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CuBICA: Independent Component Analysis by
Simultaneous Third- and Fourth-Order Cumulant
Diagonalization
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Abstract—CuBICA, an improved method for independent the unmixing is performed in two steps. First a whitening
component analysis (ICA) based on the diagonalization of cu- matrix W is applied, yielding the whitened signgl= Wx,

mulant tensors is proposed. It is based on Comon’s algorithm ihan an orth nal r ion matri® i l ieldina th
[1] but it takes third- and fourth-order cumulant tensors into t e' an orthogo a' otatio ar® is applied yielding the
estimated source signal

account simultaneously. The underlying contrast function is

also mathematically much simpler and has a more intuitive u=Qy = QWx = QW As @)
interpretation. It is therefore easier to optimize and approximate. ~— ~—
A comparison with Comon’s and three other ICA-algorithms on =R =R
different data sets demonstrates its performance. as an output signal.
Index Terms— Independent Component Analysis, Cumulant, ~ There is a variety of methods for performing ICA and a
Contrast large body of literature (see [2]-[4] for an overview). Well
known examples are the Infomax approach by [5], FastICA, a
|. INTRODUCTION fixed-point algorithm by [6], and the cumulant based methods
vectorial signalx() = [z1(t), ... 7£L_N(t”T to be ana- [1], [7], [8]- We extend here on the latter and present an im-

éproved algorithm that takes third- and fourth-order cumulants
Into account simultaneously and, at the same time, is simpler
gd faster than Comon’s algorithm [1], which our algorithm

lyzed, which we will refer to as input signal, is often
mixture of some underlying signal component$t) coming

from different sources. For instance, the sound we hear.q

usually a superposition of several sound sources, such as Qfased upon. The a_llgon_thm_ 1S dgscrlbed in Secticand a
person speaking and a phone ringing. In a simple model [ygriormance comparison 1S given in Sectlfﬂn We. conclude
this data generation process, it is assumed that there arewgg a k_)nef discussion n SectiofV/. .A” simulations were
many sources as input signal components, that the sou ne W|th_MatIab; analytical calculations were supported by
signal componentss; (person and phone) are statisticall athematica.

independent, that at most ore is normally distributed, and 0

L . L . . IMPROVEDICA ALGORITHM
that the mixing is linear and noise free, yielding the relation
A. Cumulants and Independence

x = As, @ Statistical properties of the output data setcan be de-
with fixed mixing matrix A and source signak(t) = scribed by its moments or, more conveniently, by its cumulants
[sl(t),...,sN(t)]T. In the following we will drop the ref- CW, Since the data have zero mean, the sample cumulants
erence to time, and simply assume some sets of source HRdO order four read
input data related bylj. We also assume for simplicity that c™_g 3)
the source signal and input signal have zero mean. 7’(u) ’

The input components are usually statistically dependent, Cij =(uiuy),
due to the mixing process, while the sources are not. If one Cf;‘,gzmzujuk%
succeeds in finding a matriR that yields statistically inde- '
i C(u)*<u-uu )y — (uiug) (upuy)
pendent output components;, given byu = Rx = RAs, ikl ™\t R ity Nk
one can recover the original sourcesup to a permutation —(ugur) (ujug) — (uiug) (ujug)

and constant scaling of the sourc(or sometimesQ, see with (-) indicating the mean over all data points. Higher

below) is called the unmixing matrix and finding the Marder cumulants are not considered here. Cumulants of a given

is referred to as independent component analysis (ICA). order form a tensor. The diagonal elements characterize the

To fix the arbitrary scaling factors, we require the OUtpu&istribution of single components. For examp@(“) oW
components to have unit variance. For technical convenien%qu) and ¢ the autocumulaﬁts of first to f,OL;I’thHOI’,deI’
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are statistically independent, the off-diagonal elements vanistDue to the multilinearity of the cumulan&™ in C¥), (6)
and the cumulant tensors (of all orders) are diagonal (assumaan be rewritten as

infinite amount of data). 1 ) \2

Thus, ICA is equivalent to finding an unmixing matrix that \1134(Q’-V):§ Z (Z Qaﬁ@w@wscﬁvé) @)
diagonalizes the cumulant tens@r§? of the output data;, at « P
least approximately. The first order cumulant tensor is a vector o
and does not have off-diagonal elements. The second order 1 ¥ \2
cumulant tensor can be diagonalized easily by whitening the +1 Z ( Z QaﬁQanaéQaeCmae)
input datax with an appropriate matri¥V, yieldingy = Wx a  Brde
with (yyT) = I (I denotes the N-dimensional identity matrix). oW

In generalW also fulfills the condition )
C) are the cumulants of the whitened data geand Q..

WAATWT =1, (4) are the elements of the rotation mat@. With u = Qy
Equations §) and (7) are formally related by¥s,(u) =

assuming the source signal components have unit varianceV#t(Lw) = ¥34(Q,y). ¥34(Q,y) is now subject to an
can be shown that this exact diagonalization of the secof@timization procedure to find the orthogonal mat@xthat
order cumulant tensor of the whitened datais preserved Maximizes it.

if and only if the final matrixQ generating the output data

u = Qy is orthogonal, i.e. a pure rotation possibly plu€. Givens Rotations

reflections [9]. In general there is no orthogonal matrix that o Givens rotation is a rotation around the origin within the

would diagonalize also the third- or fourth-order cumularB|ane of two selected componentsand and has the matrix
tensor, thus the diagonalization of these tensors can only g,

done approximately and we need to define an optimization

criterion for this approximate diagonalization, which is done cos(¢)  for (o, B) € {(n, 1), (v,v)}
in the next section. ) —sin(¢)  for (a,B) € {(n,v)} )
of sin(¢) for (o, 8) € {(v, )}
dop  Otherwise
B. Contrast Function with Kronecker symbob,s and rotation angle. In contrast

. ) ) ~ function @) only the cumulants withx € {1, v} are effected
In order to formalize the approximate diagonalization qfy sych a rotation. Any orthogonaV x N matrix such as
the cumulant tensors of order three and four we define t@g can pe written as a product é¥(1\2f—1) (or more) Givens

following criterion rotation matricesQ** (for the rotation part) and a diagonal
1 5 matrix with diagonal elements-1 (for the reflection part).
\1134(u)::§ Z (Oé‘gv) + (5) Since reflections do not matter in our case we only consider
" afytaaa the Givens rotations. For simplicity and without loss of gen-
1 ) \2 erality we now consider only the subspace of two selected
4! ; g: Caﬁwé) ’ components, so that the Givens rotation matrix becomes
afpyoFaaan
QW_( cos () sin <¢>) ©)
which is simply the sum over the squared third- and fourth- ~ \ —sin(¢)cos (¢) )

order off-diagonal elements and needs to be minimized. T

factors% and % arise from an expansion of the Kullback-

Leibler divergence in1, which provides a rigorous derivation 23 (#:¥) + ¥4 (¢, y) with

h . .
Eontrast function ) can then be rewritten a$s4 (¢,y) =

of this criterion [7], [10]. 1 & (2n—i) . ;

Since the square sum over all elements of a cumulant tensor U (¢, Y):a Z dn; (COS (9) sin () ) (20)
is preserved under any orthogonal transformati@nof the Zzon
underlying datay [11], one can equally well maximize the +l de_ (COS(¢)i (— sin(¢))(2”*i))
sum over the diagonal elements, n! pa

1 () 2 1 ) 2 with some constantd,,; that depend only on the cumulants
W34(u) = 52 (Caaa) + EZ (Caaaa) ; (6) O pefore rotation (see Appendi®). To simplify this
L L a equation [1] defined some auxiliary variablés:= tan (¢)

_p_1 i
instead of minimizing the sum over the off-diagonal elemen?éng =0 — 5 and derived

(5). W34(u) is obviously much simpler thaf s, (u). Notice 1 \3 3 ‘ _
that this is a contrast as defined by [7] because all functionals ¥ (9,y)=§ (9 + 9> Zai (91 - (—9)72) , (11)
>, (€% o) of cumulants of ordet 2 are contrasts and o
; ; 1 -2 i
their sum¥s,(u) is a contrast, too [12]. For a more general 0, (573’):5 (€2 +4) Z 3 (12)

approach to contrast functions see [13]. =0



for (10), with some constants; and b; depending on the significantly slower, but found no difference in the unmixing
cumulants before rotation. To maximizélj or (12) one has performance.
to take their derivative and find the root giving the largest For N > 2 the contrast maximization follows directly from
value for U3 or ¥, respectively. With this formulation only the N = 2 case. We denote the contrast function for a selected
either the third-order or the fourth-order diagonal cumulangsir i, v of components byl (¢#¥,y). Note that pairwise
can be maximized but not both simultaneously. statistical independence of the signal components implies
In a more direct approach and after some quite involvedutual independence of all signal components [7]. Therefore it
calculations using various trigonometric theorems, we weigsufficient to iteratively maximize all%; like in the case of
able to derive a contrast function that (i) combines third- andl = 2 until ¢~ is smaller then a given threshaldor every
fourth-order cumulants, (ii) is mathematically much simplegair i, v. In practice this can take several sweeps through all
(iii) has a more intuitive interpretation, and (iv) is thereforgairs. Every sweep consists of (N — 1) /2 rotations.
easier to optimize and approximate. We found After centering and whitening, a maximization schedule for
N > 2 could be as follows:
V34 (0,y) = Aot+Ascos (49 + da)+Ag cos (80 + ¢s) (13) (1) Initialize auxiliary variablesQ’ = I, andy’ =y

with some constantsl,, A4, Ag and ¢4, ¢ that depend only (2) Choose a pair of componengsand v (randomly or in
on the cumulant€’™) before rotation (see AppendR). The any given order)
third term comes from the fourth order cumulants only while
the first two terms incorporate information from the third- ®) o ,
and the fourth-order cumulants. Contrast functions for third- V34 (¢",¥")
or fourth-order cumulants only, i.els or W4, can be easily (4) Find the angles”, such thatU” (¢ y') is maxi-
obtained by setting all fourth- or third-order cumulants to zero, = mal h -
respectively. _
It is actually relatively easy to see that it is possible to(®) If @/, > € updateQ’ according toQ’ — Q" Q’

write the contrast in such a simple form. Firstly, rotation (6) Rotate the signal componentg: — Q**y’
by multiples of 5 corresponds to a permutation of the two
components possibly plus sign changes, which does not affe€?) Go to step ) unless all possible!;,, < e with e < 1
the value of the contrast. Therefore;, has a periodicity of; (8) SetQ = Q' andu = Qy.
and can be written as a sum afs-functions with frequencies . . .

In the simulations presented below we will not use the

0,4,8, 12, 16, etc. Secondly, the terms 10)(are products of criterion but simply sett = 0 and go through all possible

at most eightin(¢) andcos(g) functions, which can lead at irs a fixed number of times in order to have a common

most to a frequency of 8. Taking together these two argumeﬁf@(\a’rion for all cumulant based methods (see below).

it is clear that only the frequencies 0, 4, and 8 are present a ; .

the contrast can be written in the form df3]. Because of the e refer to this algorithm as CUBIQ ':. timulant B.ased

o L ; : : I ndependenComponentAnalysis) and indicate the different

Z periodicity it suffices to evaluate the contrast in the interval . . X

2 variants by appending the order of cumulants used in the con-

(@4 = 5, 0 + il . trast. For example a variant with contrast function based on 3rd
[14] derived a related formula for third-order cumulantgamd 4th order information is called CuBICA34. approximate
only that is quadratic irsin (2¢) and cos (2¢) and can be - app

. . contrast functions (see below) are indicated by an additional
transformed to an expression similar tG3). ', e.g., CuBICA34a

Calculate the Cumulants that are needed for

D. Unmixing Schedule E. Convergence

Unmixing for N = 2 can now be achieved in four steps: SNc€¥s4 is a contrast it has the property

(i) compute the constants irl§), (i) find the angleg,,q.

that maximizes¥s, (¢,y) in (13), (iii) calculate the Givens V34 (Mu) < W34 (1) VM orthogong| (14)
rotation-matrix Q** according to ¢), and (iv) apply it to if u has maximally independent components [7]. In the al-
the whitened signay to obtain estimated source signal= gorithm one can dividels,(Q*”,y’) in (7) for every new
QH*¥y. SinceV¥s, is maximal, the cumulant tenso@(;‘,gl and Givens rotationQ*” into two parts. One part is not affected

C*) are as diagonal as possible according to cont@dsarid by the rotation and the other ¥ (¢, y’). SinceW4y (¢, y') is

,

the estimated signal componentsare maximally statistically Maximized,¥s,(Q"",y’) and therefore als&;4 (Q',y) have

independent. to increase monotonically with every rotation. B, (Q’,y)
There are different ways to find the angig,.. that hasan upper bound, and thus will converge to a maximum. Of

maximizes U3, (¢,y). Since all constants in Eq.1§ are course we cannot rule out that there might be local maxima

known andg,,.. has to lie in the interva[¢4 — T Gyt ﬂ although they have not been observed.

we simply calculatedVs, (¢,y) for 1000 equidistant values o

of ¢ covering this interval and took the angle with largedt. Approximation ofs,

value. We also tested a Matlab built-in function based on Empirically we have found that the third term iA3) is

Golden Section search and parabolic interpolation, which wamall compared to the second one. In fact the amplitude of



the third term,Ag, is about one magnitude smaller than that of
the second termd,, independently of the chosen data sets (see
Fig. 1). This suggests to neglect the third term and write as
an approximate criterion

U34(,y) = Ag + Ay cos (4¢ + ¢4) . (15) 10"

Note that s, still takes third-and fourth-order cumulants (a)
into account. As in the exact case, unmixing criteria restricted
to fourth-order cumulants, i.el',, can be easily obtained by
setting all third-order cumulants to zero. The contrast function .
for third-order cumulants order only¥; remains the same < 10°
in the approximate form1(), since Ag in (13) contains no
information of third-order cumulants. Finding the maxima

dmaz Of (15) is trivial. They are the angles satisfying the * e
condition

Omaz = ng - % , ne{0,+1,£2 43 ...}. (16) 107"° 1078 10° 10° 10"

The maximum we chose is simply,,... = —%.

I11. COMPARISON WITHOTHER ALGORITHMS

We compared four variants of CuBICA, namely those 4
based on¥s,(¢,y) (CUBICA34), Ws,(¢,y) (CuBICA34a), (b)
W4(p,y) (CuBICA4), and W,(¢,y) (CuBICA4a), with 3
Comon’s original algorithm based o#i,(¢,y) [1], with the T
JADE algorithm [15], which diagonalizes 4th order cumulantg
matrices, the Infomax Algorithm [16], and the FastICA pack-~ 2
age [6] using a fixed-point algorithm with different nonlinear- <
ities. In all cases we have used original software provided by
the authors'.

It is interesting to note that the different algorithms make . . .
different assumptions about the distributions of the sources. 0 3y
Infomax uses a one-parametric symmetrical model for the 1
distributions of the sources and thus makes the assumptions A /10 -
very explicit. It is not clear to us which deviations of the 4
true distribution from the model can degrade the unmixingy 1. piot of amplitudeds versusA, for all rotations in two simulations
performance and to what extent. Cumulant based methodswith different data sets. The straight lines indicatg = 0.1 * A4. (a)

the other hand. make no explicit assumptions about the Soufgéulation with data set (v) (symmetrically distributed sources) and contrast
’ unction W4. Similar results were obtained by usidg4 as a contrast. Note

diStribUtionS_- However, by focus_ing only on CumU|antS_ of IO‘%e logarithmic axesAsg is about one magnitude smaller than. Less than
order and since cumulants of different order do not mix undess of all values for4 exceed the 0.1-lingb) Simulation with data set (ii)

. . . . 4 . .
a linear transformation, these methods are completely bI|nd(t@n-S¥]mn;f?ftrlca“y distributed sources) an(;l contrast funcﬂ%-”mdt_hls_b §
. . . ey . case the difference is even greater since for non-symmetrically distribute
hlgher order cumulants. Thus there is an ImpIICIt assumpt'é@urces& has additional terms from third order cumulants which do not

that the distributions are such that low order cumulants contaigpear inAs.

enough information for the unmixing. Therefore considering

fourth-order cumulants only is equivalent to a one-parametric

model of the source distribution whereas considering third: simulations

and fourth-order cumulants results in a two-parametric family

of functions. FastICA is similar in this respect using a one- We assembled five different data sets of length 44218. Data

parametric approach, although it is not restricted to cumularsgt (i) contained real acoustic sources from [17] and [18].

but can also be derived using non-polynomial functions. Data set (ii) contained non-symmetrically distributed sources
\Comon's  algorithm: _ hitp:/hwswi3s.ice i comond and (v) was composed. of different symmetrically distributed

codesICA.txt (Versioﬁ 6 of March .1992,. downloaded Decembelslm' ar_]d super-G_e_a_usman _Sources’ t_)Oth sets were gene_rated

12th, 2001); JADE: ftp://tsi.enst.fr/publjfc/AlgolJade! synthetically. Set (iii) and (iv) were mixtures of real acoustic

jadeR.m  (Version 1.5 of December 1997, downloaded March 6thand synthetic sources. For further details see Tableach

2001); FastICA:  http://www.cis.hut.fi/projects/ica/ ; i ; ;
fastica/loadcode shiml (Version 2.1 of January 15th, 2001, data set was mixed by a randomly chosen mixing matrix with

downloaded January 15th, 2001); Infomalxttp://www.cnl.salk. entries chosen uniformly from-1, 1].
edu/"tewon/ICA/Code/ext_ica_download.html (Version To simplify the comparison between the algorithms we
2.0 of August 23rd, 1998, downloaded March 6th, 2001); CuBICA: . o

http://itb.biologie.hu-berlin.de/ blaschke (Version 1.6 used the same stopping criterion for all four cumulant based

of February 22th, 2002) methods, namely we stopped aftdf sweeps through all
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possible pairs of signal components, whéreis the nearest FastICA and Infomax for one given mixing matrix. Then all

integer tol ++/N and N is the number of source componentsalgorithms were tested with ten different mixing matrices on

Unmixing performance did not depend significantly on theach of the remaining subsets.

stopping criterion, but comparison of the time performances

is clearer with a common stopping criterion. Since it is n

easy to define a similar criterion for FastICA and Infomax w

did not change these algorithms. We measured unmixing errors and the elapsed time for
To quantify the performances we slightly modified an errall 8 different algorithms and 5 data sets of full length, see

measure proposed by [19] and defined the unmixing error Table I. Since additional simulations with different mixing

matrices showed no significant variations in the results, we

. Results

N N

1 | Pij] only give here the mean values for unmixing error and time
E=— — 1 17 :
N2 ; Z; maxy, | P + (7 consumption.
VT For symmetrically distributed sources, all algorithms per-
i i P, . formed similarly well (data sets (i), (iv), (v)). If the sources
=\ & max;, | Prj| ) were skew-symmetric, the additional third order information

was crucial and CuBICA34, CuBICA34a, and FastICA using

whereP is the performance matriP = QWA. Unmixing a corresponding nonlinearity clearly gave better results (data
error E indicates good unmixing by low values and vanisheget (ii)). In case where the sources were both symmetric
for perfect unmixing. An example of the developmentof and skew-symmetric, only CuBICA34 and CuBICA34a with
during a simulation is shown in Fig. contrast functionl 3, and W4, respectively, could discriminate
between the different distributions (data set (iii)). Thus, the

0.3 comparison in Table suggests that different ICA-algorithms
perform similarly well as long as their contrast functions
are sensitive to the properties of the source distributions.
Methods blind to skew-symmetric distributions fail on data
set (i) and only the methods that take thirdnd fourth-
01 | order cumulants into account can deal with mixtures of
symmetric and skew-symmetric distributions (data set (iii)).
The CuBICA-algorithms with approximate unmixing criterion
gave similar unmixing errors as the algorithms using the exact
contrast. This suggests thdg in Eq. (15) is indeed negligible.
However, since there is no advantage over the algorithms using
a2 Devel Cof th N for data set (v) from Talsth the exact contrast in terms of CPU-time, this is mainly of
10 using Dy 26 & conirast. The algorthm was stopped aftr 7 sweefae0retical interest. | |
through all N x (N — 1) /2 = 780 possible pairs of signal components. The complexity of Comon’s algorithm and CuBICA is of

the same order. A significant difference is the way how the

Inffomax and FastICA required some manual assistanagtimal rotation angle*” is found. Comon’s algorithm uses a
while the other algorithms could be applied directly. FoMatlab function to numerically find the root of a polynomial
Infomax we usually applied the algorithm to the data twicef degree four in each step whereas CuBICA generates an
with different parameter settings. The first run did a roughrray of function values and searches for the maximal value.
unmixing which was then refined in the second run on tHa Matlab implementation CuBICA performs faster and gives
already roughly unmixed data. Several test runs were necessarnygeneral slightly smaller unmixing errors. JADE is an
to find appropriate parameter settings, which was quite tinaggorithm based on kurtosis-maximization. It uses a matrix-
consuming. For FastICA we had to do test runs to determiapproximation for cumulant tensors of 4th order. This may
the nonlinearity yielding best performance. In both cases th&plain the less accurate performance on data set (v) but is also
error criterion (7) guided the parameter selection, so that theesponsible for the relatively high speed, since matrices can be
results were not obtained completely unsupervised but wipnocessed efficiently in the Matlab implementation. This speed
some supervision. Since the data sets were sufficiently longatdvantage might be less significant in a C implementation,
rule out overfitting, we did not use separate training and tdst instance, and vanishes for largéf (see data set (v))
sets in these experiments. because JADE needs to compute Alf possible cumulants

To investigate the dependency of the algorithms on tloé 4th order at least once. Comon’s algorithm and CuBICA,
length of the data set, we also did simulations on datm the other hand, only need to compute cumulants with at
set (v) with different numbers of data points and comparedost two different indices. FastICA is significantly faster and
the unmixing errors (see Fig3). Data set (v) was split Infomax is much slower than the cumulant based methods.
into 11 subsets of lengthl’, with T € {40,80, 160,320, Both algorithms have in common that in our experiments they
640, 1280, 2560, 5120, 10240, 20480} (for T = 5120, 10240, needed some manual assistance. In FastICA we had to decide
and 20480, there were onl\8, 4, and2 pieces, respectively). which nonlinearity should be used. This decision was guided
The first subset was used to optimize the parameters lyfthe unmixing error, a measure that is usually not available in

0.2 r 1

unmixing error

0.0

0 780 1560 2340 3120 3900 4680 5460
# of iterations



TABLE |
UNMIXING ERROR (E) AND CPU-TIME IN SECONDS FOR DIFFERENT ALGORITHMS AND DATA SETS

data sets, # of components (N) data sets, # of components (N)

contrast function/ 0] (ii) (iii) (iv) v) 0] (i) (iii) (iv) (v)
algorithm N=6 N=6 N=7 N=12 | N=40 || N=6 | N=6 | N=7 | N=12 | N=40
CuBICA34 0.017 | 0.039 | 0.041 | 0.038 | 0.039 15 14 2.8 10.1 | 230.3
CuBICA34a 0.018 | 0.040 | 0.042 | 0.038 | 0.038 14 14 2.7 9.8 227.6
CuBICA4 0.016 | 0.31 0.11 | 0.035 | 0.039 14 14 2.7 10.0 | 2228
CuBICA4a 0.017 | 0.32 0.12 | 0.036 | 0.038 14 14 2.6 9.8 218.8
Comon 0.017 | 0.25 0.14 | 0.049 | 0.061 24 2.3 43 14.1 | 300.2
JADE 0.016 | 0.30 0.11 | 0.035 | 0.10 0.7 0.7 11 5.4 404.6
Infomax 0.018 | 0.47 0.17 | 0.043 | 0.035 || 48.1 | 49.3 | 57.8 | 1121 | 512.3
FastICA 0.016 | 0.040 | 0.11 | 0.042 | 0.037 1.7 0.5 0.5 6.2 16.8

Data sets: (i) 5 real acoustic sources from [17] + 1 normally distributed soi¥¢e,(1)), (ii) 5 skew-normally distributed sources [20] + 1 normally distributed

source, (iii) 3 music sources from [18] + 3 skew-normally distributed sources + 1 normally distributed source, (iv) 6 real acoustic sources (3 speech a+ 3 music
sources) from [17] and [18] + 3 Laplace distributed sources + 1 normally distributed source + 1 skew-normally distributed sotirc€)#1 * t), (v) 10

Beta distributed sources (super-Gaussian) + 10 Cauchy distributed sources (sub-Gaussian) + 10 Laplace distributed sources (super-Gaussian) + 10 Student
distributed sources (sub-Gaussian). The number of data points for all data sets was T=44218. Additional 20 simulations with different mixing matrices showed
no significant variations in the unmixing errors. Low valuesfofndicate good performance. Times have been measured on a 1.8 GHz Pentium IV PC using
Matlab 6.0 implementation. Relatively large unmixing errors and long CPU-times are set bold face.

more realistic applications. Infomax required some parameter
tuning and repeated application to the data with different -

—— JADE
parameter sets which made the algorithm inconvenient to useg 0.4 - —-—- Comon i
It also seems questionable whether the speed advantages - cF:ast;t:g:u

JADE and FastICA are worth the worse performance and the, 0.3 T o

required manual assistance, respectively. <
By comparing unmixing errors of the different algorithms .%X 0.2 ¢
depending on the number of data poifsone can see from

Fig. 3 that all methods degrade similarly with shortened length % 0.1 r T j[i i
of the data sets. One marked difference however was that ‘ ‘ ‘

Infomax had a large variance, while all other algorithms gave 10" 10° 10° 10* 10°
virtually identical results over different simulation runs. Thus dataset-length

although Infomax yielded best performance in some runs it

performed worst in others and we found it to be unreliable, N _
particularly on the short data sets. On the long data s §-:3-40 Cm:*;g‘neunrgnz:]”dg diefF;?;tszn?&te?s Soeft d(a"t)a f’;‘;%smﬂ'e%"’”g
used for Tabld Infomax was nearly as reliable as the othe{407807160, 320, 640, 1280, 2560, 5120, 10240, 20480}. For eachT we

algorithms. took 10 different samples and performeth simulations on each, every
simulation with a different mixing matrix. FGf' = 5120, 10240, and 20480
we used7,3, and 1 different samples, respectively, due to the length of
IV. CONCLUSION the whole data set (v). The standard deviation of the unmixing errors was

We have proposed CuBICA, an improved cumulant baségs ther[).Ol for all algo_rithms except Infomax. For Ir_n‘c_)max the parameter
method for independent component analysis. In contrast 34 sTales unming eror s fourd on & tranng set mied wth &
Comon’s method [1] and other algorithms (FastICA, Infomaxarameter set for several mixing matrices was too time consuming since the
and JADE) it takes third- and fourth-order statistics intélgorithm did often not converge on one of the matrices. Results shown here
account simulaneously (CUBICA34) and s thus able to hand[f, 52 est date sets s for e ther algortms The erorars denot
linear mixtures of symmetrically and skew-symmetrically dis-
tributed source signal components. Due to its mathematically
simple formulation and sincég in Eq. (15) is small compared
to A4, approximate algorithms, CuBICA34a and CuBICA4,
can be derived easily, which show equal performances. Ad: Constants in EquationL()
though, this is mainly of theoretical interest, since the ap-
proximate algorithms are not significantly faster. Furthermore, The definitions ofi,,; follow directly from the multilinearity
in contrast to FastiCA and Infomax, CuBICA can be use®f cw:
without any parameter adjustments. ) )

Since CuBICA can handle symmetric and asymmetric dis-dgosz(C’g% +C%) ) ,
tributed sources, is easy to use, and shows good performance,
it may be a good general algorithm for performing ICA. ds1:=6 (033035 - C%%C%%) :

APPENDIX



ds2:=9 (01(1% + C'122 ) (01110122 + ancg%> ) —12 (08’%108132 + 0112202222)
dsz:=2C¥c¥) +18¢) ) + 36 01122 +32C3 0%, +2 0111102222}
—(cW (v) ?
d40'_(01111 + Caaz2 ) ’ With this it is trivial to determine the constants for
v ,Y) = Vs (o,y) + Yy (¢, y) in the form given in {3).
dyp:=8 (0111101112 01(32/%2053’%2) 7 34 (¢ Y) 3(0,y) 1(9,y) g (KS))
) We find:
— (¥) (¥)
d42'716 (01112 + 01222 ) + A0::a30 + aqo ,
12 (Y) (Y) +C()’) Cr 2 2
C1111C1122 1122 2222 ) Ag:i=1/(c3a + caa)” + (834 + 544)”
dy3:=48 ( g%z g%z - 0112201222> Agi=1/c3s + 875
+38 (051%101222 01112C2222) ) tan(qh;)::fM ,
¥ o) ) Gt om
dag:=36 C1122 +32C1Y],08), + 2083, ¢, tan (qﬁg)::—cis .
48
B. Constants in Equationl ) The coefficientsd,, A4 andg¢, are functions of the cumulants

of 3rd and 4th order of the centered and whitened signal

From (L0) one can derive
Ag and ¢g depend only on the 4th order cumulants.

n (¢7 y):anO + Sn4 sin (4¢) + Cn4 COS (4¢)

+5ps 8in (8¢) + cpg cos (8¢) for n € {3,4}, ACKNOWLEDGMENT
with We thank Raphael Ritz for helpful comments on the
11 (y)2 manuscript.
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