hold also for all other weight
vectors, so that setting the weight vectors to the normalized eigenvectors of matrix C ordered by increasing
eigenvalue yields the (in general) unique solution of Optimization Problem 2 for a finite-dimensional space
of responses. The A-values correspond to the eigenvalues, since

Aj = W;TCWJ = )\jW;er = )‘j . (21)

Notice that also the mixed inner products of the time derivatives of the responses vanish, which means
that the time derivatives are mutually orthogonal, since

VE£G: b)) = Y Wim(bmbn)win = w] Cwy, = \ew] wi = 0. (22)

mn

This is a curious observation. Orthogonality of the time derivatives is even a sufficient criterion for a
solution of Optimization Problem 2 under the given constraints, because only a set of eigenvectors of matrix
C yields functions with orthogonal time derivatives. As a consequence, any orthogonal set of functions with
zero mean and unit variance for which also the time derivatives are mutually orthogonal forms a solution
of Optimization Problem 2 within the space of responses spanned by these functions. This finding is so
important that we state it as a theorem.

Theorem 2 A set of functions y; with the properties

(yj) = 0 (zero mean) (23)



;) = 1 (unit variance) (24)
(yjy,) = 0 (decorrelation) (25)
(Ui0%) = 0 (orthogonal time derivatives) (26)
J<k = A; <A (order by slowness) (27)

is a solution of Optimization Problem 2 within the space Y spanned by these functions y;. Such a function
set is called A-optimal.

Remember that it is equivalent to say that two functions y; and y; are uncorrelated or that they are
orthogonal, because the functions have zero mean. This is not true for the time derivatives, which must be
orthogonal but not necessarily uncorrelated, because they may not have zero mean.

As mentioned above, the A-optimal set of functions y; is unique (except for the signs) only if the
eigenvalues of matrix C are all different. If there are several orthonormal eigenvectors (weight vectors w;)
with identical eigenvalues (A-values A;), these eigenvectors define a subspace within which any other set
of orthonormal vectors (weight vectors w) is an equally valid set of eigenvectors. Thus if we replace w;
by W;— we obtain again a A-optimal set. Since the argument holds for any subset of weight vectors with
identical A-value and since for a specific A-value the new weight vectors W; can be written as orthogonal
linear combinations of the old weight vectors w; we can state the following corollary.

Corollary 1 Let {y;|j=1,...,J} be a A-optimal set of functions with A-values A;. If U is an orthogonal
J xJ matriz with a block structure such that Ujp, = 0 if Ay # Ap, then the transformed set of functions
Wili=1,...J} with y;(t) = >_, Ujpyp(t) is also A-optimal with the same A-values as {y;}.

It is easy to prove this corollary in a direct fashion®. Another trivial but useful consequence of Theorem 2
is

Corollary 2 Given two A-optimal function sets {y;} and {y,.} spanning the spacesY andY’. If all functions
in'Y are orthogonal to all functions in Y’', i.e. (y;y.) = 0 V4, k, and the same holds true for the time
derivatives, i.e. (y;y;) = 0 Vj, k, then the union of {y;} and {y,.} ordered by its A-values forms a A-optimal
set of the union of the spaces Y and Y.

This corollary justifies to consider odd and even functions separately, since these as well as their time
derivatives are mutually orthogonal for symmetry reasons.
In the following we will consider some A-optimal sets of functions for different boundary conditions.

6 Optimal Free Responses

Before considering sets of A-optimal free responses, it is useful to introduce a measure of invariance that has
a more intuitive interpretation than the A-value. We use here the index n (WISKOTT & SEINOWSKI, 2002)

3We know that Zp UjpUkp = 0jk, since U is orthogonal, and Uj,Ap = UjpAj, since Ujp, = 0 if Ay # Ay, Thus

<;Ujpyp> = ;Ujp%?/ = 0,

Y5

W) - <(z) (zu)> S Ut~ Y Unle = b
P q Pq —s p
prq
(y;y@ = <<2Ujpyp> <2quyq>> = ZUijkq <ypyq> = ZUijkpAp
P q pq =5 AL P
rq=p
= ZUijkij = AjZUijkp = Ajdjk,
P p
—_——
Sk

and the set {y;} is A-optimal according to Theorem 2 with the same A-values as {y;}.



defined by
D

"o

if t € [ta,ta + D]. For a pure sine wave y(t) := v/2sin(n 27t/D) with an integer number of oscillations n
the index 7(y) is just the number of oscillations, i.e. n = n. Thus the index 7 of an arbitrary signal indicates
what the number of oscillations would be for a pure sine wave of same A-value, at least for integer values of
n. We also define n; := n(y;).

We will now consider some examples of A-optimal sets of responses. The considerations are mainly based
on Theorem 2.

n(y) : A(y) (28)

6.1 Cyclic Boundary Condition

What is the A-optimal set of responses with cyclic boundary condition on the interval [t 4,t5]? We know from
Fourier analysis, that any continuous function with cyclic boundary condition on this interval can be written
as a sum of sine and cosine functions sin(n2m t_DtA) and cos(n27rt_['§“) with integers n and D :=tp — t4.
We also know that these functions as well as their time derivatives are mutually orthogonal (which does not
mean that the functions are orthogonal to the time derivatives). Thus the set of all sine and cosine functions
up to a maximum frequency,

V/2sin ((j+1)m354) if j odd
y;(t) = { V2 cos (]7‘(‘ —tE;A) if j even telta s, (29)
_ (j+1)/2 if j odd
Mj { j/2 if j even ’ (30)

forms a A-optimal set, with (5 + 1)/2 and j/2 full oscillations for odd and even j, respectively, resulting in

the corresponding 7-values; see Figure 1. This set it not unique, however, since successive pairs of functions
have identical n-values.

ni=1 o= 1 N3=2 Mg=2

t t t t

Yo (t)
y5(t)
Y4 (t)

Figure 1: First four A-optimal responses for the cyclic boundary condition. t-axes range from ¢4 to tp;
y-axes range from —4 to +4.

6.2 Free Boundary Conditions

Consider now the more general case of all continuous functions on the interval [t4,¢p] without any further
boundary condition. What is the corresponding A-optimal set? Assume [t4,t5] = [0, 7] for simplicity and
without loss of generality. Any function with free boundary condition on the interval [0, 7] can be considered
one half of a corresponding even function on the interval [—m,7]. Since we know from Fourier analysis that
the cosine functions cos(nt) with integers n span the space of even functions on [—, 7], they also span the
space of any functions on [0, 7]. For symmetry reasons f_oﬂ cos(jt)cos(kt)dt = [ "cos(jt)cos(kt)dt. Thus,
since these functions are orthogonal on the interval [—m, 7], they are also orthogonal on the interval [0, 7].
Similar arguments hold for the time derivatives. Generalizing these considerations to the interval [ta,tp]
leads to the A-optimal set

() = \/§cos<j7rt_DtA> tEfta,ts], (31)

mo= J/2. (32)



This set is unique (except for the signs), since each function has a different n-value. The first four functions
are shown in Figure 2.

t t t t

yz<(t)
y(t)
%

Figure 2: First four A-optimal responses for the free boundary condition. t-axes range from t4 to tg; y-axes
range from —4 to +4.

6.3 One Pattern

After the simple cases of cyclic and free boundary conditions, which give a first intuition of the nature of
typical A-optimal sets, we will now derive results for the Examples 4 and 5 in (WISKOTT & SEJNOWSKI,
2002). In these examples a hierarchical network performing SFA was considered as a simple model of the
visual system. The network had a one-dimensional retina as an input layer and nine units in the output layer,
extracting the first nine responses y;. The network was trained with several patterns that were presented
one by one to the retina for a certain amount of time and with intermissions of no pattern presentation in
between. The patterns were either moved translationally across the retina or they changed according to some
other transformation (scale, 1D-rotation angle, contrast, illumination) or a combination of them. Here we
relate only to simulation results obtained for translation and scale invariance; cf. (WISKOTT & SEIJNOWSKI,
2002, Figs. 11, 21) and Fig. 10. A boundary condition that this training schedule imposes on the output
signal and that we can consider in our current analysis is that the responses have the same constant values
during all the time intervals where no pattern is presented to the network. In case of size invariance, due
to the symmetry of the training with patterns increasing and decreasing in size, there is the additional
constraint that the responses to single patterns must be even. Thus, odd responses must be disregarded in
a comparison with the size invariance simulations of (WISKOTT & SEINOWSKI, 2002).

First consider the simplest case of one pattern presentation. Let [ta,tp] be the total time interval
considered and [tq,t5] C [ta,tp] the shorter time interval during which the pattern is presented to the
network. The boundary condition requires y;(t) = ¢;,Vt € [ta,tB] \ [ta, ts] with suitable constants ¢;. What
is the corresponding A-optimal set of responses?

Consider first an approximation by taking the limit (tp —t4) — oo. In that case ¢; — 0 due to the
zero mean constraint and any average value of y; within the interval [to, %] can be compensated for by
an infinitesimally small value of c¢;. Assuming c; = 0 and without the need to respect the zero mean
constraint within the interval [t,, t] one can guess in analogy to the previous examples that a A-optimal set
is approximately given by

y(t) = {W sin (jrigte) i€ [ta by )

0 otherwise ’
n; = JjD/(2d), (34)
with D :=tp —t4 and d :=t, — t,. The first four responses of this set are shown in Figure 3.
For an intuitive understanding of this set assume, without loss of generality, t, = —7 and ¢, = +.

The functions with even index j can then be written® as y;(¢) = /D /7 (—1)% sin (4t). These are full sine
waves with an integer number of oscillations within the interval [—m, +7]. Thus they are odd functions and
therefore have zero mean exactly even for finite D, they are mutually orthogonal, and their time derivatives

4 For even j

(0 = v/2D7) s (37 =) = /D7 s (e 4) = /D] (-1 sin (L)



n=0.88 No=1.76 3= 2.64 Ne=3.53

A A

t t t t

y1(t)
yo(t)
y(t)
ya(t)

Figure 3: First four approximate A-optimal responses for the single pattern boundary condition. D = 150
and d = 85; t-axes range from t4 to tp; y-axes range from —4 to +4. y; and y3 do not have zero mean,
while y2 and y4 have. Notice also that 77; has an unrealistically low value, because the lowest possible n-value
under the weaker cyclic boundary condition is 1; cf. (30) and Fig. 1.

are mutually orthogonal, too. Hence, this set of odd functions (with even index) forms a A-optimal set and
from Fourier analysis it is known that they span the space of all continuous odd functions with boundary
condition y(—7) = y(+7) =0 (up to a certain frequency if j is limited).

The functions with odd index j can be written® as y;(t) = \/D/m (—1)% cos (%t) These are cosine waves
with an integer number of oscillations minus half an oscillation within the interval [—7,4+n]. Thus they are
even functions and, for symmetry reasons, they as well as their time derivatives are orthogonal to each other
(following an argumentation similar to that in Section 6.2; a mathematical proof is given below). However,
their mean value does not vanish for finite D, which means that they fulfill the requirements of a A-optimal
set exactly only in the limit D — oo and approximately for finite D. From Fourier analysis can be inferred
that they span the space of all continuous even functions with boundary condition y(—7) = y(+n) = 0 (up
to a certain frequency if j is limited). This can be seen as follows. We know from Section 6.2 that the set
{cos (4t)} spans the space of all continuous functions with free boundary conditions on the interval [0, 27].
Taking only the functions with odd index value yields a set that spans the space of all functions with an odd
symmetry with respect to the reference point +7 and free boundary conditions on the interval [0, 27]. For
symmetry reasons this same set spans also the space of all functions with boundary condition y(+7) = 0
on the interval [0, 4] and the space of all even functions (with reference point 0) with boundary condition
y(—m) = y(4+n) = 0 on the interval [—m, +x|. The latter is the required result.

Taking together odd and even functions of (33) they span the space of all continuous functions with

5 For odd j

y;(t) = \/M sin (jﬂt _2(7:7r)> = \/Di/ﬂ sin (%t + j%lfr + %W)

\/Di/w(—l)% cos (%t) .
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boundary condition y(—m) = y(+m) = 0 on the interval [—m,+n]. It can also be shown® more formally
that (33) defines a A-optimal set in the limit D — oo and that it fulfills the conditions for a A-optimal
set approximately for finite D. Unfortunately, the latter is only suggestive and does not necessarily imply
that the given y; are an approximation of the true A-optimal set for finite D. However, it can be verified
numerically that this is indeed the case. Notice also that the conditions for a A-optimal set are fulfilled
exactly by the set of odd functions y; (with even index j) because they have zero mean within the interval
[ta,tp], which means that at least they form a A-optimal set for finite D, but they span only part of the
interesting function space.

To determine at least the first A-optimal even function exactly for the single pattern boundary condition
we can take the variational calculus approach. To simplify the analysis and without loss of generality
assume t, = —tp and t, = —t,. We infer from Section 4 that the first A-optimal even function is of
the form yq1(t) = —A10/A11 + b1 cos(v/—A11 t), since (i) the solution with A;; < 0 is selected because the
boundary value ¢; can be optimized freely, (ii) there are no terms with constants dy; because no k < 1 exist,
and (iii) a3 = 0 because the solution has to be even. The constants Ao, A11, and by have to be chosen such
that gy fulfills the constraints (6) and (7) and optimizes the A-value (5). T have found numerically with
standard optimization techniques that the optimal Aig is close to zero for all valid values of tg,t4,ty, and
tq. Assuming vanishing Ajg, setting a; = by and w = v/—\11, generalizing to arbitrary values of t, and t,

6 With (33) we can verify that

tp ty Jm
1 V2D/d [ t—t 2 , d
(yj) = B/y]-(t)dt = ) sin (]7‘(’ p a) dt = Dd sin(t’) j—ﬂdt'
ta ta 0
2d 1 (/242 i
= — — (1 —cos(jm)) = D jm for odd j
D jm 0 for even j
— li ; = 0,
tp ty,
1 2D/d t—1t t—1
(yjuk) = B/yj(t)yk(t)dt = T//sin (jw y “)sin (lm i “) dt
ta ta

Fiy —+7
_ 2 VN nad o _ 1 A ’ r 0 ifj#k
= 3 /sm(jt ) sin(kt") ;dt = = sin(jt') sin(kt’) dt’ = 1 i = k
0 -7
The second last step is valid, because sin(jt’') and sin(kt’) are odd functions and the product sin(jt’) sin(kt’) therefore an even
function. Thus the integral over [0, 4] can be replaced by the integral over [—m, +] divided by 2. The last step is valid, because

sine waves with different but integer numbers of oscillations are orthogonal (case j # k) and because fj: sin?(jt') dt’ = 7 (case

j=k).
For the time derivatives y; we find similarly

tp tp
1 2D/d jkn? t—t t—t
(Ujok) = ) /y](t)yk(t) dt = T/]dg /cos (j7r ) a) cos (kﬂ' 7 a) dt
ta ta
T —+
2jkm? " NP Jkm -t AP TY 0 for j # k
= B /cos(yt ) cos(kt") ;dt = 2 cos(jt") cos(kt')dt’ = jz,f for j — k
0 -
D Dj
o= = 2y = ==
i 27 <y3> 2d

Notice that the conditions (y;yr) = 0% and (§;9x) = ;1A are fulfilled exactly even for finite D.
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and taking into account the zero mean and unit variance constraints, we have’ for j = 1

_ 2t—(tatts) .
y(t) = a; cos (w] 4 ) if ¢ € [ta,ts] 7 (35)
a;j cos(w;) otherwise
with tar:j(wj) = —(D/d—1) and wj€ (jn/2,(j+1)7/2], (36)
J

a; = \/2/(1 + (1 = d/D) cos(2w;) + (d/D) sin(2wj)/(2wj)) ) (37)

nj = ;—jr \/wj(D/d) (2w; — sin(2w;)) . (38)

If D and d are given, the optimal frequency w; can be determined with (36) and the optimal amplitude
with (37). (36) defines w; only implicitly. Thus it is helpful to draw the graphs of (D/d —1)w; and — tan(w,)
in a common diagram and take their first non-zero intersection as the solution. Such a graph is shown in
Figure 4. It illustrates that w; lies between 7/2 and w. The intersection between 1.57 and 2 is suboptimal,
since it results in a larger n-value (38). (It is also an illustrative exercise to consider w; as given and determine
D as a function of d with (36).)

7 Assuming t, = —t; for simplicity and without loss of generality and dropping index j = 1 for notational convenience we
have
2t i —
y(t) = acos (wd) ifte [.tb’tb} (with w € (7/2,7] and a > 0)
a cos(w) otherwise
! fo 2t
0 = (y) = ((D —d)acos(w) + a cos (w—) dt)/D
N —
dsin(w)/w
tan(w) .
= = —(D/d-1) (since cos(w) # 0)
w
, ty 2\ 2
1 = @?) = ((D —d)a?  cos(w)? +a2/ cos (w—) dt)/D
—— _t, d

(14cos(2w))/2 —_———
(d+dsin(2w)/(2w))/2

= ((D —d)a?/2 4+ (D — d)a® cos(2w)/2 + a2d/2 + a2dsin(2w)/(2w)/2) /D

= a2 (1 + (1 —d/D) cos(2w) + (d/D) sin(2w)/(2w))/2

= a = \/2/<1 + (1 —d/D)cos(2w) + (d/D) sin(2w)/(2w)) (since a > 0)

@) = a2<wz>2/tb sin(w%)zdt/D =  a?w(1/dD)(2w — sin(2w))

—ty
—_——
(d—dsin(2w)/(2w))/2

— g = W?) = %\/w(D/d)(2w—sin(2w))
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Interestingly, it can be shown® that the solutions belonging to different intersections are mutually or-
thogonal and that also their time derivatives are orthogonal, so that they fulfill the conditions of Theorem 2
and therefore form a A-optimal set of responses. Thus Equations (35-38) can be taken for all odd indices j
up to some arbitrary limit (the exact responses for even index j are still given by Eqgs. (33, 34)). However,
it is not as clear as in the previous sections that these responses actually span the space of all continuous
functions up to a certain frequency, because the term frequency is not well defined here and we cannot resort
to Fourier theory that easily.

To investigate this issue further consider the limiting cases D = d and D — oo for odd j. For D = d
we find w; = (j + 1)7/2 and a; = v/2 so that y; are equal to Y(j+1) for the cyclic boundary condition in
Section 6.1. If we let D go to infinity we obtain limp_ . w; = jn/2. Taking the analytical limes of a;
is difficult since w; is given only implicitly, but it is intuitively clear and can be confirmed numerically,
that a; grows to large values. In this latter case the y; become equal to their approximate counterparts of
Equation (33). This also holds for finite D if j goes to infinity.

Thus, in the limiting cases D = d and D — oo (or j — o0) the responses given by Equations (35-37)
converge to complete sets of all even functions up to a certain frequency in the sense of Fourier theory. This
at least suggests that the exact A-optimal set for one pattern (Eq. (33) for even index and Egs. (35-37) for
odd index j) is also complete up to a certain frequency. The first four exact A-optimal responses for the

8First we show that the inner product between y; and yy vanishes, again assuming t, = —t; for simplicity and without loss
of generality:

? o 2t 2
0 = (yjyx) = ((D — d)a; cos(wj)ay cos(wg) + ajak cos (wj Z) cos (wkg) dt) /D

—tr

% (cos ((wj —Wk)%) + cos <(wj +wk)%)) a

dsin(w; —wy)  dsin(w; + wg)
2(wj — wk) 2(wj + wk)
0 = (w —wi)wy +wr)(D/d— 1) cos(w;) cos(wr) + (w; + wp) sin(w; — wi)/2
+ (wj — wi) sin(wj + wy)/2
= ((,uj2 —w)(D/d — 1) cos(w;) cos(wy) + (w; + wi)(sin(w;) cos(wy) — cos(w;) sin(wy,))/2
+ (w5 — we) (sin(ws) cos(wk) + cos(w;) sin(wy)) /2

ty

= 0 = (D —d)cos(wj)cos(wy) +/

—tr

= (D —d)cos(w;j)cos(wg) + (since wj # wg)

= (wj2 —wi)(D/d — 1) cos(wy) cos(wy,) + wj sin(w;) cos(wy) — wy, cos(wy) sin(wy)

w2 — W2 1 sin(ws 1 s
= 0 = %(D/d -+ — sin(w;) -— sin(wi) (since w?w? cos(w;) cos(wy) # 0)
wiwy wp wj cos(wj) wi w cos(wg) J

1 1 1 1 . tan(w;) op
= <w2 - w2> (D/d=1) = —(D/d=1)+ —(D/d=1)  (since =2 = —(D/d ~ 1) (36))
k J k J

= 0
Then we show that also the time derivatives are orthogonal:

o (02) (463) [ o (oY () o
ajay w]d wkd 3 sin wjd sin wkd

tr

— 0 = /tb % (cos ((wj fwk)%) — cos (((.Uj +wk)2§)> dt

—tr

7
0 = (9u)

_ dsin(wj —wg)  dsin(w; +wg) (since wj # wy,)
2(wj — wg) Z(Wj + wg) !

= 0 = (wj+we)sin(w; —wk)/2— (wj —wg)sin(w; +wg)/2

= (wj +wg) (sin(w]-) cos(wy) — cos(w;) sin(wk)) /2 — (wj — wy) ( sin(w; ) cos(wy) + cos(w;) sin(w@) /2

= wpsin(w;) cos(wy) — w; cos(w;) sin(wy,)

— 0 = sin(w;) _ _sin(wr) (since wjwy, cos(w;) cos(wg) # 0)
wjcos(wj)  wy cos(wy)
= 0 (since 22 — _(p/d—1) (36))
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single pattern case are shown in Figure 5.

A
-an(e) (Drd-1)o,

y

Figure 4: Illustration of the equation tan(w;)/w; = —(D/d — 1) (36), which implicitly defines w;. Shown
are four branches of —tan(w;) and the line (D/d — 1)w;. The first intersection corresponding to w; can lie
on the section drawn with a thick line. Thus, it is obvious that 7/2 < w; < 7. Frequencies for higher odd
indices are given by the other intersections with w; € (jn/2,(j + 1)7/2].

n=1.19 na=1.76 o= 2.79 TNa= 3.53
t t t t

Figure 5: The first four exact A-optimal responses for the single pattern boundary condition. D = 150 and
d = 85; t-axes range from t 4 to tp; y-axes range from —4 to +4. Notice, that in contrast to Figure 3 1; now
has a realistic value greater than 1.

6.4 Multiple Patterns

Assume now that not only one but P different patterns are presented to the network at different non-
overlapping time intervals. The responses must then be functions that may vary within the different time
intervals in which a pattern is visible and are constant otherwise. What is the A-optimal set under these
boundary conditions?

If we accept that the function set (33) is sufficiently exact, the answer is relatively simple. Since the
time intervals of the different patterns are non-overlapping and the constant response is zero, it is obvious
that the functions of the A-optimal sets of the different patterns, or different time intervals, are all mutually
orthogonal and that also their time derivatives are. Thus, according to Corollary 2, a A-optimal set for the
multiple pattern case is simply the union of the A-optimal sets of all the single patterns, with the functions
ordered by their 7-values; see Figure 6.

If the time intervals of the patterns differ, the n-values differ correspondingly according to (33), and the
A-optimal set of functions is in general unique. If the time intervals are of similar but not identical length,
the first unit responds with half a sine wave to the pattern visible within the longest interval, the second unit
to the pattern visible within the second longest interval, etc. Then come units with full sine wave responses,
first to the pattern visible within the longest interval, then to the pattern visible within the second longest
interval, etc. The picture would be similar to Figure 6 but with slightly different intervals and n-values. If
one pattern is presented for a much longer time interval than the others, leading to overall smaller n-values,
the first few units may respond to this pattern, the first unit with half a sine wave, the second unit with
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a full sine wave, etc. Notice also that the response amplitude would be smaller for patterns presented for
longer times.

In simulations like those shown in Figure 10 but with patterns of different size (15-30 units) and therefore
different presentation times (70-85 time steps), neither of these two effects was significant. There was no
clear tendency to represent large patterns only with early components and there was no negative correlation
between pattern size and response strength. Instead the representation of each pattern was distributed over
several output signal components as discussed in the next section. This indicates that the computational
power of the network was not sufficient to reproduce this theoretically predicted behavior.

= n1=2.65|= no=2.65|= N3= 2.65
L - I L =
L S 1
Zl 1st 2nd 3rd |2 =
= pattern X =
t t t
= m=529|= nNs=5.29|= Ng= 5.29
A SV 5]
= = I = I
[ [ 1
= = =
1 t t
= n,=7.94< ng=7.94<= o= 7.94
“ ™) )
£ S0 M ]s I
[ [ Il
= = =
t t t

Figure 6: Approximate A-optimal set of responses for three patterns. Each column p forms a A-optimal set
{yp.k} for a single pattern. United they form a A-optimal set {y;} for the corresponding three pattern case.
However, this set is not unique, since the n-values in each row are identical; cf. Fig. 7. D = 150 and d = 85;
t-axes cover an interval of length 3D; y-axes range from —4 to +4.

6.4.1 Patterns of Same Duration

Consider now the case where the time intervals have identical length, so that for P time intervals there
are P responses y; with identical n-value, each one coming from a different pattern and therefore varying
only in one interval and not the others, like in Figure 6. Focus on the responses with lowest n-value, which
have the shape of half a sine wave, like y; in (33). Let y;(t,) be the value of response y; at some reference
point of time interval p, in other words the response of unit j to pattern p at a certain location or size with
j,p € {1,..., P}, and assume the responses are ordered such that unit j responds if p = j. The reference
points are the same for all intervals and thus the response is the same for all patterns (in their respective
interval) and denoted by r. The responses y;(t,) then form a P x P diagonal matrix Y with all diagonal
elements equal r. The responses of the P units to a single pattern p at the reference location form a response
vector (y1(tp), ..., yp(ty))T, which is the p-th column vector of matrix Y. Since Y is a diagonal matrix, the
response vectors for all P patterns are mutually orthogonal, which is convenient if one wants to recognize
the patterns based on the responses.

We have seen above that since the n-values of the responses y;,j = 1,..., P are identical, they are not
unique. Any orthogonal transformation, written as an orthogonal P x P matrix U, on the vector of these
responses would yield an equally valid A-optimal set y;(t) = 211;1 Ujpyp(t) for j = {1,..., P}; see Figure 7.
The matrix of response vectors would change correspondingly and yield Y’ = UY. In general each unit
would then respond to each pattern to some extent, but still with half sine waves. However, the column
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vectors of Y’ are still orthogonal. Thus the response vectors would still permit recognition of patterns equally
well.

From another point of view one can also argue that the decorrelation constraint causes the row vectors
of Y’ to be orthogonal and the unit-variance constraint causes them to have identical norm, so that also the
column vectors are orthogonal and the patterns can be recognized well. Thus the decorrelation constraint
causes the system to generate different representations for different patterns.

In the simulation experiments (WISKOTT & SEJNOWSKI, 2002), if trained on a few patterns only, the
response vectors were in fact close to orthogonal. For more training patterns, the network did not produce
as many half sine wave responses as there were training patterns. Thus the response vectors could not all
be mutually orthogonal. I found that in this situation the angle between any pair of response vectors would
rarely be greater than 90°, indicating that the response vectors mostly lie within a cone of 90° opening angle
or possibly within a rotated hyperquadrant. This also holds for testing patterns.

ny= 2.65 No= 2.65 n3= 2.65
Sty E/\—v—/\ 5
1st 2nd 3rd
pattern
t t t
Ng= 5.29 Ns= 5.29 Ne= 5.29
= ® =
1 t t
n,=7.94 M= 7.94 No=7.94
= = E A

t t t

Figure 7: Approximate A-optimal set of responses for three patterns. Functions with identical n-value can
be mixed by any orthogonal transformation and still form a A-optimal set. Notice that each of the three
subsets belonging to a different n-value has been mixed with a different orthogonal transformation. D = 150
and d = 85; t-axes cover an interval of length 3D; y-axes range from —4 to +4.

6.4.2 Where-Responses

The analysis given in the previous section is based on the assumption that the constant response during the
intermissions is zero. This corresponds to the approximation made in Section 6.3 and holds for D/d — oc.
The basic result is that in general all of the first P units should respond to all patterns with half a sine wave,
but with different signs and amplitudes, so that the responses are uncorrelated and the response vectors are
orthogonal. However, it is worth considering one particular response that appears often in simulations in
more detail, namely the one that is (almost) identical for all patterns; see y; of Fig. 10. Such a response
does not differentiate between different patterns and provides information only about their location or size.
Thus it can be referred to as a where-response. The others, which differentiate between different patterns,
are correspondingly referred to as what-responses. Notice that a what-response may still convey some where-
information.

Since a half sine wave where-response is identical for all patterns, the optimal response is the one of the
single pattern case simply duplicated P times and the corresponding n-value is multiplied by P. Thus we
can use the exact function given by (35) (which is in fact not exactly half a sine wave). As one can infer in
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the limit D — d and can verify numerically, the n-value of such a response is in general higher than those
with a zero constant response.

If we accept that such a half sine wave where-response is always generated, because it has a different 7-
value than the half sine wave what-responses, it is easy to see that the decorrelation constraint guarantees that
the latter have zero mean exactly”, although we have used the approximative form (33). Thus the constraints
are fulfilled not only approximately but exactly, which may be taken as an a posteriori justification of the
assumption of zero constant response. The first row in Figure 8 shows an example of these responses.

M= 2.65 No= 2.65 Ns= 3.57
Sh % 2\ N\
t 2nd 3rd
pattern
t t t
T]4= 529 1’]5= 529 T]6= 529
= i\ \/-‘ \N=
t t t

Figure 8: A-optimal set of responses for three patterns with two where-responses, y3 and ys. Notice that
ys differs from y; and yo in its n-value and should therefore always occur as the third response. A response
like y5 occurs theoretically only by accident and could be any of the responses y4, ys5, or yg. D = 150 and
d = 85; t-axes cover an interval of length 3D; y-axes range from —4 to +4.

A where-response can also occur among the full sine wave responses. However, since it has the same
n-value as the others, it should theoretically occur only by accident; see y5 in second row in Figure 8. Taking
together the first two where-responses provides a unique representation of location (remember that in case
of size there are no full sine wave responses in the simulations for symmetry reasons, but the half sine wave
response is sufficient to uniquely represent the size of a pattern). Even if these where-responses should not
emerge explicitly, the corresponding information is usually still there and can be extracted by an appropriate
orthogonal transformation.

6.4.3 Comparison with Simulation Results

To compare the theoretical results with simulation results we need to take into account that the simulations
have the additional constraint that the responses are computed with some nonlinear functions from a given
input signal. This causes the responses to be more irregular than predicted by the theory, which causes a
shift of the n-values upwards. The amount of shift varies, however.

In the simulation for learning size invariance (WISKOTT & SEJNOWSKI, 2002, Fig. 21) the predicted -
value of the first what-responses is 10.08 and of the first where-response 12.99 (for 10 patterns with D = 119
and d = 59). The n-values of the first four simulation responses are in the range 10.3-11.31, indicating
that the shift of n-values is small. Thus it is reasonable that the first responses are all what-responses, as
predicted by theory.

In the simulation for learning translation invariance (Fig. 10) the predicted n-value for the first what-
responses is 2.65, for the first where-response 3.57, and for all full sine wave responses (of where- as well
as what-type) 5.29 (for 3 patterns with D = 150 and d = 85). Comparison with the first four simula-
tion responses (cf. Fig. 10) indicates that the what-responses yo and y, suffer a significantly greater shift

9The inner product between the first where-response (y3 in Fig. 8) and any of the first what-responses (y1 and y2 in Fig. 8)
has no contribution from the intermissions, because there the what-responses are zero. Since during the individual pattern
presentations the where-responses are identical and the what-responses only differ in amplitude but not in shape, the respective
overall contribution can be written as a sum over the amplitudes of the what-responses times an integral over the where-
response and a standard what-response. Due to the decorrelation constraint and since the integral is not zero, the sum over the
amplitudes and therefore also the mean over the what-responses must vanish. Thus the zero-mean constraint is fulfilled exactly.
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than the where-responses y; and ys, presumably because the latter are easier to generate smoothly under
pattern translation. As a consequence the half sine wave where-response comes first and the full sine wave
where-response, like y5 in Figure 8, does occur systematically and not only by accident, because it is now dis-
tinguished by its low n-value. However, it is not clear why it did not mix with half sine wave what-responses,
like y; and y» in Figure 8.

With this, we can also understand why “for some parameter regimes, such as fewer patterns or smaller
distances between patterns, no explicit where-components emerge” (WISKOTT & SEJNOWSKI, 2002, p. 743).
Fewer patterns permit the system to generate smoother what-responses with correspondingly smaller 7-
values. Smaller distances between patterns cause shorter intermissions and a relative increase of the n-
value of the half sine wave where-response. In both cases the half sine wave where-response is no longer
distinguished by its low n-value and can mix with the half sine wave what-responses.

Figure 9, top row, shows four theoretically predicted responses similar in shape to and in the same order
as those found in (WISKOTT & SEJNOWSKI, 2002, Fig. 11). Below are shown trajectory plots to provide

a picture of the response vectors in phase space. Figure 10 shows corresponding simulation results from
(WISKOTT & SEINOWSKI, 2002, Fig. 11) for comparison.

ny=3.57 MNi<T2<M3 N3=5.29 N3<M4
Tst 2nd 3rd
pattern
t 1 t t
y1(t) Yao(t) ys(t)
y4(t) Ya(t)
=
y4(t)

Figure 9: Four theoretically predicted responses arranged like the simulation results shown in Figure 10.

n-values are estimated. D = 150 and d = 85 match the values in Figure 10. t-axes cover an interval of length
3D; y-axes range from —4 to +4.

The qualitative agreement between the theoretically predicted responses and those obtained in the simu-
lations is excellent. The simulation results are, of course, noisier and there are differences due to the arbitrary
signs and amplitudes of responses to individual patterns. Another important difference is that the number of
half sine wave responses the simulated network generated was much less than the number of patterns (= 20)
presented during training, which is a consequence of the limited computational capacity of the network.
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n=3.89 n=4.86 n=5.46 n=5.73
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Figure 10: Simulation results from (WISKOTT & SEJNOWSKI, 2002, Example 4, Fig. 11). Shown are the
results on the training data. D = 150 and d = 85. (In (WISKOTT & SEIJNOWSKI, 2002, Fig. 11) patterns were
actually presented for 84 time steps. After linear interpolation between these sample points the response may
actually deviate from the constant response within a time interval of length 85. Thus, d = 85 and not 84.)
t-axes cover an interval of length 3D; y-axes range from —4 to +4. The graphs show only the response to
three out of 20 patterns, thus the visible part of the responses do not fulfill the constraints (zero mean, unit
variance, and decorrelation) exactly. Before computing the n-values the responses were normalized exactly.
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7 Discussion

Slow

feature analysis is in general a difficult variational calculus problem. We have seen that it can be

idealized and simplified significantly if one abstracts from the input-output function and only considers the
free output signal under some boundary conditions. This led to Optimization Problem 2. Solving this
simplified optimization problem provides information about what the best solution is the system can obtain
at all, regardless of the detailed constraints given by the input and the class of input-output functions. We
were able to confirm several simulation results theoretically. General findings are:

The responses tend to be sections of sine waves; see Eqgs. (13, 29, 31, 33) and Figs. 9, 10.

n-values usually increase linearly with the response index; see Eqgs. (30, 32, 34). This also holds for the
multiple pattern case, where the n-values of groups of responses increase linearly; see Fig. 6. The -
values are even comparable in magnitude to those of the single pattern case. For instance, the n-values
in the third column of Figure 6 all coincide with the values of n3, 1¢, and 79 for the single pattern case;
see Eq. (34). Only the n-values of the first two columns are greater. This generally linear increase of
the n-values has also been observed in simulation experiments ; see (WISKOTT & SEJNOWSKI, 2002,
Figs. 5, 6, 7). However, the slope was much greater in these cases, because of the additional constraints
given by the input signals and the class of input-output functions.

For the multiple pattern cases simulated in (WISKOTT & SEJNOWSKI, 2002, Examples 4, 5) and investi-
gated here in Section 6.4 we find:

The most invariant responses are not piecewise constant responses but half (or full) sine waves, since
these have a less abrupt on- and off-set; see Figs. 9, 10 and (WISKOTT & SEJNOWSKI, 2002, p. 742).

While individual what-responses vary like half sine waves and are therefore not truly invariant to
translation or scale, the direction of the response vector, which is the vector of several responses at
a given time, tends to be invariant over the pattern presentation; see Figs. 9, 10 (trajectory plots
Y2 VS. Y1, Y4 VS. Y1, and yy vs. Y2).

Where- as well as what-information is always extracted. If the n-values are sufficiently different where-
responses emerge explicitly; see Figs. 9, 10 (y1 and y3). There are potentially many more what-responses
than where-responses.

Response vectors of different patterns tend to be orthogonal; see Sec. 6.4.1. This was also found in
simulation experiments. If there were more patterns than what-responses, the response vectors were
rarely more than 90° apart, indicating that they stay within a cone of 90° or a rotated hyperquadrant.

If the duration of presentation is the same for all patterns, the representation of a particular pattern is
in general distributed over all what-responses; see Figs. 9, 10 (y2 and y4) and (WISKOTT & SEJNOWSKI,
2002, Fig. 21) (all y;). There is no tendency to generate a sparse representation. A representation in
which only one unit responds at a time is even suppressed, because of the likely emergence of the first
what-response, which enforces other units to respond with different signs to at least two patterns; see
Sec. 6.4.1. However, this suppression is not strong and in the approximate analysis a representation
in which only one unit responds at a time is possible; see Fig. 6 (y1, y2 and y3). Thus, there may be
room for an additional objective favoring sparse representations.

Furthermore, the theory would predict:

If patterns are presented for different amounts of time, those seen longer are represented first; see
Sec. 6.4. This would lead naturally to a sparse representation. However, this tendency was not
observed in simulation experiments, indicating that it may be a weak effect or difficult to achieve in
the network model considered here.

It is somewhat suspicious that the simulation results of Figure 10 could be reproduced so well without
considering the input signal and the input-output function. However, this does not mean that the input
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is ignored or irrelevant. It rather indicates that the system has the tendency to generate the theoretically
predicted responses if the input signal and the potential input-output functions allow it to do so. The
response can always only be produced based on the input signal. But the theory leaves some room for
adaptation to the input, because the responses of same type, half or full sine waves, can be mixed by any
orthogonal transformation. A perfect fit of the simulation results with the theoretical responses, however,
would clearly indicate overfitting. This is the case if only few training patterns are used, such as three or
four. With 20 training patterns, like in the simulation results considered here, the effect of overfitting is
weak and the system generalizes fairly well (cf. WISKOTT & SEJNOWSKI, 2002, Fig. 23). But then the fit
is not perfect anymore. As indicated in Section 6.4.3, the simulation responses become noisier, have an
unexpected order, and there are fewer than the expected 20 responses of the half sine wave type. Thus the
simulations only reproduce part of the theoretically predicted output signal, but what they reproduce can
be well understood theoretically.

Another issue we have touched upon only briefly is the question to what extent the learned representation
is useful for recognition. There are two different aspects to discuss. One is the particular shape of individual
response components, half and full sine waves, and the other is the population aspect of the response, such
as questions of sparseness and orthogonality. As argued already in (WISKOTT & SEINOWSKI, 2002) the half
sine wave responses have the advantage over the more obvious piecewise constant responses that they avoid
the abrupt on- and off-sets as a pattern moves into or out of the visual field. The full sine wave responses
convey important where-information but do not seem to provide additional what-information. Thus in the
simulations of (WISKOTT & SEJNOWSKI, 2002) only the full sine wave where-response was included in the
analysis of results. On the population level, the tendency to produce orthogonal response vectors for different
patterns is very useful for invariant pattern recognition. The overall orientation of the response vectors in
space and with it the sparseness of the representation is theoretically very dependent on the exact training
procedure. However, this effect was not observed in the simulations considered here. Experiments with more
realistic input sequences are required for a more thorough evaluation.

In summary, the analysis presented here shows a way how simulation results obtained based on the
principle of temporal slowness can be analyzed and understood theoretically. We have gained some general
insights and a good understanding of responses obtained in (WISKOTT & SEJNOWSKI, 2002, Examples 4,
5). The analysis also shows that the learned representation depends strongly on the particular training
procedure. For instance, it potentially makes a great difference whether patterns are presented for equal or
different amounts of time.
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