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Abstract. We present independent slow feature analysis as a new method for
nonlinear blind source separation. It circumvents the indeterminacy of nonlinear
independent component analysis by combining the objectives of statistical inde-
pendence and temporal slowness. The principle of temporal slowness is adopted
from slow feature analysis, an unsupervised method to extract slowly varying fea-
tures from a given observed vectorial signal. The performance of the algorithm is
demonstrated on nonlinearly mixed speech data.

1 Introduction

Unlike in the linear case the nonlinear Blind Source Separation (BSS) problem can
not be solved solely based on the principle of statistical independeétysgifinen and
Pajunen 1999 Jutten and Karhune2003. Performing nonlinear BSS with Indepen-
dent Component Analysis (ICA) requires additional information about the underlying
sources or to regularize the nonlinearities. Since source signal components are usually
more slowly varying than any nonlinear mixture of them we consider to require the
estimated sources to be as slowly varying as possible. This can be achieved by incor-
porating ideas from Slow Feature Analysis (SFRigkott and Sejnowski2007 into
ICA.

After a short introduction to linear BSS, nonlinear BSS and SFA we will show a
way how to combine SFA and ICA to obtain an algorithm that solves the nonlinear BSS
problem.

2 Linear Blind Source Separation

Letx(t) =[x (t),...,xn (t)]" be alinear mixture of a source sigrsét) = [sy (t),..., s (t)]"

and defined by

X(t) = As(t), 1)
with an invertibleN x N mixing matrixA. Finding a mapping
u(t) = QWx(t), )
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such that the components ofare mutually statistically independent is called Inde-
pendent Component Analysis (ICA). The mapping is often divided into a whitening
mappingW, resulting in uncorrelated signal componewtsvith unit variance, and a
successive orthogonal transformati@n because one can sho@dmon 1994 that
after whitening an orthogonal transformation is sufficient to obtain independence. It
is well known that ICA solves the linear BSS proble@ojmon 1994. There exists

a variety of algorithms performing ICA and therefore BSS (see €grdoso and
Souloumiag¢ 1993 Lee et al, 1999 Hyvarinen 1999). Here we focus on a method
using only second-order statistics introduced\bglgedey and Schustg¢d994. The
method consists of optimizing an objective function, subject to minimization, which
can be written as

Wica (Q)

Il
M

O
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2 N N 2
) =73 ( QuyQgeCyy (r)) : 3)

a,p=1 ap=1 \y,0=1
a#p a#p

operating on the already whitened sigyaC\(/? (1) is an entry of a symmetrized time
delayed covariance matrix defined by

V() = (yOyt+n +yt+0y®"), (4)

andCW (1) is defined correspondingl®),g denotes an entry d@. Minimization of

Wca can be understood intuitively as finding an orthogonal m&rtkat diagonalizes

the covariance matrix with time delay Since, because of the whitening, the instan-
taneous covariance matrix is already diagonal this results in signal components that
are decorrelated instantaneously and at a given time delakis can be sufficient to
achieve statistical independend®fg et al, 1991].

2.1 Nonlinear BSS and ICA

An obvious extension to the linear mixing modg) bas the form

x(t)=F(s(t)) , (5)

with a functionF (-) RN — RM, that mapsN-dimensional source vectossonto M-
dimensional signal vectoss The components of the observable are a nonlinear mix-
ture of the sources and like in the linear case source signal compaantsassumed
to be mutually statistically independent. Unmixing is in general only possiBi¢-if is
an invertible function, which we will assume from now on.

The equivalence of BSS and ICA in the linear case does in general not hold for a
nonlinear functiorf (-) [Hyvarinen and Pajunet999 Jutten and Karhune2003. To
solve the nonlinear BSS problem additional constraints on the mixture or the estimated
signals are needed to bridge the gap between ICA and BSS. Here we propose a hew
way to achieve this by adding a slowness objective to the independence objective of
pure ICA. Assume for example a sinusoidal signal comporeatsin(2rt) and a sec-
ond component that is the square of the fist= x? = 0.5(1 — cos(41t)) is given. The



second component is more quickly varying due to the frequency doubling induced by
the squaring. Typically nonlinear mixtures of signal components are more quickly vary-
ing than the original components. To extract the right source components one should
therefore prefer the slowly varying ones. The concept of slowness is used in our ap-
proach to nonlinear BSS by combining an ICA part that provides the independence of
the estimated source signal components with a part that prefers slowly varying signals
over more quickly varying ones. In the next section we will give a short introduction to
Slow Feature Analysis building the basis of the second part of our method.

3 Slow Feature Analysis

Assume a vectorial input signaft) = [x(t), ..., xu(t)]" is given. The objective of SFA
is to find an in general nonlinear input-output functioft) = g(x (t)) with g(x(t)) =
[01(X(t)), ..., gr(X(t))]" such that the (t) are varying as slowly as possible. This
can be achieved by successively minimizing the objective function

A(u) = (07, (6)
for eachu; under the constraints
(uy=20 (zero mean), @)
(u¥y =1 (unit variance), (8)
(uiuj) =0 Vj<i (decorrelation and order). 9)

Constraints ) and @) ensure that the solution will not be the trivial solutigr= const.
Constraint 9) provides uncorrelated output signal components and thus guarantees that
different components carry different information. Intuitively we are searching for signal
componentg; that have on average a small slope.

Interestingly Slow Feature Analysis (SFA) can be reformulated with an objective
function similar to second-order ICA, subject to maximizatiBraschke et a).2004,

M

Wsra(Q) = % (C&‘”(T))Z: S 5 Q QuyCY) (1) 2 (10)
Z a 5oy apcay~py :

To understand1(0) intuitively we notice that slowly varying signal components are
easier to predict, and should therefore have strong auto correlations in time. Thus, max-
imizing the time delayed variances produces slowly varying signal components.

4 Independent Slow Feature Analysis

If we combine ICA and SFA we obtain a method, we refer to as Independent Slow Fea-
ture Analysis (ISFA), that recovers independent components out of a nonlinear mixture
using a combination of SFA and second-order ICA. As already explained, second-order
ICA tends to make the output components independent and SFA tends to make them



slow. Since we are dealing with a nonlinear mixture we first compute a nonlinearly ex-
panded signat = h (x) with h(-) RM — R being typically monomials up to a given
degree, e.g. an expansion with monomials up to second degree can be written as

h(X(t)) = [Xe, - -, XN, X1X1, X1%2, - -, Xxm] T — D), (11)

when given arM-dimensional signak. The constant vectdn] is used to make the
expanded signal mean free. In a second gtepwhitened to obtaity = Wz. Thirdly

we apply linear ICA combined with linear SFA grin order to find the estimated source
signalu. Because of the whitening we know that ISFA, like ICA and SFA, is solved by
finding an orthogonal x L matrix Q. We write the estimated source signes

V=(E>=QV=QWZ=QWh&% (12)

where we introduced sinceR, the dimension of the estimated source signas usu-

ally much smaller thaih, the dimension of the expanded signal. While thare sta-

tistically independent and slowly varying the componentaré more quickly varying

and may be statistically dependent on each other as well as on the selected components.
To summarize, we have an dimensional inpuk anL dimensional nonlinearly ex-

panded and whitengdand anR dimensional estimated source signalSFA searches

anR dimensional subspace such that thare independent and slowly varying. This is

achieved at the expense of gfl ~

4.1 Obijective function

To recovelR source signal componenisi = 1, ..., Rout of anL-dimensional expanded
and whitened signal the objective reads

R 2 R 2
Wisra (U1, UR;T) = bica ) (Célé) (T)) —bsea H (Cgé) (T)) , (13
a,B=1, a=1
arp
where we simply combine the ICA objectivd)(@nd SFA objective{0) weighted by
the factorshca andbsga, respectively. Note that the ICA objective is usually applied
to the linear case to unmix the linear whitened mixtyikghereas here it is used on the
nonlinearly expanded whitened sigya Wz. ISFA tries to minimizeW,sga which is
the reason why the SFA part has a negative sign.

4.2 Optimization Procedure

From (12) we know thatC“) (1) in (13) depends on the orthogonal matéx There are
several ways to find the orthogonal matrix that minimizes the objective function. Here
we apply successive Givens rotations to obt@inA Givens rotatiorQ" is a rotation
around the origin within the plane of two selected compongrasdv and has the

matrix form
cog@) for (a,B) € {(KW),(V,v)}
QHV - _S?n((p) for (CX7[3) S {(IJ,V)} (14)
8=\ sin(g) for (a,B) € {(v.W)}

dqp Otherwise
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with Kronecker symbod,g and rotation angle. Any orthogonal x L matrix such as

Q can be written as a product bff"z_—l) (or more) Givens rotation matric€3" (for the
rotation part) and a diagonal matrix with elemet$ (for the reflection part). Since
reflections do not matter in our case we only consider the Givens rotations as is often
used in second-order ICA algorithms (see eGardoso and Souloumiat994).

We can therefore write the objective as a function of a Givens rot&itiras

2 2
R L R L
Wisra (Q™) =bica H < > Qg\\}/QE\éC%) (T)> —bsra ) ( > Qﬁ\éQl&Nng,) (T)> ,
a,p=1 \y,0=1 a=1 \By=1
azp
(15)
Assume we want to minimiz¢sga for a givenR, whereR denotes the number of signal
components we want to unmix. Applying a Givens rotaf@ff we have to distinguish
three cases

— Case 1Both axesu, anduy lie inside the subspace spanned by the fsixes
(LVv <R): The sum over all squared cross correlations of all signal components
that lie outside the subspace is constant as well as those of all signal components
inside the subspace. There is no interaction between inside and outside, in fact the
objective function is exactly the objective for an ICA algorithm based on second-
order statistics e.g. TDSEP or SOHRi¢he and Muller 1998 Belouchrani et aJ.
1997. In [Blaschke et aJ.2004 it has been shown that this is equivalent to SFA in
the case of a single time delay.

— Case 20nly one axis, w.l.o.gu, lies inside the subspace, the oth&y, outside
(L< R<V): Since one axis of the rotation plane lies outside the subspada,
the objective function can be optimized at the expenag @fufside the subspace.
A rotation ofTt/2, for instance would simply exchange componegtandu,. This
gives the possibility to find the slowest and most independent components in the
whole space spanned by allanduj (i =1,...,R, j=R+1,...,L) in contrast
to Case 1 where the minimum is searched within the subspace spannedRy the
components in the objective function.

— Case 3Both axes lie outside the subspaée< p,v): A Givens rotation with the
two rotation axes outside the relevant subspace does not affect the objective func-
tion, and can therefore be disregarded.

It can be shown that like irBlaschke and Wiskot2004 the objective function15) as
a function of@ can always be written in the form

WA (@) = Ao + Az cOS(29+ @p) -+ As cOS(4@+ @) (16)

where the second term on the right hand side vanishes for Case 1. There exists a single
minimum (if w.L.o.g.@ € [—7, 7]) that can easily be calculated (see &tpschke and
Wiskott, 2004). The derivation of {6) involves various trigonometric identities and,
because of its length, is documented elsewhere

Lhttp://itb.biologie.hu-berlin.de/~blaschke
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It is important to notice that the rotation planes of the Givens rotations are selected
from the wholeL-dimensional space whereas the objective function only uses informa-
tion of correlations among the firBsignal components;.

Successive application of Givens rotatidp¥’ leads to the final rotation matri®
which is in the ideal case such thaf C%) (1)Q = C¥) (1) has a diagonaR x R sub-
matrix CY) (1), but it is not clear if the final minimum is also the global one. However,
in various simulations no local minima have been found.

4.3 Incremental Extracting of Independent Components

It is possible to find the number of independent source signal compdRéytsucces-

sively increasing the number of components to be extracted. In each step the objective
function (L3) is optimized for a fixedR. First a single signal component is extracted
(R=1) and than an additional onR & 2) etc. The algorithm is stopped when no ad-
ditional signal component can be extracted. As a stopping criterion every suitable mea-
sure of independence can be applied; we used the sum over squared cross-cumulants
of fourth order. In our artificial examples, this value is typically small for independent
components, and increases by two orders of magnitudes if the number of components
to be extracted is greater than the number of original source signal components.

5 Simulation

Here we show a simple example, with two nonlinearly mixed signal components as
shown in Figurel. For comparison we chose a mixture frortgrmeling et al.2003
defined by

X1 (t) = (s2(t) +3s1 () +6) cos(1.5ms; (1)) ,
X2 (1) = (2(t) +3s1 () +6) sin(1.57tsy (1)) - 17)

We used the ISFA algorithm with different nonlinearities (see TabAlready a nonlin-

ear expansion with monomials up to degree three was sufficient to give good unmixing
results. In all cases ISFA did find exactly two independent signal components. Using all
monomials up to degree five led to results that showed virtually no difference between
estimated and true source signal (see EjgA linear BSS method failed completely to
find a good unmixing matrix.

6 Conclusion

We have shown that connecting the ideas of slow feature analysis and independent
component analysis into ISFA is a possible way to solve the nonlinear blind source
separation problem. SFA enforces the independent components of ICA to be slowly
varying which seems to be a good way to discriminate between the original and non-
linearly distorted source signal components. A simple simulation showed that ISFA is
able to extract the original source signal out of a nonlinear mixture. Furthermore ISFA
can predict the number of source signal components via an incremental optimization
scheme.



Table 1.Correlation coefficients of extractedy(anduy) and original §; andsy) source
signal components

linear degree 2 degree 3 degree 4 degree 5 kTDSEP

Up Uz Uy V7] up (V] Uy Uz Uy V5] Uy V7]

$1/-0.890 0.215]| 0.936|0.013| 0.001|0.988||0.002-0.996/| 0.998(-0.0000.990 -
S2|-0.011|-0.065||-0.027/0.149/-0.977,0.006/| 0.983 -0.000 -0.000| 0.994|| - |0.947

Correlation coefficients of extracteds(anduy) and original §; andsy) source signal com-
ponents for linear ICA (first column) and ISFA with different nonlinearities (monomials up to
degree 2,3,4, and 5). Note, that the source signal can only be estimated up to permutation and
scaling, resulting in different signs and permutationsipnduy,. The correlation coefficients

for KTDSEP were taken fromHarmeling et al. 2003 with same mixture but different source
signal.
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Fig. 1. Waveforms and Scatter-plots &) the original source signal componests(b)
the nonlinear mixture, anft) recovered components with nonlinear ISRA)(As a
nonlinearity we used all monomials up to degree 5.
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