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Abstract

In many neural net applications visual data are represented as vectors, although it is
known that this form of representation lacks syntactical structure. Labeled graphs have
been proposed as a data format which provides the missing relational information. The
present work argues that labeled graphs of perceptual patterns can be generated and
processed based on simple principles. Complex and flexible object representations can
be derived from single examples by graph matching.

Dynamic Link Matching has been developed as a biologically-motivated neural mech-
anism for graph matching. This work discusses the principles as well as the advantages
and drawbacks of Dynamic Link Matching compared to other neural systems. A com-
plete face recognition system based on Dynamic Link Matching is developed. In contrast
to previous systems, the dynamics is autonomous, and matching between graphs of dif-
ferent size is made possible by an attention window. The performance is demonstrated
for faces of different perspective or facial expressions against a gallery of 111 neutral
frontal views.

For more technical applications, Elastic Graph Matching has been developed as an
algorithmic counterpart to Dynamic Link Matching. In this work the system is devel-
oped further in several aspects: object-adapted graphs allow comparisons between very
different views, efficiency has been increased significantly by separating graph genera-
tion from recognition, and phase information of the Gabor transform is used to increase
matching accuracy. The key role is played by a newly introduced graph structure, called
General Face Knowledge. It is based on a collection of individual sample faces, but it
also represents faces that can be obtained by combining subparts of the samples. By this
means, new faces can be processed without having a reference model of the individual
person. Recognition results on galleries of 300 faces are presented.

The determination of facial attributes serves as a second demonstration. General
Face Knowledge can be used to generate composite or phantom faces very similar to the
original. If facial attributes such as gender or the presence of a beard are known for the
sample faces of the General Face Knowledge, these attributes can be transfered to the
phantom face. On that basis the facial attributes of the original face can be determined
in a very simple and general way.

And finally, Elastic Graph Matching is applied to the recognition of occluded objects
in cluttered scenes. Two different algorithms are presented. The first allows recognition
of known objects between and behind unknown distractors. The second one requires
that all objects in the scene are known to the system. It processes the scene from front
to back and in addition determines the order of the objects in depth.



i



Preface

It is not the intention of this thesis to present one single monolithic model of object
recognition, but rather several models, emphasizing different aspects of a larger concep-
tual framework. I have therefore tried to keep the different chapters independent of each
other, making it possible to select single chapters without having read the preceding
ones. The abstracts at the beginning of each chapter will help to provide an overview.
Keywords referred to in the index are printed in italics.

The first chapters introduce the conceptual framework. In Chapter 2, I argue for
labeled graphs as a data structure for object representation. In Chapter 3, the principles
of Dynamic Link Matching as a neural system for processing labeled graphs are explained.
The four subsequent chapters present four concrete models for different visual tasks
on two different levels of abstraction. Chapter 4 deals with Dynamic Link Matching
as applied to face recognition. The same task is solved in Chapter 5, but in a more
technical system with Elastic Graph Matching, which is an algorithmic abstraction of
Dynamic Link Matching. Closely related is Chapter 6, which is concerned with the
determination of facial attributes such as gender, the presence of a beard or glasses. A
very different application of Elastic Graph Matching, the analysis of cluttered scenes, is
then presented in Chapter 7. (This chapter is in part a modified reprint of (WISKOTT &
VON DER MALSBURG, 1993) (©World Scientific Publishing Co. Pte. Ltd., with the kind
permission of the publisher.) All applications here use the Gabor wavelet transform as
a visual preprocessing providing local features (see Appendix A).

I have been fortunate to be able to work with Professor von der Malsburg’s group
at the Institut fir Neuroinformatik of the Ruhr-Universitat Bochum, Germany and to

for Neurobiology at the University of Southern California, Los Angeles, U.S.A. I enjoyed
ideal working conditions and great freedom to develop my own interests and ideas. 1|
am especially obliged to my advisor, Professor von der Malsburg, who has taught me
in the course of many invaluable discussions what kind of questions are worth raising
and what principles might lead to answers. I am also grateful to Professor Biederman at
USC, who taught me many things about psychophysics. I thank Professor Wunner for
providing the second report. Sincere thanks go also to my colleagues in Bochum and at
the USC: Jean Marc Fellous, Norbert Kriiger, and Thomas Maurer, with whom [ shared
exciting cooperation within the face recognition project at USC; Martin Lades for his
sofware contribution to the cluttered scenes project; Norbert Kriiger, Thomas Maurer,
Michael Potzsch, and Andreas Schwarz for their critical remarks on the manuscript of
this thesis; Jozsef Fiser, Bernd Fritzke, Wolfgang Konen, Jan Vorbriiggen, Rolf Wiirtz,
and all those mentioned above, for many fruitful discussions and an enjoyable time in
Bochum and at the USC. I thank Michael Neef for providing us with a well maintained
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computer environment, Uta Schwalm for her help with all administrative questions,
and Professor Edwin Hopkins and Jan Vorbriiggen for their corrections of the English.
Finally, I especially thank my wife Julia for her support.

The system presented in Chapter 4 was simulated with NSL (Neural Simulation
Language) developed by Alfredo Weitzenfeld. All other simulations were made using
GNU sofware. The thesis was typeset in I¥TEX. I would like to thank the authors of
these convenient and free sofware tools.

This work was financially supported by the German Federal Ministry for Science and
Technology (BMFT) (01 IN 101 B/9; Neuronale Architekturprinzipien fir selbstorgan-
isierende mobile Systeme). The work for Chapters 4 and 5 were supported by AFOSR
(F49620-93-1-0109) and ARL/ARPA (01/93/K-0109) respectively.
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Chapter 1

Introduction

Visual images are usually represented as pixel arrays, a square lattice of real numbers.
Two indices, the x- and y-coordinates, denote the position, and the real number repre-
sents the local grey value. This is an appropriate representation for raw images, and it
is complete within the limits of given spatial and brightness resolution. Conventional
neural net applications tend to ignore the spatial relations implicit in the x- and y-
coordinates. They simply use the indices as a unique address for the individual pixels or
the respective input neurons. An image is then represented as a vector with distinct co-
efficients without further spatial relations. One could for example consistently permute
the vector coefficients in all training and test patterns, and the network would perform
as well as before.

Character recognition is a frequently used example to demonstrate the performance of
a neural system. It was already used in the early years of modelling neural nets. WIDROW
& HoFF (1960), BLock (1962), as well as KOHONEN (1972) used character recognition
for demonstration purposes. In all three cases the input units had no further relational
structure, i.e. the input patterns had no topology. The consequence is demonstrated
in Figure 1.1. On the left and on the right are shown two patterns that we assume
have been learned by a neural net or stored by an associative memory. In the middle is
shown a pattern that serves as an input and is supposed to be recognized or associated
with one of the stored patterns. Which of the stored patterns is the correct one? The
natural answer seems to be: the right one. But then one has used a metric which
takes relational information into account. The neural nets mentioned above consider the
patterns as vectors and use a different metric. The Hamming distance, for example, leads
to the result that the left pattern is more similar to the one in the center, since the left
pattern differs in fewer pixels from the central one. The same paradigm of treating the
input pixels without any relational structure can be found in more recent applications
(KOHONEN, 1987; Kosko, 1987; DE EDSON et al., 1990).

Another example is shown in Figure 1.2. What is the common property of the top
four patterns? The same question applies to the bottom four patterns: What is their
common property? The answer to these questions depends very much on whether one
takes into account the spatial structure of the patterns or not. With topology (see
top row) one can already see from one example that it shows symmetry with respect
to a diagonal, and this holds for the other patterns in the row as well. Ignoring the
topology can be illustrated by permuting all pixels consistently, i.e. same permutation
for all patterns (see bottom row). Then one has a hard time and would need many more
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Figure 1.1: Visual patterns as used for training and testing conventional neural nets.
Is the pattern in the center more similar to the left or to the right pattern?

=
i

Figure 1.2: Patterns with second order correlations. What is the common property of
the patterns in the top row? And what is the common property of the patterns in the
bottom row? (The bottom patterns have been generated from symmetrical patterns by
a constant permutation of the pixel positions.)

examples to notice that many pairs of cells are perfectly correlated. SEINOWSKI et al.
(1986) have used this example. They applied a Bolzmann learning algorithm to the
detection of different symmetries. For a 10x10 layer the algorithm needed about 40,000
presentations of training examples in order to reach a success level of 85%. The hidden
units had to reveal through statistics that certain pairs of neurons were correlated, a
property completely independent of the spatial arrangement of the correlated pairs. It
is evident that the notion of symmetry can be inferred from few examples if the spatial
structure of the patterns is taken into account. This was demonstrated by KONEN &
VON DER MALSBURG (1992, 1993). In face recognition the most prominent example of
representing visual patterns as vectors without any topological structure is the Principal
Component Analysis directly applied to face images (see for example KIRBY & SIROVICH,
1990; TURK & PENTLAND, 1991; O’TOOLE et al., 1993).



Two different solutions are used to overcome this drawback of the conventional neu-
ral net paradigm. The first one is to compensate for the translation sensitivity of the
vector representation by preprocessing the input images to get a normalized version of
them, which is centered and possibly rescaled (KIDDER & SELIGSON, 1993; AVIITZHAK
et al., 1995). This is frequently done in a rather technical way and is then not part
of the neural system. A more neural system for translation correcting preprocessing is
the translation-invariant network (WIDROW et al., 1988; MaAo & Kuo, 1992). But all
these preprocessing systems require presegmented patterns and do usually not account
for distortions. A second solution was demonstrated by FUKUSHIMA et al. (1983). Their
Neocognitron is a multilayer feed-forward network with receptive fields that are restricted
to a small region of the respective input layer. By this means some topological informa-
tion is introduced, since neighboring neurons in the input layer usually belong to the same
receptive fields. Within the receptive fields no further spatial relations are encoded. This
connectivity repeats over several stages. When the Neocognitron is trained, the neurons
develop into more and more complex and more and more translation-invariant feature
detectors as one ascends the hierarchy. Translation invariance is achieved by low-pass fil-
tering and subsampling the neural responses at each stage. Thus positional information
that might be important for discrimination is lost and the performance of the system
potentially degrades. In addition, the degree of possible low-pass filtering is tightly cou-
pled to the complexity of the features, and translation invariance is therefore limited. A
further disadvantage of this system is that it requires a very careful architectural design
and selection of training patterns; training effort is very high. A more recent application
of the Neocognitron can be found in (TING & CHUANG, 1993). Related to the Neocog-
nitron is the weight-sharing back-propagation network (LECUN et al., 1989; MARTIN,
1993). These systems show only very little translation invariance. They are also very
expensive in terms of training samples. However, they seem to be more robust in terms
of architectural design, and they do not require training of each layer separately, as is
necessary for the Neocognitron.

These examples illustrate the lack of structural information in the vector represen-
tation (cf. VON DER MALSBURG, 1981; VON DER MALSBURG, 1986; BIENENSTOCK &
DouRrsAT, 1991). This thesis is concerned with an alternative representation of visual
patterns, the labeled graph. It combines feature information with the required structural
information. The advantages of labeled graphs will be discussed in Chapter 2 and then
demonstrated in different applications, for face recognition (Chapter 5), gender deter-
mination (Chapter 6), and scene analysis (Chapter 7). Although labeled gaphs are a
very natural representation for visual patterns, they do not quite fit into the traditional
concept of neural nets with a fixed connectivity, subject only to a slow learning pro-
cess. VON DER MALSBURG (1981) therefore proposed the Dynamic Link Architecture,
in which he enriched conventional neural nets with the concepts of temporal binding and
fast synaptic plasticity. Based on these ideas BIENENSTOCK & VON DER MALSBURG
(1987) developed Dynamic Link Matching, in which temporal structure of neural sig-
nals codes for relations between nodes by correlations. Fast synaptic plasticity admits
dynamic matching between different layers depending on the represented patterns. The
connectivity is no longer fixed, but subject to a complex self-organization process. Dy-
namic Link Matching will be discussed in Chapter 3 and applied to face recognition in
Chapter 4.






Chapter 2

Labeled Graphs for
Object Representation

Abstract: Sensory patterns can be appropriately represented by labeled graphs. Nodes are
labeled with local features; edges are labeled with relational features. It is argued that these
labeled graphs can be generated on the basis of simple grouping principles: proximity in feature
type, in space, or in time. They can be matched onto each other if they are similar in features
and structure. Fusion graphs can be generated for graphs with significant overlap. Labeled
graphs provide a means to learn and generalize from single examples and might serve as a basis
for more abstract processes such as finding analogies.

2.1 Introduction

In the introductory chapter it was argued that the typical data structure used in artificial
neural nets, the vector, lacks relational information. In this chapter I describe labeled
graphs as a uniform data format for sensory patterns providing the structure needed. A
simple example of labeled graphs and graph matching is shown in Figure 2.1.

Labeled graphs for object representation have been widely used in the field of artificial
intelligence (cf. Fu, 1982), but for neural nets they were probably first proposed by vON
DER MALSBURG (1981, 1983). He also developed Dynamic Link Matching as a neural
mechanism to process labeled graphs in a neural architecture (see next chapter). Several
concrete models based on these concepts will be presented in the subsequent chapters.
A final conclusion will be given in Chapter 8.

2.2 Representation of Sensory Patterns

On a low level, perception begins with a structured encoding of the sensory input. Prim-
itive segmentation and grouping mechanisms are necessary to provide higher levels with
a useful representation of objects. I am now going to discuss briefly the general struc-
ture of sensory patterns and how elementary graph representations of objects can be
generated.
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Figure 2.1: Simple graphs and graph matching. a) and d) The patterns ‘2’ and ‘7’
are the same as in Figure 1.1, but represented and stored as labeled graphs. The input
pattern to be recognized is a different ‘7’, distorted relative to the stored one. b) The
‘2’-graph matched to the input pattern. The curved line and diagonal of the ‘2" fits
fairly well, but the horizontal foot of the ‘2" is completely compressed and the horizontal
stroke of the ‘7" is not covered. ¢) The ‘7’-graph can be matched to the input pattern
with little distortion (adapted from BIENENSTOCK & DOURSAT, 1991).

2.2.1 Labeled Graphs of Sensory Patterns

A labeled graph consists of a set of nodes and a set of edges connecting pairs of nodes.
The nodes are labeled with local features, and the edges are labeled with relational
features (VON DER MALSBURG, 1986; BIENENSTOCK & VON DER MALSBURG, 1987;
LADES et al., 1993; see also Figure 2.2). A local feature represents absolute information
that can be extracted from a small patch of an image such as color, local texture, or
the orientation of an edge. For acoustic signals local features could be onset, offset,
or energy in a particular frequency channel. 1 will refer to the complete set of local
features for a given modality as the feature space. The relational features, on the other
hand, can only be extracted from two such local patches. An example is the spatial
distance between two locations. With one exception (see below) I will refer to the space
from which the relational features are extracted as the sensory space. Sensory space
depends on modality, too. For the auditory modality, for instance, the sensory space is
the frequency axis. The exception to this is time. Time also provides relational features
such as ‘sooner’ or ‘later’, but nevertheless time needs to be treated separately from
the sensory spaces for several reasons. First of all, time is common to all modalities
and thus constitutes the main cue for binding percepts of different modalities. Secondly,
time cannot be represented in the same way as the other sensory spaces. There is no
counterpart to the retina for the time dimension. Further peculiarities of time perception
have been discussed by POPPEL (1978). Feature space, sensory space, and time can be
considered as three subspaces in which sensory patterns are embedded, and we have seen
how labeled graphs can serve as a discrete representation of such sensory patterns.

2.2.2 Graph Formation

How can a graph of a sensory pattern be generated? This process has two aspects:
Firstly, nodes need to be located, and secondly, they need to be connected by edges.
The sensory input, for example a pixel image, often has a much higher resolution than
one would like to represent internally, locating a node at each pixel not being practical.



Thus one has to perform a selection. The appropriate density of nodes depends on the
complexity and spatial extent of the local features. With complex features describing
extended patches of an image, the nodes may be much sparser than for simpler features
describing only a few pixels around each node. Two schedules for selecting nodes in
a sensory pattern have been used. The first is to select nodes on a regular grid with
constant spacing adapted to the complexity and extent of the local features (c¢f. WURTZ,
1995). This schedule does not account at all for the specific character of patterns and
is determined only by the characteristics of the local features and the spatial resolution
that one wants to achieve. In the second schedule one attempts to select particular points
in the sensory pattern, so-called salient points, that are especially important and carry
maximal information. The problem is that these points have to be selected without
object knowledge only on the basis of low-level information. Thus, one has to define
an appropriate saliency measurement that allows one to find salient points with high
reliability (cf. MANJUNATH et al., 1992). This approach has the advantage that fewer
nodes are required and that the node positions are object-adapted, i.e. for the same object
in different images it is likely that the same locations relative to the object are selected.
It should be mentioned that several nodes may be located at the same image location if
different feature types are used. Thus, for a red dot there might be a node representing
‘dot” and another node representing ‘red’. Using several nodes at the same location may
also be appropriate for representing transparent objects.

When the node positions are selected, which nodes should be connected? This is the
question of grouping and segmentation, and many mechanisms have been proposed for
it (cf. the Gestalt principles in BOFF et al., 1986, pp. 36-14-36-23). I concentrate only
on the law of prorimity in three different variations. It may be proximity in sensory
space (spatial prozimity), proximity in feature space (feature similarity), and proximity
in time (temporal proxzimity). The probability of two nodes being connected increases
with proximity and will be maximal if two nodes coincide in some aspects (see Fig-
ure 2.2). Neural models of grouping and segmentation based on spatial proximity and
feature similarity were, for instance, presented by KONIG & SCHILLEN (1991), VON DER
MALSBURG & BUHMANN (1992), and VORBRUGGEN (1994). It is interesting that in
these models the segmentation result was represented by temporal synchrony of coupled
oscillators corresponding to the third mechanism, temporal proximity.

These are only three basic grouping mechanisms, and many more could be cited.
However, it is unclear to what extent other, more complex laws of grouping are necessary
under natural conditions and to what extent they could be learned from experience on
the basis of the simple mechanisms cited here (BOFF et al., 1986, pp. 36-11-36-14).

Once elementary node relations are induced by the laws of proximity, sets of nodes are
connected to form a graph. The reasons for which the nodes were connected might in part
be irrelevant to the object itself. For example, common motion is a strong segmentation
cue and will bind together all nodes of one object, but the motion itself is usually not
relevant for the object and should not be stored. Therefore the connections induced
have to be transferred to all nodes. The result is a highly connected elementary graph,
representing a sensory pattern. This is the basis for all further steps (see Figure 2.3).
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Figure 2.2: Sensory patterns are embedded in sensory space (e.g. retinal location),
feature space (e.g. color), and in time. Labeled graphs are used to represent sensory
patterns. Nodes are labeled with local features. Proximity in one of the three subspaces
induces relations between nodes, which are represented by edges. Proximity in sensory
space is indicated by dashed lines, proximity in feature space is indicated by solid lines,
and proximity in time is indicated by dash-dotted lines. In the left example the leftmost
feature type might, for example, represent common motion. In the right example, two
nodes are connected due to proximity in sensory and feature space. Two other nodes are
isolated, since they are proximate to none of the other nodes.
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Figure 2.3: The edges of the graphs in Figure 2.2 induced by proximity are transferred
to all nodes of the graph. Some nodes, such as those representing motion, are significant
for segmentation but are irrelevant for representation of the object itself and can be
removed. The result is a highly interconnected labeled graph representing the sensory
pattern. Connections expressing temporal progression are indicated by arrows.
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Figure 2.4: Graph matching: The task of graph matching is to connect graphs and
subgraphs that are similar in features and structure. The match between the graphs
is indicated by dotted arrows. The three examples illustrate a) object recognition, b)
finding partial identity, and ¢) detecting symmetry.

2.3 Graph Matching

As a next step after generating graph representations for sensory patterns, one would
like to compare them. The elementary process for that is graph matching and the deter-
mination of the similarity between graphs.

2.3.1 Pattern Recognition

Comparing graphs requires finding a mapping that connects nodes of one graph with
nodes of another under the constraints firstly that the topology is preserved, i.e. neigh-
bors are connected with neighbors, and secondly that the similarity between the features
of connected nodes is high. This process is called graph matching (see Figure 2.4, cf.
also BIENENSTOCK & VON DER MALSBURG, 1987; VON DER MALSBURG, 1988; Ko-
NEN et al., 1994, and Chapter 4 for neural models of graph matching). If only parts of
two graphs are similar, these subgraphs should be matched onto each other while the
remaining parts remain unconnected (see REISER, 1991, and Chapter 7). This kind of
graph and subgraph matching is in general NP-complete, but since the graphs have a
topographical structure and are embedded in a low-dimensional sensory space, the com-
plexity is reduced significantly, and simple matching schedules find good approximations
of the optimal match in a reasonable amount of time (see BUHMANN et al., 1989, 1992,
and Chapter 5).



2.3.2 Finding Analogies

The graph matching described above can be used to compare graphs within the same
modality and result in high similarity if the sensory patterns are similar. What can be
said about two graphs of different modality? What remains comparable? This is first of
all, the number of nodes, the presence or absence of connections between pairs of nodes,
and relational information about temporal order. Secondly, in all sensory spaces two
nodes may be close or distant to each other. For instance, a dot in a visual pattern may
be closer to a second one than to a third, corresponding to three sound components of
pitch C, D, and G in the auditory system. Hence the topology of patterns in different
modalities may be comparable, although this has quite obvious limitations, e.g. a triangle
cannot be represented on the frequency axis. Thirdly, intensity as a very general aspect
of feature space may also be comparable between modalities, e.g. brightness, loudness,
and pressure in the visual, auditory, and tactile system respectively. Graph matching
based mainly on relational information can be interpreted as a mechanism for finding
analogies (see Figure 2.5). This may be of questionable advantage on the low level
of sensory patterns, but the idea of finding analogies between graphs on the basis of
structural similarities might be interesting if one thinks of abstract graphs representing
more abstract patterns such as trajectories, language, or ideas. A simple system for
finding analogies on the basis of relational structure was presented by CHALMERS et al.
(1992). Their system could for example recover the analogy between the strings ‘ppqrss’
and ‘aamnxx’, mapping ‘pp’ to ‘aa’, ‘qr’ to ‘mn’, and ‘ss’ to ‘xx’. It was based on features
such as ‘first’, ‘last’, ‘successor’, and ‘opposite’.

2.4 Fusion Graphs

If one has a method for comparing graphs, one can improve storage of a number of
graphs by representing identical or similar graphs or subgraphs only once. The result
is a fusion graph (REISER, 1991; see Figure 2.6). This has the advantage of reducing
the required storage capacity and it possibly helps to generalize. But one possible risk
is that the fusion graph will overgeneralize, and that the stored examples cannot be
recalled reliably. There are different mechanisms for avoiding this and obtaining recall
of single examples.

2.4.1 Long Range Connections

Long range connections between different parts of a fusion graph can disambiguate the
possible interpretations in order to recall the stored samples reliably (see Figure 2.6.c).
A consistent realization of this idea, where all nodes are connected with all others, was
presented by VON DER MALSBURG (1985, 1988) and VON DER MALSBURG & BIENEN-
STOCK (1987). The attractiveness of this approach comes from its homogeneity and the
fact that it requires no further nodes and probably little control structure. New graphs
can be integrated into the fusion graph very naturally. The disadvantage is that gener-
alization capabilities are lost. From a functional point of view, the system behaves like
a collection of single graphs.
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Figure 2.5: Two analogies between graphs of different modalities. The matching in
this case is based on relational patterns rather than feature patterns. In a) the features
of the nodes are completely ignored. It is only the structural information that leads to
the illustrated matching. The upper pattern may represent two tones, one going down
in pitch, the other up. The other pattern may represent the visual analogy, say two
dots of different color, one moving downwards, the other upwards. One can also imagine
that simple features such as intensity are compatible between modalities, as shown in
b). The upper graph may represent two tones, the lower one two lights. In both graphs
one signal becomes more intense and one less.
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Figure 2.6: Fusion graphs: a) Three graphs with similar subpatterns. b) Fused graph
representing common subpatterns only once. Since it is not encoded which subpatterns
to combine, this representation is ambiguous, and combinations of subpatterns not pre-
sented in a) are valid as well. This can be considered as a generalization capability. c)
Ambiguities can be resolved by long range connections. Filled arrows indicate that the
parts belong together, while unfilled arrows indicate that the parts are unlikely to belong
to the same object.
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Figure 2.7: Two alternative ways to resolve the ambiguities of the fusion graph in
Figure 2.6.b: a) Cardinal cells represent the common subpatterns or b) they represent
entire graphs and point to parts of the fusion graph.

2.4.2 Cardinal Cells for Subpatterns

An alternative concept is to represent common subpatterns by cardinal cells (see Fig-
ure 2.7.a). Each graph then would consist of several elementary nodes and possibly some
cardinal nodes that point to subpatterns. From a functional point of view this solution
would again be equivalent to a collection of single graphs and would lack the potential
for generalization. Compared to the previous solution, this method requires more nodes
and a sophisticated method to determine which subpatterns are frequent enough to be
worth representing by a cardinal node. A further problem would be to code exactly how
a subpattern is to be integrated into the graph (cf. EHRIG, 1991).

2.4.3 Cardinal Cells for Whole Graphs

A more reasonable possibility of combining generalization abilities and a reliable recall
of single examples is the use of cardinal cells for whole graphs (see Figure 2.7.b). The
great advantage is that they provide control. If they are all inactive, the fusion graph
shows full generalization properties. One can activate one of them and suppress all
others recalling only the graph of this one sample. For a recognition task, one can apply
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a winner-take-all mechanism between the cardinal cells, ensuring that the best fitting
sample will win, without allowing spurious states.

2.5 Specific Graph Representations

Having discussed the general concept of labeled graphs for object recognition, I will now
describe the concrete graph structures that I have used for the different applications
presented in Chapters 4 7.

2.5.1 Face Recognition

For face recognition each face is represented by a single graph. A collection of these
model graphs serves as a gallery. For a new image of a face a new image graph has to
be generated, which can then be compared with the gallery. The most similar model
is taken as the correct face. The image graph formation can be achieved by matching
any stored model graph to the image. Assume the nodes in the model graph were taken
from so-called fiducial points, e.g. eyes, tip of the nose, corners of the mouth, etc. If
the model face is similar to the image face, the model nodes are likely to be correctly
matched to the corresponding fiducial points in the image. Problems arise if the two faces
are not similar, for example, due to a beard or glasses. Because of the very different
appearance of identical fiducial points, the image graph formation might fail. Thus,
instead of a single model graph one needs a more general representation of faces that
can be matched to an image in order to find the fiducial points for different faces reliably.

For this purpose I have introduced a general face knowledge (GFK). Since all faces
have the same structure, only one graph representing the facial geometry is required
with one node at each fiducial point. But since the individual parts of faces may look
different, each node of this graph is connected with a set of alternative local descriptions
of the respective fiducial point, e.g. at the eye there are some descriptions for female eyes,
others for male eyes, some for closed eyes, some for eyes with glasses, etc. Each node has
its own set, and during the matching process, the description that fits the fiducial point
in the image best is selected. Due to its combinatorial power (each node may select a
local description independently of the others), the GFK potentially represents a wide
range of different faces (see Chapter 5).

2.5.2 Determination of Facial Attributes

For the determination of facial attributes the general face knowledge has to be enriched
by context knowledge. This can be done by cardinal nodes indicating the context of
the face, for instance male or female, bearded or not, and whether or not the person
wears glasses (see Figure 2.8.a). By comparing a new image graph with the GFK, the
context knowledge can be used to determine the facial attributes of the image face (see
Chapter 6).

2.5.3 Objects in a Scene

The situation is very different for object recognition in cluttered scenes. Objects are in
general very different in structure; thus each object has to be represented by a different
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Figure 2.8: a) Faces all have the same general structure, but they differ in local features.
For a general face representation it is therefore reasonable to store for each facial point
a whole set of different local features that might be applicable alternatively, indicated as
different nodes connected to one blank node on the left. In addition, context knowledge
may group the local features into classes, for example male nodes versus female ones.
b) In order to interpret the image of a cluttered scene, several models have to be matched
to the image and in addition the order in depth has to be determined. Models compete
with each other for image space and cooperate with the image. Models or parts of models
are deactivated due to occlusion, as shown by blank features and dashed lines.

object graph, and each graph is matched to the image individually. Particular problems
arise from the fact that objects may occlude each other. As part of the matching process,
the system has to decide which regions of an object are occluded by others and which are
visible. A further constraint comes from the fact that objects cannot intersect. This can
be taken into account by enforcing a definite order in depth. If two model graphs overlap
in a scene, one has to be completely in front of the other. All this leads to a complicated
interaction between all model graphs matched to a scene. As shown in Figure 2.8.b, the
models compete with each other for image space, while mutual intersection is prohibited
(see also Chapter 7).

The concepts presented in this chapter will be extended and illustrated in the subsequent
chapters. First, I will discuss Dynamic Link Matching as a neural mechanism to treat
labeled graphs, and then present several illustrative applications. A conclusion will be
given in Chapter 8.
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Chapter 3

Dynamic Link Matching

Abstract: In a neural system, labeled graphs can be represented by layers of neurons. Dy-
namic Link Matching (DLM) is a mechanism to match such layers onto each other if their
feature patterns are similar. Dynamic Link Matching has four basic principles: the single layer
dynamics induces correlations encoding neighborhood; the dynamics of two layers synchronize
with respect to the common feature pattern; this synchrony is robust against noise and ac-
cidental links; fast synaptic plasticity rules out all accidental links and establishes a regular
connectivity between the two layers. Layer synchrony and connectivity improve in an iterative
process. Along with its potential for graph matching and object recognition, invariant under
translation, rotation, and mirror reflection, Dynamic Link Matching has two major drawbacks:
it is slow and it is expensive in terms of connectivity.

3.1 Introduction

In Chapter 2 labeled graphs were presented as a uniform data structure for representing
perceptual patterns. This Chapter 3 serves as a conceptual discussion of Dynamic Link
Matching (DLM), which is a neural dynamics for matching labeled graphs. A concrete
model of DLM is presented in Chapter 4.

Since conventional neural nets allow the synaptic weights to change only on the
slower time scale of learning and not during a recognition task, they do not seem to
be a natural architecture to deal with graphs, which require dynamic binding on a
fast time scale in order to account for the relational information. They are much more
appropriate for vectors. DLM is one of very few attempts to overcome this restriction and
to match patterns represented as graphs. Such a system has to be at least translation
invariant. In addition, it is rotation invariant and robust against distortion. Scale
invariance can in principle be achieved in a multiscale representation, but this has not
yet been demonstrated. Before I describe the task and principles of DLM I would like
first to give a short historical overview of the development of DLM.

3.1.1 History

Related to the problem of graph matching is the question of how a retinotopic projection
can self-organize during the weeks or months of ontogenesis. In both cases a regular map-
ping between two domains has to be established which preserves neighborhood relations,
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i.e. neighbors are connected with neighbors. A model for the ontogenesis of retinotopic
projections was proposed by WILLSHAW & VON DER MALSBURG (1976). This model is
formulated in terms of neural activity. The very same principle, but formulated in terms
of chemical markers, was demonstrated in (VON DER MALSBURG & WILLSHAW, 1977;
WILLSHAW & VON DER MALSBURG, 1979).

From these models KOHONEN (1982) derived his algorithm for the self-organization
of topographical feature maps. AMARI (1980, 1989) did a thorough analytical treatment
of layer dynamics and formation of topographical maps. HAUSSLER & VON DER MALS-
BURG (1983) derived autonomous equations for the link dynamics independent of the
specific layer dynamics.

Regular projection patterns can also self-organize between other than two-
dimensional domains. Different and more complicated structures are possible as well.
The self-organization of hypercolumns of orientation selective cells develops a mapping
between a circular one-dimensional pattern space and a cortical structure of two di-
mensions (VON DER MALSBURG, 1973). In case of ocular dominance stripes, two two-
dimensional structures, the left and right eye, compete with each other for one two-
dimensional structure in the cortex (VON DER MALSBURG, 1979). In both cases the
conflict in topography leads to pattern formation: hypercolumns or ocular dominance
stripes.

VON DER MALSBURG (1981, 1983, 1986) generalized the ideas of the retinotopy-
related models and proposed to apply the same principles to visual recognition tasks.
He introduced labeled graphs and formulated the idea of DLM as the neural realization
of graph matching. The main differences between the retinotopy model and DLM is that
the latter process is guided by features and their similarities, while the former has only
the constraint of preserving neighborhood relations. A second difference is that DLM
has to take place on a much faster time scale  a fraction of a second  while the other
may take weeks.

VON DER MALSBURG and BIENENSTOCK presented first model simulations for the
retrieval of stored graph structures (VON DER MALSBURG, 1985; BIENENSTOCK & VON
DER MALSBURG, 1987) and for pattern recognition by DLM (BIENENSTOCK & VON
DER MALSBURG, 1987; VON DER MALSBURG, 1988). In the pattern recognition appli-
cations three different patterns with artificial features were distinguished. KONEN & vON
DER MALSBURG (1992, 1993) applied DLM to symmetry detection, and its ability to
learn and generalize from single examples was demonstrated. Supplementary analytical
considerations and a fast version of DLM can be found in (KONEN et al., 1994).

WANG et al. (1990) were probably the first who applied DLM to a recognition task
on real world images, images of few faces as a gallery and a face with different expres-
sion as input. They also used running blobs instead of the stationary ones used in all
models before. More recently a model for face recognition was developed by KONEN &
VORBRUGGEN (1993) .
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3.2 Abstract Model

3.2.1 Task

DLM was proposed to serve as an elementary process to match and compare labeled
graphs in a neural system. The nodes of the graphs are represented by model neurons,
and each neuron has attached feature information. The graph topography is expressed by
lateral connections between neurons of one graph. They are usually excitatory between
neighbors and inhibitory for distant nodes. We assume two layers representing similar
patterns. Figure 3.1, for example, shows two graphs representing two different images of
the same face.

The task of DLM is to establish a connectivity between the two graphs that connects
only corresponding neurons. Two neurons correspond to each other if they represent
the same part of the object. This definition is obviously useless in a system that is
supposed to find these correspondences only on the basis of image information. A more
operational definition is the following: two neurons correspond to each other if they have
a similar feature and if they have common neighbors (i.e. neighbors should be connected
with neighbors). The second constraint of neighborhood preservation leads to continuous
and regular mappings, but the mapping may still contain mirror reflection, translation,
rotation, scaling, and distortion to a certain degree. From all these possible mappings
the first constraint of feature similarity distinguishes one as the best, and that one has
to be found.

In order to make all regular mappings possible, each neuron in one layer has to be
potentially connected to each neuron in the other layer (all-to-all connectivity). And
since preferably neurons with similar features should be connected, it is reasonable to
initialize the synaptic weights of the links with the similarity between the features. This
is indicated in Figure 3.1 by arrows of different line width. DLM has to rule out most
of them, ending up with an approximate one-to-one mapping.

3.2.2 Principles

DLM is a dynamic process that can be modeled in many different ways. A system using
a running blob dynamics will be presented in the following chapter. In this section
I will try to illustrate four basic principles of DLM that are important for a model
based on neural activities. In the formulation of chemical markers several terms would
have to be replaced, but the principal ideas would be the same. In the formulation of
autonomous link dynamics the following four principles would have to be replaced by
two more abstract ones.

Correlation Encodes Neighborhood

Since topography plays a crucial role, the first principle of DLLM is that the dynamics on
one layer encodes neighborhood relations through correlation in the neural activities (see
Figure 3.2). The correlation between neurons is high if they are adjacent and decreases
with distance. Conversely, knowing the temporal signals of two neurons one can tell from
the types of correlation whether they are neighbors or not. This can be achieved by many
different dynamics generating clustered activities. In most models so far, stationary blobs
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Figure 3.1: Initial and final connectivity for DLM. Image and model are represented
by layers of 16x17 and 10x10 nodes, respectively, indicated by black dots. Each node
is labeled with a local feature indicated by small texture patterns. Initially, the image
layer and the model layer are connected all-to-all with synaptic weights depending on
the feature similarities of the connected nodes, indicated by arrows of different line
widths. The task of DLM is to select the correct links and establish a regular one-to-one
mapping. We see here the initial connectivity at £ = 0 and the final one at ¢ = 10 000.
Since the connectivity between a model and the image is a four-dimensional matrix, it is
difficult to visualize it in an intuitive way. If the rows of each layer are concatenated to a
vector, top row first, the connectivity matrix becomes two-dimensional as shown at the
left. The model index increases from left to right, the image index from top to bottom.
High similarity values are indicated by black squares. A second way to illustrate the
connectivity is the net display shown at the right. The image layer serves as a canvas
on which the model layer is drawn as a net. Each node corresponds to a model neuron,
neighboring neurons are connected by an edge. The location of the nodes indicates the
center of gravity of the projective field of the model neurons, considering synaptic weights
as physical mass. In order to favor strong links, the masses are taken to the power of
three. (See Figure 3.6 for connectivity development in time.)
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Figure 3.2: First principle of DLM. Neighborhood relations in each layer are encoded by
signal correlation. As an example the dynamics is shown as a running blob of activity.
From the temporal signals shown on the right one can tell that neurons 1 and 2 are
neighbors while neurons 2 and 3 are not.

of activity have been used. In Section 4.2.3 a dynamics with running blobs is presented.
Waves of different orientation are being investigated in our institute as well (SCHWARZ,
1995), and one could also think of oscillatory modes of different frequency such as in a
membrane or a layer of coupled chaotic oscillators.

Layer Dynamics Synchronize

The second principle of DLM is that of layer synchronization (see Figure 3.3). Assum-
ing two layers of the same size are connected by a perfect one-to-one mapping, then
the activity dynamics of both layers have to synchronize such that after a short while
corresponding neurons of the two layers are well-correlated, and vica versa: you can infer
from the temporal signals of neurons of two different layers whether they correspond to
each other or not. This is typically achieved by cooperation through the mutual connec-
tions. As a side effect of the cooperation the blobs become larger and the layer activities
stronger.

Synchrony is Robust Against Noise

The third principle of DLM is robustness against noise (see Figure 3.4). Usually the initial
connectivity between two layers is not perfect but given only by the feature similarities of
the neurons. Hence many accidental links are present and correct links may be missing
if the patterns are not identical. Distortion may cause the correct mapping not to be
one-to-one. If one pattern is partially occluded only the remaining part can be matched.

Robustness against noise is achieved by cooperation between neighboring links. Two
links are neighboring if both the source nodes and the destination nodes are neighbors.
Since each link tends to synchronize the connected nodes, and since neighboring nodes
are synchronized through the layer dynamics, groups of neighboring links can cooperate
and are more successful than accidental links, even if the latter are stronger. Groups
of neighboring links emerge if whole patches of local features are similar, i.e. if at least
subgraphs can be matched. The cooperation between neighboring links is illustrated in
Figure 3.5.
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Figure 3.3: Second principle of DLM. Layer activity dynamics synchronize, and corre-
lation of neurons of different layers encode correspondence. Initially the blobs move in
different directions. Since the input into one layer is a copy of the activity of the other
layer, the two blobs tend to synchronize and run aligned with each other from then on.
The correspondence between neurons of different layers can then be read off their time
signals as shown in the bottom graphs. As a side effect of the cooperation the blobs
become larger.
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Figure 3.4: Third principle of DLM. Layer activity dynamics synchronize despite pres-
ence of noise, i.e. accidental links, missing links, distortion, and occlusion. Since the
blobs cover a neighborhood of cells, links can cooperate if they have same neighbors in
both layers. This reduces the influence of accidental links, which are usually isolated
(see also Figure 3.5).
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Figure 3.5: Fourth principle of DLM. The initial connectivity is refined on the basis
of correlations between corresponding neurons. Since the layer dynamics synchronize
despite noise in the initial connectivity, accidental links can be suppressed by other links
connecting better correlated neurons. The final state is shown on the right. On the left
the cooperation between links is illustrated. We see here two links converging onto neuron
2. One is weaker than the other but it can cooperate with the two directly neighboring
links. That favors the weak one, which will eventually survive the link dynamics.

Synchrony Structures Connectivity

The first three principles induce correlations between neighboring neurons or those cor-
responding to each other if they belong to different layers. This synchrony is robust
against noise and usually cleaner than the initial connectivity. As a fourth principle one
can therefore apply fast synaptic plasticity to modify the links on the basis of induced
synchrony between neural activities (see Figure 3.5). It typically consists of a Hebbian-
like growth rule, but on a fast time scale, and a normalization rule. The growth rule
favors links between synchronized neurons, while the normalization rule supresses links
between less synchronized neurons. This principle works iteratively, i.e. synchrony im-
proves with the development of a regular connectivity and the connectivity is refined by
the establishing synchrony. Figure 3.6 shows connectivity and correlations developing in
time. One can see that at a given time the correlations are cleaner than the connectivity
and that both improve together.

3.3 Discussion

3.3.1 Critique

In Chapter 2 it was argued that labeled graphs are a promising basis for a uniform
theory of perception. The problem with graphs is that they do not seem to fit into
neural architecture. So far DLLM is the only serious approach for processing graphs in
neural nets, and we have seen its principles. Despite its potential, DLM is not able to
account for the performance of the mature visual system for the two following reasons:
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Figure 3.6: Connectivity and correlations developing in time. It can be seen how the
correlations develop faster and are cleaner than the connectivity. Both are iteratively
refined on the basis of the other. (Based on simulations as described in Chapter 4.)

DLM is Too Slow

So far DLM has been applied only to visual tasks. Psychophysical experiments by
SUBRAMANIAM et al. (1995) show that our visual system is extremely flexible and quick.
Subjects are able to recognize line drawings of objects from a sequence in which each
object is shown only for 72 ms. Neurobiological experiments show that highly object-
specific cells in the anterior superior temporal polysensory area (STPa) respond with a
delay of only 70 ms to the stimulus (OrRAM & PERRETT, 1994). If one assumes 10 ms
for the interaction between two neurons, one would have only 7 iterations left for one
recognition. That is definitely too few for DLM in the current formulation.

There are several ways to speed up DLM under certain conditions. For example if
the outline of the object is given by reliable segmentation cues, planar waves could be
induced running twice over the object in different directions. By this, the connectivity
can in principle be induced very quickly. DLM with running waves has recently been
investigated by SCHWARZ (1995) .

VON DER MALSBURG (1994) suggested that DLM in its pure form is used only in
the infant, and that later shortcuts are developed with experience to achieve the high
performance of the adult. On difficult visual tasks the shortcuts fail, and then even the
adult system has to revert to the slow process of DLM.

It is interesting to compare the speed of DLM with other neural models of perception.
It is obvious that feed-forward nets such as back-propagation perform much faster on
recognition tasks once they are trained. But in terms of training effort it has been
shown that DLM is much faster (BIENENSTOCK & DOURSAT, 1991; KONEN & VON DER
MALSBURG, 1992, 1993). Due to the matching process, DLM can take full advantage of

24



single examples. While typical neural nets have to learn invariance or robustness against
transformations such as translation, rotation, and distortion, DLM is already endowed
with these abilities.

A performance comparison of DLM with KOHONEN’S algorithm has been done by
BEHRMANN (1993). The Kohonen-algorithm, which has been derived from DLM, is
widely used in technical applications, and one should assume that it is much more efficient
than the original model. But it has turned out that both models are comparable in
terms of speed. DLM has the additional advantage of being less sensitive to parameter
variations.

DLM is Too Expensive in Terms of Connectivity

As seen above, DLM initially requires links from all neurons in one layer to all neurons
in the other in order to obtain full invariance against translation, rotation, etc. It it clear
that our visual system cannot afford all-to-all connectivity from V1 to all stored models
in our memory. Somehow the huge number of required connections has to be reduced.

The only solution to this problem is to introduce hierarchy. This can be done in
two ways. Firstly, a cascade of restricted mappings approximates the general one with
much less connectivity. This principle was very well demonstrated in (ANDERSON &
VAN ESSEN, 1993; VAN ESSEN et al., 1994; OLSHAUSEN, 1994).

Secondly, the mapping can start with coarse resolution and then be refined to a higher
resolution level. RINNE (1995) has applied DLLM in this way to grey value images. Instead
of a full initial connectivity he used a sparse connectivity of superlinks, each superlink
representing a subarray of normal links. After ruling out most of the superlinks by DLM,
he replaced the remaining ones by the respective bunches of normal links and continued
refining the mapping by DLM. He thus was able to match 128 x128 layers of neurons
with each other. A similar technique has been used by WURTZ (1995) for a hierachical
DLM on a wavelet multiscale representation. These two hierarchical DLM models are
still biologically implausible, since in them links of one type get directly replaced or
initialized by links of another type.

3.3.2 Comparison with Other Models

Object recognition invariant against translation is a very difficult task for conventional
neural systems with fixed connectivity. For that reason only few attempts have been
made to build such systems.

The first class of systems is the Neocognitron of FUKUSHIMA et al. (1983) and related
models such as the weight sharing back-propagation networks (LECUN et al., 1989), in
one dimension also known as time delayed neural networks (TDNN). The Neocognitron is
a feed-forward network which achieves translation invariance by spatial low-pass filtering
and subsampling of neural responses, by which also discriminative information gets lost.
Translation invariance is limited since the possible low-pass filtering and subsampling
depends on the complexity of the features. The weight sharing back-propagation applies
only subsampling and achieves very little translation invariance. The training effort is
very high for these architectures and the Neocognitron in addition requires a very careful
design of the network layout highly adapted to the training patterns. Compared to that,
DLM achieves full translation invariance without loss of discriminative capabilities. It
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has a simple and robust architecture and is able to learn and generalize from single
examples. The main advantages of the feed-forward architectures is that they are much
faster in recognition and that they show a feature hierarchy, which is not yet present in
the DLM models.

A very different approach are the neural routing circuits (ANDERSON & VAN ESSEN,
1993; vAN ESSEN et al., 1994; OLSHAUSEN, 1994). The authors have implemented a
cascade of restricted mappings between neural layers; those can be controlled and realize
a large range of mappings. This system is restricted to translation and scaling. Rotation
as well as distortion could easily be implemented, but if the system gets too many
degrees of freedom the control might become too expensive. The neural routing circuits
perform a normalization of an input pattern and recognition has to be achieved by an
additional module such as an associative memory. Their advantage is that they allow the
system to control the mappings and that the degrees of freedom are reasonably reduced.
Thus the neural routing circuits can establish the appropriate mapping between image
and model much faster than DLM. Problems may arise with general distortions, which
cannot easily be accounted for by neural routing circuits, since it would require too much
control structure.

3.3.3 Future Perspectives

DLM need not be restricted to visual pattern recognition. The potential of labeled graphs
goes much farther, and the principles of DLM are more generally applicable. One might
therefore think about representing more abstract patterns such as trajectories, language,
or even ideas by means of labeled graphs and about matching them with DLM. The
next step would then be to apply DLM to graphs with a more general topography than
just the two-dimensional one of the visual field. Graphs of high dimension and unusual
topography should be treatable by DLM as well.

Another direction of research would be of a more theoretical nature. So far DLM-
models have been built mainly heuristically. Many design decisions are motivated by
practical experience rather by a solid theoretical basis. I think it would be very helpful
to consider DLM on the more abstract level of autonomous link dynamics. The work
of HAUSSLER & VON DER MALSBURG (1983) and WAGNER & VON DER MALSBURG
(1995) goes in this direction, but is restricted to the retinotopy problem.

Finally it would be very interesting to integrate DLLM with the other models discussed
above. Neocognitron and related models, neural routing circuits, and DLM all have their
advantages and drawbacks, and it might be possible to combine their capabilities.
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Chapter 4

Face Recognition by
Dynamic Link Matching

Abstract: A complete system for face recognition based on Dynamic Link Matching (DLM)
is presented. Faces are represented by layers of neurons with jets attached as local features. A
gallery of model layers is connected to one image layer, which is of larger size. The connectivity
between models and image is initialized according to the jet similarities. The layer dynamics
generates blobs of activity continuously moving over the layers. The blobs interact via the
connectivity matrices and align. Based on that, fast synaptic plasticity develops a one-to-
one mapping between the layers. The model layers have a total activity dependent on their
similarity to the image. A winner-take-all mechanism sequentially rules out the less similar
models, letting the most similar model survive. Since the image layer is larger than the model
layers, an attention window is introduced in the form of a large blob restricting the space
available for the small running blob. Due to interactions with the running blob, the attention
blob automatically aligns with the correct face position. Recognition results on galleries of up
to 111 faces are presented.

4.1 Introduction

In the previous chapter 1 described Dynamic Link Matching as a neural process for
matching labeled graphs. DLM systems have recently been developed by KONEN & VON
DER MALSBURG (1992, 1993) and KONEN & VORBRUGGEN (1993). They all use the
following type of dynamics: Noise, local excitation and global inhibition on the image
layer induce the development of one stationary blob of activity. Links transfer this
activity from the image to the model layer, and the same dynamics generates a second
stationary blob there. If the patterns represented on the image and the model layer
are similar, the blob on the model layer is likely to appear in a corresponding location.
After both blobs have developed, the weights of the links between the layers are modified
based on the co-activity of image and model neurons. Then all neurons are reset to zero
activity, and the process starts from the beginning. The blob dynamics can be replaced
by algorithmically setting a blob at a random position on the image layer and at the
position in the model layer with maximal input from the image layer (KONEN et al.,
1994).

This stationary blob dynamics for DLLM has two conceptual drawbacks: Firstly, the
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whole process has to be controlled in a fairly artificial way to realize the sequence of
blobs and weight adaptation steps. One would rather have an autonomous dynamics
that needs no accurate schedule for layer dynamics, weight adaptation, and resetting.
Secondly, the information about correspondence that was obtained with the pair of
blobs is almost completely lost for the next pair of blobs. It is only stored in the
weight matrix as a small modification. Topography is only conveyed by the overlap of
the blobs, which seems to be inherently a slow process. The first intention of the work
presented here was therefore to replace the stationary blob dynamics by a continuous and
autonomous dynamics to overcome the two above-mentioned drawbacks. The solution
that I chose was to introduce delayed self-inhibition that makes the activity blob run. It
moves continuously over the whole layer. The blob positions at one particular moment
are used for determining the blob positions at the next moment, i.e. the information
about correspondences is preserved in the layer dynamics. In addition, topography is
conveyed by the continuous motion of the blobs, which is potentially faster than the old
method. Weight adaptation can take place on-line, and no sophisticated control schedule
is required. Running blobs for DLM have previously been used by WANG et al. (1990),
but they generated them with asymmetrical convolution kernels, which has conceptual
drawbacks: For example, since the speed and direction of the blobs is fixed, layers must
have wrap-around conditions and thus have to be of equal size.

It has always been claimed that DLM is a model for object recognition. Although it
serves as the neural conceptual basis of an already successful technical face recognition
system (LADES et al., 1993; WISKOTT et al., 1995; Chapter 5), the DLM recognition
systems are very limited so far. In most applications only few models, about three, were
discriminated. The data were often artificial, and the detection of the correct model was
done in a biologically implausible way, e.g. by considering the sum over the weights, a
measure that is not accessible in a real system. It was therefore my second intention to
build a DLM system that is actually a complete recognition system, solving the same task
as the technical system for face recognition, although much slower. A gallery of 111 faces
is stored and new faces on images larger than the models have to be recognized. This
requires finding the face in the image, matching it to the model gallery, and recognizing
the correct one among the 111 competing alternatives.

4.2 The System

4.2.1 Architecture and Dynamics — Overview

Figure 4.1 shows the general architecture of the system. Faces are represented as rectan-
gular graphs by layers of neurons. Each neuron represents a node and has a jet attached.
A jet is a local description the grey-value distribution (see Appendix A). Topographical
relationships between nodes are encoded by excitatory and inhibitory lateral connections.
The model graphs are scaled horizontally and vertically and aligned manually, such that
certain nodes of the graphs are placed on the eyes and the mouth (cf. Section 4.3.1).
Model graphs (10x10 nodes) are smaller than the image graph (16x17 nodes). Since
the face in the image may be arbitrarily translated, the connectivity between model and
image domain has to be all-to-all initially. The connectivity matrices are initialized us-
ing the similarities between the jets of the connected nodes. DLM serves as a process
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Figure 4.1: Architecture of the DLM face recognition system. Several models are stored
as neural layers of local features on a 10x10 grid, as indicated by the black dots. A new
image is represented by a 16x17 layer of nodes. Initially, the image is connected all-to-all
with the models. The task of DLM is to find the correct mapping between the image
and the models, thus providing translation invariance and robustness against distortion.
Once the correct mapping is found, a simple winner-take-all mechanism can detect the
model that is most active and most similar to the image.

to restructure the connectivity matrices and to find the correct (one-to-one) mapping
between the models and the image (see Figure 3.1). The models cooperate with the
image depending on their similarity. A simple winner-take-all mechanism sequentially
rules out the least active and least similar models, and the best-fitting one eventually
survives.

The dynamics on each layer (graph) of neurons (nodes) is such that it produces a
running blob of activity which moves continuously over the whole layer. An activity
blob can easily be generated from noise by local excitation and global inhibition. 1t is
caused to move by delayed self-inhibition, which also serves as a memory for the locations
where the blob has recently been. Since the models are aligned with each other, it is
reasonable to enforce alignment between their running blobs by excitatory connections
between neurons representing the same facial location. The blobs on the image and
the model layers cooperate through the connection matrices; they tend to align and
induce correlations between corresponding neurons. Then fast synaptic plasticity and a
normalization rule coherently modify the synaptic weights, and the correct connectivities
between models and image layer can develop. Since the models get different input from
the image, they differ in their total activity. The model with strongest connections from
the image is the most active one. The models compete on the basis of their total activity.
After a while the winner-take-all mechanism suppresses the least competitive models,
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Layer dynamics:
hi(te) = 0
WP(t) = fh”_FZmaX(gl po(hh)) — th (h2) — Kpss” (4.1)

+Knh max (qu (hg)) + Kha (a(ai) — Bac) — BeO(rg — 1P)

S?(to) =0
EH) = A ) (42)
1\ 2
e = e (_ (i 202) ) (4.3)
0 h <0
o(h) = h/p 0<h<p (4.4)
1 h>p

Attention dynamics:

a;(to) = anN(J7)
al(t) = (a +z:gZ 70(a Baz (ab) +/<,aho(h,f)> (4.5)
Link dynamics:
WHt) = Si=max (Sy(J7, T, os)
W) = Aw (a(h,f)a(hg) ye <max(Wp4/s'ff,) 1)) W (4.6)
Recognition dynamics:
Tp(to) =1
() = AP (Fp - max(rp’Fp’)> (4.7)

Fr(t) = 3 o(hi)

Table 4.1: Formulas of the DLM face recognition system

and eventually only the best one survives. Since the image layer may be significantly
larger than the model layers, I introduce an attention window in form of a large blob.
It interacts with the running blob, restricts its region of motion, and can be shifted by
it to the actual face position.

The equations of the system are given in Table 4.1; the respective symbols are listed
in Table 4.2. In the following sections I will explain the system step by step: blob
formation, blob mobilization, interaction between two layers, link dynamics, attention
dynamics, and recognition dynamics. (In order to make the description clearer, parts of
the equations in Table 4.1 corresponding to these functions will be repeated.)
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Variables:

o2 S ow >

Indices:

(p:p'54:4")

=(0;0;1,..., M;1,...., M)
=(1,...,M;1,..., M;0;0)

(354" 5;5")
Functions:
Gi—i'
o(h)

o)
N(T)
S¢(t77 jl)

Parameters:
Bn = 0.2
Bao = 0.02
Bac = 1
Bo o0
Kps = 1
Khh = 1.2
Khae = 0.7
Kah = 3
At
=i 0.2
=A_ = 0.004
Ae = 03
Aw = 0.05
A = 0.02
any = 0.001
as = 0.1
p = 2
og = 1
rg = 0.5

internal state of the layer neurons

delayed self-inhibition

attention

synaptic weights between neurons of two layers
recognition variable

fitness, i.e. total activity of each layer

layer indices, 0 indicates image layer, 1,..., M indicate
model layers

if formulas describe image layer dynamics

if formulas describe model layers dynamics
two-dimensional indices for the individual neurons in lay-
ers (p;p'; q; ¢') respectively

Gaussian interaction kernel

nonlinear squashing function

Heavyside function

saliency of feature jet J (see Equation A.5)

similarity between feature jets J and J' (see Equa-
tion A.7)

strength of global inhibition

strength of global inhibition for attention blob
strength of global inhibition compensating for the atten-
tion blob

global inhibition for model suppression

strength of self-inhibition

strength of interaction between image and model layers
effect of the attention blob on the running blob

effect of the running blob on the attention blob

decay constant for delayed self-inhibition

ifh—s>0

ifh—s<0

time constant for the attention dynamics

time constant for the link dynamics

time constant for the recognition dynamics

parameter for attention blob initialization

minimal weight

slope radius of squashing function

Gauss width of excitatory interaction kernel

threshold for model suppression

Table 4.2: Variables and parameters of the DLM face recognition system
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4.2.2 Blob Formation

Blob formation on a layer of neurons can easily be achieved by local excitation and global
inhibition. Local excitation generates clusters of activity, and global inhibition lets the
clusters compete against each other. The strongest one will finally suppress all others
and grow to an equilibrium size determined by the strengths of excitation and inhibition.
The corresponding equations are (cf. Equations 4.1, 4.3, and 4.4):

il 1!

gi-it = exp (—u> (4.9)

202

9
0 : h<0

o(h) = hlp : 0<h<p . (4.10)
1 : h>p

The internal state of the neurons is denoted by h;, where 7 is a two-dimensional
Cartesian coordinate for the location of the neuron. The neurons are arranged on a
regular square lattice with spacing 1, i.e. i = (0,0),(0,1),(0,2),...,(1,0),(1,1),.... The
neural activity (which can be interpreted as a mean firing rate) is determined by the
squashing function o(h) of the neuron’s internal state h. The neurons are connected
excitatorily through the Gaussian interaction kernel g. The strength of global inhibition
is controlled by f,. It is obvious that a blob can only arise if §, < gy = 1 (imagine only
one neuron is active), and that the blob is larger for smaller ;. Infinite growth of A is
prevented by the decay term —h, because it is linear, while the blob formation terms
saturate due to the squashing function o(h). The special shape of o(h) is motivated
by three factors. Firstly, o vanishes for negative values to suppress oscillations in the
simulations by preventing undershooting. Secondly, the high slope for small arguments
stabilizes small blobs and makes blob formation from low noise easier, because for small
values of h the interaction terms dominate over the decay term. Thirdly, the finite
slope region between low and high argument values allows the system to distinguish
between the inner and outer parts of the blobs by making neurons in the center of a blob
more active than at its periphery. Additional multiplicative parameters of the decay
or excitation terms would only change time and activity scale, respectively, and do not
generate qualitatively new behavior. In this sense the parameter set is complete and
minimal. A detailed discussion of this dynamics has been given by AMARI (1977), also
in the context of self-organizing topographic mappings (AMARI, 1980, 1989).

4.2.3 Blob Mobilization

Generating a running blob can be achieved by delayed self-inhibition, which drives the
blob away from its current to a neighboring location, where the blob generates new self-
inhibition. This mechanism produces a continuously moving blob (see Figure 4.2). The
driving force and the recollection time as to where the blob has been can be indepen-
dently controlled by their respective time constants. The corresponding equations are
(cf. Equations 4.1 and 4.2):
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Figure 4.2: A sequence of layer states as simulated with Equations 4.11 and 4.12. The
activity blob h shown in the middle row has a size of approximately six active nodes
and moves continuously over the whole layer. Its course is shown in the upper diagram.
The delayed self-inhibition s, shown in the bottom row, follows the running blob and
drives it forward. One can see the self-inhibitory tail that repels the blob from regions
just visited. Sometimes the blob runs into a trap (cf. column three) and has no way to
escape from the self-inhibition. It then disappears and reappears again somewhere else
on the layer. (The temporal increment between two successive frames is 20 time units.)

hi(t) = —h; + Z (gi—iro(hir)) = Bn D> o(hir) — Knssi, (4.11)

i i

) = A(h — ). (4.12)

The self-inhibition s is realized by a leaky integrator with decay constant A.. The
decay constant has two different values depending on whether h—s is positive or negative.
This accounts for the two different functions of the self-inhibition. The first function is to
drive the blob forward. In this case h > s and a high decay constant A, is appropriate.
The second function is to indicate where the blob has recently been, i.e. to serve as a
memory and to repel the blob from regions recently visited. In this case h < s and a
low decay constant A\ _ is appropriate. For small layers, A should be larger than for
large ones, because the blob visits each location more frequently. The speed of the blob
is controlled by A, and the coupling parameter x,s. They may also change the shape
of the blob. Small values such as those used in the simulations presented here allow the
blob to keep its equilibrium shape and drive it slowly; large values produce a fast-moving
blob distorted to a kidney-shape.

33



layer input internal layer state layer input internal layer stat

i [=][=1[=] =] [x] [=] [=][=][=][=] =] =] =1 === N

o | (o] ] [ [ ] [=] [=] [=] [=][=]s] - -

q) [ O|ojo|djafo|C] 0|0|00|0|o . -

> . o|o|o|d OO0 o . -
um - o|o|0 O o|o =(m ulm

CU n u| |O [u] | [=]=] [] gl

- I d w| [ [|m o[ JO/o D00 [ )

D [- - = BOREE o EEE N O [u]

m- ] [] = o] [ ][] ] ] [] [ [] O ol

CG = u LI = |-/ o= |o|0/Og] (Lo [ O |- O ]
. - -IEI-D [u] (][] [u] m(nlm - = |0

E - ANDED = ]} e[} ] [ ] (= ] . [a] o

r— | OREE AEEEEREREE EEEE ] LN [s] (]
[] - oo |o|o|ofo|o|o|ofo{O]jola|o " [w]ER[ [ L[] =] [}
= [=] [=1"=] [=] [=] =] (=1 =110 =1 =] =] ] == THE = [oga |
B [m)[=)a] =] =1 =1 EE ] = = E ] EEE - ][0 ]

—

()] B0 . o= [oOge] [~ o [a]mTm[-]- O[o[=[0 O

> OEBE - ole[Oo]- [m][«]o HO0ODEE oo O

< BB DDDD'H.ID N m- ] ] I

—_— n - ] BEIEIEEICICIREE [0E O o= |0

— -l BEEREEENERN = |E- [} o] - o

(D) BEEERRE .. Om

ho} .= ) I o] ] = ] ] ][

um E ] O o
o .l HEIR [] [ [ EECOEE
E El = n =l S]] Cle O

Figure 4.3: Synchronization between two running blobs as simulated with Equa-
tions 4.13 and 4.14. Layer input as well as the internal layer state A is shown at an
early stage, in which the blobs of two layers are not yet aligned, left, and at a later
state, right, when they are aligned. The two layers are of different size, and the region
in layer 1 that correctly maps to layer 2 is indicated by a square defined by the dashed
line. In the early non-aligned case one can see that the blobs are smaller and not at the
location of maximal input. The locations of maximal input indicate where the actual
corresponding neurons of the blob of the other layer are. In the aligned case the blobs
are larger and at the locations of high layer input.

4.2.4 Layer Interaction and Synchronization

In the same way that the running blob is repelled by its self-inhibitory tail, it can also
be attracted by excitatory input from another layer as conveyed by a connection matrix.
Imagine two layers of the same size mutually connected by the identity matrix, i.e. each
neuron in one layer is connected only with the one corresponding neuron in the other
layer having the same index value. The input then is a copy of the blob of the other
layer. This favors alignment between the blobs, because then they can cooperate and
stabilize each other. This synchronization principle holds also in the presence of the noisy
connection matrices generated by real image data (see Figure 4.3). The corresponding
equation is (cf. Equation 4.1):

() = —hi 42 (9w (hy) = Bu D _o(hy) — kinss]

i i

i max (Whia(h)), (4.13)

P(t) = Ap(ht —sP). (4.14)
The two layers are indicated by the indices p and ¢. The synaptic weights of the
connections are W, and the strength of mutual interaction is controlled by the parameter

Knh- (The reason why I use the maximum function instead of the usual sum will be
discussed in Section 4.2.10.)
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4.2.5 Link Dynamics

In Section 3.2.2 it was demonstrated that the links between two layers can be cleaned
up and structured by fast synaptic plasticity on the basis of correlations between pairs
of neurons (see Figure 3.6). The correlations result from the layer synchronization de-
scribed in the previous section. The link dynamics typically consists of a growth rule
and a normalization term. The former lets the weights grow according to the correlation
between the connected neurons. The latter prevents the links from growing indefinitely
and induces competition such that only one link per neuron survives which suppresses
all others. The corresponding equations are (cf. Equations 4.6):

WhH(t) = S =max (Sy(J7. T}, ),
W) = A <a(h§3)a(hg) o(max(ww/s’;z)—l))wgq. (4.15)

Links are initialized by the similarity S; between the jets J of connected nodes (see
Equation A.7). The parameter as guarantees a minimal positive synaptic weight, per-
mitting each link to suppress others, even if the similarity between the connected neurons
is small. This can be useful to obtain a continuous mapping if a link has a neighborhood
of strong links inducing high correlations between the pre- and postsynaptic neurons of
the weak link. The synaptic weights grow exponentially, controlled by the correlation
between connected neurons defined as the product of their activities o(h})o(h?). The
learning rate is additionally controlled by Ay,. Due to the Heavyside-function ©, normal-
ization takes place only if links grow beyond their initial value. Then the link dynamics is
dominated by the normalization term, with a common negative contribution for all links
converging to the same neuron. Notice that the growth term, based on the correlation,
is different for different links. Thus the link with the highest average correlation will
eventually suppress all others converging to the same neuron. Since the similarities Sy
cannot be larger than 1, the synaptic weights W are restricted to the interval [0, ..., 1].

4.2.6 Attention Dynamics

The alignment between the running blobs depends very much on the constraints, i.e.
on the size and format of the layer on which they are running. This causes a problem,
since the image and the models have different sizes. I have therefore introduced an
attention blob which restricts the movement of the running blob on the image layer to
a region of about the same size as that of the model layers. Each of the model layers
likewise has an attention blob to keep the conditions for their running blobs similar to
that in the image layer; this is important for alignment. The attention blob restricts
the region for the running blob, but it can be shifted by the latter into a region where
input is especially large and favors activity. The attention blob therefore automatically
aligns with the actual face position (see Figures 4.4 and 4.5). The attention blob layer is
initialized by a primitive segmentation cue, in this case the saliency of the respective jets
(see Equation A.5), since the norm indicates the presence of textures of high contrast.
The corresponding equations are (cf. Equations 4.1 and 4.5):
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A(E) = bt 3 (meo (1) = 50 3 0 (hE) = ]

ZI

i MaX (WHia(he)) + Fna (0(a2) — Bac) (4.16)
$i(t) = Ai(hﬁsi), (4.17)

(t) = aN(T7),
B0 = A (ol S ioled) < AT o)+ o). (119

The equations show that the attention blob a is generated by the same dynamics as
was discussed in Section 4.2.2 for the formation of the running blob, without delayed
self-inhibition, though since the attention blob is to be larger than the running blob, 3,
has to be smaller than 3,. The attention blob restricts the region for the running blob via
the term kp, (0(a) — B,.), which is an excitatory blob o(a!) compensating the constant
inhibition f3,.. The attention blob on the other hand gets excitatory input r.,0(hY) from
the running blob. By this means the running blob can slowly shift the attention blob
into its favored region. The dynamics of the attention blob has to be slower than that
of the running blob; this is controlled by a value A\, < 1. N is the saliency of the jets,
and a,s determines the initialization strength.

4.2.7 Recognition Dynamics

Each model cooperates with the image depending on its similarity. The most similar
model cooperates most successfully and is the most active one. Hence the total activity
of the model layers indicates which is the correct one. I have derived a winner-take-all
mechanism from EIGEN’S (1978) evolution equation and applied it to detect the best

model and suppress all others. The corresponding equations are (cf. Equations 4.1 and
4.7):

hf(f) = 7hp_‘_z Gi— Z'U )) ﬁhz ( ) KhsS; sy (4'19)

i i

+Knh max (qu (h;’)) + Kna (0(a?) = Bae) — BeO(rg — 1P),

P() = Ac(h— ), (4.20)
™(ty) = 1,
P(t) = MNP <F” - mpzlix(r”’F”')> : (4.21)

P = Yo(h?).

The total layer activity is considered as a fitness FP, different for each model p.
The modified evolution equation can be easily analyzed if the FP are assumed to be
constant in time and the recognition variables r? are initialized to 1. For the model
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L — — T~ 7 region of the object to match

strong running blob
——— independent courses of weak bl
——p» aligned courses of strong blobs

attention blob
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image layer
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Figure 4.4: Schematic of the attention blob’s function. The attention blob restricts
the region in which the running blob can move. The attention blob, on the other hand,
receives input from the running blob. That input will be strong in regions where the
blobs in both layers cooperate and weak where they do not (see Figure 4.3). Due to this
interaction the attention blob slowly moves to the correct region indicated by the square
of dashed lines. The attention blob in the model layer is required to keep the conditions
for the running blobs symmetrical.
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Figure 4.5: Function of the attention blob, using an extreme example of an initial
attention blob manually misplaced for demonstration. At ¢ = 150 the two running blobs
ran synchronously for a while, and the attention blob has a long tail. The blobs then
lost alignment again. From ¢ = 500 on, the running blobs remained synchronous, and
eventually the attention blob aligned with the correct face position, indicated by a square
of dashed lines. The attention blob moves slowly compared to the small running blob,
as it is not driven by self-inhibition. Without an attention blob the two running blobs
may synchronize sooner, but their alignment will never become stable.

38



layer p, with the highest fitness, the equation simplifies to 772 (t) = \rPo(1 — rPe)FP
with a stable fixed point at P = 1. For all other models the equation then simplifies to
rP(t) = A\rP(FP — FPv), which results in an exponential decay of the % for all p # p.
When a recognition variable r? drops below the suppression threshold ry, the activity
on layer p is suppressed by the term —[3y©(ry — r?). The time scale of the recognition
dynamics can be controlled by A,.

4.2.8 Bidirectional Connections

The connectivity between two layers is bidirectional and not unidirectional as in the
previous system (KONEN & VORBRUGGEN 1993). This is necessary for two reasons:
Firstly, by this means the running blobs of the two connected layers can more easily
align. With unidirectional connections one blob would systematically run behind the
other. Secondly, connections in both directions are necessary for a recognition system.
The connections from model to image layer are necessary to allow the models to move
the attention blob in the image into a region that fits the models well. The connections
from the image to the model layers are necessary to provide a discrimination cue as to
which model best fits the image. Otherwise each model would exhibit the same level of
activity.

4.2.9 Blob Alignment in the Model Domain

Since faces have a common general structure, it is advantageous to align the blobs in
the model domain to insure that they are always at the same position in the faces,
either all at the left eye or all at the chin etc. This is achieved by connections between
the layers and leads to the term + Y ; max, (g,;,ifa(hf,/)) instead of + >, (gi_i#o(h%))
in Equation 4.1. If the model blobs were to run independently, the image layer would
receive input from all face parts at the same time, and the blob there would have a hard
time aligning with a model blob, and it would be very uncertain whether it would be the
correct one. The cooperation between the models and the image would depend more on
accidental alignment than on the similarity between the models and the image, and it
would then be very likely that the wrong model is picked up as the recognition result.
One alternative is to let the models inhibit each other such that only one model can
have a blob at a time. The models then would share time to match onto the image, and
the best-fitting one would get most of the time. This would probably be the appropriate
setup if the models were very different and without a common structure, as it is for
general objects. The disadvantage is that the system needs much more time to decide
which model to accept, because the relative layer activities in the beginning depend
much more on chance than in the other setup.

4.2.10 Maximum Versus Sum Neurons

The model neurons used here use the maximum over all input signals instead of the sum.
The reason is that the sum would mix up many different signals, while only one can be
the correct one, i.e. the total input would be the result of one correct signal and many
misleading ones. Hence the signal-to-noise ratio would be very low. I have observed an
example where even a model identical to the image was not picked up as the correct
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one, because the sum over all the accidental input signals favored a completely different-
looking person. For that reason I introduced the maximum input function, which is
reasonable since the correct signal is likely to be the strongest one. The maximum rule
has the additional advantage that the dynamic range of the input into a single cell does
not vary much when the connectivity develops, whereas the signal sum would decrease
or increase significantly during synaptic re-organization depending on the normaliza-
tion rule. Thus the blobs would either loose their alignment or would be driven into
saturation.

4.3 Experiments

4.3.1 Database

As a face database I used galleries of 111 different persons. Of most persons there is one
neutral frontal view, one frontal view of different facial expression, and two views rotated
in depth by 15 and 30 degrees respectively. The neutral frontal views serve as a model
gallery, and the other three are used as test images for recognition. The models, i.e. the
neutral frontal views, are represented by layers of size 10x10 (see Figure 4.1). Though
the grids are rectangular and regular, i.e. the spacing between the nodes is constant
for each dimension, the graphs are scaled horizontally in the z- and vertically in the
y-direction and are aligned manually: The left eye is always represented by the node
in the fourth column from the left and the third row from the top, the mouth lies on
the fourth row from the bottom, etc. The x-spacing ranges from 6.6 to 9.3 pixels with
a mean value of 8.2 and a standard deviation of 0.5. The y-spacing ranges from 5.5 to
8.8 pixels with a mean value of 7.3 and a standard deviation of 0.6. An input image of
a face to be recognized is represented by a 16x17 layer with an x-spacing of 8 pixels
and a y-spacing of 7 pixels. The image graphs are not aligned, since that would already
require recognition. The size variations of up to a factor of 1.5 in the x- and y-spacings
must be compensated for by the DLLM process.

4.3.2 Technical Aspects

DLM in the form presented here is computationally expensive. I have performed single
recognition tasks with the complete system, but for the experiments referred to in Ta-
ble 4.3 T modified the system in several respects to achieve a reasonable speed. I split
up the simulation into two phases. The only purpose of the first phase is to let the
attention blob become aligned with the face in the input image. No modification of the
connectivity was applied in this phase, and only one average model was simulated. Its
connectivity W® was derived by taking the maximum synaptic weight over all models
for each link:

W;;(t()) = HlaXW;;q(t()),

pq

W) = 0. (4.22)

This attention period takes 1000 time steps. Then the complete system, including the
attention blob, is simulated, and the individual connection matrices are subjected to
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DLM. Neurons in the model layers are not connected to all neurons in the image layer,
but only to an 8 x 8 patch. These patches are evenly distributed over the image layer
with the same spatial arrangement as the model neurons themselves. This still preserves
full translation invariance. Full rotation invariance is lost, but the jets used are not
rotation invariant in any case. The link dynamics is not simulated at each time step,
but only after 200 simulation steps or 100 time units. During this time a running blob
moves about once over all of its layer, and the correlation is integrated continuously.
The simulation of the link dynamics is then based on these integrated correlations, and
since the blobs have moved over all of the layers, all synaptic weights are modified. For
further increase in speed, models that are ruled out by the winner-take-all mechanism
are no longer simulated; they are just set to zero and ignored from then on (fy = o0).
The CPU time needed for the recognition of one face against a gallery of 111 models is
approximately 10 15 minutes on a Sun SPARCstation 10-512 with a 50 MHz processor.

In order to avoid border effects, the image layer has a frame with a width of 2 neurons
without any features or connections to the model layers. The additional frame of neurons
helps the attention blob to move to the border of the image layer. Otherwise it would
have a strong tendency to stay in the center.

4.3.3 Results

Figure 4.6 shows two recognition examples, one using a test face rotated in depth and the
other using a face with a very different expression. In both cases the gallery contains five
models. Due to the tight connections between the models, the layer activities show the
same variations and differ only very little in intensity. This small difference is averaged
over time and amplified by the recognition dynamics that rules out one model after the
other until the correct one survives. The examples were monitored for 2000 units of
simulation time. An attention phase of 1000 time units had been applied before, but is
not shown here. The second recognition task was obviously harder than the first. The
sum over the links of the connectivity matrices was even higher for the fourth model
than for the correct one. This is a case where the DLM is actually required to stabilize
the running blob alignment and recognize the correct model. In many other cases the
correct face can be recognized without modifying the connectivity matrix.

Recognition rates for galleries of 20, 50, and 111 models are given in Table 4.3. As
is already known from previous work (LADES et al., 1993), recognition of depth-rotated
faces is in general less reliable than, for instance, recognition of faces with an altered
expression (the examples in Figure 4.6 are not typical in this respect). It is interesting
to consider recognition times. Although they vary significantly, a general tendency is
noticeable: Firstly, more difficult tasks take more time, i.e. recognition time is correlated
with error rate. This is also known from psychophysical experiments (see for example
BRUCE et al., 1987; KALOCSATI et al., 1994). Secondly, incorrect recognition takes much
more time than correct recognition. Recognition time does not depend very much on
the size of the gallery.
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Figure 4.6: Simulation examples of DLLM recognition. The test images are shown on
the left with 1617 neurons indicated by black dots. The models have 10x10 neurons
and are aligned with each other. The respective total layer activities, i.e. the sum over all
neurons of one model, are shown in the upper graphs. The most similar model is usually
slightly more active than the others. On that basis the models compete against each
other, and eventually the correct one survives, as indicated by the recognition variable.
The sum over all links of each connection matrix is shown in the lower graphs. It gives
an impression of the extent to which the matrices self-organize before the recognition
decision is made.



Gallery Correct Recognition Time for
Size Test Images Recognition Correct Incorrect
# Rate % | Recognition | Recognition
111 rotated faces (15 degrees) | 106 ~ 95.5 | 310 & 400 | 5120 £3570
20 110 rotated faces (30 degrees) | 91 82.7 | 950 £1970 | 4070 £4810
109 frontal views (grimace) 102 93.6 | 310 £ 420 | 4870 6010
111 rotated faces (15 degrees) | 104 ~ 93.7 | 370 & 450 | 8530 £5800
50 110 rotated faces (30 degrees) | 83  75.5 | 820 + 740 | 5410 £7270
109 frontal views (grimace) 95 87.2 | 440 £1000 | 2670 1660
111 rotated faces (15 degrees) | 102 91.9 | 450 + 590 | 2540 +2000
111 | 110 rotated faces (30 degrees) | 73 66.4 | 1180 +1430 | 4400 +4820
109 frontal views (grimace) 93  85.3| 480 &+ 720 | 3440 £2830

Table 4.3: Recognition results against a gallery of 20, 50, and 111 neutral frontal views.
Recognition time (with two iterations of the differential equations per time unit) is the
time required until all but one models are ruled out by the winner-take-all mechanism.

4.4 Discussion

The two main features of the system presented here compared to the preceding stationary
blob system are the continuous and autonomous dynamics and the fact that the system
actually performes face recognition on a large gallery. This latter is definitely a success.
The former seems to be a conceptual step forward as well, but it is worthwhile to discuss
the advantages and drawbacks of the two different dynamics more thoroughly. The
first advantage of the running blob dynamics is obvious: It requires no external control
schedule (in the sense of a certain sequence of phases such as required for the stationary
blob dynamics, for which the layer dynamics, the link dynamics, and a complete reset of
the layer dynamics iterate). Its second advantage is that running blobs potentially convey
topography faster and more reliably. Although the blobs may jump, their generally
continuous motion enforces continuity in the mapping much more than a sequence of
independent stationary blobs.

Nevertheless the running blobs have some disadvantages: Firstly, if the blobs in
the image and the model layer have started at non-corresponding positions, they run
independently of each other for quite a while and may even cross each other’s path before
they lock onto each other and run in alignment from then on. In the stationary blob
dynamics, each new blob in the image layer has the chance of producing a corresponding
blob in the model layer independently of the previous one. Therefore the stationary
blobs may align faster. Secondly, the running blobs have the strong tendency to move
straight over the whole layer. That causes problems if the layers are of different size
or format and requires additional control dynamics in form of the attention window.
(Though the old system had the problem that if the image was larger than the model,
many blobs in the image layer were placed at locations without any counterpart in the
model layer. A mechanism like the attention blob would probably have been useful
in that system as well.) Thirdly, the paths of the running blobs are not random but
are partially determined by the input from the other layers, which remains the same
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for a given location of a blob. Thus certain paths dominate and topology is encoded
inhomogeneously: strongly along typical paths and weakly elsewhere.

For these reasons, further research will have to investigate alternatives to both blob
dynamics in order to find an optimal dynamics. Some experiments have recently been
made with layers of coupled Bonhoeffer-van der Pol oscillators generating plane running
waves (SCHWARZ, 1995). Plane waves are supposed to encode topology much faster than
the running blobs, because in theory only two successive waves running perpendicularly
to each other suffice to determine all locations uniquely. The problem of plane waves is
that they have such strongly autonomous dynamics that they need a long time to align
and then they have usually passed the layer already. Therefore the running wave model
is still slower than the running blob model.

Beside these layer dynamics issues, there are many directions in which the system
could be further developed to make it more complete and realistic: It has not yet been
investigated how new models can be added to the gallery in a neural fashion, it will be
necessary to introduce hierarchy into the recognition process, and more control structure
for context knowledge is required, to mention only a few aspects.

44



Chapter 5

Face Recognition by
Elastic Graph Matching

Abstract: The face recognition system presented below is based on Elastic Graph Matching
(EGM) as an algorithmic version of Dynamic Link Matching. Individual faces are represented
as labeled graphs. Nodes are labeled with jets; edges are labeled with distance vectors. The
graphs are object-adapted, i.e. nodes are located at fiducial points, such as eyes, tip of the
nose, corners of the mouth, etc. In order to be able to represent a wide range of different faces,
a collection of individual face graphs is fused to a General Face Knowledge (GFK), a graph
structure in which a set of alternative jets instead of only one is attached to a node. With the
GFK, probe faces can be represented as a nodewise composition of the known sample faces,
which makes the system more reliable on unknown faces. A similarity function is defined to
compare two graphs, taking into account the similarities of the individual jets and the relative
distortion of the graphs. New image graphs are generated by maximizing this similarity between
the GFK and a sequence of image graphs selected from an image. This process is known as
Elastic Graph Matching. Different views are represented by graphs or GFKs which differ in
structure. For matching and recognition, only jets referring to corresponding fiducial points
are compared. Recognition results are given for galleries of 300 faces. Performance is good
on frontal views against frontal views but relatively poor on different views, e.g. half-profile
against frontal view.

5.1 Introduction

In Chapter 4 faces were represented by layers of neurons, and the whole process of
matching and recognition was achieved by neural dynamics. Topography was induced
by lateral connections and a particular layer dynamics, matching was performed by
synchronization and link dynamics, and the recognition dynamics finally detected the
correct face. In this chapter, I present an algorithmic version of the very same basic ideas.
But topography is here explicitely expressed by edge labels, the matching is performed
by maximizing a similarity function, and recognition is based on the resulting similarity
values, taking the most similar model as the correct face. This algorithmic formulation
is more appropriate for technical applications, since the matching is much faster and
more flexible than in the neural formulation.
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labeled graph

Figure 5.1: Labeled graphs representing faces. Shown here are two faces of different
pose (left) and the manually defined grids (middle). Nodes are placed at fiducial points,
which are assumed to be important and easy to find. On the right a sketch of a graph
labeled with jets is shown schematically.

5.2 The System

5.2.1 Face Representation
Individual Faces

For faces, a set of fiducial points is defined, e.g. the pupils, the corners of the mouth,
the tip of the nose, the top and bottom of the ears, etc. A labeled graph G representing
a face consists of NV nodes on these fiducial points at positions 7,,n = 1,..., N and FE
edges between them. The nodes are labeled with jets J,. The edges are labeled with
distances A%, = ¥, — Z,e = 1,..., E, where edge e connects node n’ with n. Hence
the edge labels are two-dimensional vectors and represent the topography of the graph.
This face or model graph is object-adapted, since the nodes are selected from face-specific
points (fiducial points, see Figure 5.1).

Graphs of different views differ in geometry and local features. Although the fiducial
points refer to corresponding object points, some may be occluded, and jets as well as
distances vary due to rotation in depth. In order to be able to compare graphs of different
views, pointers have to be defined that associate nodes of different graphs, referring to
corresponding fiducial points. This was done manually.
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image graph general face knowledge

Figure 5.2: General Face Knowledge (GFK) serves as a representation of faces in
general. It is designed to cover all possible variations in appearance of faces. In order to
do so, it has an average grid and a whole set of jets at each node. An image graph to be
compared with the GFK has only one jet per node. In the comparison, the best fitting
jet in the GFK is selected for each node independently, indicated as grey jets in rows of
white ones.

General Face Knowledge

In order to deal with new faces, one needs a representation for faces in general rather
than models of individual faces. This representation should cover a wide range of possible
variations in the appearance of faces, such as differently shaped eyes, mouths, or noses,
different types of beards, variations due to gender and age, etc. I call this representation
General Face Knowledge or GFK and denote it with K. Notice that no explicit face
model is employed. Instead, for a given view, M model graphs G*™ (m =1, ..., M) of
identical structure taken from different sample faces are combined. The nodes of the
GFK are labeled with corresponding sets of jets J*™; the edges are labeled with the
averaged distances A7Y = ¥ AF" /M. The GFK represents not only the sample faces,
but also all faces that can be obtained by combining the local features of different sample
faces: the mouth from one face, the nose from a second, parts of the hair from a third,
etc. Each fiducial point may be represented by a different sample face (see Figure 5.2).

5.2.2 Generating a Face Representation by Elastic Graph
Matching

So far I have only described how individual faces and the GFK are represented by labeled
graphs. I am now going to explain how these graphs are generated.

The simplest method is to do so manually. For a given image a set of fiducial points
has to be marked and edges between them have to be drawn. The edge labels can be
computed as the differences between the pixel positions. This defines a grid, i.e. the
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structural and metric information about a graph. Finally the Gabor wavelet transform
provides the jets for the nodes. This is actually the method for generating initial graphs
for the system. For each view one graph has to be defined by hand, including the pointers
indicating which nodes in different views correspond to each other.

If the system has a GFK (possibly consisting of one model only), graphs for new
images can automatically be generated by Elastic Graph Matching. In the beginning,
when the GFK contains only very few faces, one has to review and correct the result
of the graph matching, but once the face knowledge is rich enough (approximately 70
graphs) one can rely on the matching and generate large galleries of faces automatically.

Similarity Function for Matching

The key role in Elastic Graph Matching (EGM) is played by a function evaluating the
graph similarity between an image graph and the GFK of identical view. It depends on
the jet similarities and the distortion of the image grid relative to the GFK grid. For

a graph G with nodes n = 1,..., N and edges e = 1,..., F and a GFK K with model
graphs m =1, ..., M the similarity is defined as

1 A
T T 7Km ~T =K\ 2
Se(G5.K) = zn:mnz%x (S¢(jn7jn m)) _ EXE:(MQ — AT*)?, (5.1)
where A determines the relative importance of jets and metric. 7, are the jets at node
n and AZX, are the distance vectors used as labels at edges e. Since the GFK provides
several jets for each fiducial point, the best one is selected and used for comparison. This
best fitting jet serves as the local expert for the image face.

Matching Schedule

The goal of EGM on a probe image is to find the fiducial points and thus to select from
all possible graphs in the image the one that maximizes the similarity with the GFK.
In practice one has to apply a heuristic algorithm to find a good approximation to the
optimum in a reasonable amount of time. I use a coarse to fine approach. The matching
schedule has the following stages:

Stage 1 Find the face in the image: Average over the amplitudes of the jets in the GFK
and generate an average graph, or alternatively select one arbitrary graph as a
representative. Use this as a rigid model (A = oo) and evaluate its similarity
at each location of a square lattice with a spacing of 4 pixels. At this stage the
similarity function S, without phase is used instead of S4. Repeat the scanning
around the best fitting position with a spacing of 1 pixel. The best fitting
position finally serves as starting point for the next stage.

Stage 2 Find the right position and size of the face: Now the GFK is used without
averaging. The GFK grid is varied in position and size. Check the four different
positions (43, +3) pixels displaced from the position found in Stage 1, and at
each position check two different sizes which have the same center position, a
factor of 1.18 smaller or larger than the GFK average size. This is without effect
on the metric similarity, since the vectors &~ are transformed accordingly. 1 still
keep A = oo. For each of these eight variations the best fitting jet for each node

e
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is selected and its displacement according to Equation A.11 is computed. This
is done with a focus of 1, i.e. the displacements may be of a magnitude up to
half the wavelength of the lowest frequency kernel. The grids are then rescaled
and repositioned in order to minimize the square sum over the displacements.

Stage 3 Find the right size and format of the face: A similar relaxation process as
described for Stage 2 is applied, relaxing the x- and y-dimension independently
now. In addition the focus increases successively from 1 to 5.

Stage 4 Local distortion: In a pseudo-random sequence the position of each individual
image node is varied in order to increase further the similarity to the GFK.
Now the metric similarity is taken into account by setting A = 2 and using the
vectors ZX as obtained in Stage 3. In this stage only positions are used where
the estimated displacement vector is small (d < 1, see Equation A.11). For this

local distortion the focus again increases from 1 to 5.

The resulting graph is called the image graph and is stored as a representation for
the individual face of the image (see Figure 5.3).

Normalizing Face Size

The original images have a format of 256 x384 pixels, and the faces vary in size by about
a factor of 3. In order to compensate for size variation and transform the images into the
128 x 128 pixel format that is used in the system, I use a preprocessing stage developed
by KRUGER (1994). The preprocessing uses the very same EGM as described above
to estimate size and position of a face, but a GFK with fewer nodes is used, and it is
split into three different size categories. Once the size and position of the face in the
original image is known, an appropriate frame can be selected and resized to the required
128x128 format.

5.2.3 Recognition

EGM with the GFK allows us to generate graphs for probe faces automatically. By this
means one can build up large galleries of model graphs without further need for matching
or distortion if one compares faces with each other. A gallery is distinct from the GFK,
since the former represents a set of individual faces to be recognized, while the latter
represents what the system knows about faces in general and is used to generate graphs.
In addition T distinguish between image graphs/qalleries and model graphs/galleries.
The latter represent the stored faces known to the system, while the former represent
the probe faces to be recognized by comparison with the models.

For comparing graphs, I use a very simple similarity function simply averaging over
the similarities between the corresponding jets, ignoring the distortions created by ro-
tation in depth. If image graph and model graph are of different view, one has to take
care that only jets belonging to the corresponding fiducial point are compared with each
other. Assume the image graph GZ has N nodes of which N’ have a corresponding node
in model graph GM. n/ runs over nodes with a counterpart, e.g. n’ =1,..,7,9,11,.., N—1
if nodes 8, 10, and N have no counterpart. Node n, in the model graph corresponds to
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frontal view half profile profile

Figure 5.3: Sample grids as generated automatically by EGM against the GFK. One
can see that in general the matching finds the fiducial points quite accurately. But
mismatches occurred for example for the face in the center. The chin was not found
accurately, because of the beard. The leftmost node and the node below it should be at
the top and the bottom of the ear respectivly. See the model above for a correct match.
The graphs used in Section 5.3.2 had about 14 additional nodes which are not shown
here for simplicity.
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node n' in the image graph. I then define graph similarity as:
Sa(G".GM) = ZS TN, (5.2)

Here the jet similarity function without phase turned out to be more discriminative.

Recognition with Confidence

Given one image graph G7 and a gallery of model graphs {G|m = 1,..., M} consider
the distribution of the similarities

Sm = Sg(G*,G1). (5.3)

In this the correct model usually stands out with a significantly higher value than all
others. To quantify this, T have adopted the confidence criterion of (LADES et al., 1993).
Assume that the models are ordered such that S,,, > S,,,+1. The confidence C is defined
as

e (ot = 2 (5.4

where s is the standard deviation of set {S,,/m = 2,..., M}. A face is considered to
be recognized with confidence if C(GT,{GM}) is larger or equal to a certain threshold
Cy. This criterion is relative in the sense that a global shift and a global scaling of
the similarity distribution do not matter. These global variations might be due to a
different pose of the face in the image or variations in the set of jets or coefficients
used for the comparison. Nevertheless this criterion is rather heuristic, and a more
theoretically motivated confidence criterion would be valuable. The main disadvantage
of the criterion is that it depends on the gallery size and that it is not directly applicable
to mixed galleries, i.e. galleries containing models of different views.

With a confidence criterion, the recognition samples fall into four classes:

First rank model | First rank model
is accepted is rejected
C(GT. {Gn'}) = Co | C(G7{Gn"}) <Co
First rank model is correct true positives false negatives
First rank model is not correct false positives true negatives

The goal of the face recognition system without confidence criterion is to maximize
the raw recognition rate, i.e. to minimize the false cases. Given the raw recognition rate,
the purpose of the confidence criterion is to discriminate the false cases from the true
cases, i.e. to minimize false negatives and false positives while maximizing true positives
and true negatives. The threshold Cy determines the distribution over the classes. A
high threshold will provide high reliability on rejecting false positives, a low threshold
will provide high reliability on accepting correct models.
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frontal views A and B qguarter view half profile profile

Figure 5.4: Sample faces from the ARPA/ARL FERET database: frontal views A and
B, quarter views, half-profile, and profile. The images shown here are already rescaled
to a normal size by the preprocessing stage. Notice the variation in the rotation angle
for the quarter views and half-profiles.

5.3 Experiments

5.3.1 Database

The galleries of images are taken from the ARPA/ARL FERET database provided by
the US Army Research Laboratory. For the test I used four different views: frontal view,
quarter view (about 20 degrees rotated), half-profile (about 40-70 degrees rotated), and
profile (see Figure 5.4). Some are rotated to the left and others to the right. The
views are known to the system. As the simplest invariance transformation I flip all right
views to left views, assuming that since faces are sufficiently symmetrical, this is a useful
manipulation to recognize half-left profile against half-right profile. For most faces there
are two frontal views with different facial expression. Apart from a few exceptions the
persons have no disguise or variations in hairstyle or clothing. The background is always
homogeneous, exept for smoothly varying shadows, and sometimes light and sometimes
grey. The size of the faces varies by about a factor of three, but is constant for each
individual. T therefore rescaled all faces (see ‘Normalizing face size’ in Section 5.2.2).
The format of the original images is 256x384 pixels.
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Figure 5.5: Significant recognition of correct and incorrect first rank models for all
gallery pairs listed in Table 5.1 combined. The solid line shows the proportion of false
positives and the dashed line the proportion of true positives, depending on the confi-
dence threshold. The former should be as low as possible, while the latter should be as
high as possible. For the results in Table 5.1 I chose a confidence threshold of Cy = 1.

5.3.2 Results

For the experiments I used model galleries of 300 faces with only one image per person.
One complete recognition, i.e. normalizing face size, generating the face graph, and
comparison with 300 models, takes approximately 20 seconds on a Sun SPARCstation
20-502 with a 50 MHz processor.

Recognition results are shown in Table 5.1. For frontal views against frontal views
the results are very good. Recognizing faces of different pose turns out to be a much
harder task; the recognition rates are relatively poor. The results are asymmetrical for
different poses. Performance is better if frontal views or profiles serve as galleries than
if half-profiles are used. This is due to the fact that frontal views as well as profiles are
much more standardized in pose than half-profiles, where the angle varies between 40
and 70 degrees. Since the graph similarities degrade with rotation angle independently of
the individuals, the 40 degrees half-profile models are favored if compared with a frontal-
view image instead of with profile. Analogously, the 70 degrees half-profile models are
favored if compared with a profile image instead of with frontal view. This effect degrades
recognition performance. The results are significantly better for quarter views right than
for quarter views left. One reason might be that the left views are flipped while the right
views are not. But the more likely reason is that on average the right views are less
rotated in depth than the left.

Figure 5.5 shows the proportion of true positives relative to all true cases and false
positives relative to all false cases. The confidence criterion would work perfectly if there
were no false positives and no true negatives. But this is not the case and therefore one
has to compromise between too many false positives and too few true positives. From
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first 15 ranks first rank true pos. | false neg.

model gallery probe images lower ranks || lower ranks | false pos. | true neg.
# %o || # N | # N # %

300 300 297 99.0 || 292 973 | 276 92.0| 16 5.3
frontal views A frontal views B 3 1.0 8 2.7 0 0.0 8§ 2.7
300 300 298 99.3 || 294 98.0 | 266 88.7 | 28 9.3
frontal views B frontal views A 2 0.7 6 2.0 0 00 2.0
300 23 23 100.0 15 652 | 10 43.5 21.7
frontal views A | quarter views right 0 0.0 8§ 34.8 0 0.0 8 34.8
300 23 15 65.2 7 304 2 8.7 5 21.7
frontal views A | quarter views left 8 34.8 16 69.6 0 00| 16 69.6
300 300 132 44.0 40  13.3 8 27| 32 107
frontal views A half-profiles 168 56.0 || 260  86.7 1 031259 86.3
300 300 103 34.3 38 12.7 4 13| 34 113
half-profiles frontal views A 197 65.7 || 262  87.3 0 001|262 873
300 300 104 34.7 33 11.0 6 20| 27 9.0
half-profiles profiles 196 65.3 || 267  89.0 3 101|264 88.0
300 300 120 40.0 41 13.7 8 27| 33 11.0
profiles half-profiles 180 60.0 || 259 86.3 6 2.0 | 253 84.3

Table 5.1: Recognition results for cross-runs between different galleries. The number
of gallery models and probe images and their pose is displayed in the first and second
column respectively. In all other entries of the table, four figures are given. On the left
are the absolute numbers, on the right the respective percentages. The upper figures
refer to good rankings or correct recognition cases, the lower ones refer to poor rankings
or incorrect recognition. The third column says how often the correct face is among
the 15 best models. The number of correctly recognized faces (i.e. if the correct model
has the highest similarity with the image) is given in the next column. In the last two
columns the confidence criterion is applied with a threshold of 1, significant recognition
in the left column and rejection in the right column. Notice that the numbers in the last
two columns add up to the numbers in the fourth column.
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Figure 5.5, I have choosen a confidence threshold of Cy = 1 in order to avoid false positives.
The results in Table 5.1 were obtained with this threshold.

5.4 Discussion

I have presented a general and flexible system applied to face recognition. It is designed
for an in-class recognition task, i.e. for recognizing members of a known class of objects,
but the system is in no way tailored to faces. In principle it should be directly applicable
to other in-class recognition tasks such as recognizing individuals of a given animal
species, given the same level of standardization of the images. In contrast to many
neural network systems, no extensive training for new faces or new object classes is
required. The individuals are simply shown to the system once.

The performance is high on faces of the same pose. Recognizing unfamiliar faces in
very different poses is a much more difficult task and the performance of the system is
significantly degraded in that case. It is known from psychophysical experiments that
human subjects perform poorly on recognizing faces taken from different views, as well.
BRUCE et al. (1987) showed that reliability on judging whether two unfamiliar faces
are the same degrades significantly with rotation angle in depth. A similar result was
obtained by KALOCSATI et al. (1994) if no easy features such as hairstyle, type of beard,
wearing glasses or not, are available.

5.4.1 Comparison with the Preceding System

Compared to the preceding system of LADES et al. (1993) T have made three major mod-
ifications. The first two are of general advantage; only the last one focusses specifically
on face recognition or rather on in-class recognition tasks. Phase information was used
for better positioning of the nodes on the fiducial points, object-adapted graphs were
introduced to deal with different views, and a set of sample graphs was combined to a
General Face Knowledge in order to represent a wide range of different and previously
unknown faces.

The modified system has several advantages. Firstly, the previous system (LLADES
et al., 1993) matched each model of the gallery separately to a face image. By introducing
the GFK and by using phase information, image graphs can be generated with good
reliability, even if no image of that particular person has been shown to the system before.
This makes it possible to separate the graph generation phase from the recognition phase,
which makes the system much faster by generating an image graph only once and not for
each model again. Secondly, the flexible graphs provide a way to deal with very different
poses. Nodes can refer to the same fiducial points regardless of view. That is essential
for many operations that one wants to apply to the graphs (cf. next section). Thirdly,
using phase information provides relatively precise node locations that can potentially
be used as an additional recognition cue (though topography is not used for recognition
in the current system). Previously the localization of the nodes was very rough and of
little use for the recognition.

39



5.4.2 Comparison with Other Systems

There is a considerable literature on face recognition, and many different techniques
have been applied to this task (see SAMAL & TYENGAR, 1992; VALENTIN et al., 1994 for
reviews). Since recognition results depend very much on database design, a comparison
of performance would not be meaningful, but it is worthwhile to do a comparison under
conceptual aspects.

Several systems are designed specifically for faces on the basis of manually defined
features. YUILLE (1991), for example, represents eyes by a circle within an almond-
shape and defines an energy function to optimize a total of 9 parameters of this model
for matching it to an image. BRUNELLI & Pocacio (1993a, 1993b) similarly employ
specific models for eyebrows, nose, mouth, etc. and derive 35 geometrical features such
as eyebrow thickness, nose width, mouth width, and eleven radii describing the chin
shape. The drawback of these systems is that the features as well as the prcedures to
extract them must be defined and programmed by the user for each object class again,
and the system has no means to adapt to samples for which the features fail. For example,
the eye models mentioned above may fail for faces with sun glasses or have problems if
the eyes are closed. The chin radii cannot be extracted if the face is bearded. In these
cases the user has to design new features and new algorithms to extract them. With
this paradigm, the system can never become autonomous, it will always depend on the
user and programmer. The system presented here consequently avoids such user defined
features (except the user defined locations of the fiducial points in the beginning, which
has to be replaced by autonomous procedures, see following section). Within the EGM
approach, such exceptions as faces with sun glasses or a beard can very naturally and
automatically be included into the GFK, and it was mentioned above that the system
should be directly applicable to other classes of objects.

Another approach to face recognition not using manually defined features is based on
Principal Component Analysis (PCA) (SIRoOVICH & KIRBY, 1987; KIRBY & SIROVICH,
1990; TURK & PENTLAND, 1991; O’TOOLE et al., 1993). In this approach, faces are
first aligned with each other and then treated as high-dimensional vectors (this align-
ment is frequently done manually or by means of manually defined features, but it can
also be done automatically within the PCA framework, see TURK & PENTLAND, 1991).
The PCA computes eigenvectors, so-called eigenfaces, and the respective eigenvalues.
Each probe face is decomposed with respect to these eigenvectors and represented by
the corresponding coefficients in a very efficient way (approximately 30 suffice to obtain
a good reconstruction). PCA is optimal with respect to compression, but its appropri-
ateness for recognition purposes can not be shown theoretically. It is known that the
first eigenvectors capture mainly general information about faces and are therefore not
as discriminative as eigenvectors with lower eigenvalue (O'TOOLE et al., 1993). Thus
the discriminative features are not optimally represented by eigenvectors.

In contrast to our EGM system, PCA is a completely holistic approach. Thus one
obvious disadvantage is that it has conceptually no means to deal with occlusions as is
demonstrated for the more localized EGM in Chapter 7. A second disadvantage is that
geometry is tightly coupled with local features. As was already discussed in Chapter 1,
geometrical variations, such as a different nose mouth distance can thus not be coded
by a displacement, but has to be treated as a completely new face, with a different
mouth and/or nose. As a solution to this problem one can first apply a procedure which
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compensates for geometrical variations and generates a so-called shape-free face model
(LANITIS et al., 1995). Then all facial features are aligned with each other and can be
optimally encoded by PCA. The way PCA and EGM compose a probe face of known
components is very different. That has consequences for the ability to generalize. As
can be seen in the following chapter, the GFK can, for instance, compose a probe face
with glasses and a beard out of two known faces, one beardless face with glasses and one
bearded face without glasses. This cannot be done by PCA| since the eigenvectors always
represent the whole face. PCA on the other hand is able to combine holistic features in a
way the GFK is not able to. While the advantage of the localized composition is obvious,
I do not have a clear view of the potential of the holistic composition for generalization.

5.4.3 Future Perspectives

The newly introduced features of the system open many possibilities to improve the sys-
tem further. The object-adapted graphs make it possible to treat the different nodes indi-
vidually. KRUGER (1995), for example, has recently introduced trainable node weights
to take into account that some fiducial points are more reliable or more robust against
rotation in depth than others. This individual treatment is especially important for
faces of different pose. MAURER & VON DER MALSBURG (1995) are currently working
on linear transformations on the jets in order to compensate for the effect of rotation in
depth. However, linear transformation is obviously not sufficient, and one may have to
train and apply more general transformations. An alternative approach might be to use
the GFKs and do the transformation based on sample faces (see Section 6.4.2).

By using phase information and the GFKs, matching accuracy has improved sig-
nificantly. However, many partial mismatches still occur. This is probably due to the
primitive way topography is encoded in the graphs, distortions being controlled by elas-
tic forces to keep the spatial vectors between two nodes approximately constant. But
faces do not distort arbitrarily as in a fun-house mirror. There are rather typical dis-
tortion patterns, e.g. due to rotation in depth, variations in facial expression, different
hairstyles, or different but symmetrical shapes of the faces. It would be of great help if
these typical distortion patterns could be analyzed, and if the local distortion could be
replaced by a global distortion with much fewer degrees of freedom just covering these
typical distortion patterns. One might then possibly get information about the reason
for the distortion as well, whether it comes from laughing or rotation in depth of a certain
degree. Information about rotation in depth could be especially useful, since a precise
pose estimation would make recognition easier. Some research in this direction has, for
example, been done by LANITIS et al. (1995). When the matching is reliable enough,
it will be interesting to investigate to what extent the grid topography can be used for
recognition (cf. BRUNELLI & Poaaio, 1993b).

A further shortcoming of the system is that all graph structures have to be defined
manually. That has to be replaced by a self-organizing process able to generate appro-
priate representations for object classes in an autonomous fashion. This can most easily
be done on image sequences, since they provide many cues for grouping, segmentation,
and detecting correspondences. For example, nodes could be taken from salient points
and grouped on the basis of common motion (cf. MANJUNATH et al., 1992). Monitoring
a rotating object by continuously applying EGM can then reveal which nodes refer to
corresponding fiducial points in different views (cf. REISER, 1991). A General Object
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Knowledge could be established by matching object graphs and combining those which
are similar, assuming that they belong to the same class of objects.
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Chapter 6

Phantom Faces and Face Analysis

Abstract: In this system the General Face Knowledge (GFK) introduced in the previous
chapter is enriched with facial attribute labels such as gender or the presence of a beard or
glasses. Elastic Graph Matching provides information about which jet in the GFK best fits the
image at which node. The best fitting jet for a node is called the local expert. A composite or
phantom face similar in appearance to the original can artificially be composed based on these
local experts. The facial attribute labels can be transferred to the phantom face and provide a
good cue for determining the facial attributes of the original, for instance, if most local experts
belong to female models the original is likely to be female. A statistical analysis based on Bayes’
formula is given, and the relative significance of each node for the determination of gender and
the presence of a beard or glasses is computed. Results concerning attribute determination are
given for a gallery of up to 111 faces.

6.1 Introduction

We have seen in the previous chapter how a graph representation of a probe face can be
generated automatically by Elastic Graph Matching against a General Face Knowledge
(GFK). Each node of the image graph was allowed to select its best fitting jet from
a different model. In this chapter I am going to investigate further possibilities for
analyzing a face on the basis of jet similarities between the nodes of a graph and the
nodes in a GFK. The matching result is visualized by generating composite or phantom
faces. Attributes of the probe face, such as gender, beard, and glasses, are determined
on the basis of the corresponding attributes of the models in the general face knowledge.
This is a step in the direction of face analysis rather than just face recognition. If this
system works well for several facial attributes it might help to improve face recognition
by reducing the search space; this would be especially valuable for recognizing faces in
different poses.

6.2 The System

6.2.1 Phantom Faces

First [ am going to illustrate how well the General Face Knowledge can represent a
probe face. Figure 6.1 shows an image, its graph, the GFK, and arrows pointing to the
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Figure 6.1: The stack structure of the General Face Knowledge. We see here how the
individual nodes of an image graph best fit different model graphs. Each model graph is
labeled with known attributes, based on which the attributes of the probe face can be
determined. On the right a phantom face is shown.

best fitting jets in the GFK. These best fitting jets are called local experts. In order
to generate a phantom face, respective patches of grey values from the models at the
fiducial points at which they fit best are joined together with smooth transitions. The
precise positions of the patches are given by the pixel positions of the image graph as
yielded by the matching process. The result is shown on the right. More examples are
shown in Figure 6.2.

Notice that since only faces of the same pose are compared there is no need for object-
adapted graphs in the sense of the preceding chapter. However, the regular graphs used
here are aligned with each other as in Chapter 4, with certain nodes lying on the eyes and
certain others on the line where the two lips meet. The other nodes are positioned by
the regular structure of the grids. However, I will refer to the node positions as fiducial
points.

Notice that no grey-value information of the original image is used to generate a
phantom face. Only the matching information (the local experts and their locations)
and the model images are used, and a phantom face is typically composed of ten to
twenty different models. The first thing that strikes one is that they look so natural in
spite of actually being a patch-work. They can also look very similar to the original.
However, only what is represented in the GFK can be reconstructed. For example there
was no Asian face in the GFK when generating the phantom face in Figure 6.1. Hence
one gets a Caucasian phantom face, wich is otherwise very similar. It is obvious that
the quality of phantom faces improves with the size of the GFK.

6.2.2 Determining Facial Attributes

In the previous section it was demonstrated that a lot of information about a probe face
can be represented by the local experts in the GFK. I will now demonstrate that not
only the face image can be reconstructed, but also facial attributes such as gender, the
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Figure 6.2: Shown here is the original and the phantom face for three different persons.
Notice that the phantom image was generated only on the basis of information provided
by the match with the General Face Knowledge; no image information from the original
was used. That is why certain details, such as the reflections in the glasses or the precise
shape of the lips of the top image are not reproduced accurately. The fields of labels on
the right side indicate the attributes of the models which provide the local experts for
the individual nodes; m: male, f: female, b: bearded, g: glasses.
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presence of a beard, and wearing glasses can be inferred from the match result in a very
simple way.

Let us assume that gender and the presence of a beard or glasses is known for the
models in the GFK. Since the phantom face looks so similar to the original, it is rea-
sonable to assume that the labels of the models providing the local experts correspond
to the attributes of the probe face with some reliability as well. The nodes of a female
will most often fit female models, and a bearded man will pick up bearded models in the
lower half of nodes. This principle is demonstrated in Figure 6.1. Figure 6.2 shows ex-
amples of actual experiments. In order to decide whether a probe face is male or female
one simply has to count whether more local experts belong to male or female models.
Similarly for beard and glasses, considering, however, only the lower or upper half of the
nodes, respectively.

This is an illustration of the principle idea. In practice one would like to have a more
thorough analysis of the node label distributions, especially concerning the question of
which of the nodes are reliable and which are not. T am therefore now going to apply a
more systematic statistical analysis.

6.2.3 Statistical Analysis

In order to perform a statistical analysis, I consider the process of a node in the image
graph pointing to a model with a particular attribute as a probabilistic event. For each
node n I introduce the stochastic variable X,,, which can assume the values 1 and 0
depending on whether the respective local expert has a particular attribute or not. X
is the corresponding random variable for the probe face. A sample of these stochastic
variables is denoted by x,, and x, respectively. Given an image with a certain value x of
X, one can ask for the conditional probability P(z1, ..., xy|x) of a particular combination
of node labels. 1 make the strong assumption that the conditional probabilities for the
individual nodes are independent of each other: P(xzy,...,xy|z) = II, P(x,|z). The
Bayes a posteriori probability for a probe face having the attribute z given the node
labels z,, then is

P(zq,...,zn|z)P(x)
P(zy,....,xn|1)P(1) + P(z1, ...,2x|0) P(0)
) P(2) 1, Ple, o)
= P T Pleall) + P(0) I, P 0) (6:)

P(z|zy,...,zN) =

The decision whether the attribute is present (x = 1) or not (x = 0), is based on whether
P(1|zy,...,xn) > P(0|24,...,xx) or not.

The probabilities P(z,|x) are not known and have to be estimated on the basis of
relative frequencies F'(x,|x) evaluated on a training set of images for which the attributes
are known. Assume that there are N images in the training set, of which N(z) images
have value z for X, with = € {1,0}. N(x,|z) of them are labeled with value x,, € {1,,,0,}
at node n. For example for a training set of 21 faces one could get

N =N@1) +N(0) =16+5=21,
N(1) = N(1,]1) 4+ N(0,]1) = 12 + 4 = 16,
N(0) = N(0,]0) + N(1,]0) = 5+0= 5.
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The derived relative frequencies are

F(1) =N(1) /N =0.76,
F(1,/1) = N(1,|1)/N(1) = 0.75,
F(0,]1) = N(0,]1)/N(1) = 0.25,
F(0) =N(©0) /N =024,
F(04]0) = N(0,]0)/N(0) = 1.00,
F(1,]0) = N(1,]0)/N(0) = 0.00.

If one used these relative frequencies as probabilities for evaluating the a posteriori
probability, a probe face with label 1 at node n would have a vanishing probability of
having attribute 0. That is a too strong statement on the basis of such a small sample
set. I therefore enforce the probabilities being greater than zero by incrementing the zero
class and decrementing the corresponding one class by one. Hence N(0,]0) and N(1,|0)
would be corrected to 4 and 1 respectively. The relative frequencies F'(0,/0) and F'(1,,|0)
would become 0.8 and 0.2 respectively. Now the relative frequencies can be taken as
probabilities for Bayes’ formula.

Another issue is how to estimate P(1) and P(0). One can take the relative frequencies
of the training set. But that might be too strong a prejudice, producing good results
for the majority class but relatively poor results for the minority class. In addition, this
would implicitly take into account knowledge about the composition of the test set, since
training set as well as test set are drawn from the same complete set, therefore having
approximately the same fraction of females, etc. For these reasons I consistently chose
P(1) = P(0) = 0.5 to avoid prejudicing the test set composition.

6.2.4 Equivalence between Bayes’ and Weights Formulation

An alternative to the Bayes approach would be to train weights for each node in order
to optimize the correct determination rates. The decision would then be made on the
basis of a weighted sum over all nodes with a certain attribute. Since weights provide
an easy interpretation and a good visualization, I now transform Bayes’ formula into an
equivalent weight formulation.

As seen above, the Bayes method determines a attribute based on whether
P(1|zy,....,xn) > P(0|z,...,2x) or not. By means of Equation 6.1 and taking into
account that x,, may only assume the values 0 and 1, this can be transformed in the
following way:

P(l|zy,....,zn) > P(0]zy,...,zN)
— P(l)l;[P(rnH) > P(O)E[P(.T,JO)
= su(ped) - w(5)
= yu(e(5im) (o) > () = (e
= e (rmeem) > " (Fm) -0 (Faw)
— Tpfn > 0, (6.2)



male
female bearded | beardless total
total

# % | # N | # %
9 81|18 16.2| 27 24.3
glasses 0 00| 4 36 4 3.6
9 81122 19.8| 31 279
12 10.8 133 29.7| 45 40.5
no glasses | 0 0.0[|35 31.5| 35 31.5
12 10.8 68 61.3| 80 72.1
21 189 |51 459 | 72 649
total 0 00]39 351] 39 351
21 189190 8&81.1 | 111 100.0

Table 6.1: Composition of the General Face Knowledge.

with

P(1,[1)P(0,]0)
o=t (P(lnmP(onu)) ’ (6:3)

C (%) Y (iggm . (6.4)

n

The weights (3, are shown in Figure 6.3 as black circles with a diameter proportional

that the top rows are significant for glasses detection. For gender, the weights show no
strong emphasis on a particular region. The weights are not perfectly symmetrical with
respect to the vertical axis, and there are some negative weights. This is probably due
to the fact that the galleries were not large enough, especially for the pure sets.

6.3 Experiments

6.3.1 Database

The gallery of faces used here was set up at the Institut fiir Neuroinformatik, Bochum,
and contains 111 neutral frontal views. The images had 128x128 pixels subsampled
from 512x512 pixels with 256 grey levels. The size of the faces varied up to a factor of
1.5, with a tendency for male faces to be larger than female faces. I therefore rescaled
all images such that the z- and y-spacing is 10 pixels on average; the ratio between z-
and y-spacing was kept as in the original image. In order to avoid a bias of the gender
determination due to gender specific hairstyles, the outer regions were masked by a grey
frame with a smooth transition to the face, see fig 6.4. The composition of the gallery
with respect to the attributes male, beard, and glasses is shown in Table 6.1.

6.3.2 Results

Correct attribute determination rates are given in Table 6.2. The complete GFK contains
111 faces, which also serve as probe faces. Hence, if a face is analyzed it is excluded from
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Figure 6.3: Weights (3, of the nodes. From left to right for gender determination, beard
detection, and glasses detection. The weights in the top row are determined on all 111
test images and the complete GFK of 111 minus 1 models. Results on pure sets are
shown in the bottom row. From left to right on beardless faces without glasses only, on
males without glasses only, and on beardless males only.
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male bearded glasses
female beardless no glasses
total total total
complete 0.917 + 0.049 (0.944) | 0.839 + 0.133 (0.905) | 0.895 + 0.067 (0.903)
sets 0.938 + 0.058 (0.949) | 0.964 + 0.024 (0.956) | 0.990 + 0.015 (0.988)
(111/111/111) | 0.924 £ 0.033 (0.946) | 0.941 + 0.027 (0.946) | 0.963 + 0.023 (0.964)
small 0.851 + 0.098 0.848 + 0.148 0.834 + 0.128
sets 0.899 + 0.070 0.964 + 0.043 0.965 + 0.050
(68/45/51) 0.875 4+ 0.050 0.935 + 0.054 0.919 + 0.053
pure 0.822 £+ 0.091 (0.818) | 0.589 + 0.198 (0.833) | 0.800 + 0.113 (0.778)
sets 0.840 £ 0.090 (0.857) | 0.942 + 0.046 (0.970) | 0.932 + 0.044 (0.970)
(68/45/51) 0.831 + 0.050 (0.838) | 0.857 + 0.052 (0.933) | 0.885 + 0.043 (0.902)

Table 6.2: Correct attribute determination rates. In the first row the complete GFK of
111 faces was used for all three attributes. The images were split into a training set and
a test set of 55 and 56 faces respectively. On the training set the probabilities P(z,|x)
were estimated; on the test set the performance of the trained system was evaluated.
The standard deviation is shown as well. In brackets the performance is given for the
case where training set and test set are identical and both contain all 111 samples of the
GFK. This gives an estimation for the upper bound of performance that can be obtained
on this gallery with the Bayes approach. The last row gives performance results for pure
sets, i.e. 68 unbearded faces without glasses for gender determination, 45 male faces
without glasses for beard detection, and 51 unbearded males for glasses detection. The
results degrade significantly. Part of the degradation is due to the decreased GFK size.
For comparison, results are given on mixed sets of same size in the middle row.

the model gallery, and only 110 samples remain for the GFK. The same holds for smaller
GFKs, e.g. in case of pure sets. The probe faces are usually split into a training and a
test set of equal size. On the training set the relative probabilities for each node were
estimated, and on the test set the correct determination performance was tested. In order
to get a reliable mean perfomance and a standard deviation, 100 different training and
test sets were drawn from the complete set randomly. For the results given in brackets,
the training and test set were identical and of maximum size, i.e. of same size as the
GFK.

Along with the results for the complete set of 111 faces, results on pure subsets are
given. For gender, only unbearded faces without glasses were used, for beard only male
faces without glasses, and for glasses only unbearded males, yielding GFKs of 68, 45, and
51 faces respectively. This test was mainly done to check to what extent the different
attributes interfere with each other. A certain degradation can be expected from the re-
duced number of faces in the GFK, shown in the middle row (see also next section). Even
taking this into account all results degrade. This is probably due to correlations between
the different attributes. It is clear that the presence of a beard tells something about
the gender. Using pure sets makes the task more difficult. The correlation coefficients
are 0.356 for the attributes male and beard, 0.290 for the attributes male and glasses,
and 0.161 for the attributes beard and glasses, as can be computed from Table 6.1.

Figure 6.4 shows more of the 111 sample faces. They are ordered with respect to
the significance of their attributes as judged by the system when all faces were used as
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glasses beardless bearded female

no glasses

most significant least S|gn|f|cant

Figure 6.4: Sample faces ordered with respect to their significance for the different
attributes. Most significant faces are on the left, least significant faces are on the right.
From top to bottom faces are shown that are male, female, bearded, unbearded, with
glasses and without glasses. All faces are shown in the same format for display purposes.
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training set. The least significant females include the two youngest ones in the gallery,
who were of an age where the difference between male and female faces is less obvious
than for older persons. The least significant beardless face, the female, was probably
misclassified due to the smile, which generated structures resembling a beard. The least
significant bearded and beardless samples also reveal the difficulties and some arbitrari-
ness in the definition of who is bearded and who is not. The samples in the bottom two
rows, glasses and no glasses, allow no conclusions about the reasons why certain faces
are misclassified with respect to this attribute.

6.3.3 Dependencies on Parameters

The purpose of this section is to investigate the dependencies of the correct classification
rates on the parameters of the system. The matching process itself was not varied, i.e.
the image graphs were generated once, and even if the size of the GFK was varied the
image graphs were kept constant as obtained with the maximum size of the GFK.

First I am going to consider the system for different sizes of the training set. The
smaller the training set, the greater the errors in estimating the probabilities P(z,|x).
But as the left graph in Figure 6.5 shows, the typical training set size of 55 faces is
sufficient to get maximum performance.

I claimed previously that increasing the size of the GFK improves the classification
rate. In order to get an impression, I measured the performance with varying GFK
size. The GFK always contained at least one model for each attribute. The right graph
in Figure 6.5 shows how performance increases with GFK size and that it has not yet
reached its maximum. Especially for gender, one can expect that correct determination
rates will improve significantly with a larger GFK size. It is surprising that in case of
beard detection, four models already achieve a performance of 0.85 (though matching
precision would degrade significantly with only four models in the GFK). Tt is clear that
the required size of the GFK depends not only on the performance level that one wants
to achieve but also on the number of attributes that one wants to determine and on the
variety of the faces.

One idea to improve the performance is to take not only the best fitting jet per
node into account, but to consider the second best, third best, etc., as well. The left
graph in Figure 6.6 shows the performance depending on the rank of the jets used for
classification, i.e. only one jet per node was used: the best, the second best, the third
best, etc. As expected, the performance degrades slowly. But one might still expect
performance to increase if one takes the first several best into account. The Bayesian
approach was applied to each of the first ranks at each node, providing N x R conditional
probabilities per attribute, if R is the number of ranks taken into account. Results are
shown in the right graph. The result is not very successful. Only in case of gender
determination could a significant improvement be achieved. For glasses the performance
in fact decreased. A reason might be that the node labels on different ranks are not
independent of each other as assumed in the Bayesian approach.

Finally it is worth mentioning that the phase information is crucial for selecting the
correct local experts. For identical image graphs, performance degrades significantly if
the similarity function S, is used istead of S, (see Equations A.6 and A.7).
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Figure 6.5: These graphs show the dependence of the mean rates of correct attribute
determination depending on training set size (top graph) and GFK size (bottom graph).
For the top graph, test set size was constantly 20 samples and the GFK size was 110,
while the training set size varied from 4 to 89. For the bottom graph, training and test
set had their standard size of 55 and 56 respectively, while the GFK size varied from 4 to
109. For each data point 500 different samples of the training and test set were chosen
randomly to get a reliable mean performance.
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Figure 6.6: Correct attribute determination rate dependent on the rank of the used
local experts (top graph) or the number of first rank local experts used (bottom graph)
if several jets were evaluated per node. Although the jets of lower rank have still some
reliability in determining the attributes, taking into account several jets does not improve
performance significantly.
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6.4 Discussion

The system presented here demonstrates successful determination of the facial attributes
gender, beard, and glasses. The architecture is quite homogeneous and simple. As in the
face recognition system of the previous chapter, nothing is specialized to faces, and one
may expect the system to perform satisfactorily on similar tasks, such as discriminating
between species of domestic animals.

6.4.1 Comparison with Other Systems

While there is a huge literature on face recognition, there are relatively few publications
about artificial systems for gender determination. GOLOMB et al. (1991) employed a
standard back-propagation network for gender determination. In 90 images of faces (45
beardless male, 45 female) the eyes were located manually and the images then rotated
and scaled automatically to a standard format of 30x30 pixels. Images were compressed
by an encoder back-propagation network with 40 hidden units. The output of these
40 units served as input for a gender determination network, the SexNet, trained with
the back-propagation algorithm as well. 8 tests were performed with a training set of 80
images and 10 test images. Mean performance and standard deviation were 91.9%+8.6%.
The system used limited hair information.

O’TOOLE et al. (1993) used Principal Component Analysis for face representation
and for the discrimination of ethnic groups as well as gender. They give no performance
results on gender determination.

A system based on geometrical features was presented by BRUNELLI & POGGIO
(1993a). They used 168 images of 21 males and 21 females. The faces were automatically
normalized with respect to rotation and scaling. Then 18 different geometrical features
such as pupil-to-nose vertical distance, nose width, chin radii, and eyebrow thickness
were automatically extracted, providing one 18 dimensional vector per image. No hair
information was used. A Hyper Basis Function Network was trained on the data sets of
all minus one person and tested on the excluded ones. The mean performance on the
training sets was 92% and on the test sets 87.5%.

Though the performance of these systems is comparable or higher, the system pre-
sented has several advantages. Firstly, it is very general and conceptually not restricted
to faces as is the system of BRUNELLI & P0GG10. No face specific features have to be
defined. Secondly, it is local, i.e. in contrast to the PCA approach of O’TOOLE et al.
localized attributes such as glasses can easily be determined and one gets information
about which regions are important. Thirdly, the system presented is fully automatic:
no manual alignment such as in the system of GOLOMB et al. is required. Fourthly,
the training effort is minimal: only few training samples are required to determine the
relative weights of the nodes. PCA and back-propagation are known to be expensive
in terms of training. The main drawback of the system presented is that it is slow in
respect to processing time. The Gabor transformation and the Elastic Graph Matching
require about one minute on a Sun SPARCstation 10-512 with a 50 MHz processor. As
a second disadvantage one may consider that the system presented does not reveal what
is characteristic for a certain attribute (though the node weights indicate which nodes
are significant). BRUNELLI & PoGGIO for example could illustrate that their system
considers a face as male if it has thick eyebrows, a short and wide nose, a long distance
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between mouth and nose, etc. O’TOOLE et al. found in their system that the second
eigenvector explains most of the variance for gender determination. Image eigenvec-
tors can be directly visualized. Such information is not easily available in the system
presented here.

6.4.2 Future Perspectives

So far the attribute labels of the GFK-models are binary and defined by hand. A male
face can therefore be misclassified because it looks actually female or because there is
a similar female face in the GFK that is very male in appearance. The attribute labels
should vary contiuously from one extreme, e.g. male, to the other, female. Taking this
into account might improve the determination performance. It might also be possible to
let the GFK find reasonable attribute classes autonomously.

Another direction of investigation would be to apply the system to other facial at-
tributes and to use the results for face recognition purposes. The set of possible can-
didates in the model gallery reduces significantly if several attributes, such as gender,
age, and ethnic group are determined in advance. Another idea could be to use the
phantom face representation for manipulations such as rotation in depth, or generating
a different facial expression. Assume a GFK of neutral frontal views and a GFK of the
same persons in a different pose are given. A single neutral frontal view of a probe face
could be presented to the system, and a phantom face could be generated. Since for
all models in the GFK a rotated version is present, it should be possible to generate a
rotated phantom face. The question is whether the rotated phantom face would look
similar to the rotated original or not. Preliminary experiments showed no significant
similarity and further investigation is necessary.

It would also be interesting to apply the system to another class of objects such
as domestic mammals, distinguishing between dogs, cats, sheep, and horses of different
races. The task then is to abstract from several horses of different race what is typical
for horses and to abstract from several dogs of different race what is typical of dogs.
This would again be done by generating general knowledge about domestic mammals,
all having a common graph structure. By finding the local experts for each node, the
type of animal could be determined. Animals are actually a good example, since they
show a complex hierarchy. It would be interesting to build an animal classification and
recognition system based on the system presented here. An animal would be classified
according to its phenotype. For example starting from distinguishing between birds and
mammals, then differentiating between more similar species such as dogs and horses,
then classifying according to the specific race, e.g. poodle versus German shepherd, and
finally recognizing the individual animal, if possible.
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Chapter 7

Recognizing Objects in
Cluttered Scenes

Abstract: The system presented below uses Elastic Graph Matching (EGM) to match stored
models into a scene of objects partially occluding each other. The similarities of the nodes with
the image are evaluated in order to decide which regions are occluded and which are visible.
If all objects in the scene are known, the system can process the scene from front to back. It
can then take advantage of the fact that the occluding objects are already recognized and that
their contours are known.

7.1 Introduction

The systems presented in the previous three chapters all perform face recognition, a
task specific in the sense that faces form a class of similar objects, and the General
Face Knowledge accounts explicitly for that. In this chapter I am going to present a
recognition system for objects of very different character and shape!. Toy objects are
arranged into scenes and may occlude each other significantly. They are represented
by labeled graphs, and Elastic Graph Matching (EGM) serves to find the objects in
the scene. The difficulty is to decide which objects are actually present in the scene
and to determine their order in depth. For this task the graph structure is especially
advantageous, since it allows reference to overlap regions in the image and makes explicit
that some parts are occluded while others are not.

Two different algorithms will be presented. The first is appropriate for searching a
known object in a scene with other objects which are unknown. The algorithm decides
whether the object is present, where it is, and which parts are visible and which are
occluded. The second algorithm requires that all objects in the scene are known to the
system. The algorithm then analyzes the scene from front to back, taking advantage
of the fact that the objects in the front are completely visible and that for the objects
behind them it is already known which regions are occluded. This algorithm decides
which objects are present in the scene, where they are, and in which order in depth they
are arranged. It also provides information as to which regions of the models are occluded
and which are visible.

!This chapter is in part a modified reprint of (WISKOTT & VON DER MALSBURG 1993) ©World
Scientific Publishing Co. Pte. Ltd. With kind permission of the publisher.
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7.2 The System

7.2.1 Data Structures

The total system is composed of an image domain T and a model domain M. Objects are
represented by labeled graphs having a square grid structure with an outline dependent
on the contour of the objects (see Figure 7.2). Nodes are labeled with jets J as local
features (see Appendix A). Edges which connect neighboring nodes are labeled with the
difference vectors between the respective node positions ¥, in the image measured in
pixel units. The graphs are rigid, i.e. in this system I do not allow for distortions of the
graphs. The similarity between the jets is defined as in Equation A.6 with the difference
that the similarity is taken to the power of four to emphasize nodes with high similarity
(this to be motivated later):

S(T(#n), T'(Ta)) = ST (#n). T'(Tn)) - (7.1)

To specify the state of the scene analysis system completely, it is necessary in addition
to represent which regions of the image have been recognized by which model graphs,
and what the occlusion relations between the objects are. I describe the relation of the
model domain to the image domain with the help of a few binary variables that decide
on the recognition status of a model and the visibility or occlusion of its individual nodes,
plus a single position vector for the placement of the model graph in the image. These
variables will be introduced in the next section.

7.2.2 Model Graph Formation

For the formation of a model graph, a simple segmentation procedure is applied. Three
images are taken, each with the object in identical position on a different background.
In two of the images, the background is formed by a horizontal or vertical lattice of
black and white stripes approximately 3.5 pixels wide. The third image has a white
background. A square lattice of points with a spacing of 7 (or, for some delicate ob-
jects, 5) pixels is selected in the image. For each of the selected lattice points Z, the
similarity S(J"(%,), J*(#,)) between jets taken from the images with horizontal and
vertical stripes, respectively, is computed. These similarity values are high within the
area covered by the object and low over the background. (Similarities for nodes inside
an object but near its border are lower to the extent that their wavelets reach over into
the background.) Now all lattice points are selected for which this similarity is above
a threshold (which T chose in the range 0.12% 0.33!, depending on the object. A more
sound treatment of occluding boundaries will have to supplant this ad hoc treatment
later). The procedure may produce several mutually disconnected graphs, the largest
of which is selected. (Two graphs are connected if their minimal distance is one lattice
spacing.) For the graph thus obtained, lattice points are labeled with the jets taken from
the third image, which has been taken with a blank background. The resulting graph
is stored as a model graph in memory. This graph formation process has the advantage
of positioning the nodes automatically in those regions of the object which are least
sensitive to background variations. For example, the process avoids placing nodes in
openwork regions of an object. I also successfully experimented with other background
textures, not only horizontal and vertical stripes.
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7.2.3 Matching a Model into a Scene

When matching a model graph against the image of a scene, a replica of its set of node
positions {741} is placed in the image, creating the set of points {#%}, where 7% = M +7*
with an offset vector #* common to all nodes. The graph formed by the set of points
{7%} is called the image graph. The model graph is compared to the image graph with
offset 7 in terms of the similarity function

Sg(gza gM) = N Z S( nI’ jn/,\/l)’ (72)

where J7 is the image jet taken at position 72, V is the set of visible nodes (visibility
being defined below), and Ny is their number. Now the matching similarity (7.2) is
maximized by varying 7°. First, the offset is taken through all points on a square grid
with a spacing of five pixels for which the replica of the model graph lies entirely within
the image. Around the lattice point with maximal similarity a better maximum is then
found for a finer lattice with spacing 1. The resulting image graph is taken as the
candidate match. In distinction to the matching schedule described in Chapter 5, here
I do not consider distortions of the image graph with respect to the model graph, and I
use no phase information for the matching.

When an object is occluded to a large extent, the total similarity of its match is
degraded by the many nodes that come to fall on the image of other objects and that
correspondingly have only average similarity values. It is decisive that this correct match
cannot be outdone by a false match in some region of the image picked such that many
nodes have above-average similarity. In order to favor the correct match, 1 give its
correctly matching nodes an advantage over the only averagely fitting nodes by raising
the inner product in Equation A.6 to the fourth power. (In the experiments, evaluation
of correctly analyzed scenes shows that correctly matched nodes have a mean similarity
value of S, = 0.64, whereas with graphs matched to scenes not containing the object
nodes have a mean similarity of S,, = 0.35. Random pairs of jets have a mean similarity
of S, =0.32.)

7.2.4 Scene Analysis, Algorithm One

In this first simple scene analysis algorithm, each model graph is matched separately
to the image to decide if and where it fits and to what extent it is occluded. The
algorithm has the advantage that there is no need for all objects in the scene to be
known to the system. The algorithm examines all graphs in the model domain. First,
a graph is matched to the image. Then all nodes under a threshold of 0.52 for § are
marked as occluded. (This parameter could be obtained automatically by collecting a
similarity histogram for a large set of model jets and image jets. In my experience this
histogram tends to be bimodal, and the threshold can be set near the minimum between
the modes.) Since I assume that occlusion occurs for coherent regions, the algorithm
proceeds to revise the occlusion decision for each node according to its neighborhood
in the graph. For occluded nodes which have a majority of visible neighbors within
the model graph, the decision is reversed, and similarly for visible nodes which have
a majority of occluded neighbors. In this way all nodes are visited repeatedly, in the
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arbitrary sequence inherent in the graph administration system, until no further changes
occur.

The wisible region of the model’s image graph is then the set of all pixels that lie
within squares of size d centered around visible nodes of the graph (d being the spacing
of nodes in the model’s graph, 7, or sometimes 5, pixels). If it has an average node
similarity better than 0.61 and an area of at least 1300 pixels, the model is accepted for
the scene. (Although not the point of this algorithm, it is convenient for display purposes
to order the accepted models in depth according their mutual occlusion indices, which
are computed as explained in the next section.)

7.2.5 Scene Analysis, Algorithm Two

For this algorithm to work, there must be models for all objects in the scene. Posing such
a constraint has the advantage that the relative occlusion relations can be determined
and used for a more reliable analysis of the scene. For two graphs A and B, this relation
will be characterized by the occlusion inder Q@ 45. When it is computed, the system may
already have decided that third object(s) are occluding parts of A or B so that only part
of their graphs are visible in the image. Let me define a similarity function S(%) for a
model A for all pixels of the image after the model has been matched. For each pixel ¥
of the image it gives the similarity value of the nearest node, and zero outside the visible
region of the graph. Further, let R be the region of overlap between the visible parts of
A and another model B. Then the occlusion index of A with respect to B is defined as

Qap = Y, Sa(¥) — Sp(7). (7.3)

TZeER

For this we have the relations Q p = —Qpa, Qaa = 0, and for graphs A and B without
overlap we have Q5 = 0. If Q45 > 0, A is occluding B, and if Q5 > 0, A is said not
to be occluded by B.

To start scene analysis, all stored models are first matched to the image. Each model
will yield a “match”, that is, the graph placement fully inside the image with maximal
graph similarity (see Equation 7.2). These graph placements will not be changed during
all of the following steps. The effect of the following iterative process will result in the
graduation of some of the models in two steps, first to the status of candidate, then to
the status of being accepted. The process has the following steps:

Step 1 Turn those models into candidates (i) for which the average node similarity is
better than 0.45, (ii) for which the visible region is bigger than 1300 pixels and
(iii) which haven’t yet been accepted.

Step 2 Stop if there are no candidates.

Step 3 Accept one of the candidates: First, determine the mutual occlusion indices for
all pairs of candidates. Then select the “unoccluded” candidate(s), that is, those
for which all occlusion indices are non-negative. If there are several, select the
one with highest graph similarity (see Equation 7.2). If there is no candidate for
which all occlusion indices are non-negative, pick the one that is least occluded,
that is, for which the smallest occlusion index is largest.
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Step 4 Insert the model just accepted in the depth sequence of all accepted models. For
this, the new model has to work its way from the back of the list forward. The
model is advanced one step if its occlusion index relative to the model in front
of it is non-negative. (This comparison is based on the overlap of all of the new
model with the visible part of the model in front of it.) Advancement stops as
soon as the new model hits one with which it has a negative occlusion index.

Step 5 Now the occlusion status of the nodes is updated. Those in the newly accepted
graph are occluded by the territory of the models in front of it. The nodes of the
model graphs now put behind are occluded by the new one. Also, the territory of
the newly accepted graph is declared invisible for all as yet uncommitted model
graphs, whose visible areas and graph similarity values are modified correspond-
ingly (see Equation 7.2). After that, proceed with Step 1.

7.3 Experiments

7.3.1 Database

The pictures of the scenes are of size 128 x 128 pixels and have 256 distinguishable gray
levels. They are derived from 512 x 512 pixel frames taken with a CCD camera by
low-pass filtering and subsampling. I took pictures of 30 scenes composed of 3—6 objects
each. Scenes were taken at approximately 200 cm of distance, at which pictures are 42
cm wide. Distances to individual objects vary up to 10 c¢m, causing size variance of up
to 5% relative to the images used for model graph formation. Individual objects were
mostly presented in approximately the same orientation and perspective, although I also
did individual experiments with slightly rotated objects (see Figure 7.2.b). To avoid
visible shadows, T sometimes illuminated scenes with two light sources (although during
model graph formation there had been only one light source). This fact is relevant for
the issue of robustness to illumination. I made sure the objects were visible to a certain
minimal extent, 1300 pixels, corresponding to an area of approximately 140 cm?.

I created a gallery of 13 toy objects of which all scenes are composed. The objects
are: basket, bear, book, box, candleman, candlewoman, clock, elephant, glass-of-marbles,
nutcracker, rattle, windmill, and zebra. This gallery represents a certain selection. I
have excluded objects that are too small, that have too little inner structure (although
I included basket, rattle, and glass-of-marbles in spite of their poor inner structure), and
that are not compact (although I included clock with its two holes and zebra with its
thin legs). The problem with small objects was that with a resolution of 128 x 128
pixels the corresponding model graphs contain too little information and yield good
graph similarity in wrong places. This is similarly the case with objects that are too
homogeneous. For objects with openwork structure (e.g. letter scales that we tried) the
extended receptive fields caused problems, being too sensitive to the background.

7.3.2 Results

Two of the scenes used in the experiments are shown in Figure 7.1. Figure 7.3 shows
analyses obtained with Algorithm 1, and Figure 7.4 with Algorithm 2.
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Figure 7.1: Two of the 30 scene images. a) contains zebra, basket, elephant, candleman,
and nutcracker, b) contains windmill, book, and nutcracker. There are altogether 13
models in the gallery, and 121 objects in the scenes, each scene containing between three
and six objects. The resolution of the images is 1282 pixels with 256 grey levels.

Figure 7.2: Picture of the image graphs for basket and nutcracker as matched in
Scene 7.1.a. Black and white frames denote visible and occluded nodes, respectively.
The state of visibility was determined by Algorithm 2. Center pixels of nodes code for
similarity of the model jets to corresponding image jets, from white (low similarity) to
black (high similarity). b) One example of a scene with rotated objects (~ 20°) not
included in the statistical investigation (for analysis see Figures 7.3.c and 7.4.c.)
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Figure 7.3: Analyses of the scenes in Figures 7.1.a, b, and 7.2.b respectively, by Al-
gorithm 1. Visible regions of the matched model graphs are shown, from front (black)
to back (light). a) The algorithm recognized zebra, basket, candleman and elephant in
Scene 7.1.a, but it missed the nutcracker, not finding the lower part under the zebra
and discarding the identified head region as too small in area. For the zebra, large parts
are interpreted as occluded, because of perturbation of inner jets by overlap with the
background. b) Scene 7.1.b is analyzed correctly. Altogether 80% of the 121 objects
were recognized correctly while 2 models were accepted erroneously by this algorithm.
c) shows the analysis of Scene 7.2.b. All objects are recognized correctly, but again
large parts are interpreted as occluded. Although I did not investigate the robustness of
the system against rotation in depth systematically, several examples such as this one
suggest that this algorithm might be robust up to approximately 10°.

Algorithm 1 gave the following performance. From a total of 121 objects, 24 were not
recognized correctly, leaving 80% recognized correctly. Only 2 objects were erroneously
accepted. Some decisions regarding occlusion were unsatisfactory, (see, for instance, the
candleman in Figure 7.3.a), which is not surprising since no interactions between objects
were taken into account (and the point of Algorithm 1 was recognition only, anyway).

Algorithm 2 produced 21 completely correct analyses from among the full set of 30
scenes. For 3 scenes it made errors regarding the occlusion order, always for pairs of
weakly overlapping objects. In the remaining 6 scenes, 3 models were accepted although
the corresponding object was not present, and 4 objects which were present were not
recognized. Among the latter, 2 were matched at the wrong position and 2 objects were
matched correctly but were rejected on the basis of too poor a graph similarity value.
In all, 96.7% of the objects are recognized correctly and with confidence.

Some of the errors committed by the system are instructive. In the total set of
experiments, there were only 2 cases in which the best match for a model graph in the
scene was found in the wrong place. One case concerned the glass-of-marbles, which has
little internal structure and is partially transparent. In the other case, candlewoman was
matched to the fairly similar candleman while the proper object was heavily occluded.
To deal with this type of error, one could produce several matches for each model. The
system would then have to manage more matches, but it would be more likely to find
correct matches (and would be equipped to match multiple instances of the same object

type).
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Figure 7.4: Analyses of the scenes in Figures 7.1.a, b and 7.2.b by Algorithm 2. a) In
Scene 7.1.a, all objects and their occlusion relations have been recognized correctly. b)
In Scene 7.1.b, a box (rightmost model) was erroneously recognized. Besides, the book
mistakenly was put in front of the windmill. Altogether, 96.7% of the 121 objects were
recognized correctly, and 3 models were accepted erroneously by this algorithm. ¢) The
third example, Scene 7.2.b, was also recognized correctly. Algorithm 2 seems to be more
robust against rotation in depth than the first. Up to approximately 15° might be of
little effect. Both algorithms could be improved in this respect if graph distortions were
permitted (see Chapter 5).

7.4 Discussion

The system presented here is a very natural extension of the EGM system described in
(LADES et al., 1993) to the recognition of partially occluded objects and the analysis of
scenes. The labeled graph as the fundamental data structure proved to be appropriate
for visual object representation in the presence of significant occlusions. Only the status
variable indicating whether a node is visible or not had to be added. It was crucial
for the success of the system that graphs provide information about the location and
neighborhood relations of the nodes and the attached local features. This was essential
for back-labeling the scene with recognition information and with occlusion relations.

This application to scenes also reveals a weakness of the local feature representation
based on Gabor wavelets. The Gabor wavelets of lower frequency have a non-negligible
extension compared to the distance of the nodes and the extension of the objects. This
becomes evident for the zebra, for which the legs were considered to be occluded by
Algorithm 1, because their similarity was too much degraded by the background (see
Figure 7.3). A solution to this problem would be to increase the resolution of the images
and to emphasize more the high frequency kernels. A more fundamental solution was
demonstrated by POTzscH (1994), who showed that the influence of background to a
jet can be suppressed by a linear transformation imitating the operation of cutting the
image information into two half planes and keeping only one. A second disadvantage
of the Gabor wavelet preprocessing is that it depends on internal texture. This system
cannot deal with structureless objects which are mainly defined by their contour. For
such objects an edge-based representation would be more appropriate.

The project presented here was undertaken as a pilot study to investigate the prob-
lems involved in analyzing cluttered scenes. The system still has to be reformulated in
a fully neural system, based on Dynamic Link Matching.
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Chapter 8

Conclusion

One of the intentions of this work was to show that the labeled graph is a powerful
and flexible data format providing the syntactical structure missing in the vector format
typically used in conventional neural net applications. The syntactical links between
elementary features play a crucial role in the applications presented on several levels.
They were either made explicit or they were implicit in the chosen data formats, but
would have to be realized explicitly in a mature system.

Firstly, the individual coefficients of the jet representation are implicitly bundled by
links to generate a description of a local patch of grey values. Secondly, nodes labeled
with jets were linked together by edges in order to build a graph representing individual
objects. Thirdly, the graphs can be matched to an image by dynamically establishing
connections from the nodes of the graph to a subset of nodes in the image. (These three
aspects of syntactical linking have already been used in previous systems (BUHMANN
et al., 1989; LADES et al., 1993). The following types of syntactical structures are newly
introduced in this work.) In the fourth place, sets of jets were attached to nodes and
serve as a collection of alternatives if the appearance of a certain object part, e.g. an
eye, varies significantly. In the fifth place, context information about different properties
of the objects was incorporated and expressed by attached attributes (male, bearded,
etc.). And finally, model graphs that were matched to a scene competed with each other
through inhibition between overlapping nodes.

This is only a relatively small number of examples of how syntactical links may be
used for perceptual tasks, and one major goal for future research will be to investigate
other possibilities of useful syntactically linked structures, some of which have already
been mentioned in Chapter 2.

A second purpose of this work was to demonstrate that labeled graphs can actually be
processed in a neural architecture and that serious recognition tasks can be performed
on this basis. For the first time a complete DLM face recognition system has been
developed, able to recognize faces against a gallery of more than one hundred model
faces. Nevertheless DLM is relatively slow and cumbersome compared to the algorithmic
version, the EGM. Several features of the algorithmic models have yet to be implemented
in a fully neural system, especially the recognition of occluded objects in cluttered scenes.

All systems presented here, the one based on DLM as well as those based on EGM,
have various shortcomings. Firstly, they are extreme in the sense that they build object
representations directly from low-level features. It is necessary to introduce some mid-
level features that can mediate between models and image information. Secondly, no low-
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level segmentation cues are used to improve speed and reliability of object recognition. So
far the objects have either been presented in front of a homogeneous background, or the
segmentation was only guided top-down by object knowledge. Thirdly, the generation
of graph representations is very artificial. Model graphs are either defined by hand, or a
very primitive segmentation procedure is used to determine the contour of a new object.
Finally, more control structure is required to enable the system to build a knowledge
database autonomously without user interaction.

Conceptionally, it will be necessary to develop further the ideas sketched in Chapter 2.
The goal is to define a small set of fundamental operations on graphs that suffice to let
complex structures emerge in an autonomous system able to learn from sensory input,
to organize knowledge about its environment, and finally to generate useful action in
terms of a given goal.
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Appendix A

Preprocessing with Gabor Wavelets

Abstract: Gabor wavelets have the shape of plane waves restricted by a Gaussian envelope
function. Convolving an image with a whole family of Gabor wavelets of different size and
orientation provides a set of complex coefficients at each pixel. This set is called a jet J and
represents a local patch of grey values. Due to the wave character of the kernels, the coefficients
have a phase ¢ varying with the characteristic frequency of the kernel and a slowly changing
magnitude a. Jets can be compared by similarity functions Sy and S,. If phase information
is taken into account (Sy), the spatial distance or disparity d between two jets taken from
approximately the same object location can be estimated.

A.1 Gabor Wavelet Transformation

A jet is a special type of local feature describing a small patch of grey values in an image
Z(Z) around a given pixel Z = (z,y). It is based on a wavelet transform, defined as a
convolution

3@ = [Ty (E - #)dF (A1)
with a family of Gabor kernels
k2 K22 } 52
- My j g
V;(7) = 3 eXp ( 52 > [exp(zkjm) — exp (3” : (A.2)

having the shape of plane waves with wave vector l?, restricted by a Gaussian envelope
function. I employ a discrete set of 5 different frequencies, index v = 0,...,4, and 8
orientations, index u =0, ..., 7,

- k; k, cos ¢ V42 s
ki=1{"")=1{" Ml k=277 = p< A3
’ (kw> (ku Sin@u>’ P 'u8’ (A-3)

with index 7 = pu + 8v. By this sampling the frequency space is evenly covered within
a reasonable band-pass. The Gauss width is o/k with 0 = 27, and the kernels are DC-
free, i.e. the integral [1);(Z)d?Z vanishes. Since this is a wavelet transform, the family
of kernels is selfsimilar in the sense that all kernels can be generated from one mother
wavelet by dilation and rotation.

A jet J is defined as the set {J;} of 40 complex coefficients

Jj = a; exp(ig;) (A.4)
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convolution result
Gabor wavelets imaginary part magnitude jet

original image

Figure A.1: The visual preprocessing is based on the Gabor wavelet transform. The
wavelets have the shape of plane waves (5 different frequencies x 8 different orientations)
restricted by a Gaussian envelope function. A convolution yields 40 complex coefficients
referred to as a jet. The phase of the coefficients varies with the main frequency (see
imaginary part) and their magnitude varies slowly.

with amplitudes a;(%) slowly varying with position and phases ¢;(Z) varying with the
spatial frequency given by the characteristic wave vector Ej (see Figure A.1).

Gabor wavelets were chosen for their technical properties and biological relevance.
Since they are DC-free, they provide robustness against varying brightness in the image.
Robustness against varying contrast can be obtained by normalizing the jets. The lim-
ited localization in space and frequency yields a certain amount of robustness against
translation, distortion, rotation, and scaling. Only the phase changes drastically with
translation, but that can be used for estimating displacement, as will be shown later.
A disadvantage of the large kernels is their sensitivity to background variations. But
as was shown by POTzscH (1994), if the object contour is known, the influence of the
background can be suppressed. Finally, the Gabor wavelets are closely related to the
receptive fields of simple cells in the vertebrate visual cortex (POLLEN & RONNER, 1981;
JONES & PALMER, 1987; DEVALOIS & DEVALOIS, 1988).

A.2 Saliency
Saliency indicates whether an image location is considered to be interesting solely on

the basis of low level information (see for example MANJUNATH et al., 1992). T use the
norm of the jet as a simple saliency measure:

N(T) = [>a], (A.5)

i.e. a jet is salient if it represents rich textural structure of high contrast. This saliency
is used in Chapter 4 to initialize the attention layer.
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A.3 Comparing Jets

The quick phase variations cause problems. Jets taken from an image few pixels apart
from each other have very different coefficients, although they represent almost the same
local feature. I therefore either ignore the phase or compensate for its variations ex-
plicitely. The first leads to the jet similarity function

!
Zj: a;a;

ST, T) = ————= (A.6)
a2
J J

already used by BUHMANN et al. (1992) and LADES et al. (1993). With J a fixed jet, and
J' = J'(Z) the jets at positions & in an image, S,(J, J'(Z)) is a smooth function, and
its local optima have large attractor basins suitable for very simple methods to search
for them (see Figure A.2). Typically gradient descent or diffusion processes converge
rapidly and reliably.

Using phase information has two potential advantages. Firstly, phase information
can help to discriminate between patterns with similar amplitudes, and secondly, since
phase varies so quickly with location, it provides a means to locate jets in an image
precisely. In the following I assume that the two jets J and J' refer to similar object
locations with a small relative displacement d. The phase shifts can then approximately
be compensated for by the term (]TQ]-, and the similarity can be defined as

S a;a) cos(¢; — &) — d k)

S¢(¥77 j,) = ;
TR

Before computing the similarity, the displacement d has to be estimated. This can be
done by maximizing S, in its Taylor expansion, as will be explained in the following
section. The great advantage of this second similarity function is actually that it yields
this displacement information. Profiles of similarities and estimated displacements are
shown in Figure A.2.

(A7)

A.4 Disparity Estimation

In order to estimate the displacement vector d= (dg, dy), I have adopted a method used
for disparity estimation (THEIMER & MALLOT, 1994) based on (FLEET & JEPSON,
1990). The idea is to maximize the similarity S, in its Taylor expansion:

S ajal[l — 0.5(¢; — ¢ — dk;)?]

Ss(T,T") =~ = ST (A.8)
i g
Setting %S¢ = %Sgb = 0 then leads to
Z a;a;ki (¢ — @) = dy Z a;ask o ke +dy Z a;a;kjnkiy, (A.9)
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Figure A.2: a) Similarity S,(J (#1), J' (%)) with jet J' taken from the left eye of the
face shown in Figure A.1, and jet J taken from pixel positions of the same horizontal
line, &y = Ty + (d,,0),d, = —50,...,50. The similarity potential is smooth and has a
large attractor basin. b) Similarity Sy(J(#1), J'(%o)) and c) estimated displacement
d(T(Z,), T'(Z,)) for the same jets as in a). The focus varies from 1 to 5. The similarity
potentials have many more local optima, especially for a high focus value. The right
eye is 24 pixels away from the left eye, generating a local maximum for both similarity
functions close to d, = —24. The estimated displacement is very precise around the
0-position and rougher at other local optima, especially at the other eye. The maximum
displacements are half the wavelength of the highest frequency kernel taken into account
for the first displacement estimation (about 8, 4, and 2 pixels for focus values 1, 3, and
5 respectively).
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vl ~ vl

> ajaiky (65— 05) = du Y ajalkiyke +dy Y ajalkiykyy, (A.10)
J

' '
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which can be solved for d if the determinant [palyy — T'yyl'ys does not vanish:
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d "N = T = vy yr . A1l
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This equation yields a straightforward method for estimating the displacement or
disparity between two jets taken from object locations close enough that their Gabor
kernels are highly overlapping. Without further modifications, this equation can deter-
mine displacements up to half the wavelength of the highest frequency kernel, which
would be two pixels for k., = 7/2. The range can be increased by using low frequency
kernels only. For the largest kernels the estimated displacement may be 8 pixels. One
can then proceed with the next higher frequency level and refine the result, possibly by
correcting the phases of the higher frequency coefficients by multiples of 27 according
to the disparity estimated on the lower frequency. I have referred to the number of fre-
quency levels used for the first displacement estimation as focus. A focus of 1 indicates
that only the lowest frequency level is used and that the estimated displacement may be
up to 8 pixels. A focus of 5 indicates that all five levels are used, and the disparity may
only be up to 2 pixels. If one has access to the whole image of jets, one can also work
iteratively. Assume a jet J is given for which the accurate position is needed in an image
around a starting point #;. Comparing J with the jet Jy = J (%)) gives an estimated
displacement of dy = cf(j, J(Zy)). Then a jet J; is taken from position Z; = & +dy and
the displacement is estimated again. But since the new location is closer to the correct
position, the new displacement (7] will be smaller and can be estimated more accurately.
This procedure will eventually converge with a remaining subpixel displacement. This
is the iterative scheme that is used in the matching process described in Chapter 5.
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Appendix B

Zusammenfassung in
deutscher Sprache

B.1 Einleitung

In der Neuroinformatik dominiert die Vektorreprasentation zur Darstellung von Eingabe-
daten. Ein Bild ist in technischen Systemen zunachst ein Feld von Pixeln, wobei jedes
Pixel eine Position und einen Grauwert hat. In der typischen Vektordarstellung werden
die Positionen nur als eindeutige Adressen verwendet, die reprisentierten raumlichen
Beziehungen gehen jedoch verloren. Das hat fatale Konsequenzen, was in Abbildung 1.1
an einem einfachen Beispiel demonstriert wird. Beriicksichtigt man Nachbarschafts-
beziehungen, dann wird man die beiden rechten Bilder als gegeneinander verschobene
Kopien erkennen. Mit der Hamming-Distanz als einem vektoriellen Abstandsmafl wird
man jedoch zu dem Ergebnis kommen, daf§ die linken beiden Bilder einander ahnlicher
sind.

Die Vektorreprasentation von Bilddaten in der Neuroinformatik ist ein konzep-
tionelles Problem, das auch durch geeignete Normierung der Eingabebilder oder durch
Modelle wie dem Neokognitron nicht befriedigend gelost wird. Die vorliegende Arbeit
beschaftigt sich mit etikettierten Graphen als einem alternativen Konzept zur Objekt-
reprasentation, das explizit Relationen zwischen Elementen kodieren kann. So werden
Bilder aus lokalen Merkmalen und deren raumlichen Beziehungen zu Graphen zusam-
mengefaflt.

Neben den etikettierten Graphen werden die Prinzipien der dynamischen Graphenan-
passung erldutert. Dynamische Graphenanpassung ist ein von VON DER M ALSBURG ent-
wickeltes neuronales Konzept zum Vergleichen und Anpassen von etikettierten Graphen.
In vier Anwendungen wird die Leistungsfahigkeit dieser Konzepte demonstriert. Alle An-
wendungen basieren auf einer visuellen Vorverarbeitung, die durch die Gabor Wavelet-
Transformation beschrieben wird.
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B.2 [Etikettierte Graphen zur Objektreprasentation

Wahrnehmung erfordert zunéchst eine geeignete Reprasentation der Reizmuster. Dabei
gehe ich davon aus, daf} jeder Sinn im wesentlichen in drei Unterrdumen organisiert ist,
und daf} jeder Reiz als etikettierter Graph (labeled graph) reprisentiert werden kann.
Der erste der drei Unterrdume ist der Sinnesraum (sensory space), er ist die zweidimen-
sionale Retina fiir das visuelle System, die Cochlea im auditorischen System, oder die
Hautoberfliche unseres Tastsinnes. Im Sinnesraum spielen Relationen oder relationale
Mermale (relational features), wie z.B. Abstinde, die wesentliche Rolle. Menschen sind
sehr genau in der Beurteilung ob drei Punkte auf einer Geraden liegen, ignorieren aber
weitgehend den Ort des Musters auf der Retina. Die Relationen im Sinnesraum werden
durch Kanten im Graphen dargestellt, z.B. etikettiert mit Abstandsinformationen. Der
zweite Unterraum ist der Merkmalsraum (feature space). Merkmale, oder besser lokale
Merkmale (local features), sind im visuellen System z.B. Farbe, Textur oder Orientierung
einer Kante. Hier spielt die absolute Empfindung eine groflere Rolle als Relationen.
Entsprechend werden die Merkmale durch Knoten dargestellt, z.B. etikettiert mit Farb-
oder Texturinformation. Der dritte Unterraum eines jeden Sinnes ist die Zeit (time). Sie
spielt in verschiedener Hinsicht eine besondere Rolle. Erwahnt werden soll hier nur, daf§
Zeit ein starker Hinweis auf Kausalitat ist. Sie ist auflerdem allen Sinnen gemeinsam
und vermutlich der wesentliche Schliissel zur Integration der verschiedenen Sinne.

Zur Bildung von etikettierten Graphen von Reizmustern miissen Knoten aus dem
Bild ausgewahlt und durch Kanten zu Graphen verbunden werden. Im einfachsten Fall
werden die Knoten auf einem regelmafligen Gitter angeordnet. Der Abstand der Knoten
hingt dann nur von der Ausdehnung und Komplexitat der verwendeten Merkmale ab.
Aufwendiger, aber geeigneter, ist die Auswahl von sogenannten auffallenden Punkten
(salient points), von denen man annimmt, daf} sie wichtige Information tragen. Es ist
jedoch schwierig, diese Punkte allein auf der Basis von lokaler Bildinformation und ohne
Objektwissen zu definieren. Fiir die Auswahl geeigneter Kanten zwischen den Knoten
dienen Gruppierungshinweise wie sie aus der Psychophysik bekannt sind. Hier ist vor
allem das Prinzip der Ndhe (proximity) zu nennen. Das kann sich auf alle drei Un-
terrdume beziehen: riumliche Nihe im Sinnesraum, Ahnlichkeit im Merkmalsraum und
Koinzidenz in der Zeit (siehe Abbildung 2.2). In allen drei Unterrdumen werden Knoten
mit identischen Eigenschaften stark miteinander verbunden, und die Verbindung wird
mit zunehmendem Abstand schwacher. Ubertrégt man die induzierten Verbindungen
auch auf alle benachbarten Knoten, so entsteht ein stark verkniipfter Graph des Reiz-
musters, der als Basis fiir alle weiteren Schritte dient (siehe Abbildung 2.3).

Sind Graphen von Reizmustern gebildet und abgespeichert, so mochte man als
nachstes Graphen miteinander vergleichen. Dabei werden zwei Graphen als dhnlich
angenommen, wenn sie sowohl in ihren lokalen als auch in ihren relationalen Merk-
malen ahnlich sind. Den entsprechenden Prozefl des Vergleichens nennt man Graphenan-
passung (graph matching) (siehe Abbildung 2.4). Es ist auch denkbar, dal Graphen
im wesentlichen aufgrund der gemeinsamen Struktur und unabhingig von den lokalen
Merkmalen miteinander verglichen werden konnen. Das wiirde auch den Vergleich von
Graphen unterschiedlichen Ursprungs ermoglichen, z.B. aus dem visuellen und dem au-
ditorischen System. Ein solcher Prozefl kann als Analogiebildung interpretiert werden
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(siehe Abbildung 2.5). Mit der Graphenanpassung lassen sich auch Teilgraphen
vergleichen und eine einfache Strukturierung der gespeicherten Graphen vornehmen.
Stellt man fest, dal Teile einer Menge von Graphen identisch sind, so bildet man einen
sog. Fusionsgraphen (fusion graph), in dem die gemeinsamen Teilgraphen nur einmal
reprasentiert sind (siehe Abbildung 2.6). Der Fusionsgraph hat zum einen den Vorteil,
dafl er weniger Speicherkapazitit als die Einzelgraphen erfordert. Zum anderen hat
er Generalisierungsfahigkeiten, da die Teilstiicke nun auch in anderen Kombinationen
zusammengesetzt werden konnen. Damit gekoppelt ist das Problem, dafl der Fusions-
graph die urspriinglichen Graphen nicht mehr eindeutig kodiert. Diese Eindeutigkeit 1483t
sich jedoch durch Einfiihrung von sogenannten Kardinalknoten (cardinal cells) wieder
herstellen. Geschieht dies in geeigneter Weise, konnen sowohl Generalisierungsfahigkeit
als auch die Eindeutigkeit der urspriinglichen Graphen in kontrollierter Weise miteinan-
der kombiniert werden (siehe Abbildung 2.7).

In den in dieser Arbeit vorgestellten Anwendungen geht es um Gesichtserkennung und
Szenenanalyse. Beides erfordert spezielle Graphenstrukturen. In der Gesichtserkennung
ist es vorteilhaft, die gemeinsame Struktur von Gesichtern auszunutzen. Die Gesichts-
graphen fiir eine Ansicht (Frontalansicht, Halbprofil oder Profil) werden entsprechend
alle die gleiche Struktur haben, z.B. einen Knoten auf dem rechten Auge, einen Knoten
auf der Nasenspitze, usw. Dies ermoglicht es, die Gesichtsgraphen stapelartig zu kom-
binieren, wobei etwa alle rechten Augenknoten miteinander verbunden werden, ebenso
alle Nasenknoten, usw. Dieser Fusionsgraph représentiert das gesamte Wissen des Sy-
stems iiber Gesichter und wird entsprechend allgemeines Gesichtswissen (general face
knowledge) genannt. Es ermdglicht auch, neue Gesichter aus schon bekannten zusam-
menzusetzen. Zur weiteren Analyse von Gesichtern wird das allgemeine Gesichtswissen
mit Kontextinformation versehen. In der vorgestellten Anwendung bezieht sich das auf
das Geschlecht der Personen, ob sie béirtig sind und ob sie eine Brille tragen (siehe Ab-
bildung 2.8 links). Fiir die Szenenanalyse sind die Objekte sehr unterschiedlicher Natur
und daher nicht in einem Fusionsgraphen kombinierbar. Jedoch miissen die Graphen zur
Analyse einer Szene miteinander um Bildfliche konkurrieren, wenn man annimmt, daf
an jedem Ort nur ein Objekt sichbar sein kann. Dabei mufl berticksichtigt werden, dafl
sich die Objekte nicht gegenseitig durchdringen konnen. Das kann durch die Forderung
einer eindeutigen Tiefenreihenfolge erreicht werden (siehe Abbildung 2.8 rechts).

B.3 Prinzipien der dynamischen Graphenanpassung

Neuronale Netzwerke scheinen zunichst ungeeignet zu sein, etikettierte Graphen zu ver-
arbeiten. Das liegt im wesentlichen daran, dafl konventionelle neuronale Netze Rela-
tionen zwischen Neuronen nur durch deren synaptische Verbindungsstarke ausdriicken
konnen, die zudem nur auf einer langsamen Zeitskala durch Lernen veranderlich ist.
VON DER MALSBURG hat in der von ihm vorgeschlagenen Dynamic Link Architecture
die konventionellen neuronalen Netze konzeptionell um die Moglichkeit des dynamischen
Bindens von Neuronen durch Korrelation ihrer Zeitsignale und um schnell und reversibel
schaltende Synapsen erweitert. Beide Konzepte zusammen ermoglichen die dynamische
Graphenanpassung (dynamic link matching), ein Proze§ zum aufeinander Abbilden und
Vergleichen von etikettierten Graphen.
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Ein etikettierter Graph wird reprasentiert durch eine Schicht von Neuronen. Je-
dem Neuron ist ein lokales Merkmal zugeordnet, und laterale Verbindungen induzieren
eine Metrik und somit Abstinde zwischen den Neuronen. In der Graphenanpassung
sollen zwei solche Schichten entsprechend der Ahnlichkeit ihrer reprisentierten Muster
aufeinander abgebildet werden. Zu Beginn sind beide Schichten vollstandig miteinan-
der verschaltet, beschrieben durch die Verbindungsmatrix. Schliellich soll jedoch jedes
Neuron der einen Schicht mit nur einem Neuron der anderen Schicht verbunden sein
(siehe Abbildung 3.1). Die dynamische Graphenanpassung basiert auf folgenden vier
Prinzipien (siche Abbildungen 3.2 bis 3.5): Erstens, die lateralen Verbindungen einer
Schicht induzieren eine Dynamik, die Nachbarschaften durch Korrelationen ausdriickt,
benachbarte Neurone haben korrelierte Zeitsignale, entfernte Neurone feuern unkorre-
liert. Zweitens, sind zwei Schichten mit einer Identitatsabbildung verbunden, so werden
sich die Aktivitdtsdynamiken beider Schichten synchronisieren. Korrespondierende Neu-
rone feuern korreliert. Drittens, die Synchronisation ist robust gegen Rauschen, Verzer-
rungen und Teilverdeckungen. Sie ist ohnehin invariant gegen Translation, Rotation, und
Spiegelung. Diese Storungen werden immer auftreten, wenn die Schichten reale Bilder
reprasentieren. Viertens, die Verbindungsstruktur kann sich aufgrund der induzierten
Korrelationen zu einer eins-zu-eins Abbildung (one-to-one mapping) entwickeln. Dies ist
ein Wechselwirkungsprozef, da die Korrelationen bei entwickelter Verbindungsstruktur
ihrerseits auch verbessert werden (sieche Abbildung 3.6).

Die dynamische Graphenanpassung ist einer von wenigen Ansétze zur translationsin-
varianten Objekterkennung in neuronaler Architektur. Trotz ihrer Moglichkeiten, die im
niachsten Abschnitt kurz erldutert wird, kann sie die Leistungsfahigkeit unseres visuellen
Systems aus zwei Griinden nicht erklaren: Erstens, die dynamische Graphenanpassung
ist zu langsam. Die enorm kurzen Erkennungszeiten unseres visuellen Systems lassen
sich durch die relativ langsame Aktivitats- und Verbindungsdynamik nicht erklaren.
Man kann jedoch annehmen, dafl die dynamische Graphenanpassung in einem frithen
Entwicklungsstadium zur Objekterkennung verwendet wird, und daf} sich spater effizien-
tere Mechanismen entwickeln, die jedoch ein hohes Maf} an visueller Erfahrung erfordern.
Zweitens, die anfangliche vollstandige Verschaltung zwischen den Schichten erfordert zu
viele Verbindungen. Die Losung dieses Problems liegt offensichtlich in der Einfithrung
von hierarchischen Strukturen, wie schon ansatzweise gezeigt wurde.

B.4 Gesichtserkennung mit dynamischer Graphen-
anpassung

Als Aktivitatsdynamik der dynamischen Graphenanpassung wurde bisher eine ver-
wendet, die stationare Aktivitatsflecken erzeugt. Dabei wurde die gesamte Dynamik
auf recht kiinstliche Weise kontrolliert und mit den folgenden vier Schritten iteriert:
Erzeugung eines Aktivitatsflecks auf einer Schicht, initiiert durch Rauschen; Erzeugung
eines Aktivitdtsflecks auf der anderen Schicht aufgrund der durch die Verbindungsma-
trix propagierten Aktivitiat des ersten Flecks; Anwendung eines Lernschrittes fiir die
Verbindungsstruktur; Zuriicksetzen der Schichtaktivitdten auf Null. Auflerdem ist die
dynamische Graphenanpassung bisher noch nicht zu einem vollstandigen Erkennungssy-
stem entwickelt worden. Es wurden meist wenige Modelle, typischerweise drei, verwen-
det, und die Erkennungsentscheidung wurde aufgrund von Grofien, z.B. der gemittelten
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Verbindungsstirke, getroffen, die in einem biologischen System nicht direkt zuganglich
sind. Es war das Anliegen dieser Arbeit, die dynamische Graphenanpassung zu einem
vollstandigen Erkennungssystem mit kontinuierlicher und autonomer Dynamik zu ent-
wickeln.

Das Ziel der kontinuierlichen Dynamik wurde durch Einfithrung von verzogerter
Selbsthemmung (delayed self-inhibition) erreicht. Durch die Selbsthemmung kann der
vormals stationare Aktivitatsfleck nicht mehr an einem Ort stehen bleiben, sondern er
muf} stindig auf benachbarte Bereiche ausweichen, da dort die Selbsthemmung noch
gering ist. Das fiihrt zu einer kontinuierlichen Bewegung, in der der Aktivitatsfleck die
gesamte neuronale Schicht abtastet (siehe Abbildung 4.2). Diese starke Eigendynamik
der Aktivitatsflecken fiihrt natiirlich auch zu Problemen. Insbesondere ist die Synchro-
nisation der Aktivitatsflecken auf verschieden grofien Schichten erschwert. Daher habe
ich einen Aufmerksamkeitsfleck (attention blob) eingefiihrt, der die Bewegungsfreiheit
des laufenden Flecks auf der grofleren Schicht einschriankt. Der Aufmerksamkeitsfleck
kann seinerseits aber auch von dem Aktivitatsflecken verschoben werden, z.B. in den
Bereich des abgebildeten Objektes (siehe Abbildungung 4.4 und 4.5). Die dynamische
Graphenanpassung geschieht parallel zwischen dem Bild und einer Galerie von Model-
len. Zur eigentlichen Erkennung des richtigen Modells wird dessen Gesamtaktivitit
verwendet. Das richtige Modell ist dem Bild am ahnlichsten und kooperiert daher am
erfolgreichsten, was zu einer erhohten Gesamtaktivitat fithrt. In einfachen Fallen kann
schon sehr frith das richtige Modell bestimmt werden (siehe Abbildung 4.6 oben). In
anderen Fallen miissen sich die Verbindungsmatrizen erst stark organisiert haben, bevor
sich das richtige Modell durchsetzen kann (siche Abbildung 4.6 unten). Erkennungslei-
stungen unter verschiedenen Bedingungen fiir Galerien von bis zu 111 Modellen sind in
Tabelle 4.3 angegeben.

Drei weitere Veranderungen gegeniiber dem urspriinglichen System sind von Bedeu-
tung: Erstens wurden die Schichten wechselseitig, anstatt wie bisher unidirektional,
miteinander verbunden. Das hat zum einen den Vorteil, dafl sich die Aktivitdtsflecken
leichter synchronisieren. Zum anderen ist das fiir das Erkennungssystem notwendig: Die
Modelle miissen das Bild beeinflussen, um den Aufmerksamkeitsfleck richtig auf dem
Objekt zu positionieren. Das Bild mufl die Modelle anregen, um eine Unterscheidung
zwischen ahnlichen und undhnlichen Modellen zu erlauben. Zweitens wurden die Modelle
untereinander derartig verkniipft, dafl die Aktivitatsflecken in allen Modellen immer syn-
chron laufen und 7zu einem Zeitpunkt am gleichen Ort im Gesicht sind, z.B. das rechte
Auge oder die Nasenspitze. Diese Struktur kommt dem allgemeinen Gesichtswissen schon
sehr nahe. Ohne diese Zwangssynchronisation in der Modelldoméne wiirde die Synchro-
nisation des Bildes mit den Modellen weitgehend von zufilligen Anfangsbedingungen
abhangen. Drittens werden die Neuronen nicht, wie iiblich, durch die Summe der einge-
henden Signale angeregt, sondern durch das Maximum. Die Summe vermischt namlich
ein korrektes Signal mit vielen falschen, wihrend das Maximum mit einer relativ hohen
Wahrscheinlichkeit das richtige Signal und nur dieses selektiert. Ein weiterer Vorteil
des Maximums ist, dafl der dynamische Bereich der dufleren Anregung wahrend des
Selbstorganisationsprozesses gleich bleibt. Es miissen also keine Parameter nachgeregelt
werden.
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B.5 Gesichtserkennung mit elastischer Graphenan-
passung

Zur dynamischen Graphenanpassung gibt es eine algorithmisch ausgerichtete Variante,
die elastische Graphenanpassung (elastic graph matching). Sie ist sehr viel schneller
und flexibler als ihr neuronales Gegenstiick und daher angemessener fiir technische
Anwendungen. Hier ist die Aufgabe wieder Gesichtserkennung. Anstatt durch neu-
ronale Schichten werden die Gesichter direkt durch etikettierte Graphen reprasentiert, die
Knoten werden mit Jets als lokalen Merkmalen etikettiert, und die Kanten tragen Infor-
mationen iiber den Abstand der verbundenen Knoten (siehe Abbildung 5.1). Es werden
zwei Prozesse unterschieden, das Bilden eines neuen Gesichtsgraphen durch elastische
Graphenanpassung und die eigentliche Gesichtserkennung, bei der der neue Gesichts-
graph mit einer Galerie von Modellgraphen verglichen wird. Das letztere geschieht
einfach aufgrund der gemittelten Ahnlichkeit korrespondierender Jets. Die Geometrie
der Graphen spielt dabei keine Rolle. Die elastische Graphenanpassung dagegen beruht
auf einem relativ aufwendigen Optimierungsprozef}, in dem versucht wird, denjenigen
Teilgraphen aus einem Bild auszuwahlen, der eine moglichst hohe Jetahnlichkeit mit
den Modellgraphen hat unter der Nebenbedingung, dafl der Bildgraph geometrisch nicht
zu stark verzerrt sein darf gegeniiber der mittleren Geometrie der Modellgraphen. Um
eine moglichst hohe Prazision zu erreichen, wird fiir die Graphenanpassung die Jet-
Vergleichsfunktion unter Beriicksichtigung der Phaseninformation verwendet.

In der elastischen Graphenanpassung spielt das allgemeine Gesichtswissen eine beson-
dere Rolle. In dieser Graphenstruktur ist das allgemeine Wissen des Systems um die ver-
schiedenen méglichen Erscheinungsformen von Gesichtern zusammengefafit (siehe Abbil-
dung 5.2). Die Kanten sind wieder mit Abstandsinformationen etikettiert, jedoch gemit-
telt iber alle Modelle des allgemeinen Gesichtswissens. Den Knoten sind die Jets aller
Modelle zugeordnet. Dabei entspricht jeder Knoten einem bestimmten Punkt im Gesicht,
z.B. der Nase, dem linken Auge, oder einem Mundwinkel. Bei der elastischen Graphenan-
passung kann jeweils ein Jet pro Knoten angesprochen werden, und man wahlt jeweils
den am besten passenden aus. Auf diese Weise kann die volle kombinatorische Vielfalt
des allgemeinen Gesichtswissens genutzt werden. Ergebnisse der elastischen Graphenan-
passung sind in Abbildung 5.3 gezeigt.

Das System ist auch in der Lage, Gesichter in sehr verschiedener Ansicht miteinander
zu vergleichen, z.B. Frontalansicht mit Halbprofil. Dazu ist es notwendig, objektange-
pafite Graphen (object-adapted graphs) zu definieren. Die Knoten beziehen sich auf
gleiche Punkte im Gesicht, unabhingig von der Ansicht. So gibt es in jeder Ansicht
Augenknoten, Nasenknoten, usw. Die Struktur der Graphen sowie die Korresponden-
zen zwischen Knoten, die zu gleichen Punkten im Gesicht gehoren, wurden per Hand
definiert. Im Vergleich zweier Gesichter verschiedener Pose werden dann natiirlich nur
korrespondierende Knoten verglichen. Die Erkennungsraten liegen jedoch fiir unter-
schiedliche Posen relativ niedrig, wie beim Menschen auch (siehe Tabelle 5.1). Zur
Beurteilung, ob ein Gesicht zuverlassig erkannt wurde, habe ich ein schon friither ent-
wickeltes Konfidenzmaf} (confidence measure) verwendet.

Die drei wesentlichen Neuerungen gegeniiber dem vorangegangenen System sind die
Verwendung von Phaseninformation bei der Graphenanpassung, die Einfithrung des all-
gemeinen Gesichtswissens, und die Verwendung von objektangepafiten Graphen zum
Vergleich von Gesichtern verschiedener Pose.
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B.6 Phantombilder und Bestimmung von Gesichts-
merkmalen

Das Ergebnis der elastischen Graphenanpassung ist nicht nur der Bildgraph, sondern
auch die Information, fiir welchen Knoten welcher Jet und damit auch welches Modell
des allgemeinen Gesichtswissens am besten pafit. Diese Information soll nun fiir eine wei-
tergehende Analyse eines Gesichtes genutzt werden. Zunéchst kann man ein Phantombild
erzeugen. Dazu werden die lokalen Grauwertverteilungen, die zu den ausgewahlten Jets
gehoren, mit weichen Ubergéingen aneinandergefiigt. Es wird also keinerlei Grauwertin-
formation des Originalbildes verwendet. Die Phantombilder sehen den Originalen recht
dhnlich (siehe Abbildung 6.2). Man kann also davon ausgehen, daf} fiir ein weibliches
Gesicht die elastische Graphenanpassung im wesentlichen Jets von weiblichen Modellen
auswihlt. Gleiches gilt fiir ménnliche Gesichter oder Gesichter mit Brille oder Bart (bei
letzteren aber nur fiir die oberen bzw. unteren Knoten). Die Merkmale der Modelle lassen
sich so auf das Originalgesicht iibertragen und dessen Merkmale damit ermitteln. Das
Prinzip ist in Abbildung 6.1 illustriert. Die Erkennungsrate fiir die Gesichtsmerkmale
Geschlecht, Brille und Bart sind in Tabelle 6.2 angegeben. Anwendung der Bayesschen
Formel gibt auflerdem einen Hinweis darauf, welche Knoten fiir die Merkmalsbestim-
mungen besonders zuverléssig sind (sieche Abbildung 6.3).

Die Erkennungsraten sind etwas niedriger bis vergleichbar mit anderen neuronalen
Modellen zur Bestimmung des Geschlechtes eines Gesichts. Jedoch hat die vorgestellte
Methode einige grundlegende Vorteile. Sie ist sehr allgemein, erfordert also keine
manuelle Definition von Merkmalen, die fiir die Aufgabe geeignet sind. Das System
sollte ohne weitere Modifikationen auf andere Aufgaben iibertragbar sein, wie z.B. die
Bestimmung von emotionalen Gesichtsausdriicken oder die Unterscheidung verschiedener
Haustierrassen (Hund, Katze, Schaf). Bedingung ist nur eine in Bezug auf Gestalt und
Pose konsistente Darstellung der zu bestimmenden Objekte. Das System erfordert auf3er-
dem nur ein Minimum an Trainingsaufwand. Die alternativen Modelle, wie z.B. Back-
propagation oder Systeme basierend auf einer Hauptachsentransformation, sind bekannt
fiir ihren groflen Trainingsaufwand, sowohl in bezug auf die Anzahl der Trainingsbeispiele
als auch in bezug auf die Rechenzeiterfordernisse.

B.7 Erkennung von teilverdeckten Objekten

Die Anwendungen der vorangegangenen drei Abschnitte beziehen sich auf Gesichtserken-
nung. In diesem Abschnitt ist die Aufgabe eine ganz andere. Verschiedene Spielzeugob-
jekte werden zu Szenen zusammengestellt und konnen sich dabei weitgehend tiberdecken
(siehe Abbildung 7.1). Das vorgestellte System soll die Objekte trotz der Verdeckungen
erkennen. Hier erweist sich die Reprasentation der Objekte durch etikettierte Graphen
als besonders vorteilhaft, da sie in natirlicher Weise erlaubt, verschiedene Teile eines
Objektes verschieden zu behandeln. Die Knoten miiflen lediglich um eine Statusvariable
erganzt werden, die bezeichnet, ob der Knoten als sichtbar oder verdeckt angenommen
werden soll. Auch kann fiir zwei iiberlappende Graphen gezielt bestimmt werden, welcher
im Uberlappbereich besser in das Bild pafit. Danach richtet sich die Hypothese, welches
der beiden Objekt als verdeckt angenommen wird.

Es werden zwei Algorithmen zur Objekterkennung in einer Szene vorgestellt. Beiden
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geht die Graphenanpassung voraus, die fiir alle Objekte einer kleinen Galerie von 13
Objekten jeweils den wahrscheinlichsten Ort im Bild ermittelt. Der erste Algorithmus
behandelt jeden Graphen einzeln und bestimmt aufgrund der Ahnlichkeiten der einzelnen
Knoten mit dem Bild, welche Regionen des Graphen voraussichtlich verdeckt und welche
sichtbar sind. Ist die Gesamtdhnlichkeit zu gering oder der als sichtbar angenommene
Bereich zu klein, so wird das Modell ganz verworfen. Dieser Algorithmus erreicht eine
Erkennungsrate von 80% und ist geeignet, wenn bekannte Objekte unter unbekannten
Objekten erkannt werden soll (siehe Abbildung 7.3). Kann man voraussetzen, daf} alle
Objekte der Szene bekannt sind, so kann man die Szene von vorne nach hinten abar-
beiten. Das hat den Vorteil, dafl die vorderen Objekte sicher nicht verdeckt sind, und daf§
fiir weiter hinten liegende Objekte genau bekannt ist, welche Bildbereiche schon durch
Objekte im Vordergrund besetzt sind. Die Erkennungsrate ist mit 96.7% entsprechend
hoher (siehe Abbildung 7.4).

B.8 Diskussion

Absicht der vorliegenden Arbeit war es, zu demonstrieren, dafl der etikettierte Graph ein
leistungsfahiges und flexibles Datenformat ist, das die syntaktische Struktur beinhaltet,
die der Vektorreprasentation fehlt. Die Knotenrelationen spielten in den verschiedenen
Anwendungen eine wichtige Rolle. Sie waren entweder explizit oder implizit in den
jeweiligen Datenstrukturen realisiert.

Erstens wurden die individuellen Koeffizienten der Gabor Wavelet-Transformation zu
Jets zusammengebunden. Zweitens wurden Knoten durch Kanten zu Graphen organi-
siert. Drittens arbeiten sowohl die dynamische als auch die elastische Graphenanpassung
mit Verbindungen zwischen einem oder mehreren Modellgraphen und einem Bild, um
einen neuen Bildgraphen zu generieren. (Diese Aspekte syntaktischer Verbindungen
sind schon in fritheren Arbeiten verwendet worden. In dieser Arbeit neu hinzugekom-
men sind die folgenden.) Viertens, eine Menge von Jets, die als Alternativen fiir ein
und denselben Objektpunkt fungieren konnen, wurden im allgemeinen Gesichtswissen
gemeinsam an einen Knoten gebunden. Fiinftens wurde das allgemeine Gesichtswissen
um Kontextinformation erweitert, die Jets gleichen abstrakten Merkmals miteinander
verbindet. Sechstens schliefilich gab es zwischen den Knoten von Objektgraphen in-
hibitorische Verbindungen, wenn die Knoten um den gleichen Bildbereich konkurrierten.
Dies ist nur eine relativ kleine Zahl von moglichen Beziehungen zwischen Knoten. Man
wird weitere entwickeln und Wege finden miissen, wie sich die Relationen geeignet selbst-
organisieren konnen.

Das zweite Anliegen der Arbeit war, zu zeigen, dafl die dynamische Graphenanpas-
sung ein leistungsfahiges neuronales Konzept zur Verarbeitung von etikettierten Graphen
darstellt. Zum erstenmal wurde auf dieser Basis ein vollstandiges Erkennungssystem ent-
wickelt, das in der Lage ist, Gesichter gegen eine Galerie von iiber hundert Modellen zu
erkennen. Die elastische Graphenanpassung ist aber immer noch deutlich langsamer
und unflexibler als die elastische Graphenanpassung und viele Apekte der vorgestellten
Anwendungen miiflen noch in neuronalem Stile entwickelt werden.
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B.9 Anhang A: Visuelle Vorverarbeitung mit Gabor
Wavelets

Gabor-Funktionen haben die Form von Wellenpaketen (wavelet): ebene Wellen unter
einer einhiillenden Gauf3glocke. In der Gabor-Wavelettransformation wird ein Bild mit
einer ganzen Familie von Gabor Funktionen gefaltet. Die Gabor Kerne haben alle die
gleiche Form und unterscheiden sich nur in Grofle und Orientierung. In der vorliegenden
Arbeit werden fiinf Grolen (Frequenzen) und acht Orientierungen, d.h. 40 Kerne, ver-
wendet. Das Ergebnis sind 40 komplexe Koeffizienten an jedem Pixel des Bildes. Da die
Kerne wellenartig sind, konnen den Koeffizienten Amplitude und Phase zugeschrieben
werden. Die Amplitude dndert sich nur langsam mit dem Ort, die Phase variiert mit
der Raumfrequenz der Welle. Die Koeffizienten eines Pixels werden zusammenfassend
als Jet bezeichnet. Ein Jet ist eine kompakte und flexible Beschreibung einer Grauwert-
umgebung (siehe Abbildung A.1).

Jets werden in zweierlei Hinsicht ausgewertet. Erstens kann die Ahnlichkeit zwischen
zwei Jets bestimmt werden. Dazu dient das normierte Skalarprodukt, ohne oder mit
Berticksichtung der Phaseninformation. Zweitens kann die Phaseninformation verwendet
werden, um den rdumlichen Abstand zweier Jets an Nachbarpunkten eines Objektes
abzuschitzen. Dies ist fiir Stereobilder als Disparitdtsschatzung bekannt.
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