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Abstract— CuBICA, an improved method for independent
component analysis (ICA) based on the diagonalization of cu-
mulant tensors is proposed. It is based on Comon’s algorithm
[1] but it takes third- and fourth-order cumulant tensors into
account simultaneously. The underlying contrast function is
also mathematically much simpler and has a more intuitive
interpretation. It is therefore easier to optimize and approximate.
A comparison with Comon’s and three other ICA-algorithms on
different data sets demonstrates its performance.

Index Terms— Independent Component Analysis, Cumulant,
Contrast

I. I NTRODUCTION

A vectorial signalx(t) = [x1(t), . . . , xN (t)]T to be ana-
lyzed, which we will refer to as input signal, is often a

mixture of some underlying signal componentssi(t) coming
from different sources. For instance, the sound we hear is
usually a superposition of several sound sources, such as a
person speaking and a phone ringing. In a simple model of
this data generation process, it is assumed that there are as
many sources as input signal components, that the source
signal componentssi (person and phone) are statistically
independent, that at most onesi is normally distributed, and
that the mixing is linear and noise free, yielding the relation

x = As , (1)

with fixed mixing matrix A and source signals(t) =
[s1(t), . . . , sN (t)]T . In the following we will drop the ref-
erence to time, and simply assume some sets of source and
input data related by (1). We also assume for simplicity that
the source signal and input signal have zero mean.

The input components are usually statistically dependent,
due to the mixing process, while the sources are not. If one
succeeds in finding a matrixR that yields statistically inde-
pendent output componentsuk, given byu = Rx = RAs,
one can recover the original sourcessi up to a permutation
and constant scaling of the sources.R (or sometimesQ, see
below) is called the unmixing matrix and finding the matrix
is referred to as independent component analysis (ICA).

To fix the arbitrary scaling factors, we require the output
components to have unit variance. For technical convenience,
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the unmixing is performed in two steps. First a whitening
matrix W is applied, yielding the whitened signaly = Wx,
then an orthogonal rotation matrixQ is applied yielding the
estimated source signal

u = Qy = QW︸︷︷︸
=R

x = QW︸︷︷︸
=R

As (2)

as an output signal.
There is a variety of methods for performing ICA and a

large body of literature (see [2]–[4] for an overview). Well
known examples are the Infomax approach by [5], FastICA, a
fixed-point algorithm by [6], and the cumulant based methods
[1], [7], [8]. We extend here on the latter and present an im-
proved algorithm that takes third- and fourth-order cumulants
into account simultaneously and, at the same time, is simpler
and faster than Comon’s algorithm [1], which our algorithm
is based upon. The algorithm is described in SectionII and a
performance comparison is given in SectionIII . We conclude
with a brief discussion in SectionIV. All simulations were
done with Matlab; analytical calculations were supported by
Mathematica.

II. I MPROVED ICA A LGORITHM

A. Cumulants and Independence

Statistical properties of the output data setu can be de-
scribed by its moments or, more conveniently, by its cumulants
C(u)

... . Since the data have zero mean, the sample cumulants
up to order four read

C
(u)
i =0 , (3)

C
(u)
ij =〈uiuj〉 ,

C
(u)
ijk =〈uiujuk〉 ,

C
(u)
ijkl=〈uiujukul〉 − 〈uiuj〉〈ukul〉

−〈uiuk〉〈ujul〉 − 〈uiul〉〈ujuk〉 ,

with 〈·〉 indicating the mean over all data points. Higher
order cumulants are not considered here. Cumulants of a given
order form a tensor. The diagonal elements characterize the
distribution of single components. For example,C

(u)
i , C

(u)
ii ,

C
(u)
iii , and C

(u)
iiii , the autocumulants of first to fourth order

in u, are the mean, variance, skewness, and kurtosis ofui,
respectively. The off-diagonal elements or cross-cumulants (all
cumulants withijkl 6= iiii) characterize the statistical depen-
dencies between components. If and only if all componentsui
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are statistically independent, the off-diagonal elements vanish
and the cumulant tensors (of all orders) are diagonal (assuming
infinite amount of data).

Thus, ICA is equivalent to finding an unmixing matrix that
diagonalizes the cumulant tensorsC(u)

... of the output dataui, at
least approximately. The first order cumulant tensor is a vector
and does not have off-diagonal elements. The second order
cumulant tensor can be diagonalized easily by whitening the
input datax with an appropriate matrixW, yieldingy = Wx
with 〈yyT 〉 = I (I denotes the N-dimensional identity matrix).
In generalW also fulfills the condition

WAAT WT = I , (4)

assuming the source signal components have unit variance. It
can be shown that this exact diagonalization of the second
order cumulant tensor of the whitened datay is preserved
if and only if the final matrixQ generating the output data
u = Qy is orthogonal, i.e. a pure rotation possibly plus
reflections [9]. In general there is no orthogonal matrix that
would diagonalize also the third- or fourth-order cumulant
tensor, thus the diagonalization of these tensors can only be
done approximately and we need to define an optimization
criterion for this approximate diagonalization, which is done
in the next section.

B. Contrast Function

In order to formalize the approximate diagonalization of
the cumulant tensors of order three and four we define the
following criterion

Ψ̄34(u):=
1
3!

∑
αβγ 6=ααα

(
C

(u)
αβγ

)2

+ (5)

1
4!

∑
αβγδ 6=αααα

(
C

(u)
αβγδ

)2

,

which is simply the sum over the squared third- and fourth-
order off-diagonal elements and needs to be minimized. The
factors 1

3! and 1
4! arise from an expansion of the Kullback-

Leibler divergence inu, which provides a rigorous derivation
of this criterion [7], [10].

Since the square sum over all elements of a cumulant tensor
is preserved under any orthogonal transformationQ of the
underlying datay [11], one can equally well maximize the
sum over the diagonal elements,

Ψ34(u) :=
1
3!

∑
α

(
C(u)

ααα

)2

+
1
4!

∑
α

(
C(u)

αααα

)2

, (6)

instead of minimizing the sum over the off-diagonal elements
(5). Ψ34(u) is obviously much simpler than̄Ψ34(u). Notice
that this is a contrast as defined by [7] because all functionals∑

α

(
C

(u)
αα...α

)2

of cumulants of order≥ 2 are contrasts and

their sumΨ34(u) is a contrast, too [12]. For a more general
approach to contrast functions see [13].

Due to the multilinearity of the cumulantsC(u)
... in C(y)

... , (6)
can be rewritten as

Ψ34(Q,y)=
1
3!

∑
α

(∑
βγδ

QαβQαγQαδC
(y)
βγδ︸ ︷︷ ︸

C
(u)
ααα

)2

(7)

+
1
4!

∑
α

(∑
βγδε

QαβQαγQαδQαεC
(y)
βγδε︸ ︷︷ ︸

C
(u)
αααα

)2

.

C(y)
... are the cumulants of the whitened data sety and Q..

are the elements of the rotation matrixQ. With u = Qy
Equations (6) and (7) are formally related byΨ34(u) =
Ψ34(I,u) = Ψ34(Q,y). Ψ34(Q,y) is now subject to an
optimization procedure to find the orthogonal matrixQ that
maximizes it.

C. Givens Rotations

A Givens rotation is a rotation around the origin within the
plane of two selected componentsµ andν and has the matrix
form

Qµν
αβ :=


cos(φ) for (α, β) ∈ {(µ, µ) , (ν, ν)}

− sin(φ) for (α, β) ∈ {(µ, ν)}
sin(φ) for (α, β) ∈ {(ν, µ)}

δαβ otherwise

(8)

with Kronecker symbolδαβ and rotation angleφ. In contrast
function (6) only the cumulants withα ∈ {µ, ν} are effected
by such a rotation. Any orthogonalN × N matrix such as
Q can be written as a product ofN(N−1)

2 (or more) Givens
rotation matricesQµν (for the rotation part) and a diagonal
matrix with diagonal elements±1 (for the reflection part).
Since reflections do not matter in our case we only consider
the Givens rotations. For simplicity and without loss of gen-
erality we now consider only the subspace of two selected
components, so that the Givens rotation matrix becomes

Qµν=
(

cos (φ) sin (φ)
− sin (φ)cos (φ)

)
. (9)

Contrast function (7) can then be rewritten asΨ34 (φ,y) =
Ψ3 (φ,y) + Ψ4 (φ,y) with

Ψn (φ,y):=
1
n!

n∑
i=0

dni

(
cos (φ)(2n−i) sin (φ)i

)
(10)

+
1
n!

n∑
i=0

dni

(
cos (φ)i (− sin (φ))(2n−i)

)
with some constantsdni that depend only on the cumulants

C(y)
... before rotation (see AppendixA). To simplify this

equation [1] defined some auxiliary variablesθ := tan (φ)
andξ := θ − 1

θ and derived

Ψ3 (θ,y)=
1
3!

(
θ +

1
θ

)−3 3∑
i=1

ai

(
θi − (−θ)−i

)
, (11)

Ψ4 (ξ,y)=
1
4!
(
ξ2 + 4

)−2
4∑

i=0

biξ
i (12)
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for (10), with some constantsai and bi depending on the
cumulants before rotation. To maximize (11) or (12) one has
to take their derivative and find the root giving the largest
value for Ψ3 or Ψ4, respectively. With this formulation only
either the third-order or the fourth-order diagonal cumulants
can be maximized but not both simultaneously.

In a more direct approach and after some quite involved
calculations using various trigonometric theorems, we were
able to derive a contrast function that (i) combines third- and
fourth-order cumulants, (ii) is mathematically much simpler,
(iii) has a more intuitive interpretation, and (iv) is therefore
easier to optimize and approximate. We found

Ψ34 (φ,y) = A0+A4 cos (4φ + φ4)+A8 cos (8φ + φ8) (13)

with some constantsA0, A4, A8 andφ4, φ8 that depend only
on the cumulantsC(y)

... before rotation (see AppendixB). The
third term comes from the fourth order cumulants only while
the first two terms incorporate information from the third-
and the fourth-order cumulants. Contrast functions for third-
or fourth-order cumulants only, i.e.Ψ3 or Ψ4, can be easily
obtained by setting all fourth- or third-order cumulants to zero,
respectively.

It is actually relatively easy to see that it is possible to
write the contrast in such a simple form. Firstly, rotation
by multiples of π

2 corresponds to a permutation of the two
components possibly plus sign changes, which does not affect
the value of the contrast. Therefore,Ψ34 has a periodicity ofπ2
and can be written as a sum ofcos-functions with frequencies
0, 4, 8, 12, 16, etc. Secondly, the terms in (10) are products of
at most eightsin(φ) and cos(φ) functions, which can lead at
most to a frequency of 8. Taking together these two arguments
it is clear that only the frequencies 0, 4, and 8 are present and
the contrast can be written in the form of (13). Because of the
π
2 periodicity it suffices to evaluate the contrast in the interval
[φ4 − π

4 , φ4 + π
4 ].

[14] derived a related formula for third-order cumulants
only that is quadratic insin (2φ) and cos (2φ) and can be
transformed to an expression similar to (13).

D. Unmixing Schedule

Unmixing for N = 2 can now be achieved in four steps:
(i) compute the constants in (13), (ii) find the angleφmax

that maximizesΨ34 (φ,y) in (13), (iii) calculate the Givens
rotation-matrix Qµν according to (9), and (iv) apply it to
the whitened signaly to obtain estimated source signalu =
Qµνy. SinceΨ34 is maximal, the cumulant tensorsC(u)

ijkl and

C
(u)
ijk are as diagonal as possible according to contrast (7) and

the estimated signal componentsui are maximally statistically
independent.

There are different ways to find the angleφmax that
maximizes Ψ34 (φ,y). Since all constants in Eq. (13) are
known andφmax has to lie in the interval

[
φ4 − π

4 , φ4 + π
4

]
we simply calculatedΨ34 (φ,y) for 1000 equidistant values
of φ covering this interval and took the angle with largest
value. We also tested a Matlab built-in function based on
Golden Section search and parabolic interpolation, which was

significantly slower, but found no difference in the unmixing
performance.

For N > 2 the contrast maximization follows directly from
theN = 2 case. We denote the contrast function for a selected
pair µ, ν of components byΨµν

34 (φµν ,y). Note that pairwise
statistical independence of the signal components implies
mutual independence of all signal components [7]. Therefore it
is sufficient to iteratively maximize allΨµν

34 like in the case of
N = 2 until φµν

max is smaller then a given thresholdε for every
pair µ, ν. In practice this can take several sweeps through all
pairs. Every sweep consists ofN (N − 1) /2 rotations.

After centering and whitening, a maximization schedule for
N > 2 could be as follows:

(1) Initialize auxiliary variablesQ′ = In andy′ = y

(2) Choose a pair of componentsµ andν (randomly or in
any given order)

(3) Calculate the Cumulants that are needed for
Ψµν

34 (φµν ,y′)

(4) Find the angleφµν
max such thatΨµν

34 (φµν
max,y′) is maxi-

mal

(5) If φµν
max > ε updateQ′ according toQ′ → QµνQ′

(6) Rotate the signal components:y′ → Qµνy′

(7) Go to step (2) unless all possibleφµν
max ≤ ε with ε � 1

(8) SetQ = Q′ andu = Qy.
In the simulations presented below we will not use theε
criterion but simply setε = 0 and go through all possible
pairs a fixed number of times in order to have a common
criterion for all cumulant based methods (see below).

We refer to this algorithm as CuBICA (Cumulant Based
IndependentComponentAnalysis) and indicate the different
variants by appending the order of cumulants used in the con-
trast. For example a variant with contrast function based on 3rd
and 4th order information is called CuBICA34. approximate
contrast functions (see below) are indicated by an additional
’a’, e.g., CuBICA34a.

E. Convergence

SinceΨ34 is a contrast it has the property

Ψ34 (Mu) ≤ Ψ34 (u) ∀M orthogonal, (14)

if u has maximally independent components [7]. In the al-
gorithm one can divideΨ34(Qµν ,y′) in (7) for every new
Givens rotationQµν into two parts. One part is not affected
by the rotation and the other isΨµν

34 (φ,y′). SinceΨµν
34 (φ,y′) is

maximized,Ψ34(Qµν ,y′) and therefore alsoΨ34 (Q′,y) have
to increase monotonically with every rotation. ButΨ34 (Q′,y)
has an upper bound, and thus will converge to a maximum. Of
course we cannot rule out that there might be local maxima
although they have not been observed.

F. Approximation ofΨ34

Empirically we have found that the third term in (13) is
small compared to the second one. In fact the amplitude of
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the third term,A8, is about one magnitude smaller than that of
the second term,A4, independently of the chosen data sets (see
Fig. 1). This suggests to neglect the third term and write as
an approximate criterion

Ψ̃34(φ,y) = A0 + A4 cos (4φ + φ4) . (15)

Note that Ψ̃34 still takes third- and fourth-order cumulants
into account. As in the exact case, unmixing criteria restricted
to fourth-order cumulants, i.e.̃Ψ4, can be easily obtained by
setting all third-order cumulants to zero. The contrast function
for third-order cumulants order only,̃Ψ3 remains the same
in the approximate form (15), sinceA8 in (13) contains no
information of third-order cumulants. Finding the maxima
φmax of (15) is trivial. They are the angles satisfying the
condition

φmax = n
π

2
− φ4

4
, n ε {0,±1,±2,±3, . . .} . (16)

The maximum we chose is simplyφmax = −φ4
4 .

III. C OMPARISON WITH OTHER ALGORITHMS

We compared four variants of CuBICA, namely those
based onΨ34(φ,y) (CuBICA34), Ψ̃34(φ,y) (CuBICA34a),
Ψ4(φ,y) (CuBICA4), and Ψ̃4(φ,y) (CuBICA4a), with
Comon’s original algorithm based onΨ4(ξ,y) [1], with the
JADE algorithm [15], which diagonalizes 4th order cumulant
matrices, the Infomax Algorithm [16], and the FastICA pack-
age [6] using a fixed-point algorithm with different nonlinear-
ities. In all cases we have used original software provided by
the authors1.

It is interesting to note that the different algorithms make
different assumptions about the distributions of the sources.
Infomax uses a one-parametric symmetrical model for the
distributions of the sources and thus makes the assumptions
very explicit. It is not clear to us which deviations of the
true distribution from the model can degrade the unmixing
performance and to what extent. Cumulant based methods, on
the other hand, make no explicit assumptions about the source
distributions. However, by focusing only on cumulants of low
order and since cumulants of different order do not mix under
a linear transformation, these methods are completely blind to
higher order cumulants. Thus there is an implicit assumption
that the distributions are such that low order cumulants contain
enough information for the unmixing. Therefore considering
fourth-order cumulants only is equivalent to a one-parametric
model of the source distribution whereas considering third-
and fourth-order cumulants results in a two-parametric family
of functions. FastICA is similar in this respect using a one-
parametric approach, although it is not restricted to cumulants
but can also be derived using non-polynomial functions.

1Comon’s algorithm: http://www.i3s.unice.fr/˜comon/
codesICA.txt (Version 6 of March 1992, downloaded December
12th, 2001); JADE: ftp://tsi.enst.fr/pub/jfc/Algo/Jade/
jadeR.m (Version 1.5 of December 1997, downloaded March 6th,
2001); FastICA: http://www.cis.hut.fi/projects/ica/
fastica/loadcode.shtml (Version 2.1 of January 15th, 2001,
downloaded January 15th, 2001); Infomax:http://www.cnl.salk.
edu/˜tewon/ICA/Code/ext_ica_download.html (Version
2.0 of August 23rd, 1998, downloaded March 6th, 2001); CuBICA:
http://itb.biologie.hu-berlin.de/˜blaschke (Version 1.6
of February 22th, 2002)

10−10 10−5 100 105 1010

A

10−10

100

1010

A

(a)

4

8

0 1 2 3 4

A  /10

0

1

2

3

4

A
  /

10
(b)

4

8

−3

−4

Fig. 1. Plot of amplitudeA8 versusA4 for all rotations in two simulations
with different data sets. The straight lines indicateA8 = 0.1 ∗ A4. (a)
Simulation with data set (v) (symmetrically distributed sources) and contrast
function Ψ4. Similar results were obtained by usingΨ34 as a contrast. Note
the logarithmic axes.A8 is about one magnitude smaller thanA4. Less than
1% of all values forA8

A4
exceed the 0.1-line.(b) Simulation with data set (ii)

(non-symmetrically distributed sources) and contrast functionΨ34. In this
case the difference is even greater since for non-symmetrically distributed
sourcesA4 has additional terms from third order cumulants which do not
appear inA8.

A. Simulations

We assembled five different data sets of length 44218. Data
set (i) contained real acoustic sources from [17] and [18].
Data set (ii) contained non-symmetrically distributed sources
and (v) was composed of different symmetrically distributed
sub- and super-Gaussian sources, both sets were generated
synthetically. Set (iii) and (iv) were mixtures of real acoustic
and synthetic sources. For further details see TableI. Each
data set was mixed by a randomly chosen mixing matrix with
entries chosen uniformly from[−1, 1].

To simplify the comparison between the algorithms we
used the same stopping criterion for all four cumulant based
methods, namely we stopped afterM sweeps through all

http://www.i3s.unice.fr/~comon/codesICA.txt
http://www.i3s.unice.fr/~comon/codesICA.txt
ftp://tsi.enst.fr/pub/jfc/Algo/Jade/jadeR.m
ftp://tsi.enst.fr/pub/jfc/Algo/Jade/jadeR.m
http://www.cis.hut.fi/projects/ica/fastica/loadcode.shtml
http://www.cis.hut.fi/projects/ica/fastica/loadcode.shtml
http://www.cnl.salk.edu/~tewon/ICA/Code/ext_ica_download.html
http://www.cnl.salk.edu/~tewon/ICA/Code/ext_ica_download.html
http://itb.biologie.hu-berlin.de/~blaschke
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possible pairs of signal components, whereM is the nearest
integer to1+

√
N andN is the number of source components.

Unmixing performance did not depend significantly on the
stopping criterion, but comparison of the time performances
is clearer with a common stopping criterion. Since it is not
easy to define a similar criterion for FastICA and Infomax we
did not change these algorithms.

To quantify the performances we slightly modified an error
measure proposed by [19] and defined the unmixing error

E=
1

N2

 N∑
i=1

 N∑
j=1

|Pij |
maxk |Pik|

− 1

+ (17)

N∑
j=1

(
N∑

i=1

|Pij |
maxk |Pkj |

− 1

) ,

whereP is the performance matrixP = QWA. Unmixing
error E indicates good unmixing by low values and vanishes
for perfect unmixing. An example of the development ofE
during a simulation is shown in Fig.2.

Fig. 2. Development of the unmixing error for data set (v) from TableI with
N = 40 usingΨ34 as a contrast. The algorithm was stopped after 7 sweeps
through allN ∗ (N − 1) /2 = 780 possible pairs of signal components.

Infomax and FastICA required some manual assistance,
while the other algorithms could be applied directly. For
Infomax we usually applied the algorithm to the data twice
with different parameter settings. The first run did a rough
unmixing which was then refined in the second run on the
already roughly unmixed data. Several test runs were necessary
to find appropriate parameter settings, which was quite time
consuming. For FastICA we had to do test runs to determine
the nonlinearity yielding best performance. In both cases the
error criterion (17) guided the parameter selection, so that the
results were not obtained completely unsupervised but with
some supervision. Since the data sets were sufficiently long to
rule out overfitting, we did not use separate training and test
sets in these experiments.

To investigate the dependency of the algorithms on the
length of the data set, we also did simulations on data
set (v) with different numbers of data points and compared
the unmixing errors (see Fig.3). Data set (v) was split
into 11 subsets of lengthT , with T ∈ {40, 80, 160, 320,
640, 1280, 2560, 5120, 10240, 20480} (for T = 5120, 10240,
and20480, there were only8, 4, and2 pieces, respectively).
The first subset was used to optimize the parameters of

FastICA and Infomax for one given mixing matrix. Then all
algorithms were tested with ten different mixing matrices on
each of the remaining subsets.

B. Results

We measured unmixing errors and the elapsed time for
all 8 different algorithms and 5 data sets of full length, see
Table I. Since additional simulations with different mixing
matrices showed no significant variations in the results, we
only give here the mean values for unmixing error and time
consumption.

For symmetrically distributed sources, all algorithms per-
formed similarly well (data sets (i), (iv), (v)). If the sources
were skew-symmetric, the additional third order information
was crucial and CuBICA34, CuBICA34a, and FastICA using
a corresponding nonlinearity clearly gave better results (data
set (ii)). In case where the sources were both symmetric
and skew-symmetric, only CuBICA34 and CuBICA34a with
contrast functionΨ34 andΨ̃34, respectively, could discriminate
between the different distributions (data set (iii)). Thus, the
comparison in TableI suggests that different ICA-algorithms
perform similarly well as long as their contrast functions
are sensitive to the properties of the source distributions.
Methods blind to skew-symmetric distributions fail on data
set (ii) and only the methods that take third-and fourth-
order cumulants into account can deal with mixtures of
symmetric and skew-symmetric distributions (data set (iii)).
The CuBICA-algorithms with approximate unmixing criterion
gave similar unmixing errors as the algorithms using the exact
contrast. This suggests thatA8 in Eq. (15) is indeed negligible.
However, since there is no advantage over the algorithms using
the exact contrast in terms of CPU-time, this is mainly of
theoretical interest.

The complexity of Comon’s algorithm and CuBICA is of
the same order. A significant difference is the way how the
optimal rotation angleφµν is found. Comon’s algorithm uses a
Matlab function to numerically find the root of a polynomial
of degree four in each step whereas CuBICA generates an
array of function values and searches for the maximal value.
In Matlab implementation CuBICA performs faster and gives
in general slightly smaller unmixing errors. JADE is an
algorithm based on kurtosis-maximization. It uses a matrix-
approximation for cumulant tensors of 4th order. This may
explain the less accurate performance on data set (v) but is also
responsible for the relatively high speed, since matrices can be
processed efficiently in the Matlab implementation. This speed
advantage might be less significant in a C implementation,
for instance, and vanishes for largerN (see data set (v))
because JADE needs to compute allN4 possible cumulants
of 4th order at least once. Comon’s algorithm and CuBICA,
on the other hand, only need to compute cumulants with at
most two different indices. FastICA is significantly faster and
Infomax is much slower than the cumulant based methods.
Both algorithms have in common that in our experiments they
needed some manual assistance. In FastICA we had to decide
which nonlinearity should be used. This decision was guided
by the unmixing error, a measure that is usually not available in
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TABLE I

UNMIXING ERROR (E) AND CPU-TIME IN SECONDS FOR DIFFERENT ALGORITHMS AND DATA SETS

data sets, # of components (N) data sets, # of components (N)

contrast function/ (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

algorithm N=6 N=6 N=7 N=12 N=40 N=6 N=6 N=7 N=12 N=40

CuBICA34 0.017 0.039 0.041 0.038 0.039 1.5 1.4 2.8 10.1 230.3

CuBICA34a 0.018 0.040 0.042 0.038 0.038 1.4 1.4 2.7 9.8 227.6

CuBICA4 0.016 0.31 0.11 0.035 0.039 1.4 1.4 2.7 10.0 222.8

CuBICA4a 0.017 0.32 0.12 0.036 0.038 1.4 1.4 2.6 9.8 218.8

Comon 0.017 0.25 0.14 0.049 0.061 2.4 2.3 4.3 14.1 300.2

JADE 0.016 0.30 0.11 0.035 0.10 0.7 0.7 1.1 5.4 404.6

Infomax 0.018 0.47 0.17 0.043 0.035 48.1 49.3 57.8 112.1 512.3

FastICA 0.016 0.040 0.11 0.042 0.037 1.7 0.5 0.5 6.2 16.8

Data sets: (i) 5 real acoustic sources from [17] + 1 normally distributed source (N (0, 1)), (ii) 5 skew-normally distributed sources [20] + 1 normally distributed
source, (iii) 3 music sources from [18] + 3 skew-normally distributed sources + 1 normally distributed source, (iv) 6 real acoustic sources (3 speech a+ 3 music
sources) from [17] and [18] + 3 Laplace distributed sources + 1 normally distributed source + 1 skew-normally distributed source + 1sin (0.05 ∗ t), (v) 10
Beta distributed sources (super-Gaussian) + 10 Cauchy distributed sources (sub-Gaussian) + 10 Laplace distributed sources (super-Gaussian) + 10 Student-t
distributed sources (sub-Gaussian). The number of data points for all data sets was T=44218. Additional 20 simulations with different mixing matrices showed
no significant variations in the unmixing errors. Low values ofE indicate good performance. Times have been measured on a 1.8 GHz Pentium IV PC using
Matlab 6.0 implementation. Relatively large unmixing errors and long CPU-times are set bold face.

more realistic applications. Infomax required some parameter
tuning and repeated application to the data with different
parameter sets which made the algorithm inconvenient to use.
It also seems questionable whether the speed advantages of
JADE and FastICA are worth the worse performance and the
required manual assistance, respectively.

By comparing unmixing errors of the different algorithms
depending on the number of data pointsN one can see from
Fig. 3 that all methods degrade similarly with shortened length
of the data sets. One marked difference however was that
Infomax had a large variance, while all other algorithms gave
virtually identical results over different simulation runs. Thus
although Infomax yielded best performance in some runs it
performed worst in others and we found it to be unreliable,
particularly on the short data sets. On the long data sets
used for TableI Infomax was nearly as reliable as the other
algorithms.

IV. CONCLUSION

We have proposed CuBICA, an improved cumulant based
method for independent component analysis. In contrast to
Comon’s method [1] and other algorithms (FastICA, Infomax,
and JADE) it takes third- and fourth-order statistics into
account simultaneously (CuBICA34) and is thus able to handle
linear mixtures of symmetrically and skew-symmetrically dis-
tributed source signal components. Due to its mathematically
simple formulation and sinceA8 in Eq. (15) is small compared
to A4, approximate algorithms, CuBICA34a and CuBICA4,
can be derived easily, which show equal performances. Al-
though, this is mainly of theoretical interest, since the ap-
proximate algorithms are not significantly faster. Furthermore,
in contrast to FastICA and Infomax, CuBICA can be used
without any parameter adjustments.

Since CuBICA can handle symmetric and asymmetric dis-
tributed sources, is easy to use, and shows good performance,
it may be a good general algorithm for performing ICA.
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Fig. 3. Mean unmixing errors for data set (v) from TableI with
N = 40 components and different numbers of data pointsT with T ∈
{40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480}. For eachT we
took 10 different samples and performed10 simulations on each, every
simulation with a different mixing matrix. ForT = 5120, 10240, and20480
we used7, 3, and 1 different samples, respectively, due to the length of
the whole data set (v). The standard deviation of the unmixing errors was
less then0.01 for all algorithms except Infomax. For Infomax the parameter
set with smallest unmixing error was found on a training set mixed with a
single mixing matrix. We used only one mixing matrix because finding a good
parameter set for several mixing matrices was too time consuming since the
algorithm did often not converge on one of the matrices. Results shown here
are for the same test data sets as for the other algorithms. The errorbars denote
twice the standard deviation of the unmixing error of Infomax.

APPENDIX

A. Constants in Equation (10)

The definitions ofdni follow directly from the multilinearity
of C(u)

... :

d30:=
(
C

(y)
111

2
+ C

(y)
222

2)
,

d31:=6
(
C

(y)
111C

(y)
112 − C

(y)
122C

(y)
222

)
,
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d32:=9
(
C

(y)
112

2
+ C

(y)
122

2)
+ 6

(
C

(y)
111C

(y)
122 + C

(y)
112C

(y)
222

)
,

d33:=2C
(y)
111C

(y)
222 + 18 C

(y)
112C

(y)
122 ,

d40:=
(
C

(y)
1111

2
+ C

(y)
2222

2)
,

d41:=8
(
C

(y)
1111C

(y)
1112 − C

(y)
1222C

(y)
2222

)
,

d42:=16
(
C

(y)
1112

2
+ C

(y)
1222

2)
+

12
(
C

(y)
1111C

(y)
1122 + C

(y)
1122C

(y)
2222

)
,

d43:=48
(
C

(y)
1112C

(y)
1122 − C

(y)
1122C

(y)
1222

)
+8
(
C

(y)
1111C

(y)
1222 − C

(y)
1112C

(y)
2222

)
,

d44:=36C
(y)
1122

2
+ 32 C

(y)
1112C

(y)
1222 + 2 C

(y)
1111C

(y)
2222 .

B. Constants in Equation (13)

From (10) one can derive

Ψn (φ,y)=an0 + sn4 sin (4φ) + cn4 cos (4φ)
+sn8 sin (8φ) + cn8 cos (8φ) for n ∈ {3, 4} ,

with

a30:=
1
3!

1
8

[
5
(
C

(y)
111

2
+ C

(y)
222

2)
+ 9

(
C

(y)
112

2
+ C

(y)
122

2)
+ 6

(
C

(y)
111C

(y)
122 + C

(y)
112C

(y)
222

)]
,

a40:=
1
4!

1
64

[
35
(
C

(y)
1111

2
+ C

(y)
2222

2)
+ 80

(
C

(y)
1112

2
+ C

(y)
1222

2)
+60

(
C

(y)
1111C

(y)
1122 + C

(y)
1122C

(y)
2222

)
+ 108C

(y)
1122

2
+ 96 C

(y)
1112C

(y)
1222 + 6 C

(y)
1111C

(y)
2222

]
,

s34:=
1
3!

1
4

[
6
(
C

(y)
111C

(y)
112 − C

(y)
122C

(y)
222

)]
,

c34:=
1
3!

1
8

[
3
(
C

(y)
111

2
+ C

(y)
222

2)
− 9

(
C

(y)
112

2
+ C

(y)
122

2)
− 6

(
C

(y)
111C

(y)
122 + C

(y)
112C

(y)
222

)]
,

s44:=
1
4!

1
32

[
56
(
C

(y)
1111C

(y)
1112 − C

(y)
1222C

(y)
2222

)
+ 48

(
C

(y)
1112C

(y)
1122 − C

(y)
1122C

(y)
1222

)
+8
(
C

(y)
1111C

(y)
1222 − C

(y)
1112C

(y)
2222

)]
,

c44:=
1
4!

1
16

[
7
(
C

(y)
1111

2
+ C

(y)
2222

2)
− 16

(
C

(y)
1112

2
+ C

(y)
1222

2)
−12

(
C

(y)
1111C

(y)
1122 + C

(y)
1122C

(y)
2222

)
− 36 C

(y)
1122

2
− 32 C

(y)
1112C

(y)
1222 − 2 C

(y)
1111C

(y)
2222

]
,

s38:=0 ,

c38:=0 ,

s48:=
1
4!

1
64

[
8
(
C

(y)
1111C

(y)
1112 − C

(y)
1222C

(y)
2222

)
−48

(
C

(y)
1112C

(y)
1122 − C

(y)
1122C

(y)
1222

)
−8
(
C

(y)
1111C

(y)
1222 − C

(y)
1112C

(y)
2222

)]
,

c48:=
1
4!

1
64

[(
C

(y)
1111

2
+ C

(y)
2222

2)
− 16

(
C

(y)
1112

2
+ C

(y)
1222

2)

−12
(
C

(y)
1111C

(y)
1122 + C

(y)
1122C

(y)
2222

)
+ 36C

(y)
1122

2
+ 32 C

(y)
1112C

(y)
1222 + 2 C

(y)
1111C

(y)
2222

]
.

With this it is trivial to determine the constants for
Ψ34 (φ,y) = Ψ3 (φ,y) + Ψ4 (φ,y) in the form given in (13).
We find:

A0:=a30 + a40 ,

A4:=
√

(c34 + c44)
2 + (s34 + s44)

2
,

A8:=
√

c2
48 + s2

48 ,

tan (φ4):=−
s34 + s44

c34 + c44
,

tan (φ8):=−
s48

c48
.

The coefficientsA0, A4 andφ4 are functions of the cumulants
of 3rd and 4th order of the centered and whitened signaly.
A8 andφ8 depend only on the 4th order cumulants.
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