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Abstract

In this paper we introduce some mathematical and numerical tools to analyze and interpret
inhomogeneous quadratic forms. The resulting characterization is in some aspects similar to
that given by experimental studies of cortical cells, making it particularly suitable for appli-
cation to second-order approximations and theoretical models of physiological receptive fields.
We first discuss two ways of analyzing a quadratic form by visualizing the coefficients of its
quadratic and linear term directly and by considering the eigenvectors of its quadratic term.
We then present an algorithm to compute the optimal excitatory and inhibitory stimuli, i.e.
the stimuli that maximize and minimize the considered quadratic form, respectively, given a
fixed energy constraint. The analysis of the optimal stimuli is completed by considering their
invariances, which are the transformations to which the quadratic form is most insensitive, and
by introducing a test to determine which of these are statistically significant. Next we propose
a way to measure the relative contribution of the quadratic and linear term to the total output
of the quadratic form. Furthermore, we derive simpler versions of the above techniques in the
special case of a quadratic form without linear term. In the final part of the paper we show that
for each quadratic form it is possible to build an equivalent two-layer neural network, which is
compatible with (but more general than) related networks used in some recent papers and with
the energy model of complex cells. We show that the neural network is unique only up to an
arbitrary orthogonal transformation of the excitatory and inhibitory subunits in the first layer.

Keywords: Quadratic forms, receptive fields, nonlinear analysis, visualization.

1 Introduction

Recent research in neuroscience has seen an increasing number of extensions of established linear
techniques to their nonlinear equivalent, in both experimental and theoretical studies. This is
the case, for example, for spatio-temporal receptive-field estimates in physiological studies (see
Simoncelli et al., 2004, for a review) and information theoretical models like principal component
analysis (PCA) (Schölkopf et al., 1998) and independent component analysis (ICA) (see Jutten
and Karhunen, 2003, for a review). Additionally, new nonlinear unsupervised algorithms have been
introduced, like, for example, slow feature analysis (SFA) (Wiskott and Sejnowski, 2002). The
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study of the resulting nonlinear functions can be a difficult task because of the lack of appropriate
tools to characterize them qualitatively and quantitatively.

During a recent project concerning the self-organization of complex-cell receptive fields in the
primary visual cortex (V1) (Berkes and Wiskott, 2002, 2005b, see Sect. 2) we have developed some
of these tools to analyze quadratic functions in a high-dimensional space. Because of the complexity
of the methods we describe them here in a separate paper. The resulting characterization is in some
aspects similar to that given by physiological studies, making it particularly suitable to be applied
to the analysis of nonlinear receptive fields.

We are going to focus on the analysis of the inhomogeneous quadratic form

g(x) =
1
2
xTHx + fTx + c , (1)

where x is an N -dimensional input vector, H an N×N matrix, f an N -dimensional vector, and c a
constant. Although some of the mathematical details of this study are specific to quadratic forms
only, it should be straightforward to extend most of the methods to other nonlinear functions while
preserving the same interpretations. In other contexts it might be more useful to approximate the
function under consideration by a quadratic form using a Taylor expansion up to the second order
and then apply the algorithms described here.

In experimental studies quadratic forms occur naturally as a second-order approximation of
the receptive field of a neuron in a Wiener expansion (Marmarelis and Marmarelis, 1978; van
Steveninck and Bialek, 1988; Lewis et al., 2002; Schwartz et al., 2002; Touryan et al., 2002; Rust
et al., 2004; Simoncelli et al., 2004). Quadratic forms were also used in various theoretical papers,
either explicitly (Hashimoto, 2003; Bartsch and Obermayer, 2003) or implicitly in the form of
neural networks (Hyvärinen and Hoyer, 2000; Hyvärinen and Hoyer, 2001; Körding et al., 2004).
The analysis methods used in these studies are discussed in Section 10.

Table 1 lists some important terms and variables used throughout the paper. We will refer
to 1

2 xTHx as the quadratic term, to fTx as the linear term, and to c as the constant term of
the quadratic form. Without loss of generality we assume that H is a symmetric matrix, since
if necessary we can substitute H in Equation (1) by the symmetric matrix 1

2 (H + HT) without
changing the values of the function g. We define µ1, . . . , µN to be the eigenvalues to the eigenvectors
v1, . . . ,vN of H sorted in decreasing order µ1 ≥ µ2 ≥ . . . ≥ µN . V = (v1, . . . ,vN ) denotes the
matrix of the eigenvectors and D the diagonal matrix of the corresponding eigenvalues, so that
VTHV = D. Furthermore, 〈·〉t indicates the mean over time of the expression included in the
angle brackets.

In the next section we introduce the model system that we are going to use for illustration
throughout this paper. Section 3 describes two ways of analyzing a quadratic form by visualizing
the coefficients of its quadratic and linear term directly and by considering the eigenvectors of its
quadratic term. We then present in Section 4 an algorithm to compute the optimal excitatory and
inhibitory stimuli, i.e. the stimuli that maximize and minimize a quadratic form, respectively, given
a fixed energy constraint. In Section 5 we consider the invariances of the optimal stimuli, which
are the transformations to which the function is most insensitive, and in the following section we
introduce a test to determine which of these are statistically significant. In Section 7 we discuss
two ways to determine the relative contribution of the different terms of a quadratic form to its
output. Furthermore, in Section 8 we consider the techniques described above in the special case
of a quadratic form without the linear term. In the end we present in Section 9 a two-layer neural
network architecture equivalent to a given quadratic form. The paper concludes with a discussion
of the relation of our approach to other studies in Section 10.
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N number of dimensions of the input space
〈·〉t mean over time of the expression between the two brackets
x input vector

g, g̃ the considered inhomogeneous quadratic form and its restriction to a
sphere

H,hi N × N matrix of the quadratic term of the inhomogeneous quadratic
form (Eq. 1) and i-th row of H (i.e., H = (h1, . . . ,hN )T ). H is assumed
to be symmetric

vi, µi i-th eigenvector and eigenvalue of H, sorted by decreasing eigenvalues
(i.e., µ1 ≥ µ2 ≥ . . . ≥ µN )

V,D the matrix of the eigenvectors V = (v1, . . . ,vN ) and the diagonal matrix
of the eigenvalues, so that VTHV = D

f N -dimensional vector of the linear term of the inhomogeneous quadratic
form (Eq. 1)

c scalar value of the constant term of the inhomogeneous quadratic form
(Eq. 1)

x+,x− optimal excitatory and inhibitory stimuli, ‖x+‖ = ‖x−‖ = r

Table 1 Definition of some important terms This table lists the definition of the most
important terms and the basic assumptions of the paper.

2 Model system

To illustrate the analysis techniques presented here we make use of the quadratic forms presented in
(Berkes and Wiskott, 2002) in the context of a theoretical model of self-organization of complex-cell
receptive fields in the primary visual cortex (see also Berkes and Wiskott, 2005b). In this section
we summarize the settings and main results of this example system.

We generated image sequences from a set of natural images by moving an input window over
an image by translation, rotation, and zoom and subsequently rescaling the collected stimuli to a
standard size of 16 × 16 pixels. For efficiency reasons the dimensionality of the input vectors x
was reduced from 256 to 50 input dimensions and whitened using principal component analysis
(PCA). We then determined quadratic forms (also called functions or units in the following) by
applying SFA to the input data. SFA is an implementation of the temporal slowness principle (see
Wiskott and Sejnowski, 2002, and references therein): Given a finite dimensional function space,
SFA extracts the functions that, applied to the input data, return output signals that vary as slowly
as possible in time (as measured by the variance of the first derivative) under the constraint that
the output signals have zero mean, unit variance, and are decorrelated. The functions are sorted by
decreasing slowness. For analysis the quadratic forms are projected back from the 50 first principal
components to the input space. Note that the rank of the quadratic term after the transformation
is the same as before, and it has thus only 50 eigenvectors.

The units receive visual stimuli as an input and can thus be interpreted as nonlinear receptive
fields. They were analyzed with the algorithms presented here and with sine-grating experiments
similar to the ones performed in physiology and were found to reproduce many properties of complex
cells in V1, not only the primary ones, i.e. response to edges and phase-shift invariance (see Sects. 4
and 5), but also a range of secondary ones such as direction selectivity, non-orthogonal inhibition,
end-inhibition, and side-inhibition.

This model system is complex enough to require an extensive analysis and is representative of the
application domain considered here, which includes second-order approximations and theoretical
models of physiological receptive fields.
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3 Visualization of coefficients and eigenvectors

One way to analyze a quadratic form is to look at its coefficients. The coefficients f1, . . . , fN of the
linear term can be visualized and interpreted directly. They give the shape of the input stimulus
that maximizes the linear part given a fixed norm.

The quadratic term can be interpreted as a sum over the inner product of the j-th row hj of H
with the vector of the products xjxi between the j-th variable xj and all other variables:

xTHx =
N∑

j=1

xj(hT
j x) =

N∑
j=1

hT
j


xjx1

xjx2
...

xjxN

 . (2)

In other words, the response of the quadratic term is formed by the sum of N linear filters hj which
respond to all combinations of the j-th variable with the other ones.

If the input data has a two-dimensional spatial arrangement, like in our model system, the
interpretation of the rows can be made easier by visualizing them as a series of images (by reshaping
the vector hj to match the structure of the input) and arranging them according to the spatial
position of the corresponding variable xj . In Figure 1 we show some of the coefficients of two
units learned in the model system. In both of them, the linear term looks unstructured. The
absolute values of its coefficients are small in comparison to those of the quadratic term so that
its contribution to the output of the functions is very limited (cf. Sect. 7). The row vectors hj of
Unit 4 have a localized distribution of their coefficients, i.e. they only respond to combinations of
the corresponding variable xj and its neighbors. The filters hj are shaped like a four-leaf clover
and centered on the variable itself. Pairs of opposed leaves have positive and negative values,
respectively. This suggests that the unit responds to stimuli oriented in the direction of the two
positive leaves and is inhibited by stimuli with an orthogonal orientation, which is confirmed by
successive analysis (cf. later in this section and Sect. 4). In Unit 28 the appearance of hj depends
on the spatial position of xj . In the bottom half of the receptive field the interaction of the variables
with their close neighbors along the vertical orientation is weighted positively, with a negative flank
on the sides. In the top half the rows have similar coefficients but with reversed polarity. As a
consequence, the unit responds strongly to vertical edges in the bottom half, while vertical edges
in the top half result in strong inhibition. Edges extending over the whole receptive field elicit only
a weak total response. Such a unit is said to be end-inhibited.

Another possibility to visualize the quadratic term is to display its eigenvectors. The output
of the quadratic form to one of the (normalized) eigenvectors equals half of the corresponding
eigenvalue, since 1

2v
T
i Hvi = 1

2v
T
i (µivi) = 1

2µi. The first eigenvector can be interpreted as the
stimulus that among all input vectors with norm 1 maximizes the output of the quadratic term.
The j-th eigenvector maximizes the quadratic term in the subspace that excludes the previous j−1
ones. In Figure 2 we show the eigenvectors of the two functions previously analyzed in Figure 1. In
Unit 4 the first eigenvector looks like a Gabor wavelet (i.e., a sine grating multiplied by a Gaussian).
The second eigenvector has the same form except for a 90 degree phase shift of the sine grating.
Since the two eigenvalues have almost the same magnitude, the response of the quadratic term is
similar for the two eigenvectors and also for linear combinations with constant norm 1. For this
reason the quadratic term of this unit has the main characteristics of complex cells in V1, namely a
strong response to an oriented grating with an invariance to the phase of the grating. The last two
eigenvectors, which correspond to the stimuli that minimize the quadratic term, are Gabor wavelets
with orientation orthogonal to the first two. This means that the output of the quadratic term is
inhibited by stimuli at an orientation orthogonal to the preferred one. A similar interpretation can
be given in the case of Unit 28, although in this case the first and the last two eigenvalues have
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Figure 1 Quadratic form coefficients This figure shows some of the quadratic form coefficients
of two functions learned in the model system. The top plots show the coefficients of the linear
term f , reshaped to match the two-dimensional shape of the input. The bottom plots show the
coefficients of nine of the rows hj of the quadratic term. The crosses indicate the spatial position
of the corresponding reference index j.

the same orientation but occupy two different halves of the receptive field. This confirms that Unit
28 is end-inhibited. A direct interpretation of the remaining eigenvectors in the two functions is
difficult (see also Sect. 8), although the magnitude of the eigenvalues shows that some of them elicit
a strong response. Moreover, the interaction of the linear and quadratic terms to form the overall
output of the quadratic form is not considered but cannot generally be neglected. The methods
presented in the following sections often give a more direct and intuitive description of quadratic
forms.

12.23 −12.0312.10 −11.726.38 −8.086.24 −7.936.04 −6.52

. . .

Unit 28

6.56 −5.006.54 −4.964.72 −3.744.64 −3.693.81 −2.89

. . .

Unit 4

Figure 2 Eigenvectors of the quadratic term Eigenvectors of the quadratic term of two
functions learned in the model system sorted by decreasing eigenvalues as indicated above each
eigenvector.
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4 Optimal stimuli

Another characterization of a nonlinear function can be borrowed from neurophysiological experi-
ments, where it is common practice to characterize a neuron by the stimulus to which the neuron
responds best (for an overview see Dayan and Abbott, 2001, chap. 2.2). Analogously, we can com-
pute the optimal excitatory stimulus of g, i.e. the input vector x+ that maximizes g given a fixed
norm1 ‖x+‖ = r. Note that x+ depends qualitatively on the value of r: If r is very small the
linear term of the equation dominates, so that x+ ≈ f , while if r is very large the quadratic part
dominates, so that x+ equals the first eigenvector of H (see also Sect. 8). We usually choose r to
be the mean norm of all input vectors, since we want x+ to be representative of the typical input.
In the same way we can also compute the optimal inhibitory stimulus x−, which minimizes the
response of the function.

The problem of finding the optimal excitatory stimulus under the fixed energy constraint can
be mathematically formulated as follows:

maximize g(x) = 1
2x

THx + fTx + c
under the constraint xTx = r2 .

(3)

This problem is known as the Trust Region Subproblem and has been extensively studied in the
context of numerical optimization, where a nonlinear function is minimized by successively approxi-
mating it by an inhomogeneous quadratic form, which is in turn minimized in a small neighborhood.
Numerous studies have analyzed its properties in particular in the numerically difficult case where
H is near to singular (see Fortin, 2000, and references therein). We make use of some basic results
and extend them where needed.

If the linear term is equal to zero (i.e., f = 0), the problem can be easily solved (it is simply
the first eigenvector scaled to norm r, see Sect. 8). In the following we consider the more general
case where f 6= 0. We can use a Lagrange formulation to find the necessary conditions for the
extremum:

xTx = r2 (4)

and ∇[g(x)− 1
2
λxTx] = 0 (5)

⇔ Hx + f − λx = 0 (6)

⇔ x = (λI−H)−1 f , (7)

where we inserted the factor 1
2 for mathematical convenience. According to Theorem 3.1 in (Fortin,

2000), if an x that satisfies Equation (7) is a solution to (3), then (λI−H) is positive semidefinite
(i.e., all eigenvalues are greater or equal to 0). This imposes a strong lower bound on the range
of possible values for λ. Note that the matrix (λI − H) has the same eigenvectors vi as H with
eigenvalues (λ− µi). For (λI−H) to be positive semidefinite all eigenvalues must be nonnegative,
and thus λ must be greater than the largest eigenvalue µ1,

µ1 ≤ λ . (8)

An upper bound for lambda can be found by considering an upper bound for the norm of
x. First we note that matrix (λI − H)−1 is symmetric and has the same eigenvectors as H with

1The fixed norm constraint corresponds to a fixed energy constraint (Stork and Levinson, 1982) used in experi-
ments involving the reconstruction of the Wiener kernel of a neuron (Dayan and Abbott, 2001, chap. 2.2). During
physiological experiments in the visual system one sometimes uses stimuli with fixed contrast instead. The optimal
stimuli under these two constraints may be different. For example, with fixed contrast one can extend a sine grating
indefinitely in space without changing its intensity while with fixed norm its maximum intensity is going to dim as
the extent of the grating increases. The fixed contrast constraint is more difficult to enforce analytically (for example
because the surface of constant contrast is not bounded).
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eigenvalues 1/(λ − µi). We also know that ‖Av‖ ≤ ‖A‖‖v‖ for every matrix A and vector v.
‖A‖ is here the spectral norm of A, which for symmetric matrices is simply the largest absolute
eigenvalue. With this we find an upper bound for λ:

r = ‖x‖ (9)

= ‖(λI−H)−1f‖ (10)

≤ ‖(λI−H)−1‖ ‖f‖ (11)

= max
i

{∣∣∣∣ 1
λ− µi

∣∣∣∣} ‖f‖ (12)

=
(8)

1
λ− µ1

‖f‖ (13)

⇔ λ ≤ ‖f‖
r

+ µ1 . (14)

The optimization problem (3) is thus reduced to a search over λ on the interval
[
µ1,
(
‖f‖
r + µ1

)]
until x defined by (7) fulfills the constraint ‖x‖ = r (Eq. 4). Vector x and norm ‖x‖ can be
efficiently computed for each λ using the eigenvalue decomposition of f :

x =
(7)

(λI−H)−1f (15)

= (λI−H)−1
∑

i

vi (vT
i f) (16)

=
∑

i

(λI−H)−1 vi (vT
i f) (17)

=
∑

i

1
λ− µi

vi (vT
i f) (18)

and

‖x‖2 =
∑

i

(
1

λ− µi

)2

(vT
i f)2 , (19)

where the terms vT
i f and (vT

i f)2 are constant for each quadratic form and can be computed in
advance. The last equation also shows that the norm of x is monotonically decreasing in the
considered interval, so that there is exactly one solution and the search can be efficiently performed
by a bisection method. x− can be found in the same way by maximizing the negative of g. The
pseudo-code of an algorithm that implements all the considerations above can be found in (Berkes
and Wiskott, 2005a). A Matlab version can be downloaded from the authors’ homepages.

If the matrix H is negative definite (i.e., all its eigenvalues are negative) there is a global
maximum that may not lie on the sphere, which might be used in substitution for x+ if it lies
in a region of the input space that has a high probability of being reached (the criterion is quite
arbitrary, but the region could be chosen to include, for example, 75% of the input data with
highest density). The gradient of the function disappears at the global extremum such that it can
be found by solving a simple linear equation system:

∇g(x) = Hx + f = 0 (20)

⇔ x = −H−1f . (21)

In the same way a positive definite matrix H has a negative global minimum, which might be used
in substitution for x−.
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In Figure 3 we show the optimal stimuli of some of the units in the model system. In almost
all cases x+ looks like a Gabor wavelet, in agreement with physiological data for neurons of the
primary visual cortex (Pollen and Ronner, 1981; Adelson and Bergen, 1985; Jones and Palmer,
1987). The functions respond best to oriented stimuli having the same frequency as x+. x− is
usually structured as well and looks like a Gabor wavelet, too, which suggests that inhibition plays
an important role. x+ can be used to compute the position and size of the receptive fields as well
as the preferred orientation and frequency of the units for successive experiments.
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Figure 3 Optimal stimuli Optimal stimuli of some of the units in the model system. x+

looks like a Gabor wavelet in almost all cases, in agreement with physiological data. x− is usually
structured and is also similar to a Gabor wavelet, which suggests that inhibition plays an important
role.

Note that although x+ is the stimulus that elicits the strongest response in the function, it
doesn’t necessarily mean that it is representative of the class of stimuli that give the most important
contribution to its output. This depends on the distribution of the input vectors: If x+ lies in a
low-density region of the input space, it is possible that other kinds of stimuli drive the function
more often. In that case they might be considered more relevant than x+ to characterize the
function. Symptomatic for this effect would be if the output of a function when applied to its
optimal stimulus would lie far outside the range of normal activity. This means that x+ can be an
atypical, artificial input that pushes the function in an uncommon state. A similar effect has also
been reported in a physiological paper comparing the response of neurons to natural stimuli and
to artificial stimuli such as sine gratings (Baddeley et al., 1997). The characterization of a neuron
or a nonlinear function as a feature detector via the optimal stimulus is thus at least incomplete
(see also MacKay, 1985). However, the optimal stimuli remain extremely informative in practice.

5 Invariances

Since the considered functions are nonlinear, the optimal stimuli do not provide a complete de-
scription of their properties. We can gain some additional insights by studying a neighborhood
of x+ and x−. An interesting question is, for instance, to which transformations of x+ or x−

the function is invariant. This is similar to the common interpretation of neurons as detectors of
a specific feature of the input which are invariant to a local transformation of that feature. For
example, complex cells in the primary visual cortex are thought to respond to oriented bars and to
be invariant to a local translation. In this section we are going to consider the function g̃ defined
as g restricted to the sphere S of radius r, since like in Section 4 we want to compare input vectors
having fixed energy. Notice that although g̃ and g take the same values on S (i.e., g̃(x) = g(x) for
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each x ∈ S) they are two distinct mathematical objects. For example, the gradient of g̃ in x+ is
zero because x+ is by definition a maximum of g̃. On the other hand, the gradient of g in the same
point is Hx+ + f , which is in general different from zero.

Strictly speaking, there is no invariance in x+, since it is a maximum and the output of g̃
decreases in all directions (except in the special case where the linear term is zero and the first two
or more eigenvalues are equal). On the other hand, in a general, non-critical point x∗ (i.e., a point
where the gradient does not disappear) the rate of change in any direction w is given by its inner
product with the gradient, ∇g̃(x∗) ·w. For all vectors orthogonal to the gradient (which span an
N−2 dimensional space) the rate of change is thus zero. Note that this is not merely a consequence
of the fact that the gradient is a first-order approximation of g̃. By the implicit function theorem
(see, e.g., Walter, 1995, Theorem 4.5), in each open neighborhood U of a non-critical point x∗ there
is an N − 2 dimensional level surface {x ∈ U ⊂ S | g̃(x) = g̃(x∗)}, since the domain of g̃ (the
sphere S) is an N − 1 dimensional surface and its range (R) is 1 dimensional. Each non-critical
point thus belongs to an N −2 dimensional surface where the value of the g̃ stays constant. This is
a somewhat surprising result: For an optimal stimulus there does not exist any invariance (except
in some degenerate cases); for a general sub-optimal stimulus there exist many invariances.

This shows that although it might be useful to observe for example that a given function f
that maps images to real values is invariant to stimulus rotation, one should keep in mind that in
a generic point there are a large number of other transformations to which the function is equally
invariant but that would lack an easy interpretation. The strict concept of invariance is thus
not useful for our analysis, since in the extrema we have no invariances at all, while in a general
point they are the typical case and the only interesting direction is the one of maximal change, as
indicated by the gradient. In the extremum x+, however, since the output changes in all directions,
we can relax the definition of invariance and look for the transformation to which the function
changes as little as possible, as indicated by the direction with the smallest absolute value of the
second derivative (Figure 4). (In a non-critical point this weak definition of invariance still does not
help: If the quadratic form that represents the second derivative has positive as well as negative
eigenvalues, there is still a N − 3 dimensional surface where the second derivative is zero.)

To study the invariances of the function g in a neighborhood of its optimal stimulus respecting
the fixed energy constraint we have defined the function g̃ as the function g restricted to S. This
is particularly relevant here since we want to analyze the derivatives of the function, i.e. its change
under small movements. Any straight movement in space is going to leave the surface of the sphere.
We must therefore be able to define movements on the sphere itself. This can be done by considering
a path ϕ(t) on the surface of S such that ϕ(0) = x+ and then studying the change of g along ϕ.
By doing this, however, we add the rate of change of the path (i.e., its acceleration) to that of the
function. Of all possible paths we must take the ones that have as little acceleration as possible,
i.e. those that have just the acceleration that is needed to stay on the surface. Such a path is called
a geodetic. The geodetics of a sphere are great circles and our paths are thus defined as

ϕ(t) = cos (t/r) · x+ + sin (t/r) · rw (22)

for each direction w in the tangential space of S in x+ (i.e., for each w orthogonal to x+), as shown
in Figure 5a. The 1/r factor in the cosine and sine arguments normalizes the function such that
d
dtϕ(0) = w with ‖w‖ = 1.

For the first derivative of g̃ along ϕ we obtain by straightforward calculations (with (g̃◦ϕ)(t) :=
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Figure 4 Definition of invariance This figure shows a contour plot of g̃(x) on the surface of
the sphere S in a neighborhood of x+. Each general point x∗ on S lies on a N −2 dimensional level
surface (as indicated by the closed lines) where the output of the function g̃ does not change. The
only interesting direction in x∗ is the one of maximal change, as indicated by the gradient ∇g̃(x∗).
On the space orthogonal to it the rate of change is zero. In x+ the function has a maximum and
its output decreases in all directions. There is thus no strict invariance. Considering the second
derivative, however, we can identify the directions of minimal change. The arrows in x+ indicate
the direction of the invariances (Eq. 30) with a length proportional to the corresponding second
derivative.

���������
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a)

α

b)

Figure 5 Invariances (a) To compute the second derivative of the quadratic form on the surface
of the sphere one can study the function along special paths on the sphere, known as geodetics.
Geodetics of a sphere are great circles. (b) This plot illustrates how the invariances are visualized.
Starting from the optimal stimulus (top) we move on the sphere in the direction of an invariance
until the response of the function drops below 80% of the maximal output or α reaches 90 degrees.
In the figure two invariances of Unit 4 are visualized. The one on the left represents a phase-shift
invariance and preserves more than 80% of the maximal output until 90 degrees (the output at 90
degrees is 99.6% of the maximum). The one on the right represents an invariance to orientation
change with an output that drops below 80% at 55 degrees.
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g̃(ϕ(t)))

d
dt

(g̃ ◦ϕ)(t) =
d
dt

[
1
2
ϕ(t)THϕ(t) + fT ϕ(t) + c

]
= . . . (23)

= −1
r

sin (t/r) cos (t/r) x+THx+ + cos (2t/r) x+THw

+ sin (t/r) cos (t/r) r wTHw − 1
r

sin (t/r) fTx+ + cos (t/r) fTw , (24)

and for the second derivative

d2

dt2
(g̃ ◦ϕ)(t) = − 1

r2
cos (2t/r) x+THx+ − 2

r
sin (2t/r) x+THw

+ cos (2t/r) wTHw − 1
r2

cos (t/r) fTx+ − 1
r

sin (t/r) fTw .

(25)

In t = 0 we have
d2

dt2
(g̃ ◦ϕ)(0) = wTHw − 1

r2
(x+THx+ + fTx+) , (26)

i.e. the second derivative of g̃ in x+ in the direction of w is composed of two terms: wTHw
corresponds to the second derivative of g in the direction of w, while the constant term −1/r2 ·
(x+THx+ + fTx+) depends on the curvature of the sphere 1/r2 and on the gradient of g in x+

orthogonal to the surface of the sphere,

∇g(x+) · x+ = (Hx+ + f)Tx+ (27)

= x+THx+ + fTx+ . (28)

To find the direction in which g̃ decreases as little as possible we only need to minimize the
absolute value of the second derivative (Eq. 26). This is equivalent to maximizing the first term
wTHw in (26), since the second derivative in x+ is always negative (because x+ is a maximum
of g̃) and the second term is constant. w is orthogonal to x+ and thus the maximization must
be performed in the space tangential to the sphere in x+. This can be done by computing a
basis b2, . . . ,bN of the tangential space (for example using the Gram-Schmidt orthogonalization
on x+, e1, . . . , eN−1 where ei is the canonical basis of RN ) and replacing the matrix H by

H̃ = BTHB , (29)

where B = (b2, · · · ,bN ). The direction of the smallest second derivative corresponds to the
eigenvector ṽ1 of H̃ with the largest positive eigenvalue. The eigenvector must then be projected
back from the tangential space into the original space by a multiplication with B:

w1 = Bṽ1 . (30)

The remaining eigenvectors corresponding to eigenvalues of decreasing value are also interesting,
as they point in orthogonal directions where the function changes with gradually increasing rate of
change.

To visualize the invariances, we move x+ (or x−) along a path on the sphere in the direction of
a vector wi according to

x(α) = cos (α) · x+ + sin (α) · rwi (31)

for α ∈ [−90, 90] as illustrated in Figure 5b. At each point we measure the response of the function
to the new input vector, and stop when it drops below 80% of the maximal response. In this
way we generate for each invariance a movie like those shown in Figure 6 for some of the optimal
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b) Unit 6, Inv. 3 − Position change

d) Unit 14, Inv. 5 − Frequency change

f) Unit 6, Inv. 5 − Curvature change

100% (0°)99.5% (−90°) 99.6% (90°) 100% (0°)84% (−59°) 84% (59°)

100% (0°)92% (−29°) 92% (29°) 100% (0°)81% (−37°) 81% (37°)

100% (0°)88% (−44°) 88% (44°) 100% (0°)80% (−42°) 80% (42°)

a) Unit 4, Inv. 1 − Phase shift

c) Unit 13, Inv. 4 − Size change

e) Unit 9, Inv. 3 − Orientation change

Figure 6 Invariance movies This figure shows selected invariances for some of the optimal
excitatory stimuli shown in Fig. 3. The central patch of each plot represents the optimal stimulus
of a unit, while the ones on the sides are produced by moving it in one (left patch) or the other
(right patch) direction of the eigenvector corresponding to the invariance. In this image, we stopped
before the output dropped below 80% of the maximum to make the interpretation of the invariances
easier. The relative output of the function in percent and the angle of displacement α (Eq. 31) are
given above the patches. The animations corresponding to these invariances are available at the
authors’ homepages.

stimuli (the corresponding animations are available at the authors’ homepages). Each frame of
such a movie contains a nearly-optimal stimulus. Using this analysis we can systematically scan
a neighborhood of the optimal stimuli, starting from the transformations to which the function is
most insensitive up to those that lead to a great change in response. Note that our definition of
invariance applies only locally to a small neighborhood of x+. The path followed in (31) goes beyond
such a neighborhood and is appropriate only for visualization. The pseudo-code of an algorithm
that computes and visualizes the invariances of the optimal stimuli can be found in (Berkes and
Wiskott, 2005a). A Matlab version can be downloaded from the authors’ homepages.

6 Significant invariances

The procedure described above finds for each optimal stimulus a set of N − 1 invariances ordered
by the degree of invariance (i.e., by increasing magnitude of the second derivative). We would like
to know which of these are statistically significant. An invariance can be defined to be significant
if the function changes exceptionally little (less than chance level) in that direction, which can
be measured by the value of the second derivative: the smaller its absolute value, the slower the
function will change.

To test for their significance, we compare the second derivatives of the invariances of the
quadratic form we are considering with those of random inhomogeneous quadratic forms that are
equally adapted to the statistics of the input data. We therefore constrain the random quadratic
forms to produce an output that has the same variance and mean as the output of the analyzed
ones when applied to the input stimuli. Without loss of generality, we assume here zero mean and
unit variance. These constraints are compatible with the ones that are usually imposed on the
functions learned by many theoretical models. Because of this normalization the distribution of
the random quadratic forms depends on the distribution of the input data.
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To understand how to efficiently build random quadratic forms under these constraints, it is
useful to think in terms of a dual representation of the problem. A quadratic form over the input
space is equivalent to a linear function over the space of the input expanded to all monomials of de-
gree one and two using the function Φ((x1, . . . , xn)T ) := (x1x1, x1x2, x1x3, . . . , xnxn, x1, . . . , xn)T ,
i.e.

1
2

xT


h11 h12 · · · h1n

h12 h22
...

. . .
...

h1n · · · hnn


︸ ︷︷ ︸

H

x +


f1

f2
...

fn


︸ ︷︷ ︸

f

T

x + c =



1
2h11

h12

h13
...

1
2hnn

f1
...

fn


︸ ︷︷ ︸

q

T 

x1x1

x1x2

x1x3
...

xnxn

x1
...

xn


︸ ︷︷ ︸

Φ(x)

+ c . (32)

We can whiten the expanded input data Φ(x) by subtracting its mean 〈Φ(x)〉t and transforming
it with a whitening matrix S. In this new coordinate system each vector with norm 1 applied
to the input data using the scalar product fulfills the unit variance and zero mean constraints by
construction. We can thus choose a random vector q′ of length 1 in the whitened, expanded space
and derive the corresponding quadratic form in the original input space:

q′T (S(Φ(x)− 〈Φ(x)〉t)) = (STq′)︸ ︷︷ ︸
=:q

T
(Φ(x)− 〈Φ(x)〉t) (33)

= qT (Φ(x)− 〈Φ(x)〉t) (34)

=
(32)

1
2
xTHx + fTx− qT 〈Φ(x)〉t︸ ︷︷ ︸

:=c

(35)

=
1
2
xTHx + fTx + c , (36)

with appropriately defined H and f according to Equation (32).
We can next compute the optimal stimuli and the second derivative of the invariances of the

obtained random quadratic form. To make sure that we get independent measurements we only
keep one second derivative chosen at random for each random function. This operation, repeated
over many quadratic forms, allows us to determine a distribution of the second derivatives of the
invariances and a corresponding confidence interval.

Figure 7a shows the distribution of 50,000 independent second derivatives of the invariances
of random quadratic forms and the distribution of the second derivatives of all invariances of the
first 50 units learned in the model system. The dashed line indicates the 95% confidence interval
derived from the former distribution. The latter is more skewed towards small second derivatives
and has a clear peak near zero. 28% of all invariances were classified to be significant. Figure 7b
shows the number of significant invariances for each individual quadratic form in the model system.
Each function has 49 invariances since the rank of the quadratic term is 50 (see Sect. 2). The plot
shows that the number of significant invariances decreases with increasing ordinal number (the
functions are ordered by slowness, the first ones being the slowest). 46 units out of 50 have 3 or
more significant invariances. The first invariance, which corresponds to a phase shift invariance,
was always classified as significant, which confirms that the units behave like complex cells. Note
that since the eigenvalues of a quadratic form are not independent of each other, with the method
presented here it is only possible to make statements about the significance of individual invariances,
and not about the joint probability distribution of two or more invariances.
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Figure 7 Significant invariances (a) Distribution of 50,000 independently drawn second
derivatives of the invariances of random quadratic forms and distribution of the second derivatives
of all invariances of the first 50 units learned in the model system. The dashed line indicates the
95% confidence interval as derived from the random quadratic forms. The distribution in the model
system is more skewed towards small second derivatives and has a clear peak near zero. 28% of
all invariances were classified as significant. (b) Number of significant invariances for each of the
first 50 units learned in the model system (the functions were sorted by decreasing slowness, see
Sect. 2). The number of significant invariances tends to decrease with decreasing slowness.

7 Relative contribution of the quadratic, linear, and constant
term

The inhomogeneous quadratic form has a quadratic, a linear, and a constant term. It is sometimes
of interest to know what their relative contribution to the output is. The answer to this question
depends on the considered input. For example, the quadratic term dominates for large input vectors
while the linear or even the constant term dominates for input vectors with a small norm.

A first possibility is to look at the contribution of the individual terms at a particular point. A
privileged point is, for example, the optimal excitatory stimulus, especially if the quadratic form
can be interpreted as a feature detector (cf. Sect. 4). Figure 8a shows for each function in the
model system the absolute value of the output of all terms with x+ as an input. In all functions
except the first two, the activity of the quadratic term is greater than that of the linear and of the
constant term. The first function basically computes the mean pixel intensity, which explains the
dominance of the linear term. The second function is dominated by a constant term from which a
quadratic expression very similar to the squared mean pixel intensity is subtracted.

As an alternative we can consider the ratio between linear and quadratic term, averaged over
all input stimuli: 〈

log

∣∣∣∣∣ fTx
1
2x

THx

∣∣∣∣∣
〉

t

=
〈

log
∣∣fTx

∣∣− log
∣∣∣∣12xTHx

∣∣∣∣〉
t

. (37)

The logarithm ensures that a given ratio (e.g., linear/quadratic = 3) has the same weight as the
inverse ratio (e.g., linear/quadratic = 1/3) in the mean. A negative result means that the quadratic
term dominates while for a positive value the linear term dominates. Figure 8b shows the histogram
of this measure for the functions in the model system. In all but 4 units (Units 1, 7, 8, and 24) the
quadratic term is on average greater than the linear one.
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Figure 8 Relative contribution of the quadratic, linear, and constant term (a) This
figure shows the absolute value of the output of the quadratic, linear, and constant term in x+ for
each of the first 50 units in the model system. In all but the first 2 units the quadratic term has
a larger output. The subplot shows a magnified version of the contribution of the terms for the
first 10 units. (b) Histogram of the mean of the logarithm of the ratio between the activity of the
linear and the quadratic term in the model system, when applied to 90,000 test input vectors. A
negative value means that the quadratic term dominates while for a positive value the linear term
dominates. In all but 4 units (Units 1, 7, 8, and 24) the quadratic term is greater on average.

8 Quadratic forms without linear term

In the case of a quadratic form without the linear term

g(x) =
1
2
xTHx + c (38)

the mathematics of Sections 4 and 5 becomes much simpler. The quadratic form is now centered
at x = 0, and the direction of maximal increase corresponds to the eigenvector v1 with the largest
positive eigenvalue. The optimal excitatory stimulus x+ with norm r is thus

x+ = rv1 . (39)

Similarly, the eigenvector corresponding to the largest negative eigenvalue vN points in the direction
of x−.

The second derivative (Eq. 26) in x+ in this case becomes

d2

dt2
(g̃ ◦ϕ)(0) = wTHw − 1

r2
x+THx+ (40)

=
(39)

wTHw − vT
1 Hv1 (41)

= wTHw − µ1 . (42)

The vector w is by construction orthogonal to x+ and lies therefore in the space spanned by the
remaining eigenvectors v2, . . . ,vN . Since µ1 is the maximum value that wTHw can assume for
vectors of length 1 it is clear that (42) is always negative (as it should since x+ is a maximum) and
that its absolute value is successively minimized by the eigenvectors v2, . . . ,vN in this order. The
value of the second derivative on the sphere in the direction of vi is given by

d2

dt2
(g̃ ◦ϕ)(0) = vT

i Hvi − µ1 (43)

= µi − µ1 . (44)
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In the same way, the invariances of x− are given by vN−1, . . . ,v1 with second derivative values
(µi − µN ).

Since, as shown in Figure 8a, in the model system the linear term is mostly small in comparison
with the quadratic one, the first and last eigenvectors of our units are expected to be very similar
to their optimal stimuli. This can be verified by comparing Figure 2 and Figure 3. Moreover,
successive eigenvectors are almost equal to the directions of the most relevant invariances (compare
for example Unit 4 in Fig. 2 and Fig. 5b). This does not have to be the case in general: For
example, the data in (Lewis et al., 2002) shows that cochlear neurons in the gerbil ear have a linear
as well as a quadratic component. In such a situation the algorithms must be applied in their
general formulation.

9 Decomposition of a quadratic form in a neural network

As also noticed by Hashimoto (2003), for each quadratic form there exists an equivalent two layer
neural network, which can be derived by rewriting the quadratic form using its eigenvector decom-
position:

g(x) =
1
2
xTHx + fTx + c (45)

=
1
2
xTVDVTx + fTx + c (46)

=
1
2
(VTx)TD(VTx) + fTx + c (47)

=
N∑

i=1

µi

2
(vT

i x)2 + fTx + c . (48)

The network has a first layer formed by a set of N linear subunits sk(x) = vT
k x followed by a

quadratic nonlinearity weighted by the coefficients µk/2. The output neuron sums the contribution
of all subunits plus the output of a direct linear connection from the input layer (Fig. 9a). Since
the eigenvalues can be negative, some of the subunits give an inhibitory contribution to the output.
It is interesting to note that in an algorithm that learns quadratic forms the number of inhibitory
subunits in the equivalent neural network is not fixed but is a learned feature. As an alternative
one can scale the weights vi by

√
|µi|/2 and specify which subunits are excitatory and which are

inhibitory according to the sign of µi, since

g(x) =
(48)

N∑
i=1

µi

2
(vT

i x)2 + fTx + c (49)

=
N∑

i=1
µi>0

(√ |µi|
2

vi

)T

x

2

−
N∑

i=1
µi<0

(√ |µi|
2

vi

)T

x

2

+ fTx + c . (50)

This equation also shows that the subunits are unique only up to an orthogonal transformation
(i.e., a rotation or reflection) of the excitatory subunits and another one of the inhibitory subunits,
which can be seen as follows. Let A+ and A− be the matrices having as rows the vectors

√
|µi|/2 vi

for positive and negative µi, respectively. Equation (50) can then be rewritten as

g(x) = ‖A+x‖2 − ‖A−x‖2 + fTx + c . (51)

Since the length of a vector doesn’t change under rotation or reflection, the output of the function
remains unchanged if we introduce two orthogonal transformations R+ and R−:

g(x) = ‖R+A+x‖2 − ‖R−A−x‖2 + fTx + c . (52)
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Figure 10 shows the weights of the subunits of the neural network equivalent to Unit 4 as defined by
the eigenvectors of H (Eq. 48) after a random rotation of the excitatory and inhibitory subunits.
The subunits are not as structured as in the case of the eigenvectors (cf. Fig. 2), although the
orientation and frequency can still be identified.
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Figure 9 Neural networks related to inhomogeneous quadratic forms In all plots we
assume that the norm of the subunits is 1 (i.e., ‖vi‖ = 1). The ellipse in the input layer represents
a multidimensional input. (a) Neural network equivalent to an inhomogeneous quadratic form.
The first layer consists of N linear subunits, followed by a quadratic nonlinearity weighted by the
coefficients µi/2. The output neuron sums the contribution of each subunit plus the output of a
direct linear connection from the input layer. (b) Simpler neural network used in some theoretical
studies. The output of the linear subunits is squared but not weighted and can only give an
excitatory (positive) contribution to the output. There is no direct linear connection between
input and output layer. (c) The energy model of complex cells consists of two linear subunits
whose weights are Gabor filters having the same shape except for a 90◦ phase difference. The
output is given by the square sum of the response of the two subunits.

The neural model suggests alternative ways to learn quadratic forms, for example by adapting
the weights by backpropagation. The high number of parameters involved, however, could make it
difficult for an incremental optimization method to avoid local extrema. On the other hand, each
network of this form can be transformed into a quadratic form and analyzed with the techniques
described in this paper, which might be useful for example to compute the optimal stimuli and the
invariances.

The equivalent neural network shows that quadratic forms are compatible with the hierarchical
model of the visual cortex first proposed by Hubel and Wiesel (1962), in which complex cells pool
over simple cells having similar orientation and frequency in order to achieve phase-shift invariance.
This was later formalized in the energy model of complex cells (Adelson and Bergen, 1985), which
can be implemented by the neural network introduced above. The subunits are interpreted as
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1.46 −1.131.40 −1.131.22 −1.121.22 −1.101.20 −1.02

1.54 −1.221.38 −1.211.28 −1.161.23 −1.131.20 −1.06
Unit 4

......

......

Figure 10 Random rotations of the positive and negative subunits Two examples of
the weights of the subunits of Unit 4 after a random rotation as in Eq. 52. The numbers above the
patches are the weighting coefficients on the second layer when the weight vectors of the first layer
are normalized to norm 1. The subunits before rotation are equal to the eigenvectors of Unit 4 and
their weighting coefficients are equal to half the eigenvalues (Fig. 2, top).

simple cells and the output unit as a complex cell. In its usual description the energy model
consists of only two excitatory subunits. If for example the subunits are two Gabor wavelets with
identical envelope function, frequency, and orientation but with a 90◦ phase difference (Fig. 9c),
the network will reproduce the basic properties of complex cells, i.e. edge detection and phase-shift
invariance. Additional excitatory or inhibitory subunits might introduce additional complex cell
invariances, broaden or sharpen the orientation and frequency tuning, and provide end- or side-
inhibition. However, as mentioned in the previous section the neural network is not unique, so
that the subunits can assume different forms many of which might not be similar to simple cells
(Fig. 10). For example, as discussed in Section 8, if the linear term is missing and the subunits are
defined using the eigenvectors of H as in Equation (48), the linear filters of the subunits can be
interpreted as the optimal stimuli and the invariances thereof. As shown in Figure 2, the invariances
themselves need not be structured like a simple cell, since they only represent transformations of
the optimal stimuli.

10 Relation to other studies

As mentioned in the introduction, quadratic forms occur in experimental studies as a second-order
approximation of the receptive field of neurons. The linear and quadratic terms correspond in this
case to the first two terms in a Wiener expansion. They can be estimated from a stimulus-response
electrophysiological recording using the spike-triggered average (STA) and the spike-triggered co-
variance matrix (STC) (van Steveninck and Bialek, 1988; Lewis et al., 2002; Schwartz et al., 2002;
Touryan et al., 2002; Rust et al., 2004; Simoncelli et al., 2004).

Most of these studies perform an analysis of the first principal components of the STC, which
is motivated in terms of identifying the stimuli that contribute most to the variance of the output
of the neuron (Lewis et al., 2002; Schwartz et al., 2002; Rust et al., 2004; Simoncelli et al., 2004)
or more in terms of a Gaussian approximation of the spike-triggered ensemble (van Steveninck
and Bialek, 1988; Touryan et al., 2002). The extracted principal components span the subspace
of stimuli that governs the response of a cell (Rust et al., 2004). If the linear term is negligible,
our analysis is mostly consistent with this interpretation: Ordering the eigenvectors by decreasing
eigenvalues, the first one corresponds to the optimal stimulus and the following ones to the most
relevant invariances (Sect. 8). Every stimulus that is generated by a linear combination of the
optimal stimulus and the most relevant invariances is going to produce a strong output in the
quadratic form. However, using the concept of invariances we can refine the analysis and identify
a hyper-cone in this subspace where the output is more than 80% of the maximal one with a large
extension in the most invariant directions and a small one in the least invariant ones (Sect. 5).
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The stimuli lying in this hyper-cone are all nearly-optimal stimuli and their visualization can give
a good insight in the overall behavior of the neuron.

In our approach the quadratic forms are interpreted as second-order approximations of the
input-output functions computed by the neurons, and the resulting characterization is similar to
the one given by classical physiological experiments (e.g., De Valois et al., 1982b,a; Schiller et al.,
1976a,b). Because of this interpretation the linear term cannot be neglected or eliminated as it is the
case in the experimental studies cited above. Only if the linear term is proved to be reasonably close
to zero one can consider the quadratic term alone and apply the methods described in Section 8.

Two recent theoretical studies (Hashimoto, 2003; Bartsch and Obermayer, 2003) have learned
quadratic forms without the linear term from natural images. The eigenvectors of H were visualized
and interpreted as “relevant features”. Some of them were discarded because they were “unstruc-
tured”. According to our analysis, this interpretation only holds for the two eigenvectors with
largest positive and negative eigenvalues. We think that the remaining eigenvectors should not be
visualized directly but applied as transformations to the optimal stimuli. Therefore, it is possible
for them to look unstructured but still represent a structured invariance, as illustrated in Figure 11.
For example, Hashimoto (2003, Fig. 5a) shows in her paper the eigenvectors of a quadratic form
learned by a variant of SFA performed by gradient descent. The two largest eigenvectors look like
two Gabor wavelets and have the same orientation and frequency. According to the interpretation
above and to the cited paper, this shows that the network responds best to an oriented stimulus
and is invariant to a phase shift. The third eigenvector looks like a Gabor wavelet with the same
frequency as the first two but a slightly different orientation. Hashimoto suggests that this eigen-
vector makes the interpretation of that particular quadratic form difficult (Hashimoto, 2003, page
777). According to our analysis, that vector might code for a rotation invariance, which would be
compatible with a complex-cell behavior.
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Figure 11 Interpretation of the invariances This figure illustrates the fact that although
the vector corresponding to an invariance (center) might be difficult to interpret or even look
unstructured, when applied to the optimal excitatory stimulus (left) it can code for a meaningful
invariance (right). The invariance shown here is the curvature invariance of Fig. 6f.

Neural networks closely related to those presented in Section 9 were used in some theoretical
studies (Hyvärinen and Hoyer, 2000; Hyvärinen and Hoyer, 2001; Körding et al., 2004). There, a
small set of linear subunits (2 to 25) was connected to an output unit that took the sum of the
squared activities (Fig. 9b). These networks differ from inhomogeneous quadratic forms in that
they lack a direct linear contribution to the output and have much fewer subunits (a quadratic
form of dimension N has N subunits). The most important difference, however, is related to the
normalization of the weights. In the theoretical studies cited above the weights are normalized to
a fixed norm and the activity of the subunits is not weighted. In particular, since there are no
negative coefficients, no inhibition is possible, whereas this turned out to be essential for a number
of complex cell properties in our simulations. However, the results of Section 9 show that it is
possible to use the algorithms presented here to analyze and interpret the weights of this kind of
neural networks.
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11 Conclusion

In this paper we have presented a collection of tools to analyze nonlinear functions and in particular
quadratic forms. These tools allow us to visualize the coefficients of the individual terms of an
inhomogeneous quadratic form, to compute its optimal stimuli (i.e., the stimuli that maximize
or minimize the quadratic form under a fixed energy constraint) and their invariances (i.e., the
transformations of the optimal stimuli to which the quadratic form is most insensitive), and to
determine which of these invariances are statistically significant. We have also proposed a way to
measure the relative contribution of the linear and quadratic term. Moreover, we have discussed
a neural network architecture equivalent to a given quadratic form. The methods presented here
can be used in a variety of fields, in particular in physiological experiments to study the nonlinear
receptive fields of neurons and in theoretical studies.

12 Additional material

The homepage of the first author contains additional material to this paper, including the ani-
mations corresponding to Figure 6 and Matlab source code for the algorithms of Section 4 and
5.
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