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Abstra
tIn many neural net appli
ations visual data are represented as ve
tors, although it isknown that this form of representation la
ks synta
ti
al stru
ture. Labeled graphs havebeen proposed as a data format whi
h provides the missing relational information. Thepresent work argues that labeled graphs of per
eptual patterns 
an be generated andpro
essed based on simple prin
iples. Complex and 
exible obje
t representations 
anbe derived from single examples by graph mat
hing.Dynami
 Link Mat
hing has been developed as a biologi
ally-motivated neural me
h-anism for graph mat
hing. This work dis
usses the prin
iples as well as the advantagesand drawba
ks of Dynami
 Link Mat
hing 
ompared to other neural systems. A 
om-plete fa
e re
ognition system based on Dynami
 Link Mat
hing is developed. In 
ontrastto previous systems, the dynami
s is autonomous, and mat
hing between graphs of dif-ferent size is made possible by an attention window. The performan
e is demonstratedfor fa
es of di�erent perspe
tive or fa
ial expressions against a gallery of 111 neutralfrontal views.For more te
hni
al appli
ations, Elasti
 Graph Mat
hing has been developed as analgorithmi
 
ounterpart to Dynami
 Link Mat
hing. In this work the system is devel-oped further in several aspe
ts: obje
t-adapted graphs allow 
omparisons between verydi�erent views, eÆ
ien
y has been in
reased signi�
antly by separating graph genera-tion from re
ognition, and phase information of the Gabor transform is used to in
reasemat
hing a

ura
y. The key role is played by a newly introdu
ed graph stru
ture, 
alledGeneral Fa
e Knowledge. It is based on a 
olle
tion of individual sample fa
es, but italso represents fa
es that 
an be obtained by 
ombining subparts of the samples. By thismeans, new fa
es 
an be pro
essed without having a referen
e model of the individualperson. Re
ognition results on galleries of 300 fa
es are presented.The determination of fa
ial attributes serves as a se
ond demonstration. GeneralFa
e Knowledge 
an be used to generate 
omposite or phantom fa
es very similar to theoriginal. If fa
ial attributes su
h as gender or the presen
e of a beard are known for thesample fa
es of the General Fa
e Knowledge, these attributes 
an be transfered to thephantom fa
e. On that basis the fa
ial attributes of the original fa
e 
an be determinedin a very simple and general way.And �nally, Elasti
 Graph Mat
hing is applied to the re
ognition of o

luded obje
tsin 
luttered s
enes. Two di�erent algorithms are presented. The �rst allows re
ognitionof known obje
ts between and behind unknown distra
tors. The se
ond one requiresthat all obje
ts in the s
ene are known to the system. It pro
esses the s
ene from frontto ba
k and in addition determines the order of the obje
ts in depth.
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Prefa
eIt is not the intention of this thesis to present one single monolithi
 model of obje
tre
ognition, but rather several models, emphasizing di�erent aspe
ts of a larger 
on
ep-tual framework. I have therefore tried to keep the di�erent 
hapters independent of ea
hother, making it possible to sele
t single 
hapters without having read the pre
edingones. The abstra
ts at the beginning of ea
h 
hapter will help to provide an overview.Keywords referred to in the index are printed in itali
s.The �rst 
hapters introdu
e the 
on
eptual framework. In Chapter 2, I argue forlabeled graphs as a data stru
ture for obje
t representation. In Chapter 3, the prin
iplesof Dynami
 Link Mat
hing as a neural system for pro
essing labeled graphs are explained.The four subsequent 
hapters present four 
on
rete models for di�erent visual taskson two di�erent levels of abstra
tion. Chapter 4 deals with Dynami
 Link Mat
hingas applied to fa
e re
ognition. The same task is solved in Chapter 5, but in a morete
hni
al system with Elasti
 Graph Mat
hing, whi
h is an algorithmi
 abstra
tion ofDynami
 Link Mat
hing. Closely related is Chapter 6, whi
h is 
on
erned with thedetermination of fa
ial attributes su
h as gender, the presen
e of a beard or glasses. Avery di�erent appli
ation of Elasti
 Graph Mat
hing, the analysis of 
luttered s
enes, isthen presented in Chapter 7. (This 
hapter is in part a modi�ed reprint of (Wiskott &von der Malsburg, 1993) 

World S
ienti�
 Publishing Co. Pte. Ltd., with the kindpermission of the publisher.) All appli
ations here use the Gabor wavelet transform asa visual prepro
essing providing lo
al features (see Appendix A).I have been fortunate to be able to work with Professor von der Malsburg's groupat the Institut f�ur Neuroinformatik of the Ruhr-Universit�at Bo
hum, Germany and tovisit several times his group in the Department of Computer S
ien
e and the Se
tionfor Neurobiology at the University of Southern California, Los Angeles, U.S.A. I enjoyedideal working 
onditions and great freedom to develop my own interests and ideas. Iam espe
ially obliged to my advisor, Professor von der Malsburg, who has taught mein the 
ourse of many invaluable dis
ussions what kind of questions are worth raisingand what prin
iples might lead to answers. I am also grateful to Professor Biederman atUSC, who taught me many things about psy
hophysi
s. I thank Professor Wunner forproviding the se
ond report. Sin
ere thanks go also to my 
olleagues in Bo
hum and atthe USC: Jean{Mar
 Fellous, Norbert Kr�uger, and Thomas Maurer, with whom I sharedex
iting 
ooperation within the fa
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ognition proje
t at USC; Martin Lades for hissofware 
ontribution to the 
luttered s
enes proje
t; Norbert Kr�uger, Thomas Maurer,Mi
hael P�otzs
h, and Andreas S
hwarz for their 
riti
al remarks on the manus
ript ofthis thesis; Jozsef Fiser, Bernd Fritzke, Wolfgang Konen, Jan Vorbr�uggen, Rolf W�urtz,and all those mentioned above, for many fruitful dis
ussions and an enjoyable time inBo
hum and at the USC. I thank Mi
hael Neef for providing us with a well maintainediii




omputer environment, Uta S
hwalm for her help with all administrative questions,and Professor Edwin Hopkins and Jan Vorbr�uggen for their 
orre
tions of the English.Finally, I espe
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Chapter 1Introdu
tionVisual images are usually represented as pixel arrays, a square latti
e of real numbers.Two indi
es, the x- and y-
oordinates, denote the position, and the real number repre-sents the lo
al grey value. This is an appropriate representation for raw images, and itis 
omplete within the limits of given spatial and brightness resolution. Conventionalneural net appli
ations tend to ignore the spatial relations impli
it in the x- and y-
oordinates. They simply use the indi
es as a unique address for the individual pixels orthe respe
tive input neurons. An image is then represented as a ve
tor with distin
t 
o-eÆ
ients without further spatial relations. One 
ould for example 
onsistently permutethe ve
tor 
oeÆ
ients in all training and test patterns, and the network would performas well as before.Chara
ter re
ognition is a frequently used example to demonstrate the performan
e ofa neural system. It was already used in the early years of modelling neural nets. Widrow& Hoff (1960), Blo
k (1962), as well as Kohonen (1972) used 
hara
ter re
ognitionfor demonstration purposes. In all three 
ases the input units had no further relationalstru
ture, i.e. the input patterns had no topology. The 
onsequen
e is demonstratedin Figure 1.1. On the left and on the right are shown two patterns that we assumehave been learned by a neural net or stored by an asso
iative memory. In the middle isshown a pattern that serves as an input and is supposed to be re
ognized or asso
iatedwith one of the stored patterns. Whi
h of the stored patterns is the 
orre
t one? Thenatural answer seems to be: the right one. But then one has used a metri
 whi
htakes relational information into a

ount. The neural nets mentioned above 
onsider thepatterns as ve
tors and use a di�erent metri
. The Hamming distan
e, for example, leadsto the result that the left pattern is more similar to the one in the 
enter, sin
e the leftpattern di�ers in fewer pixels from the 
entral one. The same paradigm of treating theinput pixels without any relational stru
ture 
an be found in more re
ent appli
ations(Kohonen, 1987; Kosko, 1987; de Edson et al., 1990).Another example is shown in Figure 1.2. What is the 
ommon property of the topfour patterns? The same question applies to the bottom four patterns: What is their
ommon property? The answer to these questions depends very mu
h on whether onetakes into a

ount the spatial stru
ture of the patterns or not. With topology (seetop row) one 
an already see from one example that it shows symmetry with respe
tto a diagonal, and this holds for the other patterns in the row as well. Ignoring thetopology 
an be illustrated by permuting all pixels 
onsistently, i.e. same permutationfor all patterns (see bottom row). Then one has a hard time and would need many more1



Figure 1.1: Visual patterns as used for training and testing 
onventional neural nets.Is the pattern in the 
enter more similar to the left or to the right pattern?

Figure 1.2: Patterns with se
ond order 
orrelations. What is the 
ommon property ofthe patterns in the top row? And what is the 
ommon property of the patterns in thebottom row? (The bottom patterns have been generated from symmetri
al patterns bya 
onstant permutation of the pixel positions.)examples to noti
e that many pairs of 
ells are perfe
tly 
orrelated. Sejnowski et al.(1986) have used this example. They applied a Bolzmann learning algorithm to thedete
tion of di�erent symmetries. For a 10�10 layer the algorithm needed about 40,000presentations of training examples in order to rea
h a su

ess level of 85%. The hiddenunits had to reveal through statisti
s that 
ertain pairs of neurons were 
orrelated, aproperty 
ompletely independent of the spatial arrangement of the 
orrelated pairs. Itis evident that the notion of symmetry 
an be inferred from few examples if the spatialstru
ture of the patterns is taken into a

ount. This was demonstrated by Konen &von der Malsburg (1992, 1993). In fa
e re
ognition the most prominent example ofrepresenting visual patterns as ve
tors without any topologi
al stru
ture is the Prin
ipalComponent Analysis dire
tly applied to fa
e images (see for exampleKirby & Sirovi
h,1990; Turk & Pentland, 1991; O'Toole et al., 1993).2



Two di�erent solutions are used to over
ome this drawba
k of the 
onventional neu-ral net paradigm. The �rst one is to 
ompensate for the translation sensitivity of theve
tor representation by prepro
essing the input images to get a normalized version ofthem, whi
h is 
entered and possibly res
aled (Kidder & Seligson, 1993; Aviitzhaket al., 1995). This is frequently done in a rather te
hni
al way and is then not partof the neural system. A more neural system for translation 
orre
ting prepro
essing isthe translation-invariant network (Widrow et al., 1988; Mao & Kuo, 1992). But allthese prepro
essing systems require presegmented patterns and do usually not a

ountfor distortions. A se
ond solution was demonstrated by Fukushima et al. (1983). TheirNeo
ognitron is a multilayer feed-forward network with re
eptive �elds that are restri
tedto a small region of the respe
tive input layer. By this means some topologi
al informa-tion is introdu
ed, sin
e neighboring neurons in the input layer usually belong to the samere
eptive �elds. Within the re
eptive �elds no further spatial relations are en
oded. This
onne
tivity repeats over several stages. When the Neo
ognitron is trained, the neuronsdevelop into more and more 
omplex and more and more translation-invariant featuredete
tors as one as
ends the hierar
hy. Translation invarian
e is a
hieved by low-pass �l-tering and subsampling the neural responses at ea
h stage. Thus positional informationthat might be important for dis
rimination is lost and the performan
e of the systempotentially degrades. In addition, the degree of possible low-pass �ltering is tightly 
ou-pled to the 
omplexity of the features, and translation invarian
e is therefore limited. Afurther disadvantage of this system is that it requires a very 
areful ar
hite
tural designand sele
tion of training patterns; training e�ort is very high. A more re
ent appli
ationof the Neo
ognitron 
an be found in (Ting & Chuang, 1993). Related to the Neo
og-nitron is the weight-sharing ba
k-propagation network (LeCun et al., 1989; Martin,1993). These systems show only very little translation invarian
e. They are also veryexpensive in terms of training samples. However, they seem to be more robust in termsof ar
hite
tural design, and they do not require training of ea
h layer separately, as isne
essary for the Neo
ognitron.These examples illustrate the la
k of stru
tural information in the ve
tor represen-tation (
f. von der Malsburg, 1981; von der Malsburg, 1986; Bienensto
k &Doursat, 1991). This thesis is 
on
erned with an alternative representation of visualpatterns, the labeled graph. It 
ombines feature information with the required stru
turalinformation. The advantages of labeled graphs will be dis
ussed in Chapter 2 and thendemonstrated in di�erent appli
ations, for fa
e re
ognition (Chapter 5), gender deter-mination (Chapter 6), and s
ene analysis (Chapter 7). Although labeled gaphs are avery natural representation for visual patterns, they do not quite �t into the traditional
on
ept of neural nets with a �xed 
onne
tivity, subje
t only to a slow learning pro-
ess. von der Malsburg (1981) therefore proposed the Dynami
 Link Ar
hite
ture,in whi
h he enri
hed 
onventional neural nets with the 
on
epts of temporal binding andfast synapti
 plasti
ity. Based on these ideas Bienensto
k & von der Malsburg(1987) developed Dynami
 Link Mat
hing, in whi
h temporal stru
ture of neural sig-nals 
odes for relations between nodes by 
orrelations. Fast synapti
 plasti
ity admitsdynami
 mat
hing between di�erent layers depending on the represented patterns. The
onne
tivity is no longer �xed, but subje
t to a 
omplex self-organization pro
ess. Dy-nami
 Link Mat
hing will be dis
ussed in Chapter 3 and applied to fa
e re
ognition inChapter 4. 3
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Chapter 2Labeled Graphs forObje
t RepresentationAbstra
t: Sensory patterns 
an be appropriately represented by labeled graphs. Nodes arelabeled with lo
al features; edges are labeled with relational features. It is argued that theselabeled graphs 
an be generated on the basis of simple grouping prin
iples: proximity in featuretype, in spa
e, or in time. They 
an be mat
hed onto ea
h other if they are similar in featuresand stru
ture. Fusion graphs 
an be generated for graphs with signi�
ant overlap. Labeledgraphs provide a means to learn and generalize from single examples and might serve as a basisfor more abstra
t pro
esses su
h as �nding analogies.2.1 Introdu
tionIn the introdu
tory 
hapter it was argued that the typi
al data stru
ture used in arti�
ialneural nets, the ve
tor, la
ks relational information. In this 
hapter I des
ribe labeledgraphs as a uniform data format for sensory patterns providing the stru
ture needed. Asimple example of labeled graphs and graph mat
hing is shown in Figure 2.1.Labeled graphs for obje
t representation have been widely used in the �eld of arti�
ialintelligen
e (
f. Fu, 1982), but for neural nets they were probably �rst proposed by vonder Malsburg (1981, 1983). He also developed Dynami
 Link Mat
hing as a neuralme
hanism to pro
ess labeled graphs in a neural ar
hite
ture (see next 
hapter). Several
on
rete models based on these 
on
epts will be presented in the subsequent 
hapters.A �nal 
on
lusion will be given in Chapter 8.2.2 Representation of Sensory PatternsOn a low level, per
eption begins with a stru
tured en
oding of the sensory input. Prim-itive segmentation and grouping me
hanisms are ne
essary to provide higher levels witha useful representation of obje
ts. I am now going to dis
uss brie
y the general stru
-ture of sensory patterns and how elementary graph representations of obje
ts 
an begenerated. 5



a) b) c) d)Figure 2.1: Simple graphs and graph mat
hing. a) and d) The patterns `2' and `7'are the same as in Figure 1.1, but represented and stored as labeled graphs. The inputpattern to be re
ognized is a di�erent `7', distorted relative to the stored one. b) The`2'-graph mat
hed to the input pattern. The 
urved line and diagonal of the `2' �tsfairly well, but the horizontal foot of the `2' is 
ompletely 
ompressed and the horizontalstroke of the `7' is not 
overed. 
) The `7'-graph 
an be mat
hed to the input patternwith little distortion (adapted from Bienensto
k & Doursat, 1991).2.2.1 Labeled Graphs of Sensory PatternsA labeled graph 
onsists of a set of nodes and a set of edges 
onne
ting pairs of nodes.The nodes are labeled with lo
al features, and the edges are labeled with relationalfeatures (von der Malsburg, 1986; Bienensto
k & von der Malsburg, 1987;Lades et al., 1993; see also Figure 2.2). A lo
al feature represents absolute informationthat 
an be extra
ted from a small pat
h of an image su
h as 
olor, lo
al texture, orthe orientation of an edge. For a
ousti
 signals lo
al features 
ould be onset, o�set,or energy in a parti
ular frequen
y 
hannel. I will refer to the 
omplete set of lo
alfeatures for a given modality as the feature spa
e. The relational features, on the otherhand, 
an only be extra
ted from two su
h lo
al pat
hes. An example is the spatialdistan
e between two lo
ations. With one ex
eption (see below) I will refer to the spa
efrom whi
h the relational features are extra
ted as the sensory spa
e. Sensory spa
edepends on modality, too. For the auditory modality, for instan
e, the sensory spa
e isthe frequen
y axis. The ex
eption to this is time. Time also provides relational featuressu
h as `sooner' or `later', but nevertheless time needs to be treated separately fromthe sensory spa
es for several reasons. First of all, time is 
ommon to all modalitiesand thus 
onstitutes the main 
ue for binding per
epts of di�erent modalities. Se
ondly,time 
annot be represented in the same way as the other sensory spa
es. There is no
ounterpart to the retina for the time dimension. Further pe
uliarities of time per
eptionhave been dis
ussed by P�oppel (1978). Feature spa
e, sensory spa
e, and time 
an be
onsidered as three subspa
es in whi
h sensory patterns are embedded, and we have seenhow labeled graphs 
an serve as a dis
rete representation of su
h sensory patterns.2.2.2 Graph FormationHow 
an a graph of a sensory pattern be generated? This pro
ess has two aspe
ts:Firstly, nodes need to be lo
ated, and se
ondly, they need to be 
onne
ted by edges.The sensory input, for example a pixel image, often has a mu
h higher resolution thanone would like to represent internally, lo
ating a node at ea
h pixel not being pra
ti
al.6



Thus one has to perform a sele
tion. The appropriate density of nodes depends on the
omplexity and spatial extent of the lo
al features. With 
omplex features des
ribingextended pat
hes of an image, the nodes may be mu
h sparser than for simpler featuresdes
ribing only a few pixels around ea
h node. Two s
hedules for sele
ting nodes ina sensory pattern have been used. The �rst is to sele
t nodes on a regular grid with
onstant spa
ing adapted to the 
omplexity and extent of the lo
al features (
f.W�urtz,1995). This s
hedule does not a

ount at all for the spe
i�
 
hara
ter of patterns andis determined only by the 
hara
teristi
s of the lo
al features and the spatial resolutionthat one wants to a
hieve. In the se
ond s
hedule one attempts to sele
t parti
ular pointsin the sensory pattern, so-
alled salient points, that are espe
ially important and 
arrymaximal information. The problem is that these points have to be sele
ted withoutobje
t knowledge only on the basis of low-level information. Thus, one has to de�nean appropriate salien
y measurement that allows one to �nd salient points with highreliability (
f. Manjunath et al., 1992). This approa
h has the advantage that fewernodes are required and that the node positions are obje
t-adapted, i.e. for the same obje
tin di�erent images it is likely that the same lo
ations relative to the obje
t are sele
ted.It should be mentioned that several nodes may be lo
ated at the same image lo
ation ifdi�erent feature types are used. Thus, for a red dot there might be a node representing`dot' and another node representing `red'. Using several nodes at the same lo
ation mayalso be appropriate for representing transparent obje
ts.When the node positions are sele
ted, whi
h nodes should be 
onne
ted? This is thequestion of grouping and segmentation, and many me
hanisms have been proposed forit (
f. the Gestalt prin
iples in Boff et al., 1986, pp. 36-14{36-23). I 
on
entrate onlyon the law of proximity in three di�erent variations. It may be proximity in sensoryspa
e (spatial proximity), proximity in feature spa
e (feature similarity), and proximityin time (temporal proximity). The probability of two nodes being 
onne
ted in
reaseswith proximity and will be maximal if two nodes 
oin
ide in some aspe
ts (see Fig-ure 2.2). Neural models of grouping and segmentation based on spatial proximity andfeature similarity were, for instan
e, presented by K�onig & S
hillen (1991), von derMalsburg & Buhmann (1992), and Vorbr�uggen (1994). It is interesting that inthese models the segmentation result was represented by temporal syn
hrony of 
oupledos
illators 
orresponding to the third me
hanism, temporal proximity.These are only three basi
 grouping me
hanisms, and many more 
ould be 
ited.However, it is un
lear to what extent other, more 
omplex laws of grouping are ne
essaryunder natural 
onditions and to what extent they 
ould be learned from experien
e onthe basis of the simple me
hanisms 
ited here (Boff et al., 1986, pp. 36-11{36-14).On
e elementary node relations are indu
ed by the laws of proximity, sets of nodes are
onne
ted to form a graph. The reasons for whi
h the nodes were 
onne
ted might in partbe irrelevant to the obje
t itself. For example, 
ommon motion is a strong segmentation
ue and will bind together all nodes of one obje
t, but the motion itself is usually notrelevant for the obje
t and should not be stored. Therefore the 
onne
tions indu
edhave to be transferred to all nodes. The result is a highly 
onne
ted elementary graph,representing a sensory pattern. This is the basis for all further steps (see Figure 2.3).7
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Figure 2.2: Sensory patterns are embedded in sensory spa
e (e.g. retinal lo
ation),feature spa
e (e.g. 
olor), and in time. Labeled graphs are used to represent sensorypatterns. Nodes are labeled with lo
al features. Proximity in one of the three subspa
esindu
es relations between nodes, whi
h are represented by edges. Proximity in sensoryspa
e is indi
ated by dashed lines, proximity in feature spa
e is indi
ated by solid lines,and proximity in time is indi
ated by dash-dotted lines. In the left example the leftmostfeature type might, for example, represent 
ommon motion. In the right example, twonodes are 
onne
ted due to proximity in sensory and feature spa
e. Two other nodes areisolated, sin
e they are proximate to none of the other nodes.
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Figure 2.3: The edges of the graphs in Figure 2.2 indu
ed by proximity are transferredto all nodes of the graph. Some nodes, su
h as those representing motion, are signi�
antfor segmentation but are irrelevant for representation of the obje
t itself and 
an beremoved. The result is a highly inter
onne
ted labeled graph representing the sensorypattern. Conne
tions expressing temporal progression are indi
ated by arrows.8
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graph 1 graph 2Figure 2.4: Graph mat
hing: The task of graph mat
hing is to 
onne
t graphs andsubgraphs that are similar in features and stru
ture. The mat
h between the graphsis indi
ated by dotted arrows. The three examples illustrate a) obje
t re
ognition, b)�nding partial identity, and 
) dete
ting symmetry.2.3 Graph Mat
hingAs a next step after generating graph representations for sensory patterns, one wouldlike to 
ompare them. The elementary pro
ess for that is graph mat
hing and the deter-mination of the similarity between graphs.2.3.1 Pattern Re
ognitionComparing graphs requires �nding a mapping that 
onne
ts nodes of one graph withnodes of another under the 
onstraints �rstly that the topology is preserved, i.e. neigh-bors are 
onne
ted with neighbors, and se
ondly that the similarity between the featuresof 
onne
ted nodes is high. This pro
ess is 
alled graph mat
hing (see Figure 2.4, 
f.also Bienensto
k & von der Malsburg, 1987; von der Malsburg, 1988; Ko-nen et al., 1994, and Chapter 4 for neural models of graph mat
hing). If only parts oftwo graphs are similar, these subgraphs should be mat
hed onto ea
h other while theremaining parts remain un
onne
ted (see Reiser, 1991, and Chapter 7). This kind ofgraph and subgraph mat
hing is in general NP-
omplete, but sin
e the graphs have atopographi
al stru
ture and are embedded in a low-dimensional sensory spa
e, the 
om-plexity is redu
ed signi�
antly, and simple mat
hing s
hedules �nd good approximationsof the optimal mat
h in a reasonable amount of time (see Buhmann et al., 1989, 1992,and Chapter 5). 9



2.3.2 Finding AnalogiesThe graph mat
hing des
ribed above 
an be used to 
ompare graphs within the samemodality and result in high similarity if the sensory patterns are similar. What 
an besaid about two graphs of di�erent modality? What remains 
omparable? This is �rst ofall, the number of nodes, the presen
e or absen
e of 
onne
tions between pairs of nodes,and relational information about temporal order. Se
ondly, in all sensory spa
es twonodes may be 
lose or distant to ea
h other. For instan
e, a dot in a visual pattern maybe 
loser to a se
ond one than to a third, 
orresponding to three sound 
omponents ofpit
h C, D, and G in the auditory system. Hen
e the topology of patterns in di�erentmodalities may be 
omparable, although this has quite obvious limitations, e.g. a triangle
annot be represented on the frequen
y axis. Thirdly, intensity as a very general aspe
tof feature spa
e may also be 
omparable between modalities, e.g. brightness, loudness,and pressure in the visual, auditory, and ta
tile system respe
tively. Graph mat
hingbased mainly on relational information 
an be interpreted as a me
hanism for �ndinganalogies (see Figure 2.5). This may be of questionable advantage on the low levelof sensory patterns, but the idea of �nding analogies between graphs on the basis ofstru
tural similarities might be interesting if one thinks of abstra
t graphs representingmore abstra
t patterns su
h as traje
tories, language, or ideas. A simple system for�nding analogies on the basis of relational stru
ture was presented by Chalmers et al.(1992). Their system 
ould for example re
over the analogy between the strings `ppqrss'and `aamnxx', mapping `pp' to `aa', `qr' to `mn', and `ss' to `xx'. It was based on featuressu
h as `�rst', `last', `su

essor', and `opposite'.2.4 Fusion GraphsIf one has a method for 
omparing graphs, one 
an improve storage of a number ofgraphs by representing identi
al or similar graphs or subgraphs only on
e. The resultis a fusion graph (Reiser, 1991; see Figure 2.6). This has the advantage of redu
ingthe required storage 
apa
ity and it possibly helps to generalize. But one possible riskis that the fusion graph will overgeneralize, and that the stored examples 
annot bere
alled reliably. There are di�erent me
hanisms for avoiding this and obtaining re
allof single examples.2.4.1 Long Range Conne
tionsLong range 
onne
tions between di�erent parts of a fusion graph 
an disambiguate thepossible interpretations in order to re
all the stored samples reliably (see Figure 2.6.
).A 
onsistent realization of this idea, where all nodes are 
onne
ted with all others, waspresented by von der Malsburg (1985, 1988) and von der Malsburg & Bienen-sto
k (1987). The attra
tiveness of this approa
h 
omes from its homogeneity and thefa
t that it requires no further nodes and probably little 
ontrol stru
ture. New graphs
an be integrated into the fusion graph very naturally. The disadvantage is that gener-alization 
apabilities are lost. From a fun
tional point of view, the system behaves likea 
olle
tion of single graphs. 10
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b)a)Figure 2.5: Two analogies between graphs of di�erent modalities. The mat
hing inthis 
ase is based on relational patterns rather than feature patterns. In a) the featuresof the nodes are 
ompletely ignored. It is only the stru
tural information that leads tothe illustrated mat
hing. The upper pattern may represent two tones, one going downin pit
h, the other up. The other pattern may represent the visual analogy, say twodots of di�erent 
olor, one moving downwards, the other upwards. One 
an also imaginethat simple features su
h as intensity are 
ompatible between modalities, as shown inb). The upper graph may represent two tones, the lower one two lights. In both graphsone signal be
omes more intense and one less.
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a) b) c)Figure 2.6: Fusion graphs: a) Three graphs with similar subpatterns. b) Fused graphrepresenting 
ommon subpatterns only on
e. Sin
e it is not en
oded whi
h subpatternsto 
ombine, this representation is ambiguous, and 
ombinations of subpatterns not pre-sented in a) are valid as well. This 
an be 
onsidered as a generalization 
apability. 
)Ambiguities 
an be resolved by long range 
onne
tions. Filled arrows indi
ate that theparts belong together, while un�lled arrows indi
ate that the parts are unlikely to belongto the same obje
t.
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a) b)Figure 2.7: Two alternative ways to resolve the ambiguities of the fusion graph inFigure 2.6.b: a) Cardinal 
ells represent the 
ommon subpatterns or b) they represententire graphs and point to parts of the fusion graph.2.4.2 Cardinal Cells for SubpatternsAn alternative 
on
ept is to represent 
ommon subpatterns by 
ardinal 
ells (see Fig-ure 2.7.a). Ea
h graph then would 
onsist of several elementary nodes and possibly some
ardinal nodes that point to subpatterns. From a fun
tional point of view this solutionwould again be equivalent to a 
olle
tion of single graphs and would la
k the potentialfor generalization. Compared to the previous solution, this method requires more nodesand a sophisti
ated method to determine whi
h subpatterns are frequent enough to beworth representing by a 
ardinal node. A further problem would be to 
ode exa
tly howa subpattern is to be integrated into the graph (
f. Ehrig, 1991).2.4.3 Cardinal Cells for Whole GraphsA more reasonable possibility of 
ombining generalization abilities and a reliable re
allof single examples is the use of 
ardinal 
ells for whole graphs (see Figure 2.7.b). Thegreat advantage is that they provide 
ontrol. If they are all ina
tive, the fusion graphshows full generalization properties. One 
an a
tivate one of them and suppress allothers re
alling only the graph of this one sample. For a re
ognition task, one 
an apply13



a winner-take-all me
hanism between the 
ardinal 
ells, ensuring that the best �ttingsample will win, without allowing spurious states.2.5 Spe
i�
 Graph RepresentationsHaving dis
ussed the general 
on
ept of labeled graphs for obje
t re
ognition, I will nowdes
ribe the 
on
rete graph stru
tures that I have used for the di�erent appli
ationspresented in Chapters 4{7.2.5.1 Fa
e Re
ognitionFor fa
e re
ognition ea
h fa
e is represented by a single graph. A 
olle
tion of thesemodel graphs serves as a gallery. For a new image of a fa
e a new image graph has tobe generated, whi
h 
an then be 
ompared with the gallery. The most similar modelis taken as the 
orre
t fa
e. The image graph formation 
an be a
hieved by mat
hingany stored model graph to the image. Assume the nodes in the model graph were takenfrom so-
alled �du
ial points, e.g. eyes, tip of the nose, 
orners of the mouth, et
. Ifthe model fa
e is similar to the image fa
e, the model nodes are likely to be 
orre
tlymat
hed to the 
orresponding �du
ial points in the image. Problems arise if the two fa
esare not similar, for example, due to a beard or glasses. Be
ause of the very di�erentappearan
e of identi
al �du
ial points, the image graph formation might fail. Thus,instead of a single model graph one needs a more general representation of fa
es that
an be mat
hed to an image in order to �nd the �du
ial points for di�erent fa
es reliably.For this purpose I have introdu
ed a general fa
e knowledge (GFK). Sin
e all fa
eshave the same stru
ture, only one graph representing the fa
ial geometry is requiredwith one node at ea
h �du
ial point. But sin
e the individual parts of fa
es may lookdi�erent, ea
h node of this graph is 
onne
ted with a set of alternative lo
al des
riptionsof the respe
tive �du
ial point, e.g. at the eye there are some des
riptions for female eyes,others for male eyes, some for 
losed eyes, some for eyes with glasses, et
. Ea
h node hasits own set, and during the mat
hing pro
ess, the des
ription that �ts the �du
ial pointin the image best is sele
ted. Due to its 
ombinatorial power (ea
h node may sele
t alo
al des
ription independently of the others), the GFK potentially represents a widerange of di�erent fa
es (see Chapter 5).2.5.2 Determination of Fa
ial AttributesFor the determination of fa
ial attributes the general fa
e knowledge has to be enri
hedby 
ontext knowledge. This 
an be done by 
ardinal nodes indi
ating the 
ontext ofthe fa
e, for instan
e male or female, bearded or not, and whether or not the personwears glasses (see Figure 2.8.a). By 
omparing a new image graph with the GFK, the
ontext knowledge 
an be used to determine the fa
ial attributes of the image fa
e (seeChapter 6).2.5.3 Obje
ts in a S
eneThe situation is very di�erent for obje
t re
ognition in 
luttered s
enes. Obje
ts are ingeneral very di�erent in stru
ture; thus ea
h obje
t has to be represented by a di�erent14
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es all have the same general stru
ture, but they di�er in lo
al features.For a general fa
e representation it is therefore reasonable to store for ea
h fa
ial pointa whole set of di�erent lo
al features that might be appli
able alternatively, indi
ated asdi�erent nodes 
onne
ted to one blank node on the left. In addition, 
ontext knowledgemay group the lo
al features into 
lasses, for example male nodes versus female ones.b) In order to interpret the image of a 
luttered s
ene, several models have to be mat
hedto the image and in addition the order in depth has to be determined. Models 
ompetewith ea
h other for image spa
e and 
ooperate with the image. Models or parts of modelsare dea
tivated due to o

lusion, as shown by blank features and dashed lines.obje
t graph, and ea
h graph is mat
hed to the image individually. Parti
ular problemsarise from the fa
t that obje
ts may o

lude ea
h other. As part of the mat
hing pro
ess,the system has to de
ide whi
h regions of an obje
t are o

luded by others and whi
h arevisible. A further 
onstraint 
omes from the fa
t that obje
ts 
annot interse
t. This 
anbe taken into a

ount by enfor
ing a de�nite order in depth. If two model graphs overlapin a s
ene, one has to be 
ompletely in front of the other. All this leads to a 
ompli
atedintera
tion between all model graphs mat
hed to a s
ene. As shown in Figure 2.8.b, themodels 
ompete with ea
h other for image spa
e, while mutual interse
tion is prohibited(see also Chapter 7).The 
on
epts presented in this 
hapter will be extended and illustrated in the subsequent
hapters. First, I will dis
uss Dynami
 Link Mat
hing as a neural me
hanism to treatlabeled graphs, and then present several illustrative appli
ations. A 
on
lusion will begiven in Chapter 8.
15



16



Chapter 3Dynami
 Link Mat
hingAbstra
t: In a neural system, labeled graphs 
an be represented by layers of neurons. Dy-nami
 Link Mat
hing (DLM) is a me
hanism to mat
h su
h layers onto ea
h other if theirfeature patterns are similar. Dynami
 Link Mat
hing has four basi
 prin
iples: the single layerdynami
s indu
es 
orrelations en
oding neighborhood; the dynami
s of two layers syn
hronizewith respe
t to the 
ommon feature pattern; this syn
hrony is robust against noise and a
-
idental links; fast synapti
 plasti
ity rules out all a

idental links and establishes a regular
onne
tivity between the two layers. Layer syn
hrony and 
onne
tivity improve in an iterativepro
ess. Along with its potential for graph mat
hing and obje
t re
ognition, invariant undertranslation, rotation, and mirror re
e
tion, Dynami
 Link Mat
hing has two major drawba
ks:it is slow and it is expensive in terms of 
onne
tivity.3.1 Introdu
tionIn Chapter 2 labeled graphs were presented as a uniform data stru
ture for representingper
eptual patterns. This Chapter 3 serves as a 
on
eptual dis
ussion of Dynami
 LinkMat
hing (DLM), whi
h is a neural dynami
s for mat
hing labeled graphs. A 
on
retemodel of DLM is presented in Chapter 4.Sin
e 
onventional neural nets allow the synapti
 weights to 
hange only on theslower time s
ale of learning and not during a re
ognition task, they do not seem tobe a natural ar
hite
ture to deal with graphs, whi
h require dynami
 binding on afast time s
ale in order to a

ount for the relational information. They are mu
h moreappropriate for ve
tors. DLM is one of very few attempts to over
ome this restri
tion andto mat
h patterns represented as graphs. Su
h a system has to be at least translationinvariant. In addition, it is rotation invariant and robust against distortion. S
aleinvarian
e 
an in prin
iple be a
hieved in a multis
ale representation, but this has notyet been demonstrated. Before I des
ribe the task and prin
iples of DLM I would like�rst to give a short histori
al overview of the development of DLM.3.1.1 HistoryRelated to the problem of graph mat
hing is the question of how a retinotopi
 proje
tion
an self-organize during the weeks or months of ontogenesis. In both 
ases a regularmap-ping between two domains has to be established whi
h preserves neighborhood relations,17



i.e. neighbors are 
onne
ted with neighbors. A model for the ontogenesis of retinotopi
proje
tions was proposed by Willshaw & von der Malsburg (1976). This model isformulated in terms of neural a
tivity. The very same prin
iple, but formulated in termsof 
hemi
al markers, was demonstrated in (von der Malsburg & Willshaw, 1977;Willshaw & von der Malsburg, 1979).From these models Kohonen (1982) derived his algorithm for the self-organizationof topographi
al feature maps. Amari (1980, 1989) did a thorough analyti
al treatmentof layer dynami
s and formation of topographi
al maps. H�aussler & von der Mals-burg (1983) derived autonomous equations for the link dynami
s independent of thespe
i�
 layer dynami
s.Regular proje
tion patterns 
an also self-organize between other than two-dimensional domains. Di�erent and more 
ompli
ated stru
tures are possible as well.The self-organization of hyper
olumns of orientation sele
tive 
ells develops a mappingbetween a 
ir
ular one-dimensional pattern spa
e and a 
orti
al stru
ture of two di-mensions (von der Malsburg, 1973). In 
ase of o
ular dominan
e stripes, two two-dimensional stru
tures, the left and right eye, 
ompete with ea
h other for one two-dimensional stru
ture in the 
ortex (von der Malsburg, 1979). In both 
ases the
on
i
t in topography leads to pattern formation: hyper
olumns or o
ular dominan
estripes.Von der Malsburg (1981, 1983, 1986) generalized the ideas of the retinotopy-related models and proposed to apply the same prin
iples to visual re
ognition tasks.He introdu
ed labeled graphs and formulated the idea of DLM as the neural realizationof graph mat
hing. The main di�eren
es between the retinotopy model and DLM is thatthe latter pro
ess is guided by features and their similarities, while the former has onlythe 
onstraint of preserving neighborhood relations. A se
ond di�eren
e is that DLMhas to take pla
e on a mu
h faster time s
ale| a fra
tion of a se
ond | while the othermay take weeks.Von der Malsburg and Bienensto
k presented �rst model simulations for theretrieval of stored graph stru
tures (von der Malsburg, 1985; Bienensto
k & vonder Malsburg, 1987) and for pattern re
ognition by DLM (Bienensto
k & vonder Malsburg, 1987; von der Malsburg, 1988). In the pattern re
ognition appli-
ations three di�erent patterns with arti�
ial features were distinguished. Konen & vonder Malsburg (1992, 1993) applied DLM to symmetry dete
tion, and its ability tolearn and generalize from single examples was demonstrated. Supplementary analyti
al
onsiderations and a fast version of DLM 
an be found in (Konen et al., 1994).Wang et al. (1990) were probably the �rst who applied DLM to a re
ognition taskon real world images, images of few fa
es as a gallery and a fa
e with di�erent expres-sion as input. They also used running blobs instead of the stationary ones used in allmodels before. More re
ently a model for fa
e re
ognition was developed by Konen &Vorbr�uggen (1993) . 18



3.2 Abstra
t Model3.2.1 TaskDLM was proposed to serve as an elementary pro
ess to mat
h and 
ompare labeledgraphs in a neural system. The nodes of the graphs are represented by model neurons,and ea
h neuron has atta
hed feature information. The graph topography is expressed bylateral 
onne
tions between neurons of one graph. They are usually ex
itatory betweenneighbors and inhibitory for distant nodes. We assume two layers representing similarpatterns. Figure 3.1, for example, shows two graphs representing two di�erent images ofthe same fa
e.The task of DLM is to establish a 
onne
tivity between the two graphs that 
onne
tsonly 
orresponding neurons. Two neurons 
orrespond to ea
h other if they representthe same part of the obje
t. This de�nition is obviously useless in a system that issupposed to �nd these 
orresponden
es only on the basis of image information. A moreoperational de�nition is the following: two neurons 
orrespond to ea
h other if they havea similar feature and if they have 
ommon neighbors (i.e. neighbors should be 
onne
tedwith neighbors). The se
ond 
onstraint of neighborhood preservation leads to 
ontinuousand regular mappings, but the mapping may still 
ontain mirror re
e
tion, translation,rotation, s
aling, and distortion to a 
ertain degree. From all these possible mappingsthe �rst 
onstraint of feature similarity distinguishes one as the best, and that one hasto be found.In order to make all regular mappings possible, ea
h neuron in one layer has to bepotentially 
onne
ted to ea
h neuron in the other layer (all-to-all 
onne
tivity). Andsin
e preferably neurons with similar features should be 
onne
ted, it is reasonable toinitialize the synapti
 weights of the links with the similarity between the features. Thisis indi
ated in Figure 3.1 by arrows of di�erent line width. DLM has to rule out mostof them, ending up with an approximate one-to-one mapping.3.2.2 Prin
iplesDLM is a dynami
 pro
ess that 
an be modeled in many di�erent ways. A system usinga running blob dynami
s will be presented in the following 
hapter. In this se
tionI will try to illustrate four basi
 prin
iples of DLM that are important for a modelbased on neural a
tivities. In the formulation of 
hemi
al markers several terms wouldhave to be repla
ed, but the prin
ipal ideas would be the same. In the formulation ofautonomous link dynami
s the following four prin
iples would have to be repla
ed bytwo more abstra
t ones.Correlation En
odes NeighborhoodSin
e topography plays a 
ru
ial role, the �rst prin
iple of DLM is that the dynami
s onone layer en
odes neighborhood relations through 
orrelation in the neural a
tivities (seeFigure 3.2). The 
orrelation between neurons is high if they are adja
ent and de
reaseswith distan
e. Conversely, knowing the temporal signals of two neurons one 
an tell fromthe types of 
orrelation whether they are neighbors or not. This 
an be a
hieved by manydi�erent dynami
s generating 
lustered a
tivities. In most models so far, stationary blobs19
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Figure 3.1: Initial and �nal 
onne
tivity for DLM. Image and model are representedby layers of 16�17 and 10�10 nodes, respe
tively, indi
ated by bla
k dots. Ea
h nodeis labeled with a lo
al feature indi
ated by small texture patterns. Initially, the imagelayer and the model layer are 
onne
ted all-to-all with synapti
 weights depending onthe feature similarities of the 
onne
ted nodes, indi
ated by arrows of di�erent linewidths. The task of DLM is to sele
t the 
orre
t links and establish a regular one-to-onemapping. We see here the initial 
onne
tivity at t = 0 and the �nal one at t = 10 000.Sin
e the 
onne
tivity between a model and the image is a four-dimensional matrix, it isdiÆ
ult to visualize it in an intuitive way. If the rows of ea
h layer are 
on
atenated to ave
tor, top row �rst, the 
onne
tivity matrix be
omes two-dimensional as shown at theleft. The model index in
reases from left to right, the image index from top to bottom.High similarity values are indi
ated by bla
k squares. A se
ond way to illustrate the
onne
tivity is the net display shown at the right. The image layer serves as a 
anvason whi
h the model layer is drawn as a net. Ea
h node 
orresponds to a model neuron,neighboring neurons are 
onne
ted by an edge. The lo
ation of the nodes indi
ates the
enter of gravity of the proje
tive �eld of the model neurons, 
onsidering synapti
 weightsas physi
al mass. In order to favor strong links, the masses are taken to the power ofthree. (See Figure 3.6 for 
onne
tivity development in time.)
20
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Figure 3.2: First prin
iple of DLM. Neighborhood relations in ea
h layer are en
oded bysignal 
orrelation. As an example the dynami
s is shown as a running blob of a
tivity.From the temporal signals shown on the right one 
an tell that neurons 1 and 2 areneighbors while neurons 2 and 3 are not.of a
tivity have been used. In Se
tion 4.2.3 a dynami
s with running blobs is presented.Waves of di�erent orientation are being investigated in our institute as well (S
hwarz,1995), and one 
ould also think of os
illatory modes of di�erent frequen
y su
h as in amembrane or a layer of 
oupled 
haoti
 os
illators.Layer Dynami
s Syn
hronizeThe se
ond prin
iple of DLM is that of layer syn
hronization (see Figure 3.3). Assum-ing two layers of the same size are 
onne
ted by a perfe
t one-to-one mapping, thenthe a
tivity dynami
s of both layers have to syn
hronize su
h that after a short while
orresponding neurons of the two layers are well-
orrelated, and vi
a versa: you 
an inferfrom the temporal signals of neurons of two di�erent layers whether they 
orrespond toea
h other or not. This is typi
ally a
hieved by 
ooperation through the mutual 
onne
-tions. As a side e�e
t of the 
ooperation the blobs be
ome larger and the layer a
tivitiesstronger.Syn
hrony is Robust Against NoiseThe third prin
iple of DLM is robustness against noise (see Figure 3.4). Usually the initial
onne
tivity between two layers is not perfe
t but given only by the feature similarities ofthe neurons. Hen
e many a

idental links are present and 
orre
t links may be missingif the patterns are not identi
al. Distortion may 
ause the 
orre
t mapping not to beone-to-one. If one pattern is partially o

luded only the remaining part 
an be mat
hed.Robustness against noise is a
hieved by 
ooperation between neighboring links. Twolinks are neighboring if both the sour
e nodes and the destination nodes are neighbors.Sin
e ea
h link tends to syn
hronize the 
onne
ted nodes, and sin
e neighboring nodesare syn
hronized through the layer dynami
s, groups of neighboring links 
an 
ooperateand are more su

essful than a

idental links, even if the latter are stronger. Groupsof neighboring links emerge if whole pat
hes of lo
al features are similar, i.e. if at leastsubgraphs 
an be mat
hed. The 
ooperation between neighboring links is illustrated inFigure 3.5. 21
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Figure 3.3: Se
ond prin
iple of DLM. Layer a
tivity dynami
s syn
hronize, and 
orre-lation of neurons of di�erent layers en
ode 
orresponden
e. Initially the blobs move indi�erent dire
tions. Sin
e the input into one layer is a 
opy of the a
tivity of the otherlayer, the two blobs tend to syn
hronize and run aligned with ea
h other from then on.The 
orresponden
e between neurons of di�erent layers 
an then be read o� their timesignals as shown in the bottom graphs. As a side e�e
t of the 
ooperation the blobsbe
ome larger.
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Figure 3.4: Third prin
iple of DLM. Layer a
tivity dynami
s syn
hronize despite pres-en
e of noise, i.e. a

idental links, missing links, distortion, and o

lusion. Sin
e theblobs 
over a neighborhood of 
ells, links 
an 
ooperate if they have same neighbors inboth layers. This redu
es the in
uen
e of a

idental links, whi
h are usually isolated(see also Figure 3.5). 22



1

2

3Figure 3.5: Fourth prin
iple of DLM. The initial 
onne
tivity is re�ned on the basisof 
orrelations between 
orresponding neurons. Sin
e the layer dynami
s syn
hronizedespite noise in the initial 
onne
tivity, a

idental links 
an be suppressed by other links
onne
ting better 
orrelated neurons. The �nal state is shown on the right. On the leftthe 
ooperation between links is illustrated. We see here two links 
onverging onto neuron2. One is weaker than the other but it 
an 
ooperate with the two dire
tly neighboringlinks. That favors the weak one, whi
h will eventually survive the link dynami
s.Syn
hrony Stru
tures Conne
tivityThe �rst three prin
iples indu
e 
orrelations between neighboring neurons or those 
or-responding to ea
h other if they belong to di�erent layers. This syn
hrony is robustagainst noise and usually 
leaner than the initial 
onne
tivity. As a fourth prin
iple one
an therefore apply fast synapti
 plasti
ity to modify the links on the basis of indu
edsyn
hrony between neural a
tivities (see Figure 3.5). It typi
ally 
onsists of a Hebbian-like growth rule, but on a fast time s
ale, and a normalization rule. The growth rulefavors links between syn
hronized neurons, while the normalization rule supresses linksbetween less syn
hronized neurons. This prin
iple works iteratively, i.e. syn
hrony im-proves with the development of a regular 
onne
tivity and the 
onne
tivity is re�ned bythe establishing syn
hrony. Figure 3.6 shows 
onne
tivity and 
orrelations developing intime. One 
an see that at a given time the 
orrelations are 
leaner than the 
onne
tivityand that both improve together.3.3 Dis
ussion3.3.1 CritiqueIn Chapter 2 it was argued that labeled graphs are a promising basis for a uniformtheory of per
eption. The problem with graphs is that they do not seem to �t intoneural ar
hite
ture. So far DLM is the only serious approa
h for pro
essing graphs inneural nets, and we have seen its prin
iples. Despite its potential, DLM is not able toa

ount for the performan
e of the mature visual system for the two following reasons:23
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5 000 10 000Figure 3.6: Conne
tivity and 
orrelations developing in time. It 
an be seen how the
orrelations develop faster and are 
leaner than the 
onne
tivity. Both are iterativelyre�ned on the basis of the other. (Based on simulations as des
ribed in Chapter 4.)DLM is Too SlowSo far DLM has been applied only to visual tasks. Psy
hophysi
al experiments bySubramaniam et al. (1995) show that our visual system is extremely 
exible and qui
k.Subje
ts are able to re
ognize line drawings of obje
ts from a sequen
e in whi
h ea
hobje
t is shown only for 72 ms. Neurobiologi
al experiments show that highly obje
t-spe
i�
 
ells in the anterior superior temporal polysensory area (STPa) respond with adelay of only 70 ms to the stimulus (Oram & Perrett, 1994). If one assumes 10 msfor the intera
tion between two neurons, one would have only 7 iterations left for onere
ognition. That is de�nitely too few for DLM in the 
urrent formulation.There are several ways to speed up DLM under 
ertain 
onditions. For example ifthe outline of the obje
t is given by reliable segmentation 
ues, planar waves 
ould beindu
ed running twi
e over the obje
t in di�erent dire
tions. By this, the 
onne
tivity
an in prin
iple be indu
ed very qui
kly. DLM with running waves has re
ently beeninvestigated by S
hwarz (1995) .von der Malsburg (1994) suggested that DLM in its pure form is used only inthe infant, and that later short
uts are developed with experien
e to a
hieve the highperforman
e of the adult. On diÆ
ult visual tasks the short
uts fail, and then even theadult system has to revert to the slow pro
ess of DLM.It is interesting to 
ompare the speed of DLM with other neural models of per
eption.It is obvious that feed-forward nets su
h as ba
k-propagation perform mu
h faster onre
ognition tasks on
e they are trained. But in terms of training e�ort it has beenshown that DLM is mu
h faster (Bienensto
k & Doursat, 1991; Konen & von derMalsburg, 1992, 1993). Due to the mat
hing pro
ess, DLM 
an take full advantage of24



single examples. While typi
al neural nets have to learn invarian
e or robustness againsttransformations su
h as translation, rotation, and distortion, DLM is already endowedwith these abilities.A performan
e 
omparison of DLM with Kohonen's algorithm has been done byBehrmann (1993). The Kohonen-algorithm, whi
h has been derived from DLM, iswidely used in te
hni
al appli
ations, and one should assume that it is mu
h more eÆ
ientthan the original model. But it has turned out that both models are 
omparable interms of speed. DLM has the additional advantage of being less sensitive to parametervariations.DLM is Too Expensive in Terms of Conne
tivityAs seen above, DLM initially requires links from all neurons in one layer to all neuronsin the other in order to obtain full invarian
e against translation, rotation, et
. It it 
learthat our visual system 
annot a�ord all-to-all 
onne
tivity from V1 to all stored modelsin our memory. Somehow the huge number of required 
onne
tions has to be redu
ed.The only solution to this problem is to introdu
e hierar
hy. This 
an be done intwo ways. Firstly, a 
as
ade of restri
ted mappings approximates the general one withmu
h less 
onne
tivity. This prin
iple was very well demonstrated in (Anderson &van Essen, 1993; van Essen et al., 1994; Olshausen, 1994).Se
ondly, the mapping 
an start with 
oarse resolution and then be re�ned to a higherresolution level. Rinne (1995) has applied DLM in this way to grey value images. Insteadof a full initial 
onne
tivity he used a sparse 
onne
tivity of superlinks, ea
h superlinkrepresenting a subarray of normal links. After ruling out most of the superlinks by DLM,he repla
ed the remaining ones by the respe
tive bun
hes of normal links and 
ontinuedre�ning the mapping by DLM. He thus was able to mat
h 128�128 layers of neuronswith ea
h other. A similar te
hnique has been used by W�urtz (1995) for a hiera
hi
alDLM on a wavelet multis
ale representation. These two hierar
hi
al DLM models arestill biologi
ally implausible, sin
e in them links of one type get dire
tly repla
ed orinitialized by links of another type.3.3.2 Comparison with Other ModelsObje
t re
ognition invariant against translation is a very diÆ
ult task for 
onventionalneural systems with �xed 
onne
tivity. For that reason only few attempts have beenmade to build su
h systems.The �rst 
lass of systems is the Neo
ognitron of Fukushima et al. (1983) and relatedmodels su
h as the weight sharing ba
k-propagation networks (LeCun et al., 1989), inone dimension also known as time delayed neural networks (TDNN). The Neo
ognitron isa feed-forward network whi
h a
hieves translation invarian
e by spatial low-pass �lteringand subsampling of neural responses, by whi
h also dis
riminative information gets lost.Translation invarian
e is limited sin
e the possible low-pass �ltering and subsamplingdepends on the 
omplexity of the features. The weight sharing ba
k-propagation appliesonly subsampling and a
hieves very little translation invarian
e. The training e�ort isvery high for these ar
hite
tures and the Neo
ognitron in addition requires a very 
arefuldesign of the network layout highly adapted to the training patterns. Compared to that,DLM a
hieves full translation invarian
e without loss of dis
riminative 
apabilities. It25



has a simple and robust ar
hite
ture and is able to learn and generalize from singleexamples. The main advantages of the feed-forward ar
hite
tures is that they are mu
hfaster in re
ognition and that they show a feature hierar
hy, whi
h is not yet present inthe DLM models.A very di�erent approa
h are the neural routing 
ir
uits (Anderson & van Essen,1993; van Essen et al., 1994; Olshausen, 1994). The authors have implemented a
as
ade of restri
ted mappings between neural layers; those 
an be 
ontrolled and realizea large range of mappings. This system is restri
ted to translation and s
aling. Rotationas well as distortion 
ould easily be implemented, but if the system gets too manydegrees of freedom the 
ontrol might be
ome too expensive. The neural routing 
ir
uitsperform a normalization of an input pattern and re
ognition has to be a
hieved by anadditional module su
h as an asso
iative memory. Their advantage is that they allow thesystem to 
ontrol the mappings and that the degrees of freedom are reasonably redu
ed.Thus the neural routing 
ir
uits 
an establish the appropriate mapping between imageand model mu
h faster than DLM. Problems may arise with general distortions, whi
h
annot easily be a

ounted for by neural routing 
ir
uits, sin
e it would require too mu
h
ontrol stru
ture.3.3.3 Future Perspe
tivesDLM need not be restri
ted to visual pattern re
ognition. The potential of labeled graphsgoes mu
h farther, and the prin
iples of DLM are more generally appli
able. One mighttherefore think about representing more abstra
t patterns su
h as traje
tories, language,or even ideas by means of labeled graphs and about mat
hing them with DLM. Thenext step would then be to apply DLM to graphs with a more general topography thanjust the two-dimensional one of the visual �eld. Graphs of high dimension and unusualtopography should be treatable by DLM as well.Another dire
tion of resear
h would be of a more theoreti
al nature. So far DLM-models have been built mainly heuristi
ally. Many design de
isions are motivated bypra
ti
al experien
e rather by a solid theoreti
al basis. I think it would be very helpfulto 
onsider DLM on the more abstra
t level of autonomous link dynami
s. The workof H�aussler & von der Malsburg (1983) and Wagner & von der Malsburg(1995) goes in this dire
tion, but is restri
ted to the retinotopy problem.Finally it would be very interesting to integrate DLM with the other models dis
ussedabove. Neo
ognitron and related models, neural routing 
ir
uits, and DLM all have theiradvantages and drawba
ks, and it might be possible to 
ombine their 
apabilities.
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Chapter 4Fa
e Re
ognition byDynami
 Link Mat
hingAbstra
t: A 
omplete system for fa
e re
ognition based on Dynami
 Link Mat
hing (DLM)is presented. Fa
es are represented by layers of neurons with jets atta
hed as lo
al features. Agallery of model layers is 
onne
ted to one image layer, whi
h is of larger size. The 
onne
tivitybetween models and image is initialized a

ording to the jet similarities. The layer dynami
sgenerates blobs of a
tivity 
ontinuously moving over the layers. The blobs intera
t via the
onne
tivity matri
es and align. Based on that, fast synapti
 plasti
ity develops a one-to-one mapping between the layers. The model layers have a total a
tivity dependent on theirsimilarity to the image. A winner-take-all me
hanism sequentially rules out the less similarmodels, letting the most similar model survive. Sin
e the image layer is larger than the modellayers, an attention window is introdu
ed in the form of a large blob restri
ting the spa
eavailable for the small running blob. Due to intera
tions with the running blob, the attentionblob automati
ally aligns with the 
orre
t fa
e position. Re
ognition results on galleries of upto 111 fa
es are presented.4.1 Introdu
tionIn the previous 
hapter I des
ribed Dynami
 Link Mat
hing as a neural pro
ess format
hing labeled graphs. DLM systems have re
ently been developed by Konen & vonder Malsburg (1992, 1993) and Konen & Vorbr�uggen (1993). They all use thefollowing type of dynami
s: Noise, lo
al ex
itation and global inhibition on the imagelayer indu
e the development of one stationary blob of a
tivity. Links transfer thisa
tivity from the image to the model layer, and the same dynami
s generates a se
ondstationary blob there. If the patterns represented on the image and the model layerare similar, the blob on the model layer is likely to appear in a 
orresponding lo
ation.After both blobs have developed, the weights of the links between the layers are modi�edbased on the 
o-a
tivity of image and model neurons. Then all neurons are reset to zeroa
tivity, and the pro
ess starts from the beginning. The blob dynami
s 
an be repla
edby algorithmi
ally setting a blob at a random position on the image layer and at theposition in the model layer with maximal input from the image layer (Konen et al.,1994).This stationary blob dynami
s for DLM has two 
on
eptual drawba
ks: Firstly, the27



whole pro
ess has to be 
ontrolled in a fairly arti�
ial way to realize the sequen
e ofblobs and weight adaptation steps. One would rather have an autonomous dynami
sthat needs no a

urate s
hedule for layer dynami
s, weight adaptation, and resetting.Se
ondly, the information about 
orresponden
e that was obtained with the pair ofblobs is almost 
ompletely lost for the next pair of blobs. It is only stored in theweight matrix as a small modi�
ation. Topography is only 
onveyed by the overlap ofthe blobs, whi
h seems to be inherently a slow pro
ess. The �rst intention of the workpresented here was therefore to repla
e the stationary blob dynami
s by a 
ontinuous andautonomous dynami
s to over
ome the two above-mentioned drawba
ks. The solutionthat I 
hose was to introdu
e delayed self-inhibition that makes the a
tivity blob run. Itmoves 
ontinuously over the whole layer. The blob positions at one parti
ular momentare used for determining the blob positions at the next moment, i.e. the informationabout 
orresponden
es is preserved in the layer dynami
s. In addition, topography is
onveyed by the 
ontinuous motion of the blobs, whi
h is potentially faster than the oldmethod. Weight adaptation 
an take pla
e on-line, and no sophisti
ated 
ontrol s
heduleis required. Running blobs for DLM have previously been used by Wang et al. (1990),but they generated them with asymmetri
al 
onvolution kernels, whi
h has 
on
eptualdrawba
ks: For example, sin
e the speed and dire
tion of the blobs is �xed, layers musthave wrap-around 
onditions and thus have to be of equal size.It has always been 
laimed that DLM is a model for obje
t re
ognition. Although itserves as the neural 
on
eptual basis of an already su

essful te
hni
al fa
e re
ognitionsystem (Lades et al., 1993; Wiskott et al., 1995; Chapter 5), the DLM re
ognitionsystems are very limited so far. In most appli
ations only few models, about three, weredis
riminated. The data were often arti�
ial, and the dete
tion of the 
orre
t model wasdone in a biologi
ally implausible way, e.g. by 
onsidering the sum over the weights, ameasure that is not a

essible in a real system. It was therefore my se
ond intention tobuild a DLM system that is a
tually a 
omplete re
ognition system, solving the same taskas the te
hni
al system for fa
e re
ognition, although mu
h slower. A gallery of 111 fa
esis stored and new fa
es on images larger than the models have to be re
ognized. Thisrequires �nding the fa
e in the image, mat
hing it to the model gallery, and re
ognizingthe 
orre
t one among the 111 
ompeting alternatives.4.2 The System4.2.1 Ar
hite
ture and Dynami
s | OverviewFigure 4.1 shows the general ar
hite
ture of the system. Fa
es are represented as re
tan-gular graphs by layers of neurons. Ea
h neuron represents a node and has a jet atta
hed.A jet is a lo
al des
ription the grey-value distribution (see Appendix A). Topographi
alrelationships between nodes are en
oded by ex
itatory and inhibitory lateral 
onne
tions.The model graphs are s
aled horizontally and verti
ally and aligned manually, su
h that
ertain nodes of the graphs are pla
ed on the eyes and the mouth (
f. Se
tion 4.3.1).Model graphs (10�10 nodes) are smaller than the image graph (16�17 nodes). Sin
ethe fa
e in the image may be arbitrarily translated, the 
onne
tivity between model andimage domain has to be all-to-all initially. The 
onne
tivity matri
es are initialized us-ing the similarities between the jets of the 
onne
ted nodes. DLM serves as a pro
ess28
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Figure 4.1: Ar
hite
ture of the DLM fa
e re
ognition system. Several models are storedas neural layers of lo
al features on a 10�10 grid, as indi
ated by the bla
k dots. A newimage is represented by a 16�17 layer of nodes. Initially, the image is 
onne
ted all-to-allwith the models. The task of DLM is to �nd the 
orre
t mapping between the imageand the models, thus providing translation invarian
e and robustness against distortion.On
e the 
orre
t mapping is found, a simple winner-take-all me
hanism 
an dete
t themodel that is most a
tive and most similar to the image.to restru
ture the 
onne
tivity matri
es and to �nd the 
orre
t (one-to-one) mappingbetween the models and the image (see Figure 3.1). The models 
ooperate with theimage depending on their similarity. A simple winner-take-all me
hanism sequentiallyrules out the least a
tive and least similar models, and the best-�tting one eventuallysurvives.The dynami
s on ea
h layer (graph) of neurons (nodes) is su
h that it produ
es arunning blob of a
tivity whi
h moves 
ontinuously over the whole layer. An a
tivityblob 
an easily be generated from noise by lo
al ex
itation and global inhibition. It is
aused to move by delayed self-inhibition, whi
h also serves as a memory for the lo
ationswhere the blob has re
ently been. Sin
e the models are aligned with ea
h other, it isreasonable to enfor
e alignment between their running blobs by ex
itatory 
onne
tionsbetween neurons representing the same fa
ial lo
ation. The blobs on the image andthe model layers 
ooperate through the 
onne
tion matri
es; they tend to align andindu
e 
orrelations between 
orresponding neurons. Then fast synapti
 plasti
ity and anormalization rule 
oherently modify the synapti
 weights, and the 
orre
t 
onne
tivitiesbetween models and image layer 
an develop. Sin
e the models get di�erent input fromthe image, they di�er in their total a
tivity. The model with strongest 
onne
tions fromthe image is the most a
tive one. The models 
ompete on the basis of their total a
tivity.After a while the winner-take-all me
hanism suppresses the least 
ompetitive models,29



Layer dynami
s:hpi (t0) = 0_hpi (t) = �hpi +Xi0 maxp0 �gi�i0�(hp0i0 )�� �hXi0 �(hpi0)� �hsspi (4.1)+�hhmaxqj �W pqij �(hqj)�+ �ha (�(api )� �a
)� ���(r� � rp)spi (t0) = 0_spi (t) = ��(hpi � spi ) (4.2)gi�i0 = exp �(i� i0)22�2g ! (4.3)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � (4.4)Attention dynami
s:api (t0) = �NN (J pi )_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! (4.5)Link dynami
s:W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S�_W pqij (t) = �W ��(hpi )�(hqj)���maxj0 (W pqij0=Spqij0)� 1��W pqij (4.6)Re
ognition dynami
s:rp(t0) = 1_rp(t) = �rrp �F p �maxp0 (rp0F p0)� (4.7)F p(t) = Xi �(hpi )Table 4.1: Formulas of the DLM fa
e re
ognition systemand eventually only the best one survives. Sin
e the image layer may be signi�
antlylarger than the model layers, I introdu
e an attention window in form of a large blob.It intera
ts with the running blob, restri
ts its region of motion, and 
an be shifted byit to the a
tual fa
e position.The equations of the system are given in Table 4.1; the respe
tive symbols are listedin Table 4.2. In the following se
tions I will explain the system step by step: blobformation, blob mobilization, intera
tion between two layers, link dynami
s, attentiondynami
s, and re
ognition dynami
s. (In order to make the des
ription 
learer, parts ofthe equations in Table 4.1 
orresponding to these fun
tions will be repeated.)30



Variables: h internal state of the layer neuronss delayed self-inhibitiona attentionW synapti
 weights between neurons of two layersr re
ognition variableF �tness, i.e. total a
tivity of ea
h layerIndi
es:(p; p0; q; q0) layer indi
es, 0 indi
ates image layer, 1; :::;M indi
atemodel layers= (0; 0; 1; :::;M ; 1; :::;M) if formulas des
ribe image layer dynami
s= (1; :::;M ; 1; :::;M ; 0; 0) if formulas des
ribe model layers dynami
s(i; i0; j; j0) two-dimensional indi
es for the individual neurons in lay-ers (p; p0; q; q0) respe
tivelyFun
tions:gi�i0 Gaussian intera
tion kernel�(h) nonlinear squashing fun
tion�(�) Heavyside fun
tionN (J ) salien
y of feature jet J (see Equation A.5)S�(J ;J 0) similarity between feature jets J and J 0 (see Equa-tion A.7)Parameters:�h = 0:2 strength of global inhibition�a = 0:02 strength of global inhibition for attention blob�a
 = 1 strength of global inhibition 
ompensating for the atten-tion blob�� = 1 global inhibition for model suppression�hs = 1 strength of self-inhibition�hh = 1:2 strength of intera
tion between image and model layers�ha = 0:7 e�e
t of the attention blob on the running blob�ah = 3 e�e
t of the running blob on the attention blob�� de
ay 
onstant for delayed self-inhibition= �+ = 0:2 if h� s > 0= �� = 0:004 if h� s � 0�a = 0:3 time 
onstant for the attention dynami
s�W = 0:05 time 
onstant for the link dynami
s�r = 0:02 time 
onstant for the re
ognition dynami
s�N = 0:001 parameter for attention blob initialization�S = 0:1 minimal weight� = 2 slope radius of squashing fun
tion�g = 1 Gauss width of ex
itatory intera
tion kernelr� = 0:5 threshold for model suppressionTable 4.2: Variables and parameters of the DLM fa
e re
ognition system31



4.2.2 Blob FormationBlob formation on a layer of neurons 
an easily be a
hieved by lo
al ex
itation and globalinhibition. Lo
al ex
itation generates 
lusters of a
tivity, and global inhibition lets the
lusters 
ompete against ea
h other. The strongest one will �nally suppress all othersand grow to an equilibrium size determined by the strengths of ex
itation and inhibition.The 
orresponding equations are (
f. Equations 4.1, 4.3, and 4.4):_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0); (4.8)gi�i0 = exp �(i� i0)22�2g ! ; (4.9)�(h) = 8>><>>: 0 : h � 0qh=� : 0 < h < �1 : h � � : (4.10)The internal state of the neurons is denoted by hi, where i is a two-dimensionalCartesian 
oordinate for the lo
ation of the neuron. The neurons are arranged on aregular square latti
e with spa
ing 1, i.e. i = (0; 0); (0; 1); (0; 2); :::; (1; 0); (1; 1); :::. Theneural a
tivity (whi
h 
an be interpreted as a mean �ring rate) is determined by thesquashing fun
tion �(h) of the neuron's internal state h. The neurons are 
onne
tedex
itatorily through the Gaussian intera
tion kernel g. The strength of global inhibitionis 
ontrolled by �h. It is obvious that a blob 
an only arise if �h < g0 = 1 (imagine onlyone neuron is a
tive), and that the blob is larger for smaller �h. In�nite growth of h isprevented by the de
ay term �h, be
ause it is linear, while the blob formation termssaturate due to the squashing fun
tion �(h). The spe
ial shape of �(h) is motivatedby three fa
tors. Firstly, � vanishes for negative values to suppress os
illations in thesimulations by preventing undershooting. Se
ondly, the high slope for small argumentsstabilizes small blobs and makes blob formation from low noise easier, be
ause for smallvalues of h the intera
tion terms dominate over the de
ay term. Thirdly, the �niteslope region between low and high argument values allows the system to distinguishbetween the inner and outer parts of the blobs by making neurons in the 
enter of a blobmore a
tive than at its periphery. Additional multipli
ative parameters of the de
ayor ex
itation terms would only 
hange time and a
tivity s
ale, respe
tively, and do notgenerate qualitatively new behavior. In this sense the parameter set is 
omplete andminimal. A detailed dis
ussion of this dynami
s has been given by Amari (1977), alsoin the 
ontext of self-organizing topographi
 mappings (Amari, 1980, 1989).4.2.3 Blob MobilizationGenerating a running blob 
an be a
hieved by delayed self-inhibition, whi
h drives theblob away from its 
urrent to a neighboring lo
ation, where the blob generates new self-inhibition. This me
hanism produ
es a 
ontinuously moving blob (see Figure 4.2). Thedriving for
e and the re
olle
tion time as to where the blob has been 
an be indepen-dently 
ontrolled by their respe
tive time 
onstants. The 
orresponding equations are(
f. Equations 4.1 and 4.2): 32
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Figure 4.2: A sequen
e of layer states as simulated with Equations 4.11 and 4.12. Thea
tivity blob h shown in the middle row has a size of approximately six a
tive nodesand moves 
ontinuously over the whole layer. Its 
ourse is shown in the upper diagram.The delayed self-inhibition s, shown in the bottom row, follows the running blob anddrives it forward. One 
an see the self-inhibitory tail that repels the blob from regionsjust visited. Sometimes the blob runs into a trap (
f. 
olumn three) and has no way toes
ape from the self-inhibition. It then disappears and reappears again somewhere elseon the layer. (The temporal in
rement between two su

essive frames is 20 time units.)
_hi(t) = �hi +Xi0 (gi�i0�(hi0))� �hXi0 �(hi0)� �hssi; (4.11)_si(t) = ��(hi � si): (4.12)The self-inhibition s is realized by a leaky integrator with de
ay 
onstant ��. Thede
ay 
onstant has two di�erent values depending on whether h�s is positive or negative.This a

ounts for the two di�erent fun
tions of the self-inhibition. The �rst fun
tion is todrive the blob forward. In this 
ase h > s and a high de
ay 
onstant �+ is appropriate.The se
ond fun
tion is to indi
ate where the blob has re
ently been, i.e. to serve as amemory and to repel the blob from regions re
ently visited. In this 
ase h < s and alow de
ay 
onstant �� is appropriate. For small layers, �� should be larger than forlarge ones, be
ause the blob visits ea
h lo
ation more frequently. The speed of the blobis 
ontrolled by �+ and the 
oupling parameter �hs. They may also 
hange the shapeof the blob. Small values su
h as those used in the simulations presented here allow theblob to keep its equilibrium shape and drive it slowly; large values produ
e a fast-movingblob distorted to a kidney-shape. 33
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Figure 4.3: Syn
hronization between two running blobs as simulated with Equa-tions 4.13 and 4.14. Layer input as well as the internal layer state h is shown at anearly stage, in whi
h the blobs of two layers are not yet aligned, left, and at a laterstate, right, when they are aligned. The two layers are of di�erent size, and the regionin layer 1 that 
orre
tly maps to layer 2 is indi
ated by a square de�ned by the dashedline. In the early non-aligned 
ase one 
an see that the blobs are smaller and not at thelo
ation of maximal input. The lo
ations of maximal input indi
ate where the a
tual
orresponding neurons of the blob of the other layer are. In the aligned 
ase the blobsare larger and at the lo
ations of high layer input.4.2.4 Layer Intera
tion and Syn
hronizationIn the same way that the running blob is repelled by its self-inhibitory tail, it 
an alsobe attra
ted by ex
itatory input from another layer as 
onveyed by a 
onne
tion matrix.Imagine two layers of the same size mutually 
onne
ted by the identity matrix, i.e. ea
hneuron in one layer is 
onne
ted only with the one 
orresponding neuron in the otherlayer having the same index value. The input then is a 
opy of the blob of the otherlayer. This favors alignment between the blobs, be
ause then they 
an 
ooperate andstabilize ea
h other. This syn
hronization prin
iple holds also in the presen
e of the noisy
onne
tion matri
es generated by real image data (see Figure 4.3). The 
orrespondingequation is (
f. Equation 4.1):_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)� ; (4.13)_spi (t) = ��(hpi � spi ): (4.14)The two layers are indi
ated by the indi
es p and q. The synapti
 weights of the
onne
tions areW , and the strength of mutual intera
tion is 
ontrolled by the parameter�hh. (The reason why I use the maximum fun
tion instead of the usual sum will bedis
ussed in Se
tion 4.2.10.) 34



4.2.5 Link Dynami
sIn Se
tion 3.2.2 it was demonstrated that the links between two layers 
an be 
leanedup and stru
tured by fast synapti
 plasti
ity on the basis of 
orrelations between pairsof neurons (see Figure 3.6). The 
orrelations result from the layer syn
hronization de-s
ribed in the previous se
tion. The link dynami
s typi
ally 
onsists of a growth ruleand a normalization term. The former lets the weights grow a

ording to the 
orrelationbetween the 
onne
ted neurons. The latter prevents the links from growing inde�nitelyand indu
es 
ompetition su
h that only one link per neuron survives whi
h suppressesall others. The 
orresponding equations are (
f. Equations 4.6):W pqij (t0) = Spqij = max �S�(J pi ;J qj ); �S� ;_W pqij (t) = �W ��(hpi )�(hqj)���maxj0 (W pqij0=Spqij0)� 1��W pqij : (4.15)Links are initialized by the similarity S� between the jets J of 
onne
ted nodes (seeEquation A.7). The parameter �S guarantees a minimal positive synapti
 weight, per-mitting ea
h link to suppress others, even if the similarity between the 
onne
ted neuronsis small. This 
an be useful to obtain a 
ontinuous mapping if a link has a neighborhoodof strong links indu
ing high 
orrelations between the pre- and postsynapti
 neurons ofthe weak link. The synapti
 weights grow exponentially, 
ontrolled by the 
orrelationbetween 
onne
ted neurons de�ned as the produ
t of their a
tivities �(hpi )�(hqj). Thelearning rate is additionally 
ontrolled by �W . Due to the Heavyside-fun
tion �, normal-ization takes pla
e only if links grow beyond their initial value. Then the link dynami
s isdominated by the normalization term, with a 
ommon negative 
ontribution for all links
onverging to the same neuron. Noti
e that the growth term, based on the 
orrelation,is di�erent for di�erent links. Thus the link with the highest average 
orrelation willeventually suppress all others 
onverging to the same neuron. Sin
e the similarities S�
annot be larger than 1, the synapti
 weights W are restri
ted to the interval [0; :::; 1℄.4.2.6 Attention Dynami
sThe alignment between the running blobs depends very mu
h on the 
onstraints, i.e.on the size and format of the layer on whi
h they are running. This 
auses a problem,sin
e the image and the models have di�erent sizes. I have therefore introdu
ed anattention blob whi
h restri
ts the movement of the running blob on the image layer toa region of about the same size as that of the model layers. Ea
h of the model layerslikewise has an attention blob to keep the 
onditions for their running blobs similar tothat in the image layer; this is important for alignment. The attention blob restri
tsthe region for the running blob, but it 
an be shifted by the latter into a region whereinput is espe
ially large and favors a
tivity. The attention blob therefore automati
allyaligns with the a
tual fa
e position (see Figures 4.4 and 4.5). The attention blob layer isinitialized by a primitive segmentation 
ue, in this 
ase the salien
y of the respe
tive jets(see Equation A.5), sin
e the norm indi
ates the presen
e of textures of high 
ontrast.The 
orresponding equations are (
f. Equations 4.1 and 4.5):35



_hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �a
) ; (4.16)_spi (t) = ��(hpi � spi ); (4.17)api (t0) = �NN (J pi );_api (t) = �a  �api +Xi0 gi�i0�(api0)� �aXi0 �(api0) + �ah�(hpi )! : (4.18)The equations show that the attention blob a is generated by the same dynami
s aswas dis
ussed in Se
tion 4.2.2 for the formation of the running blob, without delayedself-inhibition, though sin
e the attention blob is to be larger than the running blob, �ahas to be smaller than �h. The attention blob restri
ts the region for the running blob viathe term �ha (�(api )� �a
), whi
h is an ex
itatory blob �(api ) 
ompensating the 
onstantinhibition �a
. The attention blob on the other hand gets ex
itatory input �ah�(hpi ) fromthe running blob. By this means the running blob 
an slowly shift the attention blobinto its favored region. The dynami
s of the attention blob has to be slower than thatof the running blob; this is 
ontrolled by a value �a < 1. N is the salien
y of the jets,and �N determines the initialization strength.4.2.7 Re
ognition Dynami
sEa
h model 
ooperates with the image depending on its similarity. The most similarmodel 
ooperates most su

essfully and is the most a
tive one. Hen
e the total a
tivityof the model layers indi
ates whi
h is the 
orre
t one. I have derived a winner-take-allme
hanism from Eigen's (1978) evolution equation and applied it to dete
t the bestmodel and suppress all others. The 
orresponding equations are (
f. Equations 4.1 and4.7): _hpi (t) = �hpi +Xi0 (gi�i0�(hpi0))� �hXi0 �(hpi0)� �hsspi (4.19)+�hhmaxj �W pqij �(hqj)�+ �ha (�(api )� �a
)� ���(r� � rp);_spi (t) = ��(hpi � spi ); (4.20)rp(t0) = 1;_rp(t) = �rrp �F p �maxp0 (rp0F p0)� ; (4.21)F p(t) = Xi �(hpi ):The total layer a
tivity is 
onsidered as a �tness F p, di�erent for ea
h model p.The modi�ed evolution equation 
an be easily analyzed if the F p are assumed to be
onstant in time and the re
ognition variables rp are initialized to 1. For the model36
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Figure 4.4: S
hemati
 of the attention blob's fun
tion. The attention blob restri
tsthe region in whi
h the running blob 
an move. The attention blob, on the other hand,re
eives input from the running blob. That input will be strong in regions where theblobs in both layers 
ooperate and weak where they do not (see Figure 4.3). Due to thisintera
tion the attention blob slowly moves to the 
orre
t region indi
ated by the squareof dashed lines. The attention blob in the model layer is required to keep the 
onditionsfor the running blobs symmetri
al.
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t = 25

t = 150

t = 500

t = 1000

attention blob attention blobrunning blob running blob

image layer model layerFigure 4.5: Fun
tion of the attention blob, using an extreme example of an initialattention blob manually mispla
ed for demonstration. At t = 150 the two running blobsran syn
hronously for a while, and the attention blob has a long tail. The blobs thenlost alignment again. From t = 500 on, the running blobs remained syn
hronous, andeventually the attention blob aligned with the 
orre
t fa
e position, indi
ated by a squareof dashed lines. The attention blob moves slowly 
ompared to the small running blob,as it is not driven by self-inhibition. Without an attention blob the two running blobsmay syn
hronize sooner, but their alignment will never be
ome stable.38



layer pb with the highest �tness, the equation simpli�es to _rpb(t) = �rrpb(1 � rpb)F pbwith a stable �xed point at rpb = 1. For all other models the equation then simpli�es to_rp(t) = �rrp(F p � F pb), whi
h results in an exponential de
ay of the rp for all p 6= pb.When a re
ognition variable rp drops below the suppression threshold r�, the a
tivityon layer p is suppressed by the term ����(r� � rp). The time s
ale of the re
ognitiondynami
s 
an be 
ontrolled by �r.4.2.8 Bidire
tional Conne
tionsThe 
onne
tivity between two layers is bidire
tional and not unidire
tional as in theprevious system (Konen & Vorbr�uggen 1993). This is ne
essary for two reasons:Firstly, by this means the running blobs of the two 
onne
ted layers 
an more easilyalign. With unidire
tional 
onne
tions one blob would systemati
ally run behind theother. Se
ondly, 
onne
tions in both dire
tions are ne
essary for a re
ognition system.The 
onne
tions from model to image layer are ne
essary to allow the models to movethe attention blob in the image into a region that �ts the models well. The 
onne
tionsfrom the image to the model layers are ne
essary to provide a dis
rimination 
ue as towhi
h model best �ts the image. Otherwise ea
h model would exhibit the same level ofa
tivity.4.2.9 Blob Alignment in the Model DomainSin
e fa
es have a 
ommon general stru
ture, it is advantageous to align the blobs inthe model domain to insure that they are always at the same position in the fa
es,either all at the left eye or all at the 
hin et
. This is a
hieved by 
onne
tions betweenthe layers and leads to the term +Pi0 maxp0 �gi�i0�(hp0i0 )� instead of +Pi0 (gi�i0�(hpi0))in Equation 4.1. If the model blobs were to run independently, the image layer wouldre
eive input from all fa
e parts at the same time, and the blob there would have a hardtime aligning with a model blob, and it would be very un
ertain whether it would be the
orre
t one. The 
ooperation between the models and the image would depend more ona

idental alignment than on the similarity between the models and the image, and itwould then be very likely that the wrong model is pi
ked up as the re
ognition result.One alternative is to let the models inhibit ea
h other su
h that only one model 
anhave a blob at a time. The models then would share time to mat
h onto the image, andthe best-�tting one would get most of the time. This would probably be the appropriatesetup if the models were very di�erent and without a 
ommon stru
ture, as it is forgeneral obje
ts. The disadvantage is that the system needs mu
h more time to de
idewhi
h model to a

ept, be
ause the relative layer a
tivities in the beginning dependmu
h more on 
han
e than in the other setup.4.2.10 Maximum Versus Sum NeuronsThe model neurons used here use the maximum over all input signals instead of the sum.The reason is that the sum would mix up many di�erent signals, while only one 
an bethe 
orre
t one, i.e. the total input would be the result of one 
orre
t signal and manymisleading ones. Hen
e the signal-to-noise ratio would be very low. I have observed anexample where even a model identi
al to the image was not pi
ked up as the 
orre
t39



one, be
ause the sum over all the a

idental input signals favored a 
ompletely di�erent-looking person. For that reason I introdu
ed the maximum input fun
tion, whi
h isreasonable sin
e the 
orre
t signal is likely to be the strongest one. The maximum rulehas the additional advantage that the dynami
 range of the input into a single 
ell doesnot vary mu
h when the 
onne
tivity develops, whereas the signal sum would de
reaseor in
rease signi�
antly during synapti
 re-organization depending on the normaliza-tion rule. Thus the blobs would either loose their alignment or would be driven intosaturation.4.3 Experiments4.3.1 DatabaseAs a fa
e database I used galleries of 111 di�erent persons. Of most persons there is oneneutral frontal view, one frontal view of di�erent fa
ial expression, and two views rotatedin depth by 15 and 30 degrees respe
tively. The neutral frontal views serve as a modelgallery, and the other three are used as test images for re
ognition. The models, i.e. theneutral frontal views, are represented by layers of size 10�10 (see Figure 4.1). Thoughthe grids are re
tangular and regular, i.e. the spa
ing between the nodes is 
onstantfor ea
h dimension, the graphs are s
aled horizontally in the x- and verti
ally in they-dire
tion and are aligned manually: The left eye is always represented by the nodein the fourth 
olumn from the left and the third row from the top, the mouth lies onthe fourth row from the bottom, et
. The x-spa
ing ranges from 6.6 to 9.3 pixels witha mean value of 8.2 and a standard deviation of 0.5. The y-spa
ing ranges from 5.5 to8.8 pixels with a mean value of 7.3 and a standard deviation of 0.6. An input image ofa fa
e to be re
ognized is represented by a 16�17 layer with an x-spa
ing of 8 pixelsand a y-spa
ing of 7 pixels. The image graphs are not aligned, sin
e that would alreadyrequire re
ognition. The size variations of up to a fa
tor of 1.5 in the x- and y-spa
ingsmust be 
ompensated for by the DLM pro
ess.4.3.2 Te
hni
al Aspe
tsDLM in the form presented here is 
omputationally expensive. I have performed singlere
ognition tasks with the 
omplete system, but for the experiments referred to in Ta-ble 4.3 I modi�ed the system in several respe
ts to a
hieve a reasonable speed. I splitup the simulation into two phases. The only purpose of the �rst phase is to let theattention blob be
ome aligned with the fa
e in the input image. No modi�
ation of the
onne
tivity was applied in this phase, and only one average model was simulated. Its
onne
tivity W a was derived by taking the maximum synapti
 weight over all modelsfor ea
h link: W aij(t0) = maxpq W pqij (t0);_W aij(t) = 0: (4.22)This attention period takes 1000 time steps. Then the 
omplete system, in
luding theattention blob, is simulated, and the individual 
onne
tion matri
es are subje
ted to40



DLM. Neurons in the model layers are not 
onne
ted to all neurons in the image layer,but only to an 8 � 8 pat
h. These pat
hes are evenly distributed over the image layerwith the same spatial arrangement as the model neurons themselves. This still preservesfull translation invarian
e. Full rotation invarian
e is lost, but the jets used are notrotation invariant in any 
ase. The link dynami
s is not simulated at ea
h time step,but only after 200 simulation steps or 100 time units. During this time a running blobmoves about on
e over all of its layer, and the 
orrelation is integrated 
ontinuously.The simulation of the link dynami
s is then based on these integrated 
orrelations, andsin
e the blobs have moved over all of the layers, all synapti
 weights are modi�ed. Forfurther in
rease in speed, models that are ruled out by the winner-take-all me
hanismare no longer simulated; they are just set to zero and ignored from then on (�� = 1).The CPU time needed for the re
ognition of one fa
e against a gallery of 111 models isapproximately 10{15 minutes on a Sun SPARCstation 10-512 with a 50 MHz pro
essor.In order to avoid border e�e
ts, the image layer has a frame with a width of 2 neuronswithout any features or 
onne
tions to the model layers. The additional frame of neuronshelps the attention blob to move to the border of the image layer. Otherwise it wouldhave a strong tenden
y to stay in the 
enter.
4.3.3 ResultsFigure 4.6 shows two re
ognition examples, one using a test fa
e rotated in depth and theother using a fa
e with a very di�erent expression. In both 
ases the gallery 
ontains �vemodels. Due to the tight 
onne
tions between the models, the layer a
tivities show thesame variations and di�er only very little in intensity. This small di�eren
e is averagedover time and ampli�ed by the re
ognition dynami
s that rules out one model after theother until the 
orre
t one survives. The examples were monitored for 2000 units ofsimulation time. An attention phase of 1000 time units had been applied before, but isnot shown here. The se
ond re
ognition task was obviously harder than the �rst. Thesum over the links of the 
onne
tivity matri
es was even higher for the fourth modelthan for the 
orre
t one. This is a 
ase where the DLM is a
tually required to stabilizethe running blob alignment and re
ognize the 
orre
t model. In many other 
ases the
orre
t fa
e 
an be re
ognized without modifying the 
onne
tivity matrix.Re
ognition rates for galleries of 20, 50, and 111 models are given in Table 4.3. Asis already known from previous work (Lades et al., 1993), re
ognition of depth-rotatedfa
es is in general less reliable than, for instan
e, re
ognition of fa
es with an alteredexpression (the examples in Figure 4.6 are not typi
al in this respe
t). It is interestingto 
onsider re
ognition times. Although they vary signi�
antly, a general tenden
y isnoti
eable: Firstly, more diÆ
ult tasks take more time, i.e. re
ognition time is 
orrelatedwith error rate. This is also known from psy
hophysi
al experiments (see for exampleBru
e et al., 1987; Kalo
sai et al., 1994). Se
ondly, in
orre
t re
ognition takes mu
hmore time than 
orre
t re
ognition. Re
ognition time does not depend very mu
h onthe size of the gallery. 41
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Figure 4.6: Simulation examples of DLM re
ognition. The test images are shown onthe left with 16�17 neurons indi
ated by bla
k dots. The models have 10�10 neuronsand are aligned with ea
h other. The respe
tive total layer a
tivities, i.e. the sum over allneurons of one model, are shown in the upper graphs. The most similar model is usuallyslightly more a
tive than the others. On that basis the models 
ompete against ea
hother, and eventually the 
orre
t one survives, as indi
ated by the re
ognition variable.The sum over all links of ea
h 
onne
tion matrix is shown in the lower graphs. It givesan impression of the extent to whi
h the matri
es self-organize before the re
ognitionde
ision is made.
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Gallery Corre
t Re
ognition Time forSize Test Images Re
ognition Corre
t In
orre
t# Rate % Re
ognition Re
ognition111 rotated fa
es (15 degrees) 106 95.5 310 � 400 5120 �357020 110 rotated fa
es (30 degrees) 91 82.7 950 �1970 4070 �4810109 frontal views (grima
e) 102 93.6 310 � 420 4870 �6010111 rotated fa
es (15 degrees) 104 93.7 370 � 450 8530 �580050 110 rotated fa
es (30 degrees) 83 75.5 820 � 740 5410 �7270109 frontal views (grima
e) 95 87.2 440 �1000 2670 �1660111 rotated fa
es (15 degrees) 102 91.9 450 � 590 2540 �2000111 110 rotated fa
es (30 degrees) 73 66.4 1180 �1430 4400 �4820109 frontal views (grima
e) 93 85.3 480 � 720 3440 �2830Table 4.3: Re
ognition results against a gallery of 20, 50, and 111 neutral frontal views.Re
ognition time (with two iterations of the di�erential equations per time unit) is thetime required until all but one models are ruled out by the winner-take-all me
hanism.4.4 Dis
ussionThe two main features of the system presented here 
ompared to the pre
eding stationaryblob system are the 
ontinuous and autonomous dynami
s and the fa
t that the systema
tually performes fa
e re
ognition on a large gallery. This latter is de�nitely a su

ess.The former seems to be a 
on
eptual step forward as well, but it is worthwhile to dis
ussthe advantages and drawba
ks of the two di�erent dynami
s more thoroughly. The�rst advantage of the running blob dynami
s is obvious: It requires no external 
ontrols
hedule (in the sense of a 
ertain sequen
e of phases su
h as required for the stationaryblob dynami
s, for whi
h the layer dynami
s, the link dynami
s, and a 
omplete reset ofthe layer dynami
s iterate). Its se
ond advantage is that running blobs potentially 
onveytopography faster and more reliably. Although the blobs may jump, their generally
ontinuous motion enfor
es 
ontinuity in the mapping mu
h more than a sequen
e ofindependent stationary blobs.Nevertheless the running blobs have some disadvantages: Firstly, if the blobs inthe image and the model layer have started at non-
orresponding positions, they runindependently of ea
h other for quite a while and may even 
ross ea
h other's path beforethey lo
k onto ea
h other and run in alignment from then on. In the stationary blobdynami
s, ea
h new blob in the image layer has the 
han
e of produ
ing a 
orrespondingblob in the model layer independently of the previous one. Therefore the stationaryblobs may align faster. Se
ondly, the running blobs have the strong tenden
y to movestraight over the whole layer. That 
auses problems if the layers are of di�erent sizeor format and requires additional 
ontrol dynami
s in form of the attention window.(Though the old system had the problem that if the image was larger than the model,many blobs in the image layer were pla
ed at lo
ations without any 
ounterpart in themodel layer. A me
hanism like the attention blob would probably have been usefulin that system as well.) Thirdly, the paths of the running blobs are not random butare partially determined by the input from the other layers, whi
h remains the same43



for a given lo
ation of a blob. Thus 
ertain paths dominate and topology is en
odedinhomogeneously: strongly along typi
al paths and weakly elsewhere.For these reasons, further resear
h will have to investigate alternatives to both blobdynami
s in order to �nd an optimal dynami
s. Some experiments have re
ently beenmade with layers of 
oupled Bonhoe�er-van der Pol os
illators generating plane runningwaves (S
hwarz, 1995). Plane waves are supposed to en
ode topology mu
h faster thanthe running blobs, be
ause in theory only two su

essive waves running perpendi
ularlyto ea
h other suÆ
e to determine all lo
ations uniquely. The problem of plane waves isthat they have su
h strongly autonomous dynami
s that they need a long time to alignand then they have usually passed the layer already. Therefore the running wave modelis still slower than the running blob model.Beside these layer dynami
s issues, there are many dire
tions in whi
h the system
ould be further developed to make it more 
omplete and realisti
: It has not yet beeninvestigated how new models 
an be added to the gallery in a neural fashion, it will bene
essary to introdu
e hierar
hy into the re
ognition pro
ess, and more 
ontrol stru
turefor 
ontext knowledge is required, to mention only a few aspe
ts.
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Chapter 5Fa
e Re
ognition byElasti
 Graph Mat
hingAbstra
t: The fa
e re
ognition system presented below is based on Elasti
 Graph Mat
hing(EGM) as an algorithmi
 version of Dynami
 Link Mat
hing. Individual fa
es are representedas labeled graphs. Nodes are labeled with jets; edges are labeled with distan
e ve
tors. Thegraphs are obje
t-adapted, i.e. nodes are lo
ated at �du
ial points, su
h as eyes, tip of thenose, 
orners of the mouth, et
. In order to be able to represent a wide range of di�erent fa
es,a 
olle
tion of individual fa
e graphs is fused to a General Fa
e Knowledge (GFK), a graphstru
ture in whi
h a set of alternative jets instead of only one is atta
hed to a node. With theGFK, probe fa
es 
an be represented as a nodewise 
omposition of the known sample fa
es,whi
h makes the system more reliable on unknown fa
es. A similarity fun
tion is de�ned to
ompare two graphs, taking into a

ount the similarities of the individual jets and the relativedistortion of the graphs. New image graphs are generated by maximizing this similarity betweenthe GFK and a sequen
e of image graphs sele
ted from an image. This pro
ess is known asElasti
 Graph Mat
hing. Di�erent views are represented by graphs or GFKs whi
h di�er instru
ture. For mat
hing and re
ognition, only jets referring to 
orresponding �du
ial pointsare 
ompared. Re
ognition results are given for galleries of 300 fa
es. Performan
e is goodon frontal views against frontal views but relatively poor on di�erent views, e.g. half-pro�leagainst frontal view.5.1 Introdu
tionIn Chapter 4 fa
es were represented by layers of neurons, and the whole pro
ess ofmat
hing and re
ognition was a
hieved by neural dynami
s. Topography was indu
edby lateral 
onne
tions and a parti
ular layer dynami
s, mat
hing was performed bysyn
hronization and link dynami
s, and the re
ognition dynami
s �nally dete
ted the
orre
t fa
e. In this 
hapter, I present an algorithmi
 version of the very same basi
 ideas.But topography is here expli
itely expressed by edge labels, the mat
hing is performedby maximizing a similarity fun
tion, and re
ognition is based on the resulting similarityvalues, taking the most similar model as the 
orre
t fa
e. This algorithmi
 formulationis more appropriate for te
hni
al appli
ations, sin
e the mat
hing is mu
h faster andmore 
exible than in the neural formulation.45



labeled graphgridimage

Figure 5.1: Labeled graphs representing fa
es. Shown here are two fa
es of di�erentpose (left) and the manually de�ned grids (middle). Nodes are pla
ed at �du
ial points,whi
h are assumed to be important and easy to �nd. On the right a sket
h of a graphlabeled with jets is shown s
hemati
ally.5.2 The System5.2.1 Fa
e RepresentationIndividual Fa
esFor fa
es, a set of �du
ial points is de�ned, e.g. the pupils, the 
orners of the mouth,the tip of the nose, the top and bottom of the ears, et
. A labeled graph G representinga fa
e 
onsists of N nodes on these �du
ial points at positions ~xn; n = 1; :::; N and Eedges between them. The nodes are labeled with jets Jn. The edges are labeled withdistan
es �~xe = ~xn � ~xn0 ; e = 1; :::; E, where edge e 
onne
ts node n0 with n. Hen
ethe edge labels are two-dimensional ve
tors and represent the topography of the graph.This fa
e or model graph is obje
t-adapted, sin
e the nodes are sele
ted from fa
e-spe
i�
points (�du
ial points, see Figure 5.1).Graphs of di�erent views di�er in geometry and lo
al features. Although the �du
ialpoints refer to 
orresponding obje
t points, some may be o

luded, and jets as well asdistan
es vary due to rotation in depth. In order to be able to 
ompare graphs of di�erentviews, pointers have to be de�ned that asso
iate nodes of di�erent graphs, referring to
orresponding �du
ial points. This was done manually.46



image graph general face knowledgeFigure 5.2: General Fa
e Knowledge (GFK) serves as a representation of fa
es ingeneral. It is designed to 
over all possible variations in appearan
e of fa
es. In order todo so, it has an average grid and a whole set of jets at ea
h node. An image graph to be
ompared with the GFK has only one jet per node. In the 
omparison, the best �ttingjet in the GFK is sele
ted for ea
h node independently, indi
ated as grey jets in rows ofwhite ones.General Fa
e KnowledgeIn order to deal with new fa
es, one needs a representation for fa
es in general ratherthan models of individual fa
es. This representation should 
over a wide range of possiblevariations in the appearan
e of fa
es, su
h as di�erently shaped eyes, mouths, or noses,di�erent types of beards, variations due to gender and age, et
. I 
all this representationGeneral Fa
e Knowledge or GFK and denote it with K. Noti
e that no expli
it fa
emodel is employed. Instead, for a given view, M model graphs GKm (m = 1; :::;M) ofidenti
al stru
ture taken from di�erent sample fa
es are 
ombined. The nodes of theGFK are labeled with 
orresponding sets of jets J Kmn ; the edges are labeled with theaveraged distan
es �~xKe = P�~xme =M . The GFK represents not only the sample fa
es,but also all fa
es that 
an be obtained by 
ombining the lo
al features of di�erent samplefa
es: the mouth from one fa
e, the nose from a se
ond, parts of the hair from a third,et
. Ea
h �du
ial point may be represented by a di�erent sample fa
e (see Figure 5.2).5.2.2 Generating a Fa
e Representation by Elasti
 GraphMat
hingSo far I have only des
ribed how individual fa
es and the GFK are represented by labeledgraphs. I am now going to explain how these graphs are generated.The simplest method is to do so manually. For a given image a set of �du
ial pointshas to be marked and edges between them have to be drawn. The edge labels 
an be
omputed as the di�eren
es between the pixel positions. This de�nes a grid, i.e. the47



stru
tural and metri
 information about a graph. Finally the Gabor wavelet transformprovides the jets for the nodes. This is a
tually the method for generating initial graphsfor the system. For ea
h view one graph has to be de�ned by hand, in
luding the pointersindi
ating whi
h nodes in di�erent views 
orrespond to ea
h other.If the system has a GFK (possibly 
onsisting of one model only), graphs for newimages 
an automati
ally be generated by Elasti
 Graph Mat
hing. In the beginning,when the GFK 
ontains only very few fa
es, one has to review and 
orre
t the resultof the graph mat
hing, but on
e the fa
e knowledge is ri
h enough (approximately 70graphs) one 
an rely on the mat
hing and generate large galleries of fa
es automati
ally.Similarity Fun
tion for Mat
hingThe key role in Elasti
 Graph Mat
hing (EGM) is played by a fun
tion evaluating thegraph similarity between an image graph and the GFK of identi
al view. It depends onthe jet similarities and the distortion of the image grid relative to the GFK grid. Fora graph GI with nodes n = 1; :::; N and edges e = 1; :::; E and a GFK K with modelgraphs m = 1; :::;M the similarity is de�ned asSK(GI ;K) = 1N Xn maxm �S�(J In ;J Kmn )�� �EXe (�~xIe ��~xKe )2; (5.1)where � determines the relative importan
e of jets and metri
. Jn are the jets at noden and �~xe are the distan
e ve
tors used as labels at edges e. Sin
e the GFK providesseveral jets for ea
h �du
ial point, the best one is sele
ted and used for 
omparison. Thisbest �tting jet serves as the lo
al expert for the image fa
e.Mat
hing S
heduleThe goal of EGM on a probe image is to �nd the �du
ial points and thus to sele
t fromall possible graphs in the image the one that maximizes the similarity with the GFK.In pra
ti
e one has to apply a heuristi
 algorithm to �nd a good approximation to theoptimum in a reasonable amount of time. I use a 
oarse to �ne approa
h. The mat
hings
hedule has the following stages:Stage 1 Find the fa
e in the image: Average over the amplitudes of the jets in the GFKand generate an average graph, or alternatively sele
t one arbitrary graph as arepresentative. Use this as a rigid model (� = 1) and evaluate its similarityat ea
h lo
ation of a square latti
e with a spa
ing of 4 pixels. At this stage thesimilarity fun
tion Sa without phase is used instead of S�. Repeat the s
anningaround the best �tting position with a spa
ing of 1 pixel. The best �ttingposition �nally serves as starting point for the next stage.Stage 2 Find the right position and size of the fa
e: Now the GFK is used withoutaveraging. The GFK grid is varied in position and size. Che
k the four di�erentpositions (�3;�3) pixels displa
ed from the position found in Stage 1, and atea
h position 
he
k two di�erent sizes whi
h have the same 
enter position, afa
tor of 1:18 smaller or larger than the GFK average size. This is without e�e
ton the metri
 similarity, sin
e the ve
tors ~xKe are transformed a

ordingly. I stillkeep � =1. For ea
h of these eight variations the best �tting jet for ea
h node48



is sele
ted and its displa
ement a

ording to Equation A.11 is 
omputed. Thisis done with a fo
us of 1, i.e. the displa
ements may be of a magnitude up tohalf the wavelength of the lowest frequen
y kernel. The grids are then res
aledand repositioned in order to minimize the square sum over the displa
ements.Stage 3 Find the right size and format of the fa
e: A similar relaxation pro
ess asdes
ribed for Stage 2 is applied, relaxing the x- and y-dimension independentlynow. In addition the fo
us in
reases su

essively from 1 to 5.Stage 4 Lo
al distortion: In a pseudo-random sequen
e the position of ea
h individualimage node is varied in order to in
rease further the similarity to the GFK.Now the metri
 similarity is taken into a

ount by setting � = 2 and using theve
tors ~xKe as obtained in Stage 3. In this stage only positions are used wherethe estimated displa
ement ve
tor is small (d < 1, see Equation A.11). For thislo
al distortion the fo
us again in
reases from 1 to 5.The resulting graph is 
alled the image graph and is stored as a representation forthe individual fa
e of the image (see Figure 5.3).Normalizing Fa
e SizeThe original images have a format of 256�384 pixels, and the fa
es vary in size by abouta fa
tor of 3. In order to 
ompensate for size variation and transform the images into the128� 128 pixel format that is used in the system, I use a prepro
essing stage developedby Kr�uger (1994). The prepro
essing uses the very same EGM as des
ribed aboveto estimate size and position of a fa
e, but a GFK with fewer nodes is used, and it issplit into three di�erent size 
ategories. On
e the size and position of the fa
e in theoriginal image is known, an appropriate frame 
an be sele
ted and resized to the required128x128 format.5.2.3 Re
ognitionEGM with the GFK allows us to generate graphs for probe fa
es automati
ally. By thismeans one 
an build up large galleries of model graphs without further need for mat
hingor distortion if one 
ompares fa
es with ea
h other. A gallery is distin
t from the GFK,sin
e the former represents a set of individual fa
es to be re
ognized, while the latterrepresents what the system knows about fa
es in general and is used to generate graphs.In addition I distinguish between image graphs/galleries and model graphs/galleries.The latter represent the stored fa
es known to the system, while the former representthe probe fa
es to be re
ognized by 
omparison with the models.For 
omparing graphs, I use a very simple similarity fun
tion simply averaging overthe similarities between the 
orresponding jets, ignoring the distortions 
reated by ro-tation in depth. If image graph and model graph are of di�erent view, one has to take
are that only jets belonging to the 
orresponding �du
ial point are 
ompared with ea
hother. Assume the image graph GI has N nodes of whi
h N 0 have a 
orresponding nodein model graph GM. n0 runs over nodes with a 
ounterpart, e.g. n0 = 1; ::; 7; 9; 11; ::; N�1if nodes 8, 10, and N have no 
ounterpart. Node nn0 in the model graph 
orresponds to49



frontal view half profile profile

Figure 5.3: Sample grids as generated automati
ally by EGM against the GFK. One
an see that in general the mat
hing �nds the �du
ial points quite a

urately. Butmismat
hes o

urred for example for the fa
e in the 
enter. The 
hin was not founda

urately, be
ause of the beard. The leftmost node and the node below it should be atthe top and the bottom of the ear respe
tivly. See the model above for a 
orre
t mat
h.The graphs used in Se
tion 5.3.2 had about 14 additional nodes whi
h are not shownhere for simpli
ity.
50



node n0 in the image graph. I then de�ne graph similarity as:SG(GI ;GM) = 1N 0 Xn0 Sa(J In0;JMnn0 ): (5.2)Here the jet similarity fun
tion without phase turned out to be more dis
riminative.Re
ognition with Con�den
eGiven one image graph GI and a gallery of model graphs fGMm jm = 1; :::;Mg 
onsiderthe distribution of the similarities Sm = SG(GI ;GMm ): (5.3)In this the 
orre
t model usually stands out with a signi�
antly higher value than allothers. To quantify this, I have adopted the 
on�den
e 
riterion of (Lades et al., 1993).Assume that the models are ordered su
h that Sm > Sm+1. The 
on�den
e C is de�nedas C(GI ; fGMm g) = S1 � S2s ; (5.4)where s is the standard deviation of set fSmjm = 2; :::;Mg. A fa
e is 
onsidered tobe re
ognized with 
on�den
e if C(GI ; fGMm g) is larger or equal to a 
ertain thresholdC�. This 
riterion is relative in the sense that a global shift and a global s
aling ofthe similarity distribution do not matter. These global variations might be due to adi�erent pose of the fa
e in the image or variations in the set of jets or 
oeÆ
ientsused for the 
omparison. Nevertheless this 
riterion is rather heuristi
, and a moretheoreti
ally motivated 
on�den
e 
riterion would be valuable. The main disadvantageof the 
riterion is that it depends on the gallery size and that it is not dire
tly appli
ableto mixed galleries, i.e. galleries 
ontaining models of di�erent views.With a 
on�den
e 
riterion, the re
ognition samples fall into four 
lasses:First rank model First rank modelis a

epted is reje
tedC(GI ; fGMm g) � C� C(GI ; fGMm g) < C�First rank model is 
orre
t true positives false negativesFirst rank model is not 
orre
t false positives true negativesThe goal of the fa
e re
ognition system without 
on�den
e 
riterion is to maximizethe raw re
ognition rate, i.e. to minimize the false 
ases. Given the raw re
ognition rate,the purpose of the 
on�den
e 
riterion is to dis
riminate the false 
ases from the true
ases, i.e. to minimize false negatives and false positives while maximizing true positivesand true negatives. The threshold C� determines the distribution over the 
lasses. Ahigh threshold will provide high reliability on reje
ting false positives, a low thresholdwill provide high reliability on a

epting 
orre
t models.51



profilefrontal views A and B half profilequarter view

Figure 5.4: Sample fa
es from the ARPA/ARL FERET database: frontal views A andB, quarter views, half-pro�le, and pro�le. The images shown here are already res
aledto a normal size by the prepro
essing stage. Noti
e the variation in the rotation anglefor the quarter views and half-pro�les.5.3 Experiments5.3.1 DatabaseThe galleries of images are taken from the ARPA/ARL FERET database provided bythe US Army Resear
h Laboratory. For the test I used four di�erent views: frontal view,quarter view (about 20 degrees rotated), half-pro�le (about 40-70 degrees rotated), andpro�le (see Figure 5.4). Some are rotated to the left and others to the right. Theviews are known to the system. As the simplest invarian
e transformation I 
ip all rightviews to left views, assuming that sin
e fa
es are suÆ
iently symmetri
al, this is a usefulmanipulation to re
ognize half-left pro�le against half-right pro�le. For most fa
es thereare two frontal views with di�erent fa
ial expression. Apart from a few ex
eptions thepersons have no disguise or variations in hairstyle or 
lothing. The ba
kground is alwayshomogeneous, exept for smoothly varying shadows, and sometimes light and sometimesgrey. The size of the fa
es varies by about a fa
tor of three, but is 
onstant for ea
hindividual. I therefore res
aled all fa
es (see `Normalizing fa
e size' in Se
tion 5.2.2).The format of the original images is 256x384 pixels.52
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Figure 5.5: Signi�
ant re
ognition of 
orre
t and in
orre
t �rst rank models for allgallery pairs listed in Table 5.1 
ombined. The solid line shows the proportion of falsepositives and the dashed line the proportion of true positives, depending on the 
on�-den
e threshold. The former should be as low as possible, while the latter should be ashigh as possible. For the results in Table 5.1 I 
hose a 
on�den
e threshold of C� = 1.5.3.2 ResultsFor the experiments I used model galleries of 300 fa
es with only one image per person.One 
omplete re
ognition, i.e. normalizing fa
e size, generating the fa
e graph, and
omparison with 300 models, takes approximately 20 se
onds on a Sun SPARCstation20-502 with a 50 MHz pro
essor.Re
ognition results are shown in Table 5.1. For frontal views against frontal viewsthe results are very good. Re
ognizing fa
es of di�erent pose turns out to be a mu
hharder task; the re
ognition rates are relatively poor. The results are asymmetri
al fordi�erent poses. Performan
e is better if frontal views or pro�les serve as galleries thanif half-pro�les are used. This is due to the fa
t that frontal views as well as pro�les aremu
h more standardized in pose than half-pro�les, where the angle varies between 40and 70 degrees. Sin
e the graph similarities degrade with rotation angle independently ofthe individuals, the 40 degrees half-pro�le models are favored if 
ompared with a frontal-view image instead of with pro�le. Analogously, the 70 degrees half-pro�le models arefavored if 
ompared with a pro�le image instead of with frontal view. This e�e
t degradesre
ognition performan
e. The results are signi�
antly better for quarter views right thanfor quarter views left. One reason might be that the left views are 
ipped while the rightviews are not. But the more likely reason is that on average the right views are lessrotated in depth than the left.Figure 5.5 shows the proportion of true positives relative to all true 
ases and falsepositives relative to all false 
ases. The 
on�den
e 
riterion would work perfe
tly if therewere no false positives and no true negatives. But this is not the 
ase and therefore onehas to 
ompromise between too many false positives and too few true positives. From53



�rst 15 ranks �rst rank true pos. false neg.model gallery probe images lower ranks lower ranks false pos. true neg.# % # % # % # %300 300 297 99.0 292 97.3 276 92.0 16 5.3frontal views A frontal views B 3 1.0 8 2.7 0 0.0 8 2.7300 300 298 99.3 294 98.0 266 88.7 28 9.3frontal views B frontal views A 2 0.7 6 2.0 0 0.0 6 2.0300 23 23 100.0 15 65.2 10 43.5 5 21.7frontal views A quarter views right 0 0.0 8 34.8 0 0.0 8 34.8300 23 15 65.2 7 30.4 2 8.7 5 21.7frontal views A quarter views left 8 34.8 16 69.6 0 0.0 16 69.6300 300 132 44.0 40 13.3 8 2.7 32 10.7frontal views A half-pro�les 168 56.0 260 86.7 1 0.3 259 86.3300 300 103 34.3 38 12.7 4 1.3 34 11.3half-pro�les frontal views A 197 65.7 262 87.3 0 0.0 262 87.3300 300 104 34.7 33 11.0 6 2.0 27 9.0half-pro�les pro�les 196 65.3 267 89.0 3 1.0 264 88.0300 300 120 40.0 41 13.7 8 2.7 33 11.0pro�les half-pro�les 180 60.0 259 86.3 6 2.0 253 84.3Table 5.1: Re
ognition results for 
ross-runs between di�erent galleries. The numberof gallery models and probe images and their pose is displayed in the �rst and se
ond
olumn respe
tively. In all other entries of the table, four �gures are given. On the leftare the absolute numbers, on the right the respe
tive per
entages. The upper �guresrefer to good rankings or 
orre
t re
ognition 
ases, the lower ones refer to poor rankingsor in
orre
t re
ognition. The third 
olumn says how often the 
orre
t fa
e is amongthe 15 best models. The number of 
orre
tly re
ognized fa
es (i.e. if the 
orre
t modelhas the highest similarity with the image) is given in the next 
olumn. In the last two
olumns the 
on�den
e 
riterion is applied with a threshold of 1, signi�
ant re
ognitionin the left 
olumn and reje
tion in the right 
olumn. Noti
e that the numbers in the lasttwo 
olumns add up to the numbers in the fourth 
olumn.
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Figure 5.5, I have 
hoosen a 
on�den
e threshold of C� = 1 in order to avoid false positives.The results in Table 5.1 were obtained with this threshold.5.4 Dis
ussionI have presented a general and 
exible system applied to fa
e re
ognition. It is designedfor an in-
lass re
ognition task, i.e. for re
ognizing members of a known 
lass of obje
ts,but the system is in no way tailored to fa
es. In prin
iple it should be dire
tly appli
ableto other in-
lass re
ognition tasks su
h as re
ognizing individuals of a given animalspe
ies, given the same level of standardization of the images. In 
ontrast to manyneural network systems, no extensive training for new fa
es or new obje
t 
lasses isrequired. The individuals are simply shown to the system on
e.The performan
e is high on fa
es of the same pose. Re
ognizing unfamiliar fa
es invery di�erent poses is a mu
h more diÆ
ult task and the performan
e of the system issigni�
antly degraded in that 
ase. It is known from psy
hophysi
al experiments thathuman subje
ts perform poorly on re
ognizing fa
es taken from di�erent views, as well.Bru
e et al. (1987) showed that reliability on judging whether two unfamiliar fa
esare the same degrades signi�
antly with rotation angle in depth. A similar result wasobtained by Kalo
sai et al. (1994) if no easy features su
h as hairstyle, type of beard,wearing glasses or not, are available.5.4.1 Comparison with the Pre
eding SystemCompared to the pre
eding system of Lades et al. (1993) I have made three major mod-i�
ations. The �rst two are of general advantage; only the last one fo
usses spe
i�
allyon fa
e re
ognition or rather on in-
lass re
ognition tasks. Phase information was usedfor better positioning of the nodes on the �du
ial points, obje
t-adapted graphs wereintrodu
ed to deal with di�erent views, and a set of sample graphs was 
ombined to aGeneral Fa
e Knowledge in order to represent a wide range of di�erent and previouslyunknown fa
es.The modi�ed system has several advantages. Firstly, the previous system (Ladeset al., 1993) mat
hed ea
h model of the gallery separately to a fa
e image. By introdu
ingthe GFK and by using phase information, image graphs 
an be generated with goodreliability, even if no image of that parti
ular person has been shown to the system before.This makes it possible to separate the graph generation phase from the re
ognition phase,whi
h makes the system mu
h faster by generating an image graph only on
e and not forea
h model again. Se
ondly, the 
exible graphs provide a way to deal with very di�erentposes. Nodes 
an refer to the same �du
ial points regardless of view. That is essentialfor many operations that one wants to apply to the graphs (
f. next se
tion). Thirdly,using phase information provides relatively pre
ise node lo
ations that 
an potentiallybe used as an additional re
ognition 
ue (though topography is not used for re
ognitionin the 
urrent system). Previously the lo
alization of the nodes was very rough and oflittle use for the re
ognition. 55



5.4.2 Comparison with Other SystemsThere is a 
onsiderable literature on fa
e re
ognition, and many di�erent te
hniqueshave been applied to this task (see Samal & Iyengar, 1992; Valentin et al., 1994 forreviews). Sin
e re
ognition results depend very mu
h on database design, a 
omparisonof performan
e would not be meaningful, but it is worthwhile to do a 
omparison under
on
eptual aspe
ts.Several systems are designed spe
i�
ally for fa
es on the basis of manually de�nedfeatures. Yuille (1991), for example, represents eyes by a 
ir
le within an almond-shape and de�nes an energy fun
tion to optimize a total of 9 parameters of this modelfor mat
hing it to an image. Brunelli & Poggio (1993a, 1993b) similarly employspe
i�
 models for eyebrows, nose, mouth, et
. and derive 35 geometri
al features su
has eyebrow thi
kness, nose width, mouth width, and eleven radii des
ribing the 
hinshape. The drawba
k of these systems is that the features as well as the pr
edures toextra
t them must be de�ned and programmed by the user for ea
h obje
t 
lass again,and the system has no means to adapt to samples for whi
h the features fail. For example,the eye models mentioned above may fail for fa
es with sun glasses or have problems ifthe eyes are 
losed. The 
hin radii 
annot be extra
ted if the fa
e is bearded. In these
ases the user has to design new features and new algorithms to extra
t them. Withthis paradigm, the system 
an never be
ome autonomous, it will always depend on theuser and programmer. The system presented here 
onsequently avoids su
h user de�nedfeatures (ex
ept the user de�ned lo
ations of the �du
ial points in the beginning, whi
hhas to be repla
ed by autonomous pro
edures, see following se
tion). Within the EGMapproa
h, su
h ex
eptions as fa
es with sun glasses or a beard 
an very naturally andautomati
ally be in
luded into the GFK, and it was mentioned above that the systemshould be dire
tly appli
able to other 
lasses of obje
ts.Another approa
h to fa
e re
ognition not using manually de�ned features is based onPrin
ipal Component Analysis (PCA) (Sirovi
h & Kirby, 1987; Kirby & Sirovi
h,1990; Turk & Pentland, 1991; O'Toole et al., 1993). In this approa
h, fa
es are�rst aligned with ea
h other and then treated as high-dimensional ve
tors (this align-ment is frequently done manually or by means of manually de�ned features, but it 
analso be done automati
ally within the PCA framework, see Turk & Pentland, 1991).The PCA 
omputes eigenve
tors, so-
alled eigenfa
es, and the respe
tive eigenvalues.Ea
h probe fa
e is de
omposed with respe
t to these eigenve
tors and represented bythe 
orresponding 
oeÆ
ients in a very eÆ
ient way (approximately 30 suÆ
e to obtaina good re
onstru
tion). PCA is optimal with respe
t to 
ompression, but its appropri-ateness for re
ognition purposes 
an not be shown theoreti
ally. It is known that the�rst eigenve
tors 
apture mainly general information about fa
es and are therefore notas dis
riminative as eigenve
tors with lower eigenvalue (O'Toole et al., 1993). Thusthe dis
riminative features are not optimally represented by eigenve
tors.In 
ontrast to our EGM system, PCA is a 
ompletely holisti
 approa
h. Thus oneobvious disadvantage is that it has 
on
eptually no means to deal with o

lusions as isdemonstrated for the more lo
alized EGM in Chapter 7. A se
ond disadvantage is thatgeometry is tightly 
oupled with lo
al features. As was already dis
ussed in Chapter 1,geometri
al variations, su
h as a di�erent nose{mouth distan
e 
an thus not be 
odedby a displa
ement, but has to be treated as a 
ompletely new fa
e, with a di�erentmouth and/or nose. As a solution to this problem one 
an �rst apply a pro
edure whi
h56




ompensates for geometri
al variations and generates a so-
alled shape-free fa
e model(Lanitis et al., 1995). Then all fa
ial features are aligned with ea
h other and 
an beoptimally en
oded by PCA. The way PCA and EGM 
ompose a probe fa
e of known
omponents is very di�erent. That has 
onsequen
es for the ability to generalize. As
an be seen in the following 
hapter, the GFK 
an, for instan
e, 
ompose a probe fa
ewith glasses and a beard out of two known fa
es, one beardless fa
e with glasses and onebearded fa
e without glasses. This 
annot be done by PCA, sin
e the eigenve
tors alwaysrepresent the whole fa
e. PCA on the other hand is able to 
ombine holisti
 features in away the GFK is not able to. While the advantage of the lo
alized 
omposition is obvious,I do not have a 
lear view of the potential of the holisti
 
omposition for generalization.5.4.3 Future Perspe
tivesThe newly introdu
ed features of the system open many possibilities to improve the sys-tem further. The obje
t-adapted graphs make it possible to treat the di�erent nodes indi-vidually. Kr�uger (1995), for example, has re
ently introdu
ed trainable node weightsto take into a

ount that some �du
ial points are more reliable or more robust againstrotation in depth than others. This individual treatment is espe
ially important forfa
es of di�erent pose. Maurer & von der Malsburg (1995) are 
urrently workingon linear transformations on the jets in order to 
ompensate for the e�e
t of rotation indepth. However, linear transformation is obviously not suÆ
ient, and one may have totrain and apply more general transformations. An alternative approa
h might be to usethe GFKs and do the transformation based on sample fa
es (see Se
tion 6.4.2).By using phase information and the GFKs, mat
hing a

ura
y has improved sig-ni�
antly. However, many partial mismat
hes still o

ur. This is probably due to theprimitive way topography is en
oded in the graphs, distortions being 
ontrolled by elas-ti
 for
es to keep the spatial ve
tors between two nodes approximately 
onstant. Butfa
es do not distort arbitrarily as in a fun-house mirror. There are rather typi
al dis-tortion patterns, e.g. due to rotation in depth, variations in fa
ial expression, di�erenthairstyles, or di�erent but symmetri
al shapes of the fa
es. It would be of great help ifthese typi
al distortion patterns 
ould be analyzed, and if the lo
al distortion 
ould berepla
ed by a global distortion with mu
h fewer degrees of freedom just 
overing thesetypi
al distortion patterns. One might then possibly get information about the reasonfor the distortion as well, whether it 
omes from laughing or rotation in depth of a 
ertaindegree. Information about rotation in depth 
ould be espe
ially useful, sin
e a pre
isepose estimation would make re
ognition easier. Some resear
h in this dire
tion has, forexample, been done by Lanitis et al. (1995). When the mat
hing is reliable enough,it will be interesting to investigate to what extent the grid topography 
an be used forre
ognition (
f. Brunelli & Poggio, 1993b).A further short
oming of the system is that all graph stru
tures have to be de�nedmanually. That has to be repla
ed by a self-organizing pro
ess able to generate appro-priate representations for obje
t 
lasses in an autonomous fashion. This 
an most easilybe done on image sequen
es, sin
e they provide many 
ues for grouping, segmentation,and dete
ting 
orresponden
es. For example, nodes 
ould be taken from salient pointsand grouped on the basis of 
ommon motion (
f. Manjunath et al., 1992). Monitoringa rotating obje
t by 
ontinuously applying EGM 
an then reveal whi
h nodes refer to
orresponding �du
ial points in di�erent views (
f. Reiser, 1991). A General Obje
t57



Knowledge 
ould be established by mat
hing obje
t graphs and 
ombining those whi
hare similar, assuming that they belong to the same 
lass of obje
ts.
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Chapter 6Phantom Fa
es and Fa
e AnalysisAbstra
t: In this system the General Fa
e Knowledge (GFK) introdu
ed in the previous
hapter is enri
hed with fa
ial attribute labels su
h as gender or the presen
e of a beard orglasses. Elasti
 Graph Mat
hing provides information about whi
h jet in the GFK best �ts theimage at whi
h node. The best �tting jet for a node is 
alled the lo
al expert. A 
omposite orphantom fa
e similar in appearan
e to the original 
an arti�
ially be 
omposed based on theselo
al experts. The fa
ial attribute labels 
an be transferred to the phantom fa
e and provide agood 
ue for determining the fa
ial attributes of the original, for instan
e, if most lo
al expertsbelong to female models the original is likely to be female. A statisti
al analysis based on Bayes'formula is given, and the relative signi�
an
e of ea
h node for the determination of gender andthe presen
e of a beard or glasses is 
omputed. Results 
on
erning attribute determination aregiven for a gallery of up to 111 fa
es.6.1 Introdu
tionWe have seen in the previous 
hapter how a graph representation of a probe fa
e 
an begenerated automati
ally by Elasti
 Graph Mat
hing against a General Fa
e Knowledge(GFK). Ea
h node of the image graph was allowed to sele
t its best �tting jet froma di�erent model. In this 
hapter I am going to investigate further possibilities foranalyzing a fa
e on the basis of jet similarities between the nodes of a graph and thenodes in a GFK. The mat
hing result is visualized by generating 
omposite or phantomfa
es. Attributes of the probe fa
e, su
h as gender, beard, and glasses, are determinedon the basis of the 
orresponding attributes of the models in the general fa
e knowledge.This is a step in the dire
tion of fa
e analysis rather than just fa
e re
ognition. If thissystem works well for several fa
ial attributes it might help to improve fa
e re
ognitionby redu
ing the sear
h spa
e; this would be espe
ially valuable for re
ognizing fa
es indi�erent poses.6.2 The System6.2.1 Phantom Fa
esFirst I am going to illustrate how well the General Fa
e Knowledge 
an represent aprobe fa
e. Figure 6.1 shows an image, its graph, the GFK, and arrows pointing to the59
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g=wearing glasses,
b=bearded

image graph

model graphs of the GFK

phantom face

originalFigure 6.1: The sta
k stru
ture of the General Fa
e Knowledge. We see here how theindividual nodes of an image graph best �t di�erent model graphs. Ea
h model graph islabeled with known attributes, based on whi
h the attributes of the probe fa
e 
an bedetermined. On the right a phantom fa
e is shown.best �tting jets in the GFK. These best �tting jets are 
alled lo
al experts. In orderto generate a phantom fa
e, respe
tive pat
hes of grey values from the models at the�du
ial points at whi
h they �t best are joined together with smooth transitions. Thepre
ise positions of the pat
hes are given by the pixel positions of the image graph asyielded by the mat
hing pro
ess. The result is shown on the right. More examples areshown in Figure 6.2.Noti
e that sin
e only fa
es of the same pose are 
ompared there is no need for obje
t-adapted graphs in the sense of the pre
eding 
hapter. However, the regular graphs usedhere are aligned with ea
h other as in Chapter 4, with 
ertain nodes lying on the eyes and
ertain others on the line where the two lips meet. The other nodes are positioned bythe regular stru
ture of the grids. However, I will refer to the node positions as �du
ialpoints.Noti
e that no grey-value information of the original image is used to generate aphantom fa
e. Only the mat
hing information (the lo
al experts and their lo
ations)and the model images are used, and a phantom fa
e is typi
ally 
omposed of ten totwenty di�erent models. The �rst thing that strikes one is that they look so natural inspite of a
tually being a pat
h-work. They 
an also look very similar to the original.However, only what is represented in the GFK 
an be re
onstru
ted. For example therewas no Asian fa
e in the GFK when generating the phantom fa
e in Figure 6.1. Hen
eone gets a Cau
asian phantom fa
e, wi
h is otherwise very similar. It is obvious thatthe quality of phantom fa
es improves with the size of the GFK.6.2.2 Determining Fa
ial AttributesIn the previous se
tion it was demonstrated that a lot of information about a probe fa
e
an be represented by the lo
al experts in the GFK. I will now demonstrate that notonly the fa
e image 
an be re
onstru
ted, but also fa
ial attributes su
h as gender, the60
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original phantom face model attributes

Figure 6.2: Shown here is the original and the phantom fa
e for three di�erent persons.Noti
e that the phantom image was generated only on the basis of information providedby the mat
h with the General Fa
e Knowledge; no image information from the originalwas used. That is why 
ertain details, su
h as the re
e
tions in the glasses or the pre
iseshape of the lips of the top image are not reprodu
ed a

urately. The �elds of labels onthe right side indi
ate the attributes of the models whi
h provide the lo
al experts forthe individual nodes; m: male, f: female, b: bearded, g: glasses.
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presen
e of a beard, and wearing glasses 
an be inferred from the mat
h result in a verysimple way.Let us assume that gender and the presen
e of a beard or glasses is known for themodels in the GFK. Sin
e the phantom fa
e looks so similar to the original, it is rea-sonable to assume that the labels of the models providing the lo
al experts 
orrespondto the attributes of the probe fa
e with some reliability as well. The nodes of a femalewill most often �t female models, and a bearded man will pi
k up bearded models in thelower half of nodes. This prin
iple is demonstrated in Figure 6.1. Figure 6.2 shows ex-amples of a
tual experiments. In order to de
ide whether a probe fa
e is male or femaleone simply has to 
ount whether more lo
al experts belong to male or female models.Similarly for beard and glasses, 
onsidering, however, only the lower or upper half of thenodes, respe
tively.This is an illustration of the prin
iple idea. In pra
ti
e one would like to have a morethorough analysis of the node label distributions, espe
ially 
on
erning the question ofwhi
h of the nodes are reliable and whi
h are not. I am therefore now going to apply amore systemati
 statisti
al analysis.6.2.3 Statisti
al AnalysisIn order to perform a statisti
al analysis, I 
onsider the pro
ess of a node in the imagegraph pointing to a model with a parti
ular attribute as a probabilisti
 event. For ea
hnode n I introdu
e the sto
hasti
 variable Xn, whi
h 
an assume the values 1 and 0depending on whether the respe
tive lo
al expert has a parti
ular attribute or not. Xis the 
orresponding random variable for the probe fa
e. A sample of these sto
hasti
variables is denoted by xn and x, respe
tively. Given an image with a 
ertain value x ofX, one 
an ask for the 
onditional probability P (x1; :::; xN jx) of a parti
ular 
ombinationof node labels. I make the strong assumption that the 
onditional probabilities for theindividual nodes are independent of ea
h other: P (x1; :::; xN jx) = Qn P (xnjx). TheBayes a posteriori probability for a probe fa
e having the attribute x given the nodelabels xn then isP (xjx1; :::; xN) = P (x1; :::; xN jx)P (x)P (x1; :::; xN j1)P (1) + P (x1; :::; xN j0)P (0)= P (x)Qn P (xnjx)P (1)Qn P (xnj1) + P (0)Qn P (xnj0) : (6.1)The de
ision whether the attribute is present (x = 1) or not (x = 0), is based on whetherP (1jx1; :::; xN ) > P (0jx1; :::; xN) or not.The probabilities P (xnjx) are not known and have to be estimated on the basis ofrelative frequen
ies F (xnjx) evaluated on a training set of images for whi
h the attributesare known. Assume that there are N images in the training set, of whi
h N(x) imageshave value x forX, with x 2 f1; 0g. N(xnjx) of them are labeled with value xn 2 f1n; 0ngat node n. For example for a training set of 21 fa
es one 
ould getN = N(1) + N(0) = 16 + 5 = 21,N(1) = N(1nj1) + N(0nj1) = 12 + 4 = 16,N(0) = N(0nj0) + N(1nj0) = 5 + 0 = 5.62



The derived relative frequen
ies areF (1) = N(1) /N = 0.76,F (1nj1) = N(1nj1)/N(1) = 0.75,F (0nj1) = N(0nj1)/N(1) = 0.25,F (0) = N(0) /N = 0.24,F (0nj0) = N(0nj0)/N(0) = 1.00,F (1nj0) = N(1nj0)/N(0) = 0.00.If one used these relative frequen
ies as probabilities for evaluating the a posterioriprobability, a probe fa
e with label 1 at node n would have a vanishing probability ofhaving attribute 0. That is a too strong statement on the basis of su
h a small sampleset. I therefore enfor
e the probabilities being greater than zero by in
rementing the zero
lass and de
rementing the 
orresponding one 
lass by one. Hen
e N(0nj0) and N(1nj0)would be 
orre
ted to 4 and 1 respe
tively. The relative frequen
ies F (0nj0) and F (1nj0)would be
ome 0.8 and 0.2 respe
tively. Now the relative frequen
ies 
an be taken asprobabilities for Bayes' formula.Another issue is how to estimate P (1) and P (0). One 
an take the relative frequen
iesof the training set. But that might be too strong a prejudi
e, produ
ing good resultsfor the majority 
lass but relatively poor results for the minority 
lass. In addition, thiswould impli
itly take into a

ount knowledge about the 
omposition of the test set, sin
etraining set as well as test set are drawn from the same 
omplete set, therefore havingapproximately the same fra
tion of females, et
. For these reasons I 
onsistently 
hoseP (1) = P (0) = 0:5 to avoid prejudi
ing the test set 
omposition.6.2.4 Equivalen
e between Bayes' and Weights FormulationAn alternative to the Bayes approa
h would be to train weights for ea
h node in orderto optimize the 
orre
t determination rates. The de
ision would then be made on thebasis of a weighted sum over all nodes with a 
ertain attribute. Sin
e weights providean easy interpretation and a good visualization, I now transform Bayes' formula into anequivalent weight formulation.As seen above, the Bayes method determines a attribute based on whetherP (1jx1; :::; xN) > P (0jx1; :::; xN ) or not. By means of Equation 6.1 and taking intoa

ount that xn may only assume the values 0 and 1, this 
an be transformed in thefollowing way: P (1jx1; :::; xN ) > P (0jx1; :::; xN )() P (1)Yn P (xnj1) > P (0)Yn P (xnj0)() Xn ln P (xnj1)P (xnj0)! > ln P (0)P (1)!() Xn xn  ln P (1nj1)P (1nj0)!� ln P (0nj1)P (0nj0)!! > ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)!() Xn xn ln P (1nj1)P (0nj0)P (1nj0)P (0nj1)! > ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)!() Xn xn�n > �; (6.2)63



malefemale bearded beardless totaltotal # % # % # %9 8.1 18 16.2 27 24.3glasses 0 0.0 4 3.6 4 3.69 8.1 22 19.8 31 27.912 10.8 33 29.7 45 40.5no glasses 0 0.0 35 31.5 35 31.512 10.8 68 61.3 80 72.121 18.9 51 45.9 72 64.9total 0 0.0 39 35.1 39 35.121 18.9 90 81.1 111 100.0Table 6.1: Composition of the General Fa
e Knowledge.with �n = ln P (1nj1)P (0nj0)P (1nj0)P (0nj1)! ; (6.3)� = ln P (0)P (1)!�Xn ln P (0nj1)P (0nj0)! : (6.4)The weights �n are shown in Figure 6.3 as bla
k 
ir
les with a diameter proportionalto the weights. It is obvious that the bottom rows are signi�
ant for beard dete
tion andthat the top rows are signi�
ant for glasses dete
tion. For gender, the weights show nostrong emphasis on a parti
ular region. The weights are not perfe
tly symmetri
al withrespe
t to the verti
al axis, and there are some negative weights. This is probably dueto the fa
t that the galleries were not large enough, espe
ially for the pure sets.6.3 Experiments6.3.1 DatabaseThe gallery of fa
es used here was set up at the Institut f�ur Neuroinformatik, Bo
hum,and 
ontains 111 neutral frontal views. The images had 128�128 pixels subsampledfrom 512�512 pixels with 256 grey levels. The size of the fa
es varied up to a fa
tor of1.5, with a tenden
y for male fa
es to be larger than female fa
es. I therefore res
aledall images su
h that the x- and y-spa
ing is 10 pixels on average; the ratio between x-and y-spa
ing was kept as in the original image. In order to avoid a bias of the genderdetermination due to gender spe
i�
 hairstyles, the outer regions were masked by a greyframe with a smooth transition to the fa
e, see �g 6.4. The 
omposition of the gallerywith respe
t to the attributes male, beard, and glasses is shown in Table 6.1.6.3.2 ResultsCorre
t attribute determination rates are given in Table 6.2. The 
omplete GFK 
ontains111 fa
es, whi
h also serve as probe fa
es. Hen
e, if a fa
e is analyzed it is ex
luded from64
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Figure 6.3: Weights �n of the nodes. From left to right for gender determination, bearddete
tion, and glasses dete
tion. The weights in the top row are determined on all 111test images and the 
omplete GFK of 111 minus 1 models. Results on pure sets areshown in the bottom row. From left to right on beardless fa
es without glasses only, onmales without glasses only, and on beardless males only.
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male bearded glassesfemale beardless no glassestotal total total
omplete 0.917 � 0.049 (0.944) 0.839 � 0.133 (0.905) 0.895 � 0.067 (0.903)sets 0.938 � 0.058 (0.949) 0.964 � 0.024 (0.956) 0.990 � 0.015 (0.988)(111/111/111) 0.924 � 0.033 (0.946) 0.941 � 0.027 (0.946) 0.963 � 0.023 (0.964)small 0.851 � 0.098 0.848 � 0.148 0.834 � 0.128sets 0.899 � 0.070 0.964 � 0.043 0.965 � 0.050(68/45/51) 0.875 � 0.050 0.935 � 0.054 0.919 � 0.053pure 0.822 � 0.091 (0.818) 0.589 � 0.198 (0.833) 0.800 � 0.113 (0.778)sets 0.840 � 0.090 (0.857) 0.942 � 0.046 (0.970) 0.932 � 0.044 (0.970)(68/45/51) 0.831 � 0.050 (0.838) 0.857 � 0.052 (0.933) 0.885 � 0.043 (0.902)Table 6.2: Corre
t attribute determination rates. In the �rst row the 
omplete GFK of111 fa
es was used for all three attributes. The images were split into a training set anda test set of 55 and 56 fa
es respe
tively. On the training set the probabilities P (xnjx)were estimated; on the test set the performan
e of the trained system was evaluated.The standard deviation is shown as well. In bra
kets the performan
e is given for the
ase where training set and test set are identi
al and both 
ontain all 111 samples of theGFK. This gives an estimation for the upper bound of performan
e that 
an be obtainedon this gallery with the Bayes approa
h. The last row gives performan
e results for puresets, i.e. 68 unbearded fa
es without glasses for gender determination, 45 male fa
eswithout glasses for beard dete
tion, and 51 unbearded males for glasses dete
tion. Theresults degrade signi�
antly. Part of the degradation is due to the de
reased GFK size.For 
omparison, results are given on mixed sets of same size in the middle row.the model gallery, and only 110 samples remain for the GFK. The same holds for smallerGFKs, e.g. in 
ase of pure sets. The probe fa
es are usually split into a training and atest set of equal size. On the training set the relative probabilities for ea
h node wereestimated, and on the test set the 
orre
t determination performan
e was tested. In orderto get a reliable mean perfoman
e and a standard deviation, 100 di�erent training andtest sets were drawn from the 
omplete set randomly. For the results given in bra
kets,the training and test set were identi
al and of maximum size, i.e. of same size as theGFK.Along with the results for the 
omplete set of 111 fa
es, results on pure subsets aregiven. For gender, only unbearded fa
es without glasses were used, for beard only malefa
es without glasses, and for glasses only unbearded males, yielding GFKs of 68, 45, and51 fa
es respe
tively. This test was mainly done to 
he
k to what extent the di�erentattributes interfere with ea
h other. A 
ertain degradation 
an be expe
ted from the re-du
ed number of fa
es in the GFK, shown in the middle row (see also next se
tion). Eventaking this into a

ount all results degrade. This is probably due to 
orrelations betweenthe di�erent attributes. It is 
lear that the presen
e of a beard tells something aboutthe gender. Using pure sets makes the task more diÆ
ult. The 
orrelation 
oeÆ
ientsare 0.356 for the attributes male and beard, 0.290 for the attributes male and glasses,and 0.161 for the attributes beard and glasses, as 
an be 
omputed from Table 6.1.Figure 6.4 shows more of the 111 sample fa
es. They are ordered with respe
t tothe signi�
an
e of their attributes as judged by the system when all fa
es were used as66
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training set. The least signi�
ant females in
lude the two youngest ones in the gallery,who were of an age where the di�eren
e between male and female fa
es is less obviousthan for older persons. The least signi�
ant beardless fa
e, the female, was probablymis
lassi�ed due to the smile, whi
h generated stru
tures resembling a beard. The leastsigni�
ant bearded and beardless samples also reveal the diÆ
ulties and some arbitrari-ness in the de�nition of who is bearded and who is not. The samples in the bottom tworows, glasses and no glasses, allow no 
on
lusions about the reasons why 
ertain fa
esare mis
lassi�ed with respe
t to this attribute.6.3.3 Dependen
ies on ParametersThe purpose of this se
tion is to investigate the dependen
ies of the 
orre
t 
lassi�
ationrates on the parameters of the system. The mat
hing pro
ess itself was not varied, i.e.the image graphs were generated on
e, and even if the size of the GFK was varied theimage graphs were kept 
onstant as obtained with the maximum size of the GFK.First I am going to 
onsider the system for di�erent sizes of the training set. Thesmaller the training set, the greater the errors in estimating the probabilities P (xnjx).But as the left graph in Figure 6.5 shows, the typi
al training set size of 55 fa
es issuÆ
ient to get maximum performan
e.I 
laimed previously that in
reasing the size of the GFK improves the 
lassi�
ationrate. In order to get an impression, I measured the performan
e with varying GFKsize. The GFK always 
ontained at least one model for ea
h attribute. The right graphin Figure 6.5 shows how performan
e in
reases with GFK size and that it has not yetrea
hed its maximum. Espe
ially for gender, one 
an expe
t that 
orre
t determinationrates will improve signi�
antly with a larger GFK size. It is surprising that in 
ase ofbeard dete
tion, four models already a
hieve a performan
e of 0.85 (though mat
hingpre
ision would degrade signi�
antly with only four models in the GFK). It is 
lear thatthe required size of the GFK depends not only on the performan
e level that one wantsto a
hieve but also on the number of attributes that one wants to determine and on thevariety of the fa
es.One idea to improve the performan
e is to take not only the best �tting jet pernode into a

ount, but to 
onsider the se
ond best, third best, et
., as well. The leftgraph in Figure 6.6 shows the performan
e depending on the rank of the jets used for
lassi�
ation, i.e. only one jet per node was used: the best, the se
ond best, the thirdbest, et
. As expe
ted, the performan
e degrades slowly. But one might still expe
tperforman
e to in
rease if one takes the �rst several best into a

ount. The Bayesianapproa
h was applied to ea
h of the �rst ranks at ea
h node, providing N�R 
onditionalprobabilities per attribute, if R is the number of ranks taken into a

ount. Results areshown in the right graph. The result is not very su

essful. Only in 
ase of genderdetermination 
ould a signi�
ant improvement be a
hieved. For glasses the performan
ein fa
t de
reased. A reason might be that the node labels on di�erent ranks are notindependent of ea
h other as assumed in the Bayesian approa
h.Finally it is worth mentioning that the phase information is 
ru
ial for sele
ting the
orre
t lo
al experts. For identi
al image graphs, performan
e degrades signi�
antly ifthe similarity fun
tion Sa is used istead of S� (see Equations A.6 and A.7).68



0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120
training set size

correct gender determination
correct beard detection

correct glasses detection
mean standard deviation

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120
size of general face knowledge

correct gender determination
correct beard detection

correct glasses detection
mean standard deviation

Figure 6.5: These graphs show the dependen
e of the mean rates of 
orre
t attributedetermination depending on training set size (top graph) and GFK size (bottom graph).For the top graph, test set size was 
onstantly 20 samples and the GFK size was 110,while the training set size varied from 4 to 89. For the bottom graph, training and testset had their standard size of 55 and 56 respe
tively, while the GFK size varied from 4 to109. For ea
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6.4 Dis
ussionThe system presented here demonstrates su

essful determination of the fa
ial attributesgender, beard, and glasses. The ar
hite
ture is quite homogeneous and simple. As in thefa
e re
ognition system of the previous 
hapter, nothing is spe
ialized to fa
es, and onemay expe
t the system to perform satisfa
torily on similar tasks, su
h as dis
riminatingbetween spe
ies of domesti
 animals.6.4.1 Comparison with Other SystemsWhile there is a huge literature on fa
e re
ognition, there are relatively few publi
ationsabout arti�
ial systems for gender determination. Golomb et al. (1991) employed astandard ba
k-propagation network for gender determination. In 90 images of fa
es (45beardless male, 45 female) the eyes were lo
ated manually and the images then rotatedand s
aled automati
ally to a standard format of 30�30 pixels. Images were 
ompressedby an en
oder ba
k-propagation network with 40 hidden units. The output of these40 units served as input for a gender determination network, the SexNet, trained withthe ba
k-propagation algorithm as well. 8 tests were performed with a training set of 80images and 10 test images. Mean performan
e and standard deviation were 91.9%�8.6%.The system used limited hair information.O'Toole et al. (1993) used Prin
ipal Component Analysis for fa
e representationand for the dis
rimination of ethni
 groups as well as gender. They give no performan
eresults on gender determination.A system based on geometri
al features was presented by Brunelli & Poggio(1993a). They used 168 images of 21 males and 21 females. The fa
es were automati
allynormalized with respe
t to rotation and s
aling. Then 18 di�erent geometri
al featuressu
h as pupil-to-nose verti
al distan
e, nose width, 
hin radii, and eyebrow thi
knesswere automati
ally extra
ted, providing one 18 dimensional ve
tor per image. No hairinformation was used. A Hyper Basis Fun
tion Network was trained on the data sets ofall minus one person and tested on the ex
luded ones. The mean performan
e on thetraining sets was 92% and on the test sets 87.5%.Though the performan
e of these systems is 
omparable or higher, the system pre-sented has several advantages. Firstly, it is very general and 
on
eptually not restri
tedto fa
es as is the system of Brunelli & Poggio. No fa
e spe
i�
 features have to bede�ned. Se
ondly, it is lo
al, i.e. in 
ontrast to the PCA approa
h of O'Toole et al.lo
alized attributes su
h as glasses 
an easily be determined and one gets informationabout whi
h regions are important. Thirdly, the system presented is fully automati
:no manual alignment su
h as in the system of Golomb et al. is required. Fourthly,the training e�ort is minimal: only few training samples are required to determine therelative weights of the nodes. PCA and ba
k-propagation are known to be expensivein terms of training. The main drawba
k of the system presented is that it is slow inrespe
t to pro
essing time. The Gabor transformation and the Elasti
 Graph Mat
hingrequire about one minute on a Sun SPARCstation 10{512 with a 50 MHz pro
essor. Asa se
ond disadvantage one may 
onsider that the system presented does not reveal whatis 
hara
teristi
 for a 
ertain attribute (though the node weights indi
ate whi
h nodesare signi�
ant). Brunelli & Poggio for example 
ould illustrate that their system
onsiders a fa
e as male if it has thi
k eyebrows, a short and wide nose, a long distan
e71



between mouth and nose, et
. O'Toole et al. found in their system that the se
ondeigenve
tor explains most of the varian
e for gender determination. Image eigenve
-tors 
an be dire
tly visualized. Su
h information is not easily available in the systempresented here.6.4.2 Future Perspe
tivesSo far the attribute labels of the GFK-models are binary and de�ned by hand. A malefa
e 
an therefore be mis
lassi�ed be
ause it looks a
tually female or be
ause there isa similar female fa
e in the GFK that is very male in appearan
e. The attribute labelsshould vary 
ontiuously from one extreme, e.g. male, to the other, female. Taking thisinto a

ount might improve the determination performan
e. It might also be possible tolet the GFK �nd reasonable attribute 
lasses autonomously.Another dire
tion of investigation would be to apply the system to other fa
ial at-tributes and to use the results for fa
e re
ognition purposes. The set of possible 
an-didates in the model gallery redu
es signi�
antly if several attributes, su
h as gender,age, and ethni
 group are determined in advan
e. Another idea 
ould be to use thephantom fa
e representation for manipulations su
h as rotation in depth, or generatinga di�erent fa
ial expression. Assume a GFK of neutral frontal views and a GFK of thesame persons in a di�erent pose are given. A single neutral frontal view of a probe fa
e
ould be presented to the system, and a phantom fa
e 
ould be generated. Sin
e forall models in the GFK a rotated version is present, it should be possible to generate arotated phantom fa
e. The question is whether the rotated phantom fa
e would looksimilar to the rotated original or not. Preliminary experiments showed no signi�
antsimilarity and further investigation is ne
essary.It would also be interesting to apply the system to another 
lass of obje
ts su
has domesti
 mammals, distinguishing between dogs, 
ats, sheep, and horses of di�erentra
es. The task then is to abstra
t from several horses of di�erent ra
e what is typi
alfor horses and to abstra
t from several dogs of di�erent ra
e what is typi
al of dogs.This would again be done by generating general knowledge about domesti
 mammals,all having a 
ommon graph stru
ture. By �nding the lo
al experts for ea
h node, thetype of animal 
ould be determined. Animals are a
tually a good example, sin
e theyshow a 
omplex hierar
hy. It would be interesting to build an animal 
lassi�
ation andre
ognition system based on the system presented here. An animal would be 
lassi�eda

ording to its phenotype. For example starting from distinguishing between birds andmammals, then di�erentiating between more similar spe
ies su
h as dogs and horses,then 
lassifying a

ording to the spe
i�
 ra
e, e.g. poodle versus German shepherd, and�nally re
ognizing the individual animal, if possible.
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Chapter 7Re
ognizing Obje
ts inCluttered S
enesAbstra
t: The system presented below uses Elasti
 Graph Mat
hing (EGM) to mat
h storedmodels into a s
ene of obje
ts partially o

luding ea
h other. The similarities of the nodes withthe image are evaluated in order to de
ide whi
h regions are o

luded and whi
h are visible.If all obje
ts in the s
ene are known, the system 
an pro
ess the s
ene from front to ba
k. It
an then take advantage of the fa
t that the o

luding obje
ts are already re
ognized and thattheir 
ontours are known.7.1 Introdu
tionThe systems presented in the previous three 
hapters all perform fa
e re
ognition, atask spe
i�
 in the sense that fa
es form a 
lass of similar obje
ts, and the GeneralFa
e Knowledge a

ounts expli
itly for that. In this 
hapter I am going to present are
ognition system for obje
ts of very di�erent 
hara
ter and shape1. Toy obje
ts arearranged into s
enes and may o

lude ea
h other signi�
antly. They are representedby labeled graphs, and Elasti
 Graph Mat
hing (EGM) serves to �nd the obje
ts inthe s
ene. The diÆ
ulty is to de
ide whi
h obje
ts are a
tually present in the s
eneand to determine their order in depth. For this task the graph stru
ture is espe
iallyadvantageous, sin
e it allows referen
e to overlap regions in the image and makes expli
itthat some parts are o

luded while others are not.Two di�erent algorithms will be presented. The �rst is appropriate for sear
hing aknown obje
t in a s
ene with other obje
ts whi
h are unknown. The algorithm de
ideswhether the obje
t is present, where it is, and whi
h parts are visible and whi
h areo

luded. The se
ond algorithm requires that all obje
ts in the s
ene are known to thesystem. The algorithm then analyzes the s
ene from front to ba
k, taking advantageof the fa
t that the obje
ts in the front are 
ompletely visible and that for the obje
tsbehind them it is already known whi
h regions are o

luded. This algorithm de
ideswhi
h obje
ts are present in the s
ene, where they are, and in whi
h order in depth theyare arranged. It also provides information as to whi
h regions of the models are o

ludedand whi
h are visible.1This 
hapter is in part a modi�ed reprint of (Wiskott & von der Malsburg 1993) 

WorldS
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7.2 The System7.2.1 Data Stru
turesThe total system is 
omposed of an image domain I and a model domainM. Obje
ts arerepresented by labeled graphs having a square grid stru
ture with an outline dependenton the 
ontour of the obje
ts (see Figure 7.2). Nodes are labeled with jets J as lo
alfeatures (see Appendix A). Edges whi
h 
onne
t neighboring nodes are labeled with thedi�eren
e ve
tors between the respe
tive node positions ~xn in the image measured inpixel units. The graphs are rigid, i.e. in this system I do not allow for distortions of thegraphs. The similarity between the jets is de�ned as in Equation A.6 with the di�eren
ethat the similarity is taken to the power of four to emphasize nodes with high similarity(this to be motivated later):S(J (~xn);J 0(~xn)) = S4a(J (~xn);J 0(~xn)) : (7.1)To spe
ify the state of the s
ene analysis system 
ompletely, it is ne
essary in additionto represent whi
h regions of the image have been re
ognized by whi
h model graphs,and what the o

lusion relations between the obje
ts are. I des
ribe the relation of themodel domain to the image domain with the help of a few binary variables that de
ideon the re
ognition status of a model and the visibility or o

lusion of its individual nodes,plus a single position ve
tor for the pla
ement of the model graph in the image. Thesevariables will be introdu
ed in the next se
tion.7.2.2 Model Graph FormationFor the formation of a model graph, a simple segmentation pro
edure is applied. Threeimages are taken, ea
h with the obje
t in identi
al position on a di�erent ba
kground.In two of the images, the ba
kground is formed by a horizontal or verti
al latti
e ofbla
k and white stripes approximately 3.5 pixels wide. The third image has a whiteba
kground. A square latti
e of points with a spa
ing of 7 (or, for some deli
ate ob-je
ts, 5) pixels is sele
ted in the image. For ea
h of the sele
ted latti
e points ~xn thesimilarity S(J h(~xn);J v(~xn)) between jets taken from the images with horizontal andverti
al stripes, respe
tively, is 
omputed. These similarity values are high within thearea 
overed by the obje
t and low over the ba
kground. (Similarities for nodes insidean obje
t but near its border are lower to the extent that their wavelets rea
h over intothe ba
kground.) Now all latti
e points are sele
ted for whi
h this similarity is abovea threshold (whi
h I 
hose in the range 0:124{0:334, depending on the obje
t. A moresound treatment of o

luding boundaries will have to supplant this ad ho
 treatmentlater). The pro
edure may produ
e several mutually dis
onne
ted graphs, the largestof whi
h is sele
ted. (Two graphs are 
onne
ted if their minimal distan
e is one latti
espa
ing.) For the graph thus obtained, latti
e points are labeled with the jets taken fromthe third image, whi
h has been taken with a blank ba
kground. The resulting graphis stored as a model graph in memory. This graph formation pro
ess has the advantageof positioning the nodes automati
ally in those regions of the obje
t whi
h are leastsensitive to ba
kground variations. For example, the pro
ess avoids pla
ing nodes inopenwork regions of an obje
t. I also su

essfully experimented with other ba
kgroundtextures, not only horizontal and verti
al stripes.74



7.2.3 Mat
hing a Model into a S
eneWhen mat
hing a model graph against the image of a s
ene, a repli
a of its set of nodepositions f~xMn g is pla
ed in the image, 
reating the set of points f~xIng, where ~xIn = ~xMn +~xswith an o�set ve
tor ~xs 
ommon to all nodes. The graph formed by the set of pointsf~xIng is 
alled the image graph. The model graph is 
ompared to the image graph witho�set ~xs in terms of the similarity fun
tionSG(GI ;GM) = 1NV Xn2V S(J In ;JMn ); (7.2)where J In is the image jet taken at position ~xIn, V is the set of visible nodes (visibilitybeing de�ned below), and NV is their number. Now the mat
hing similarity (7.2) ismaximized by varying ~xs. First, the o�set is taken through all points on a square gridwith a spa
ing of �ve pixels for whi
h the repli
a of the model graph lies entirely withinthe image. Around the latti
e point with maximal similarity a better maximum is thenfound for a �ner latti
e with spa
ing 1. The resulting image graph is taken as the
andidate mat
h. In distin
tion to the mat
hing s
hedule des
ribed in Chapter 5, hereI do not 
onsider distortions of the image graph with respe
t to the model graph, and Iuse no phase information for the mat
hing.When an obje
t is o

luded to a large extent, the total similarity of its mat
h isdegraded by the many nodes that 
ome to fall on the image of other obje
ts and that
orrespondingly have only average similarity values. It is de
isive that this 
orre
t mat
h
annot be outdone by a false mat
h in some region of the image pi
ked su
h that manynodes have above-average similarity. In order to favor the 
orre
t mat
h, I give its
orre
tly mat
hing nodes an advantage over the only averagely �tting nodes by raisingthe inner produ
t in Equation A.6 to the fourth power. (In the experiments, evaluationof 
orre
tly analyzed s
enes shows that 
orre
tly mat
hed nodes have a mean similarityvalue of S
 = 0:64, whereas with graphs mat
hed to s
enes not 
ontaining the obje
tnodes have a mean similarity of Sw = 0:35. Random pairs of jets have a mean similarityof Sr = 0:32.)7.2.4 S
ene Analysis, Algorithm OneIn this �rst simple s
ene analysis algorithm, ea
h model graph is mat
hed separatelyto the image to de
ide if and where it �ts and to what extent it is o

luded. Thealgorithm has the advantage that there is no need for all obje
ts in the s
ene to beknown to the system. The algorithm examines all graphs in the model domain. First,a graph is mat
hed to the image. Then all nodes under a threshold of 0:52 for S aremarked as o

luded. (This parameter 
ould be obtained automati
ally by 
olle
ting asimilarity histogram for a large set of model jets and image jets. In my experien
e thishistogram tends to be bimodal, and the threshold 
an be set near the minimum betweenthe modes.) Sin
e I assume that o

lusion o

urs for 
oherent regions, the algorithmpro
eeds to revise the o

lusion de
ision for ea
h node a

ording to its neighborhoodin the graph. For o

luded nodes whi
h have a majority of visible neighbors withinthe model graph, the de
ision is reversed, and similarly for visible nodes whi
h havea majority of o

luded neighbors. In this way all nodes are visited repeatedly, in the75



arbitrary sequen
e inherent in the graph administration system, until no further 
hangeso

ur.The visible region of the model's image graph is then the set of all pixels that liewithin squares of size d 
entered around visible nodes of the graph (d being the spa
ingof nodes in the model's graph, 7, or sometimes 5, pixels). If it has an average nodesimilarity better than 0:61 and an area of at least 1300 pixels, the model is a

epted forthe s
ene. (Although not the point of this algorithm, it is 
onvenient for display purposesto order the a

epted models in depth a

ording their mutual o

lusion indi
es, whi
hare 
omputed as explained in the next se
tion.)7.2.5 S
ene Analysis, Algorithm TwoFor this algorithm to work, there must be models for all obje
ts in the s
ene. Posing su
ha 
onstraint has the advantage that the relative o

lusion relations 
an be determinedand used for a more reliable analysis of the s
ene. For two graphs A and B, this relationwill be 
hara
terized by the o

lusion index QAB. When it is 
omputed, the system mayalready have de
ided that third obje
t(s) are o

luding parts of A or B so that only partof their graphs are visible in the image. Let me de�ne a similarity fun
tion SA(~x) for amodel A for all pixels of the image after the model has been mat
hed. For ea
h pixel ~xof the image it gives the similarity value of the nearest node, and zero outside the visibleregion of the graph. Further, let R be the region of overlap between the visible parts ofA and another model B. Then the o

lusion index of A with respe
t to B is de�ned asQAB = X~x2RSA(~x)� SB(~x): (7.3)For this we have the relations QAB = �QBA, QAA = 0, and for graphs A and B withoutoverlap we have QAB = 0. If QAB > 0, A is o

luding B, and if QAB � 0, A is said notto be o

luded by B.To start s
ene analysis, all stored models are �rst mat
hed to the image. Ea
h modelwill yield a \mat
h", that is, the graph pla
ement fully inside the image with maximalgraph similarity (see Equation 7.2). These graph pla
ements will not be 
hanged duringall of the following steps. The e�e
t of the following iterative pro
ess will result in thegraduation of some of the models in two steps, �rst to the status of 
andidate, then tothe status of being a

epted. The pro
ess has the following steps:Step 1 Turn those models into 
andidates (i) for whi
h the average node similarity isbetter than 0:45, (ii) for whi
h the visible region is bigger than 1300 pixels and(iii) whi
h haven't yet been a

epted.Step 2 Stop if there are no 
andidates.Step 3 A

ept one of the 
andidates: First, determine the mutual o

lusion indi
es forall pairs of 
andidates. Then sele
t the \uno

luded" 
andidate(s), that is, thosefor whi
h all o

lusion indi
es are non-negative. If there are several, sele
t theone with highest graph similarity (see Equation 7.2). If there is no 
andidate forwhi
h all o

lusion indi
es are non-negative, pi
k the one that is least o

luded,that is, for whi
h the smallest o

lusion index is largest.76



Step 4 Insert the model just a

epted in the depth sequen
e of all a

epted models. Forthis, the new model has to work its way from the ba
k of the list forward. Themodel is advan
ed one step if its o

lusion index relative to the model in frontof it is non-negative. (This 
omparison is based on the overlap of all of the newmodel with the visible part of the model in front of it.) Advan
ement stops assoon as the new model hits one with whi
h it has a negative o

lusion index.Step 5 Now the o

lusion status of the nodes is updated. Those in the newly a

eptedgraph are o

luded by the territory of the models in front of it. The nodes of themodel graphs now put behind are o

luded by the new one. Also, the territory ofthe newly a

epted graph is de
lared invisible for all as yet un
ommitted modelgraphs, whose visible areas and graph similarity values are modi�ed 
orrespond-ingly (see Equation 7.2). After that, pro
eed with Step 1.7.3 Experiments7.3.1 DatabaseThe pi
tures of the s
enes are of size 128� 128 pixels and have 256 distinguishable graylevels. They are derived from 512 � 512 pixel frames taken with a CCD 
amera bylow-pass �ltering and subsampling. I took pi
tures of 30 s
enes 
omposed of 3{6 obje
tsea
h. S
enes were taken at approximately 200 
m of distan
e, at whi
h pi
tures are 42
m wide. Distan
es to individual obje
ts vary up to 10 
m, 
ausing size varian
e of upto 5% relative to the images used for model graph formation. Individual obje
ts weremostly presented in approximately the same orientation and perspe
tive, although I alsodid individual experiments with slightly rotated obje
ts (see Figure 7.2.b). To avoidvisible shadows, I sometimes illuminated s
enes with two light sour
es (although duringmodel graph formation there had been only one light sour
e). This fa
t is relevant forthe issue of robustness to illumination. I made sure the obje
ts were visible to a 
ertainminimal extent, 1300 pixels, 
orresponding to an area of approximately 140 
m2.I 
reated a gallery of 13 toy obje
ts of whi
h all s
enes are 
omposed. The obje
tsare: basket, bear, book, box, 
andleman, 
andlewoman, 
lo
k, elephant, glass-of-marbles,nut
ra
ker, rattle, windmill, and zebra. This gallery represents a 
ertain sele
tion. Ihave ex
luded obje
ts that are too small, that have too little inner stru
ture (althoughI in
luded basket, rattle, and glass-of-marbles in spite of their poor inner stru
ture), andthat are not 
ompa
t (although I in
luded 
lo
k with its two holes and zebra with itsthin legs). The problem with small obje
ts was that with a resolution of 128 � 128pixels the 
orresponding model graphs 
ontain too little information and yield goodgraph similarity in wrong pla
es. This is similarly the 
ase with obje
ts that are toohomogeneous. For obje
ts with openwork stru
ture (e.g. letter s
ales that we tried) theextended re
eptive �elds 
aused problems, being too sensitive to the ba
kground.7.3.2 ResultsTwo of the s
enes used in the experiments are shown in Figure 7.1. Figure 7.3 showsanalyses obtained with Algorithm 1, and Figure 7.4 with Algorithm 2.77



a) b)

Figure 7.1: Two of the 30 s
ene images. a) 
ontains zebra, basket, elephant, 
andleman,and nut
ra
ker, b) 
ontains windmill, book, and nut
ra
ker. There are altogether 13models in the gallery, and 121 obje
ts in the s
enes, ea
h s
ene 
ontaining between threeand six obje
ts. The resolution of the images is 1282 pixels with 256 grey levels.a) b)

Figure 7.2: Pi
ture of the image graphs for basket and nut
ra
ker as mat
hed inS
ene 7.1.a. Bla
k and white frames denote visible and o

luded nodes, respe
tively.The state of visibility was determined by Algorithm 2. Center pixels of nodes 
ode forsimilarity of the model jets to 
orresponding image jets, from white (low similarity) tobla
k (high similarity). b) One example of a s
ene with rotated obje
ts (� 20Æ) notin
luded in the statisti
al investigation (for analysis see Figures 7.3.
 and 7.4.
.)78
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Figure 7.3: Analyses of the s
enes in Figures 7.1.a, b, and 7.2.b respe
tively, by Al-gorithm 1. Visible regions of the mat
hed model graphs are shown, from front (bla
k)to ba
k (light). a) The algorithm re
ognized zebra, basket, 
andleman and elephant inS
ene 7.1.a, but it missed the nut
ra
ker, not �nding the lower part under the zebraand dis
arding the identi�ed head region as too small in area. For the zebra, large partsare interpreted as o

luded, be
ause of perturbation of inner jets by overlap with theba
kground. b) S
ene 7.1.b is analyzed 
orre
tly. Altogether 80% of the 121 obje
tswere re
ognized 
orre
tly while 2 models were a

epted erroneously by this algorithm.
) shows the analysis of S
ene 7.2.b. All obje
ts are re
ognized 
orre
tly, but againlarge parts are interpreted as o

luded. Although I did not investigate the robustness ofthe system against rotation in depth systemati
ally, several examples su
h as this onesuggest that this algorithm might be robust up to approximately 10Æ.Algorithm 1 gave the following performan
e. From a total of 121 obje
ts, 24 were notre
ognized 
orre
tly, leaving 80% re
ognized 
orre
tly. Only 2 obje
ts were erroneouslya

epted. Some de
isions regarding o

lusion were unsatisfa
tory, (see, for instan
e, the
andleman in Figure 7.3.a), whi
h is not surprising sin
e no intera
tions between obje
tswere taken into a

ount (and the point of Algorithm 1 was re
ognition only, anyway).Algorithm 2 produ
ed 21 
ompletely 
orre
t analyses from among the full set of 30s
enes. For 3 s
enes it made errors regarding the o

lusion order, always for pairs ofweakly overlapping obje
ts. In the remaining 6 s
enes, 3 models were a

epted althoughthe 
orresponding obje
t was not present, and 4 obje
ts whi
h were present were notre
ognized. Among the latter, 2 were mat
hed at the wrong position and 2 obje
ts weremat
hed 
orre
tly but were reje
ted on the basis of too poor a graph similarity value.In all, 96.7% of the obje
ts are re
ognized 
orre
tly and with 
on�den
e.Some of the errors 
ommitted by the system are instru
tive. In the total set ofexperiments, there were only 2 
ases in whi
h the best mat
h for a model graph in thes
ene was found in the wrong pla
e. One 
ase 
on
erned the glass-of-marbles, whi
h haslittle internal stru
ture and is partially transparent. In the other 
ase, 
andlewoman wasmat
hed to the fairly similar 
andleman while the proper obje
t was heavily o

luded.To deal with this type of error, one 
ould produ
e several mat
hes for ea
h model. Thesystem would then have to manage more mat
hes, but it would be more likely to �nd
orre
t mat
hes (and would be equipped to mat
h multiple instan
es of the same obje
ttype). 79



zebra

basket

elephant
candleman

nutcracker

bookmill box

nutcracker

bearmill

nutcracker

a) b) 
)

Figure 7.4: Analyses of the s
enes in Figures 7.1.a, b and 7.2.b by Algorithm 2. a) InS
ene 7.1.a, all obje
ts and their o

lusion relations have been re
ognized 
orre
tly. b)In S
ene 7.1.b, a box (rightmost model) was erroneously re
ognized. Besides, the bookmistakenly was put in front of the windmill. Altogether, 96.7% of the 121 obje
ts werere
ognized 
orre
tly, and 3 models were a

epted erroneously by this algorithm. 
) Thethird example, S
ene 7.2.b, was also re
ognized 
orre
tly. Algorithm 2 seems to be morerobust against rotation in depth than the �rst. Up to approximately 15Æ might be oflittle e�e
t. Both algorithms 
ould be improved in this respe
t if graph distortions werepermitted (see Chapter 5).7.4 Dis
ussionThe system presented here is a very natural extension of the EGM system des
ribed in(Lades et al., 1993) to the re
ognition of partially o

luded obje
ts and the analysis ofs
enes. The labeled graph as the fundamental data stru
ture proved to be appropriatefor visual obje
t representation in the presen
e of signi�
ant o

lusions. Only the statusvariable indi
ating whether a node is visible or not had to be added. It was 
ru
ialfor the su

ess of the system that graphs provide information about the lo
ation andneighborhood relations of the nodes and the atta
hed lo
al features. This was essentialfor ba
k-labeling the s
ene with re
ognition information and with o

lusion relations.This appli
ation to s
enes also reveals a weakness of the lo
al feature representationbased on Gabor wavelets. The Gabor wavelets of lower frequen
y have a non-negligibleextension 
ompared to the distan
e of the nodes and the extension of the obje
ts. Thisbe
omes evident for the zebra, for whi
h the legs were 
onsidered to be o

luded byAlgorithm 1, be
ause their similarity was too mu
h degraded by the ba
kground (seeFigure 7.3). A solution to this problem would be to in
rease the resolution of the imagesand to emphasize more the high frequen
y kernels. A more fundamental solution wasdemonstrated by P�otzs
h (1994), who showed that the in
uen
e of ba
kground to ajet 
an be suppressed by a linear transformation imitating the operation of 
utting theimage information into two half planes and keeping only one. A se
ond disadvantageof the Gabor wavelet prepro
essing is that it depends on internal texture. This system
annot deal with stru
tureless obje
ts whi
h are mainly de�ned by their 
ontour. Forsu
h obje
ts an edge-based representation would be more appropriate.The proje
t presented here was undertaken as a pilot study to investigate the prob-lems involved in analyzing 
luttered s
enes. The system still has to be reformulated ina fully neural system, based on Dynami
 Link Mat
hing.80



Chapter 8Con
lusionOne of the intentions of this work was to show that the labeled graph is a powerfuland 
exible data format providing the synta
ti
al stru
ture missing in the ve
tor formattypi
ally used in 
onventional neural net appli
ations. The synta
ti
al links betweenelementary features play a 
ru
ial role in the appli
ations presented on several levels.They were either made expli
it or they were impli
it in the 
hosen data formats, butwould have to be realized expli
itly in a mature system.Firstly, the individual 
oeÆ
ients of the jet representation are impli
itly bundled bylinks to generate a des
ription of a lo
al pat
h of grey values. Se
ondly, nodes labeledwith jets were linked together by edges in order to build a graph representing individualobje
ts. Thirdly, the graphs 
an be mat
hed to an image by dynami
ally establishing
onne
tions from the nodes of the graph to a subset of nodes in the image. (These threeaspe
ts of synta
ti
al linking have already been used in previous systems (Buhmannet al., 1989; Lades et al., 1993). The following types of synta
ti
al stru
tures are newlyintrodu
ed in this work.) In the fourth pla
e, sets of jets were atta
hed to nodes andserve as a 
olle
tion of alternatives if the appearan
e of a 
ertain obje
t part, e.g. aneye, varies signi�
antly. In the �fth pla
e, 
ontext information about di�erent propertiesof the obje
ts was in
orporated and expressed by atta
hed attributes (male, bearded,et
.). And �nally, model graphs that were mat
hed to a s
ene 
ompeted with ea
h otherthrough inhibition between overlapping nodes.This is only a relatively small number of examples of how synta
ti
al links may beused for per
eptual tasks, and one major goal for future resear
h will be to investigateother possibilities of useful synta
ti
ally linked stru
tures, some of whi
h have alreadybeen mentioned in Chapter 2.A se
ond purpose of this work was to demonstrate that labeled graphs 
an a
tually bepro
essed in a neural ar
hite
ture and that serious re
ognition tasks 
an be performedon this basis. For the �rst time a 
omplete DLM fa
e re
ognition system has beendeveloped, able to re
ognize fa
es against a gallery of more than one hundred modelfa
es. Nevertheless DLM is relatively slow and 
umbersome 
ompared to the algorithmi
version, the EGM. Several features of the algorithmi
 models have yet to be implementedin a fully neural system, espe
ially the re
ognition of o

luded obje
ts in 
luttered s
enes.All systems presented here, the one based on DLM as well as those based on EGM,have various short
omings. Firstly, they are extreme in the sense that they build obje
trepresentations dire
tly from low-level features. It is ne
essary to introdu
e some mid-level features that 
an mediate between models and image information. Se
ondly, no low-81



level segmentation 
ues are used to improve speed and reliability of obje
t re
ognition. Sofar the obje
ts have either been presented in front of a homogeneous ba
kground, or thesegmentation was only guided top-down by obje
t knowledge. Thirdly, the generationof graph representations is very arti�
ial. Model graphs are either de�ned by hand, or avery primitive segmentation pro
edure is used to determine the 
ontour of a new obje
t.Finally, more 
ontrol stru
ture is required to enable the system to build a knowledgedatabase autonomously without user intera
tion.Con
eptionally, it will be ne
essary to develop further the ideas sket
hed in Chapter 2.The goal is to de�ne a small set of fundamental operations on graphs that suÆ
e to let
omplex stru
tures emerge in an autonomous system able to learn from sensory input,to organize knowledge about its environment, and �nally to generate useful a
tion interms of a given goal.
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Appendix APrepro
essing with Gabor WaveletsAbstra
t: Gabor wavelets have the shape of plane waves restri
ted by a Gaussian envelopefun
tion. Convolving an image with a whole family of Gabor wavelets of di�erent size andorientation provides a set of 
omplex 
oeÆ
ients at ea
h pixel. This set is 
alled a jet J andrepresents a lo
al pat
h of grey values. Due to the wave 
hara
ter of the kernels, the 
oeÆ
ientshave a phase � varying with the 
hara
teristi
 frequen
y of the kernel and a slowly 
hangingmagnitude a. Jets 
an be 
ompared by similarity fun
tions S� and Sa. If phase informationis taken into a

ount (S�), the spatial distan
e or disparity ~d between two jets taken fromapproximately the same obje
t lo
ation 
an be estimated.A.1 Gabor Wavelet TransformationA jet is a spe
ial type of lo
al feature des
ribing a small pat
h of grey values in an imageI(~x) around a given pixel ~x = (x; y). It is based on a wavelet transform, de�ned as a
onvolution Jj(~x) = Z I(~x0) j(~x� ~x0)d2~x0 (A.1)with a family of Gabor kernels j(~x) = k2j�2 exp �k2jx22�2 !"exp(i~kj~x)� exp ��22 !# ; (A.2)having the shape of plane waves with wave ve
tor ~kj restri
ted by a Gaussian envelopefun
tion. I employ a dis
rete set of 5 di�erent frequen
ies, index � = 0; :::; 4, and 8orientations, index � = 0; :::; 7,~kj =  kjxkjy! =  k� 
os'�k� sin'�!; k� = 2� �+22 �; '� = ��8 ; (A.3)with index j = � + 8�. By this sampling the frequen
y spa
e is evenly 
overed withina reasonable band-pass. The Gauss width is �=k with � = 2�, and the kernels are DC-free, i.e. the integral R  j(~x)d2~x vanishes. Sin
e this is a wavelet transform, the familyof kernels is selfsimilar in the sense that all kernels 
an be generated from one motherwavelet by dilation and rotation.A jet J is de�ned as the set fJjg of 40 
omplex 
oeÆ
ientsJj = aj exp(i�j) (A.4)83



Gabor wavelets jet

original image

convolution result

magnitudeimaginary part

Figure A.1: The visual prepro
essing is based on the Gabor wavelet transform. Thewavelets have the shape of plane waves (5 di�erent frequen
ies � 8 di�erent orientations)restri
ted by a Gaussian envelope fun
tion. A 
onvolution yields 40 
omplex 
oeÆ
ientsreferred to as a jet. The phase of the 
oeÆ
ients varies with the main frequen
y (seeimaginary part) and their magnitude varies slowly.with amplitudes aj(~x) slowly varying with position and phases �j(~x) varying with thespatial frequen
y given by the 
hara
teristi
 wave ve
tor ~kj (see Figure A.1).Gabor wavelets were 
hosen for their te
hni
al properties and biologi
al relevan
e.Sin
e they are DC-free, they provide robustness against varying brightness in the image.Robustness against varying 
ontrast 
an be obtained by normalizing the jets. The lim-ited lo
alization in spa
e and frequen
y yields a 
ertain amount of robustness againsttranslation, distortion, rotation, and s
aling. Only the phase 
hanges drasti
ally withtranslation, but that 
an be used for estimating displa
ement, as will be shown later.A disadvantage of the large kernels is their sensitivity to ba
kground variations. Butas was shown by P�otzs
h (1994), if the obje
t 
ontour is known, the in
uen
e of theba
kground 
an be suppressed. Finally, the Gabor wavelets are 
losely related to there
eptive �elds of simple 
ells in the vertebrate visual 
ortex (Pollen & Ronner, 1981;Jones & Palmer, 1987; DeValois & DeValois, 1988).A.2 Salien
ySalien
y indi
ates whether an image lo
ation is 
onsidered to be interesting solely onthe basis of low level information (see for example Manjunath et al., 1992). I use thenorm of the jet as a simple salien
y measure:N (J ) = sXj a2j ; (A.5)i.e. a jet is salient if it represents ri
h textural stru
ture of high 
ontrast. This salien
yis used in Chapter 4 to initialize the attention layer.84



A.3 Comparing JetsThe qui
k phase variations 
ause problems. Jets taken from an image few pixels apartfrom ea
h other have very di�erent 
oeÆ
ients, although they represent almost the samelo
al feature. I therefore either ignore the phase or 
ompensate for its variations ex-pli
itely. The �rst leads to the jet similarity fun
tionSa(J ;J 0) = Pj aja0jrPj a2j Pj a02j (A.6)already used by Buhmann et al. (1992) and Lades et al. (1993). With J a �xed jet, andJ 0 = J 0(~x) the jets at positions ~x in an image, Sa(J ;J 0(~x)) is a smooth fun
tion, andits lo
al optima have large attra
tor basins suitable for very simple methods to sear
hfor them (see Figure A.2). Typi
ally gradient des
ent or di�usion pro
esses 
onvergerapidly and reliably.Using phase information has two potential advantages. Firstly, phase information
an help to dis
riminate between patterns with similar amplitudes, and se
ondly, sin
ephase varies so qui
kly with lo
ation, it provides a means to lo
ate jets in an imagepre
isely. In the following I assume that the two jets J and J 0 refer to similar obje
tlo
ations with a small relative displa
ement ~d. The phase shifts 
an then approximatelybe 
ompensated for by the term ~d~kj, and the similarity 
an be de�ned asS�(J ;J 0) = Pj aja0j 
os(�j � �0j � ~d~kj)rPj a2j Pj a02j : (A.7)Before 
omputing the similarity, the displa
ement ~d has to be estimated. This 
an bedone by maximizing S� in its Taylor expansion, as will be explained in the followingse
tion. The great advantage of this se
ond similarity fun
tion is a
tually that it yieldsthis displa
ement information. Pro�les of similarities and estimated displa
ements areshown in Figure A.2.A.4 Disparity EstimationIn order to estimate the displa
ement ve
tor ~d = (dx; dy), I have adopted a method usedfor disparity estimation (Theimer & Mallot, 1994) based on (Fleet & Jepson,1990). The idea is to maximize the similarity S� in its Taylor expansion:S�(J ;J 0) � Pj aja0j[1� 0:5(�j � �0j � ~d~kj)2℄rPj a2j Pj a02j : (A.8)Setting ��dxS� = ��dyS� = 0 then leads toXj aja0jkjx(�j � �0j)| {z }�x = dxXj aja0jkjxkjx| {z }�xx +dyXj aja0jkjxkjy| {z }�xy ; (A.9)85
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(focus=5)Figure A.2: a) Similarity Sa(J (~x1);J 0(~x0)) with jet J 0 taken from the left eye of thefa
e shown in Figure A.1, and jet J taken from pixel positions of the same horizontalline, ~x1 = ~x0 + (dx; 0); dx = �50; :::; 50. The similarity potential is smooth and has alarge attra
tor basin. b) Similarity S�(J (~x1);J 0(~x0)) and 
) estimated displa
ement~d(J (~x1);J 0(~x0)) for the same jets as in a). The fo
us varies from 1 to 5. The similaritypotentials have many more lo
al optima, espe
ially for a high fo
us value. The righteye is 24 pixels away from the left eye, generating a lo
al maximum for both similarityfun
tions 
lose to dx = �24. The estimated displa
ement is very pre
ise around the0-position and rougher at other lo
al optima, espe
ially at the other eye. The maximumdispla
ements are half the wavelength of the highest frequen
y kernel taken into a

ountfor the �rst displa
ement estimation (about 8, 4, and 2 pixels for fo
us values 1, 3, and5 respe
tively). 86



Xj aja0jkjy(�j � �0j)| {z }�y = dxXj aja0jkjykjx| {z }�yx=�xy +dyXj aja0jkjykjy| {z }�yy ; (A.10)whi
h 
an be solved for ~d if the determinant �xx�yy � �xy�yx does not vanish:~d(J ;J 0) =  dxdy ! = 1�xx�yy � �xy�yx  �yy ��yx��xy �xx ! �x�y ! : (A.11)This equation yields a straightforward method for estimating the displa
ement ordisparity between two jets taken from obje
t lo
ations 
lose enough that their Gaborkernels are highly overlapping. Without further modi�
ations, this equation 
an deter-mine displa
ements up to half the wavelength of the highest frequen
y kernel, whi
hwould be two pixels for kmax = �=2. The range 
an be in
reased by using low frequen
ykernels only. For the largest kernels the estimated displa
ement may be 8 pixels. One
an then pro
eed with the next higher frequen
y level and re�ne the result, possibly by
orre
ting the phases of the higher frequen
y 
oeÆ
ients by multiples of 2� a

ordingto the disparity estimated on the lower frequen
y. I have referred to the number of fre-quen
y levels used for the �rst displa
ement estimation as fo
us. A fo
us of 1 indi
atesthat only the lowest frequen
y level is used and that the estimated displa
ement may beup to 8 pixels. A fo
us of 5 indi
ates that all �ve levels are used, and the disparity mayonly be up to 2 pixels. If one has a

ess to the whole image of jets, one 
an also workiteratively. Assume a jet J is given for whi
h the a

urate position is needed in an imagearound a starting point ~x0. Comparing J with the jet J0 = J (~x0) gives an estimateddispla
ement of ~d0 = ~d(J ;J (~x0)). Then a jet J1 is taken from position ~x1 = ~x0+ ~d0 andthe displa
ement is estimated again. But sin
e the new lo
ation is 
loser to the 
orre
tposition, the new displa
ement ~d1 will be smaller and 
an be estimated more a

urately.This pro
edure will eventually 
onverge with a remaining subpixel displa
ement. Thisis the iterative s
heme that is used in the mat
hing pro
ess des
ribed in Chapter 5.
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Appendix B
Zusammenfassung indeuts
her Spra
he
B.1 EinleitungIn der Neuroinformatik dominiert die Vektorrepr�asentation zur Darstellung von Eingabe-daten. Ein Bild ist in te
hnis
hen Systemen zun�a
hst ein Feld von Pixeln, wobei jedesPixel eine Position und einen Grauwert hat. In der typis
hen Vektordarstellung werdendie Positionen nur als eindeutige Adressen verwendet, die repr�asentierten r�aumli
henBeziehungen gehen jedo
h verloren. Das hat fatale Konsequenzen, was in Abbildung 1.1an einem einfa
hen Beispiel demonstriert wird. Ber�u
ksi
htigt man Na
hbars
hafts-beziehungen, dann wird man die beiden re
hten Bilder als gegeneinander vers
hobeneKopien erkennen. Mit der Hamming-Distanz als einem vektoriellen Abstandsma� wirdman jedo
h zu dem Ergebnis kommen, da� die linken beiden Bilder einander �ahnli
hersind.Die Vektorrepr�asentation von Bilddaten in der Neuroinformatik ist ein konzep-tionelles Problem, das au
h dur
h geeignete Normierung der Eingabebilder oder dur
hModelle wie dem Neokognitron ni
ht befriedigend gel�ost wird. Die vorliegende Arbeitbes
h�aftigt si
h mit etikettierten Graphen als einem alternativen Konzept zur Objekt-repr�asentation, das explizit Relationen zwis
hen Elementen kodieren kann. So werdenBilder aus lokalen Merkmalen und deren r�aumli
hen Beziehungen zu Graphen zusam-mengefa�t.Neben den etikettierten Graphen werden die Prinzipien der dynamis
hen Graphenan-passung erl�autert. Dynamis
he Graphenanpassung ist ein von von der Malsburg ent-wi
keltes neuronales Konzept zum Verglei
hen und Anpassen von etikettierten Graphen.In vier Anwendungen wird die Leistungsf�ahigkeit dieser Konzepte demonstriert. Alle An-wendungen basieren auf einer visuellen Vorverarbeitung, die dur
h die Gabor Wavelet-Transformation bes
hrieben wird. 89



B.2 Etikettierte Graphen zur Objektrepr�asentationWahrnehmung erfordert zun�a
hst eine geeignete Repr�asentation der Reizmuster. Dabeigehe i
h davon aus, da� jeder Sinn im wesentli
hen in drei Unterr�aumen organisiert ist,und da� jeder Reiz als etikettierter Graph (labeled graph) repr�asentiert werden kann.Der erste der drei Unterr�aume ist der Sinnesraum (sensory spa
e), er ist die zweidimen-sionale Retina f�ur das visuelle System, die Co
hlea im auditoris
hen System, oder dieHautober
�a
he unseres Tastsinnes. Im Sinnesraum spielen Relationen oder relationaleMermale (relational features), wie z.B. Abst�ande, die wesentli
he Rolle. Mens
hen sindsehr genau in der Beurteilung ob drei Punkte auf einer Geraden liegen, ignorieren aberweitgehend den Ort des Musters auf der Retina. Die Relationen im Sinnesraum werdendur
h Kanten im Graphen dargestellt, z.B. etikettiert mit Abstandsinformationen. Derzweite Unterraum ist der Merkmalsraum (feature spa
e). Merkmale, oder besser lokaleMerkmale (lo
al features), sind im visuellen System z.B. Farbe, Textur oder Orientierungeiner Kante. Hier spielt die absolute Emp�ndung eine gr�o�ere Rolle als Relationen.Entspre
hend werden die Merkmale dur
h Knoten dargestellt, z.B. etikettiert mit Farb-oder Texturinformation. Der dritte Unterraum eines jeden Sinnes ist die Zeit (time). Siespielt in vers
hiedener Hinsi
ht eine besondere Rolle. Erw�ahnt werden soll hier nur, da�Zeit ein starker Hinweis auf Kausalit�at ist. Sie ist au�erdem allen Sinnen gemeinsamund vermutli
h der wesentli
he S
hl�ussel zur Integration der vers
hiedenen Sinne.Zur Bildung von etikettierten Graphen von Reizmustern m�ussen Knoten aus demBild ausgew�ahlt und dur
h Kanten zu Graphen verbunden werden. Im einfa
hsten Fallwerden die Knoten auf einem regelm�a�igen Gitter angeordnet. Der Abstand der Knotenh�angt dann nur von der Ausdehnung und Komplexit�at der verwendeten Merkmale ab.Aufwendiger, aber geeigneter, ist die Auswahl von sogenannten au�allenden Punkten(salient points), von denen man annimmt, da� sie wi
htige Information tragen. Es istjedo
h s
hwierig, diese Punkte allein auf der Basis von lokaler Bildinformation und ohneObjektwissen zu de�nieren. F�ur die Auswahl geeigneter Kanten zwis
hen den Knotendienen Gruppierungshinweise wie sie aus der Psy
hophysik bekannt sind. Hier ist vorallem das Prinzip der N�ahe (proximity) zu nennen. Das kann si
h auf alle drei Un-terr�aume beziehen: r�aumli
he N�ahe im Sinnesraum, �Ahnli
hkeit im Merkmalsraum undKoinzidenz in der Zeit (siehe Abbildung 2.2). In allen drei Unterr�aumen werden Knotenmit identis
hen Eigens
haften stark miteinander verbunden, und die Verbindung wirdmit zunehmendem Abstand s
hw�a
her. �Ubertr�agt man die induzierten Verbindungenau
h auf alle bena
hbarten Knoten, so entsteht ein stark verkn�upfter Graph des Reiz-musters, der als Basis f�ur alle weiteren S
hritte dient (siehe Abbildung 2.3).Sind Graphen von Reizmustern gebildet und abgespei
hert, so m�o
hte man alsn�a
hstes Graphen miteinander verglei
hen. Dabei werden zwei Graphen als �ahnli
hangenommen, wenn sie sowohl in ihren lokalen als au
h in ihren relationalen Merk-malen �ahnli
h sind. Den entspre
henden Proze� des Verglei
hens nennt man Graphenan-passung (graph mat
hing) (siehe Abbildung 2.4). Es ist au
h denkbar, da� Graphenim wesentli
hen aufgrund der gemeinsamen Struktur und unabh�angig von den lokalenMerkmalen miteinander vergli
hen werden k�onnen. Das w�urde au
h den Verglei
h vonGraphen unters
hiedli
hen Ursprungs erm�ogli
hen, z.B. aus dem visuellen und dem au-ditoris
hen System. Ein sol
her Proze� kann als Analogiebildung interpretiert werden90



(siehe Abbildung 2.5). Mit der Graphenanpassung lassen si
h au
h Teilgraphenverglei
hen und eine einfa
he Strukturierung der gespei
herten Graphen vornehmen.Stellt man fest, da� Teile einer Menge von Graphen identis
h sind, so bildet man einensog. Fusionsgraphen (fusion graph), in dem die gemeinsamen Teilgraphen nur einmalrepr�asentiert sind (siehe Abbildung 2.6). Der Fusionsgraph hat zum einen den Vorteil,da� er weniger Spei
herkapazit�at als die Einzelgraphen erfordert. Zum anderen hater Generalisierungsf�ahigkeiten, da die Teilst�u
ke nun au
h in anderen Kombinationenzusammengesetzt werden k�onnen. Damit gekoppelt ist das Problem, da� der Fusions-graph die urspr�ungli
hen Graphen ni
ht mehr eindeutig kodiert. Diese Eindeutigkeit l�a�tsi
h jedo
h dur
h Einf�uhrung von sogenannten Kardinalknoten (
ardinal 
ells) wiederherstellen. Ges
hieht dies in geeigneter Weise, k�onnen sowohl Generalisierungsf�ahigkeitals au
h die Eindeutigkeit der urspr�ungli
hen Graphen in kontrollierter Weise miteinan-der kombiniert werden (siehe Abbildung 2.7).In den in dieser Arbeit vorgestellten Anwendungen geht es um Gesi
htserkennung undSzenenanalyse. Beides erfordert spezielle Graphenstrukturen. In der Gesi
htserkennungist es vorteilhaft, die gemeinsame Struktur von Gesi
htern auszunutzen. Die Gesi
hts-graphen f�ur eine Ansi
ht (Frontalansi
ht, Halbpro�l oder Pro�l) werden entspre
hendalle die glei
he Struktur haben, z.B. einen Knoten auf dem re
hten Auge, einen Knotenauf der Nasenspitze, usw. Dies erm�ogli
ht es, die Gesi
htsgraphen stapelartig zu kom-binieren, wobei etwa alle re
hten Augenknoten miteinander verbunden werden, ebensoalle Nasenknoten, usw. Dieser Fusionsgraph repr�asentiert das gesamte Wissen des Sy-stems �uber Gesi
hter und wird entspre
hend allgemeines Gesi
htswissen (general fa
eknowledge) genannt. Es erm�ogli
ht au
h, neue Gesi
hter aus s
hon bekannten zusam-menzusetzen. Zur weiteren Analyse von Gesi
htern wird das allgemeine Gesi
htswissenmit Kontextinformation versehen. In der vorgestellten Anwendung bezieht si
h das aufdas Ges
hle
ht der Personen, ob sie b�artig sind und ob sie eine Brille tragen (siehe Ab-bildung 2.8 links). F�ur die Szenenanalyse sind die Objekte sehr unters
hiedli
her Naturund daher ni
ht in einem Fusionsgraphen kombinierbar. Jedo
h m�ussen die Graphen zurAnalyse einer Szene miteinander um Bild
�a
he konkurrieren, wenn man annimmt, da�an jedem Ort nur ein Objekt si
hbar sein kann. Dabei mu� ber�u
ksi
htigt werden, da�si
h die Objekte ni
ht gegenseitig dur
hdringen k�onnen. Das kann dur
h die Forderungeiner eindeutigen Tiefenreihenfolge errei
ht werden (siehe Abbildung 2.8 re
hts).B.3 Prinzipien der dynamis
hen GraphenanpassungNeuronale Netzwerke s
heinen zun�a
hst ungeeignet zu sein, etikettierte Graphen zu ver-arbeiten. Das liegt im wesentli
hen daran, da� konventionelle neuronale Netze Rela-tionen zwis
hen Neuronen nur dur
h deren synaptis
he Verbindungsst�arke ausdr�u
kenk�onnen, die zudem nur auf einer langsamen Zeitskala dur
h Lernen ver�anderli
h ist.von der Malsburg hat in der von ihm vorges
hlagenen Dynami
 Link Ar
hite
turedie konventionellen neuronalen Netze konzeptionell um die M�ogli
hkeit des dynamis
henBindens von Neuronen dur
h Korrelation ihrer Zeitsignale und um s
hnell und reversibels
haltende Synapsen erweitert. Beide Konzepte zusammen erm�ogli
hen die dynamis
heGraphenanpassung (dynami
 link mat
hing), ein Proze� zum aufeinander Abbilden undVerglei
hen von etikettierten Graphen. 91



Ein etikettierter Graph wird repr�asentiert dur
h eine S
hi
ht von Neuronen. Je-dem Neuron ist ein lokales Merkmal zugeordnet, und laterale Verbindungen induziereneine Metrik und somit Abst�ande zwis
hen den Neuronen. In der Graphenanpassungsollen zwei sol
he S
hi
hten entspre
hend der �Ahnli
hkeit ihrer repr�asentierten Musteraufeinander abgebildet werden. Zu Beginn sind beide S
hi
hten vollst�andig miteinan-der vers
haltet, bes
hrieben dur
h die Verbindungsmatrix. S
hlie�li
h soll jedo
h jedesNeuron der einen S
hi
ht mit nur einem Neuron der anderen S
hi
ht verbunden sein(siehe Abbildung 3.1). Die dynamis
he Graphenanpassung basiert auf folgenden vierPrinzipien (siehe Abbildungen 3.2 bis 3.5): Erstens, die lateralen Verbindungen einerS
hi
ht induzieren eine Dynamik, die Na
hbars
haften dur
h Korrelationen ausdr�u
kt,bena
hbarte Neurone haben korrelierte Zeitsignale, entfernte Neurone feuern unkorre-liert. Zweitens, sind zwei S
hi
hten mit einer Identit�atsabbildung verbunden, so werdensi
h die Aktivit�atsdynamiken beider S
hi
hten syn
hronisieren. Korrespondierende Neu-rone feuern korreliert. Drittens, die Syn
hronisation ist robust gegen Raus
hen, Verzer-rungen und Teilverde
kungen. Sie ist ohnehin invariant gegen Translation, Rotation, undSpiegelung. Diese St�orungen werden immer auftreten, wenn die S
hi
hten reale Bilderrepr�asentieren. Viertens, die Verbindungsstruktur kann si
h aufgrund der induziertenKorrelationen zu einer eins-zu-eins Abbildung (one-to-one mapping) entwi
keln. Dies istein We
hselwirkungsproze�, da die Korrelationen bei entwi
kelter Verbindungsstrukturihrerseits au
h verbessert werden (siehe Abbildung 3.6).Die dynamis
he Graphenanpassung ist einer von wenigen Ans�atze zur translationsin-varianten Objekterkennung in neuronaler Ar
hitektur. Trotz ihrer M�ogli
hkeiten, die imn�a
hsten Abs
hnitt kurz erl�autert wird, kann sie die Leistungsf�ahigkeit unseres visuellenSystems aus zwei Gr�unden ni
ht erkl�aren: Erstens, die dynamis
he Graphenanpassungist zu langsam. Die enorm kurzen Erkennungszeiten unseres visuellen Systems lassensi
h dur
h die relativ langsame Aktivit�ats- und Verbindungsdynamik ni
ht erkl�aren.Man kann jedo
h annehmen, da� die dynamis
he Graphenanpassung in einem fr�uhenEntwi
klungsstadium zur Objekterkennung verwendet wird, und da� si
h sp�ater eÆzien-tere Me
hanismen entwi
keln, die jedo
h ein hohes Ma� an visueller Erfahrung erfordern.Zweitens, die anf�angli
he vollst�andige Vers
haltung zwis
hen den S
hi
hten erfordert zuviele Verbindungen. Die L�osung dieses Problems liegt o�ensi
htli
h in der Einf�uhrungvon hierar
his
hen Strukturen, wie s
hon ansatzweise gezeigt wurde.B.4 Gesi
htserkennung mit dynamis
her Graphen-anpassungAls Aktivit�atsdynamik der dynamis
hen Graphenanpassung wurde bisher eine ver-wendet, die station�are Aktivit�ats
e
ken erzeugt. Dabei wurde die gesamte Dynamikauf re
ht k�unstli
he Weise kontrolliert und mit den folgenden vier S
hritten iteriert:Erzeugung eines Aktivit�ats
e
ks auf einer S
hi
ht, initiiert dur
h Raus
hen; Erzeugungeines Aktivit�ats
e
ks auf der anderen S
hi
ht aufgrund der dur
h die Verbindungsma-trix propagierten Aktivit�at des ersten Fle
ks; Anwendung eines Lerns
hrittes f�ur dieVerbindungsstruktur; Zur�u
ksetzen der S
hi
htaktivit�aten auf Null. Au�erdem ist diedynamis
he Graphenanpassung bisher no
h ni
ht zu einem vollst�andigen Erkennungssy-stem entwi
kelt worden. Es wurden meist wenige Modelle, typis
herweise drei, verwen-det, und die Erkennungsents
heidung wurde aufgrund von Gr�o�en, z.B. der gemittelten92



Verbindungsst�arke, getro�en, die in einem biologis
hen System ni
ht direkt zug�angli
hsind. Es war das Anliegen dieser Arbeit, die dynamis
he Graphenanpassung zu einemvollst�andigen Erkennungssystem mit kontinuierli
her und autonomer Dynamik zu ent-wi
keln.Das Ziel der kontinuierli
hen Dynamik wurde dur
h Einf�uhrung von verz�ogerterSelbsthemmung (delayed self-inhibition) errei
ht. Dur
h die Selbsthemmung kann dervormals station�are Aktivit�ats
e
k ni
ht mehr an einem Ort stehen bleiben, sondern ermu� st�andig auf bena
hbarte Berei
he auswei
hen, da dort die Selbsthemmung no
hgering ist. Das f�uhrt zu einer kontinuierli
hen Bewegung, in der der Aktivit�ats
e
k diegesamte neuronale S
hi
ht abtastet (siehe Abbildung 4.2). Diese starke Eigendynamikder Aktivit�ats
e
ken f�uhrt nat�urli
h au
h zu Problemen. Insbesondere ist die Syn
hro-nisation der Aktivit�ats
e
ken auf vers
hieden gro�en S
hi
hten ers
hwert. Daher habei
h einen Aufmerksamkeits
e
k (attention blob) eingef�uhrt, der die Bewegungsfreiheitdes laufenden Fle
ks auf der gr�o�eren S
hi
ht eins
hr�ankt. Der Aufmerksamkeits
e
kkann seinerseits aber au
h von dem Aktivit�ats
e
ken vers
hoben werden, z.B. in denBerei
h des abgebildeten Objektes (siehe Abbildungung 4.4 und 4.5). Die dynamis
heGraphenanpassung ges
hieht parallel zwis
hen dem Bild und einer Galerie von Model-len. Zur eigentli
hen Erkennung des ri
htigen Modells wird dessen Gesamtaktivit�atverwendet. Das ri
htige Modell ist dem Bild am �ahnli
hsten und kooperiert daher amerfolgrei
hsten, was zu einer erh�ohten Gesamtaktivit�at f�uhrt. In einfa
hen F�allen kanns
hon sehr fr�uh das ri
htige Modell bestimmt werden (siehe Abbildung 4.6 oben). Inanderen F�allen m�ussen si
h die Verbindungsmatrizen erst stark organisiert haben, bevorsi
h das ri
htige Modell dur
hsetzen kann (siehe Abbildung 4.6 unten). Erkennungslei-stungen unter vers
hiedenen Bedingungen f�ur Galerien von bis zu 111 Modellen sind inTabelle 4.3 angegeben.Drei weitere Ver�anderungen gegen�uber dem urspr�ungli
hen System sind von Bedeu-tung: Erstens wurden die S
hi
hten we
hselseitig, anstatt wie bisher unidirektional,miteinander verbunden. Das hat zum einen den Vorteil, da� si
h die Aktivit�ats
e
kenlei
hter syn
hronisieren. Zum anderen ist das f�ur das Erkennungssystem notwendig: DieModelle m�ussen das Bild beein
ussen, um den Aufmerksamkeits
e
k ri
htig auf demObjekt zu positionieren. Das Bild mu� die Modelle anregen, um eine Unters
heidungzwis
hen �ahnli
hen und un�ahnli
hen Modellen zu erlauben. Zweitens wurden die Modelleuntereinander derartig verkn�upft, da� die Aktivit�ats
e
ken in allen Modellen immer syn-
hron laufen und zu einem Zeitpunkt am glei
hen Ort im Gesi
ht sind, z.B. das re
hteAuge oder die Nasenspitze. Diese Struktur kommt dem allgemeinen Gesi
htswissen s
honsehr nahe. Ohne diese Zwangssyn
hronisation in der Modelldom�ane w�urde die Syn
hro-nisation des Bildes mit den Modellen weitgehend von zuf�alligen Anfangsbedingungenabh�angen. Drittens werden die Neuronen ni
ht, wie �ubli
h, dur
h die Summe der einge-henden Signale angeregt, sondern dur
h das Maximum. Die Summe vermis
ht n�amli
hein korrektes Signal mit vielen fals
hen, w�ahrend das Maximum mit einer relativ hohenWahrs
heinli
hkeit das ri
htige Signal und nur dieses selektiert. Ein weiterer Vorteildes Maximums ist, da� der dynamis
he Berei
h der �au�eren Anregung w�ahrend desSelbstorganisationsprozesses glei
h bleibt. Es m�ussen also keine Parameter na
hgeregeltwerden. 93



B.5 Gesi
htserkennung mit elastis
her Graphenan-passungZur dynamis
hen Graphenanpassung gibt es eine algorithmis
h ausgeri
htete Variante,die elastis
he Graphenanpassung (elasti
 graph mat
hing). Sie ist sehr viel s
hnellerund 
exibler als ihr neuronales Gegenst�u
k und daher angemessener f�ur te
hnis
heAnwendungen. Hier ist die Aufgabe wieder Gesi
htserkennung. Anstatt dur
h neu-ronale S
hi
hten werden die Gesi
hter direkt dur
h etikettierte Graphen repr�asentiert, dieKnoten werden mit Jets als lokalen Merkmalen etikettiert, und die Kanten tragen Infor-mationen �uber den Abstand der verbundenen Knoten (siehe Abbildung 5.1). Es werdenzwei Prozesse unters
hieden, das Bilden eines neuen Gesi
htsgraphen dur
h elastis
heGraphenanpassung und die eigentli
he Gesi
htserkennung, bei der der neue Gesi
hts-graph mit einer Galerie von Modellgraphen vergli
hen wird. Das letztere ges
hiehteinfa
h aufgrund der gemittelten �Ahnli
hkeit korrespondierender Jets. Die Geometrieder Graphen spielt dabei keine Rolle. Die elastis
he Graphenanpassung dagegen beruhtauf einem relativ aufwendigen Optimierungsproze�, in dem versu
ht wird, denjenigenTeilgraphen aus einem Bild auszuw�ahlen, der eine m�ogli
hst hohe Jet�ahnli
hkeit mitden Modellgraphen hat unter der Nebenbedingung, da� der Bildgraph geometris
h ni
htzu stark verzerrt sein darf gegen�uber der mittleren Geometrie der Modellgraphen. Umeine m�ogli
hst hohe Pr�azision zu errei
hen, wird f�ur die Graphenanpassung die Jet-Verglei
hsfunktion unter Ber�u
ksi
htigung der Phaseninformation verwendet.In der elastis
hen Graphenanpassung spielt das allgemeine Gesi
htswissen eine beson-dere Rolle. In dieser Graphenstruktur ist das allgemeine Wissen des Systems um die ver-s
hiedenen m�ogli
hen Ers
heinungsformen von Gesi
htern zusammengefa�t (siehe Abbil-dung 5.2). Die Kanten sind wieder mit Abstandsinformationen etikettiert, jedo
h gemit-telt �uber alle Modelle des allgemeinen Gesi
htswissens. Den Knoten sind die Jets allerModelle zugeordnet. Dabei entspri
ht jeder Knoten einem bestimmten Punkt im Gesi
ht,z.B. der Nase, dem linken Auge, oder einem Mundwinkel. Bei der elastis
hen Graphenan-passung kann jeweils ein Jet pro Knoten angespro
hen werden, und man w�ahlt jeweilsden am besten passenden aus. Auf diese Weise kann die volle kombinatoris
he Vielfaltdes allgemeinen Gesi
htswissens genutzt werden. Ergebnisse der elastis
hen Graphenan-passung sind in Abbildung 5.3 gezeigt.Das System ist au
h in der Lage, Gesi
hter in sehr vers
hiedener Ansi
ht miteinanderzu verglei
hen, z.B. Frontalansi
ht mit Halbpro�l. Dazu ist es notwendig, objektange-pa�te Graphen (obje
t-adapted graphs) zu de�nieren. Die Knoten beziehen si
h aufglei
he Punkte im Gesi
ht, unabh�angig von der Ansi
ht. So gibt es in jeder Ansi
htAugenknoten, Nasenknoten, usw. Die Struktur der Graphen sowie die Korresponden-zen zwis
hen Knoten, die zu glei
hen Punkten im Gesi
ht geh�oren, wurden per Handde�niert. Im Verglei
h zweier Gesi
hter vers
hiedener Pose werden dann nat�urli
h nurkorrespondierende Knoten vergli
hen. Die Erkennungsraten liegen jedo
h f�ur unter-s
hiedli
he Posen relativ niedrig, wie beim Mens
hen au
h (siehe Tabelle 5.1). ZurBeurteilung, ob ein Gesi
ht zuverl�assig erkannt wurde, habe i
h ein s
hon fr�uher ent-wi
keltes Kon�denzma� (
on�den
e measure) verwendet.Die drei wesentli
hen Neuerungen gegen�uber dem vorangegangenen System sind dieVerwendung von Phaseninformation bei der Graphenanpassung, die Einf�uhrung des all-gemeinen Gesi
htswissens, und die Verwendung von objektangepa�ten Graphen zumVerglei
h von Gesi
htern vers
hiedener Pose.94



B.6 Phantombilder und Bestimmung von Gesi
hts-merkmalenDas Ergebnis der elastis
hen Graphenanpassung ist ni
ht nur der Bildgraph, sondernau
h die Information, f�ur wel
hen Knoten wel
her Jet und damit au
h wel
hes Modelldes allgemeinen Gesi
htswissens am besten pa�t. Diese Information soll nun f�ur eine wei-tergehende Analyse eines Gesi
htes genutzt werden. Zun�a
hst kann man ein Phantombilderzeugen. Dazu werden die lokalen Grauwertverteilungen, die zu den ausgew�ahlten Jetsgeh�oren, mit wei
hen �Uberg�angen aneinandergef�ugt. Es wird also keinerlei Grauwertin-formation des Originalbildes verwendet. Die Phantombilder sehen den Originalen re
ht�ahnli
h (siehe Abbildung 6.2). Man kann also davon ausgehen, da� f�ur ein weibli
hesGesi
ht die elastis
he Graphenanpassung im wesentli
hen Jets von weibli
hen Modellenausw�ahlt. Glei
hes gilt f�ur m�annli
he Gesi
hter oder Gesi
hter mit Brille oder Bart (beiletzteren aber nur f�ur die oberen bzw. unteren Knoten). Die Merkmale der Modelle lassensi
h so auf das Originalgesi
ht �ubertragen und dessen Merkmale damit ermitteln. DasPrinzip ist in Abbildung 6.1 illustriert. Die Erkennungsrate f�ur die Gesi
htsmerkmaleGes
hle
ht, Brille und Bart sind in Tabelle 6.2 angegeben. Anwendung der Bayess
henFormel gibt au�erdem einen Hinweis darauf, wel
he Knoten f�ur die Merkmalsbestim-mungen besonders zuverl�assig sind (siehe Abbildung 6.3).Die Erkennungsraten sind etwas niedriger bis verglei
hbar mit anderen neuronalenModellen zur Bestimmung des Ges
hle
htes eines Gesi
hts. Jedo
h hat die vorgestellteMethode einige grundlegende Vorteile. Sie ist sehr allgemein, erfordert also keinemanuelle De�nition von Merkmalen, die f�ur die Aufgabe geeignet sind. Das Systemsollte ohne weitere Modi�kationen auf andere Aufgaben �ubertragbar sein, wie z.B. dieBestimmung von emotionalen Gesi
htsausdr�u
ken oder die Unters
heidung vers
hiedenerHaustierrassen (Hund, Katze, S
haf). Bedingung ist nur eine in Bezug auf Gestalt undPose konsistente Darstellung der zu bestimmenden Objekte. Das System erfordert au�er-dem nur ein Minimum an Trainingsaufwand. Die alternativen Modelle, wie z.B. Ba
k-propagation oder Systeme basierend auf einer Haupta
hsentransformation, sind bekanntf�ur ihren gro�en Trainingsaufwand, sowohl in bezug auf die Anzahl der Trainingsbeispieleals au
h in bezug auf die Re
henzeiterfordernisse.B.7 Erkennung von teilverde
kten ObjektenDie Anwendungen der vorangegangenen drei Abs
hnitte beziehen si
h auf Gesi
htserken-nung. In diesem Abs
hnitt ist die Aufgabe eine ganz andere. Vers
hiedene Spielzeugob-jekte werden zu Szenen zusammengestellt und k�onnen si
h dabei weitgehend �uberde
ken(siehe Abbildung 7.1). Das vorgestellte System soll die Objekte trotz der Verde
kungenerkennen. Hier erweist si
h die Repr�asentation der Objekte dur
h etikettierte Graphenals besonders vorteilhaft, da sie in nat�urli
her Weise erlaubt, vers
hiedene Teile einesObjektes vers
hieden zu behandeln. Die Knoten m�u�en ledigli
h um eine Statusvariableerg�anzt werden, die bezei
hnet, ob der Knoten als si
htbar oder verde
kt angenommenwerden soll. Au
h kann f�ur zwei �uberlappende Graphen gezielt bestimmt werden, wel
herim �Uberlappberei
h besser in das Bild pa�t. Dana
h ri
htet si
h die Hypothese, wel
hesder beiden Objekt als verde
kt angenommen wird.Es werden zwei Algorithmen zur Objekterkennung in einer Szene vorgestellt. Beiden95



geht die Graphenanpassung voraus, die f�ur alle Objekte einer kleinen Galerie von 13Objekten jeweils den wahrs
heinli
hsten Ort im Bild ermittelt. Der erste Algorithmusbehandelt jeden Graphen einzeln und bestimmt aufgrund der �Ahnli
hkeiten der einzelnenKnoten mit dem Bild, wel
he Regionen des Graphen voraussi
htli
h verde
kt und wel
hesi
htbar sind. Ist die Gesamt�ahnli
hkeit zu gering oder der als si
htbar angenommeneBerei
h zu klein, so wird das Modell ganz verworfen. Dieser Algorithmus errei
ht eineErkennungsrate von 80% und ist geeignet, wenn bekannte Objekte unter unbekanntenObjekten erkannt werden soll (siehe Abbildung 7.3). Kann man voraussetzen, da� alleObjekte der Szene bekannt sind, so kann man die Szene von vorne na
h hinten abar-beiten. Das hat den Vorteil, da� die vorderen Objekte si
her ni
ht verde
kt sind, und da�f�ur weiter hinten liegende Objekte genau bekannt ist, wel
he Bildberei
he s
hon dur
hObjekte im Vordergrund besetzt sind. Die Erkennungsrate ist mit 96.7% entspre
hendh�oher (siehe Abbildung 7.4).
B.8 DiskussionAbsi
ht der vorliegenden Arbeit war es, zu demonstrieren, da� der etikettierte Graph einleistungsf�ahiges und 
exibles Datenformat ist, das die syntaktis
he Struktur beinhaltet,die der Vektorrepr�asentation fehlt. Die Knotenrelationen spielten in den vers
hiedenenAnwendungen eine wi
htige Rolle. Sie waren entweder explizit oder implizit in denjeweiligen Datenstrukturen realisiert.Erstens wurden die individuellen KoeÆzienten der Gabor Wavelet-Transformation zuJets zusammengebunden. Zweitens wurden Knoten dur
h Kanten zu Graphen organi-siert. Drittens arbeiten sowohl die dynamis
he als au
h die elastis
he Graphenanpassungmit Verbindungen zwis
hen einem oder mehreren Modellgraphen und einem Bild, umeinen neuen Bildgraphen zu generieren. (Diese Aspekte syntaktis
her Verbindungensind s
hon in fr�uheren Arbeiten verwendet worden. In dieser Arbeit neu hinzugekom-men sind die folgenden.) Viertens, eine Menge von Jets, die als Alternativen f�ur einund denselben Objektpunkt fungieren k�onnen, wurden im allgemeinen Gesi
htswissengemeinsam an einen Knoten gebunden. F�unftens wurde das allgemeine Gesi
htswissenum Kontextinformation erweitert, die Jets glei
hen abstrakten Merkmals miteinanderverbindet. Se
hstens s
hlie�li
h gab es zwis
hen den Knoten von Objektgraphen in-hibitoris
he Verbindungen, wenn die Knoten um den glei
hen Bildberei
h konkurrierten.Dies ist nur eine relativ kleine Zahl von m�ogli
hen Beziehungen zwis
hen Knoten. Manwird weitere entwi
keln und Wege �nden m�ussen, wie si
h die Relationen geeignet selbst-organisieren k�onnen.Das zweite Anliegen der Arbeit war, zu zeigen, da� die dynamis
he Graphenanpas-sung ein leistungsf�ahiges neuronales Konzept zur Verarbeitung von etikettierten Graphendarstellt. Zum erstenmal wurde auf dieser Basis ein vollst�andiges Erkennungssystem ent-wi
kelt, das in der Lage ist, Gesi
hter gegen eine Galerie von �uber hundert Modellen zuerkennen. Die elastis
he Graphenanpassung ist aber immer no
h deutli
h langsamerund un
exibler als die elastis
he Graphenanpassung und viele Apekte der vorgestelltenAnwendungen m�u�en no
h in neuronalem Stile entwi
kelt werden.96



B.9 Anhang A: Visuelle Vorverarbeitung mit GaborWaveletsGabor-Funktionen haben die Form von Wellenpaketen (wavelet): ebene Wellen untereiner einh�ullenden Gau�glo
ke. In der Gabor-Wavelettransformation wird ein Bild miteiner ganzen Familie von Gabor Funktionen gefaltet. Die Gabor Kerne haben alle dieglei
he Form und unters
heiden si
h nur in Gr�o�e und Orientierung. In der vorliegendenArbeit werden f�unf Gr�o�en (Frequenzen) und a
ht Orientierungen, d.h. 40 Kerne, ver-wendet. Das Ergebnis sind 40 komplexe KoeÆzienten an jedem Pixel des Bildes. Da dieKerne wellenartig sind, k�onnen den KoeÆzienten Amplitude und Phase zuges
hriebenwerden. Die Amplitude �andert si
h nur langsam mit dem Ort, die Phase variiert mitder Raumfrequenz der Welle. Die KoeÆzienten eines Pixels werden zusammenfassendals Jet bezei
hnet. Ein Jet ist eine kompakte und 
exible Bes
hreibung einer Grauwert-umgebung (siehe Abbildung A.1).Jets werden in zweierlei Hinsi
ht ausgewertet. Erstens kann die �Ahnli
hkeit zwis
henzwei Jets bestimmt werden. Dazu dient das normierte Skalarprodukt, ohne oder mitBer�u
ksi
htung der Phaseninformation. Zweitens kann die Phaseninformation verwendetwerden, um den r�aumli
hen Abstand zweier Jets an Na
hbarpunkten eines Objektesabzus
h�atzen. Dies ist f�ur Stereobilder als Disparit�atss
h�atzung bekannt.
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