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Slow feature analysis yields a rich  
repertoire of complex cell properties 
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In this study we investigate temporal slowness as a learning principle for receptive fields using slow feature analysis, a 
new algorithm to determine functions that extract slowly varying signals from the input data. We find a good qualitative 
and quantitative match between the set of learned functions trained on image sequences and the population of complex 
cells in the primary visual cortex (V1). The functions show many properties found also experimentally in complex cells, 
such as direction selectivity, non-orthogonal inhibition, end-inhibition, and side-inhibition. Our results demonstrate that a 
single unsupervised learning principle can account for such a rich repertoire of receptive field properties. 
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Figure 1. Classical models of simple and complex cells.
(a). Simple cells respond best to oriented bars at a specific posi-
tion in the visual field, and are well modeled by a linear Gabor
filter (Jones & Palmer, 1987). (b). Complex cells respond to ori-
ented bars but are insensitive to their local position. The classical
model (energy model) consists of two linear Gabor filters having
the same shape except for a 90-deg phase difference. The
square sum of the response of the two filters yields the output
(Adelson & Bergen, 1985). For comparison, orientation, fre-
quency, and size of the subunits in this figure have been fitted to
those of the optimal excitatory stimulus of the unit shown in
Figure 7a.  

Primary visual cortex (V1) is the first cortical area dedi-
cated to visual processing. This area has been intensively 
studied neurophysiologically since the seminal work by 
Hubel and Wiesel (1962), who also introduced the stan-
dard classification of neurons in V1 into two main groups: 
simple and complex cells. These neurons are conceived as 
edge or line detectors: Simple cells respond to bars having a 
specific orientation and position in the visual field; com-
plex cells also respond to oriented bars but are insensitive 
to their exact position.  

Idealized simple and complex cells can be described by 
Gabor wavelets (Pollen & Ronner, 1981; Adelson & Ber-
gen, 1985; Jones & Palmer, 1987), which have the shape of 
sine gratings with a Gaussian envelope function. A single 
Gabor wavelet used as a linear filter (Figure 1a) is similar to 
a simple cell, because the response depends on the exact 
alignment of a stimulus bar on an excitatory (positive) sub-
field of the wavelet. Taking the square sum of the responses 
of two Gabor wavelets with identical envelope function, 
frequency, and orientation but with a 90-deg phase differ-
ence (Figure 1b) yields a model of a complex cell that is 
insensitive to the exact location of the bar (following a rule 
similar to the relation sin(x)2 + cos(x)2 = 1) while still being 
sensitive to its orientation. We will refer to these models as 
the classical models of simple and complex cells. 

This idealized picture, however, is clearly not complete. 
In particular, complex cells in V1 show a much richer rep-
ertoire of receptive field properties than can be explained 
with the classical model. For example, they show end-
inhibition, side-inhibition, direction selectivity, and sharp-
ened or broadened tuning to orientation or frequency 
(Hubel & Wiesel, 1962; Sillito, 1975; Schiller, Finlay, & 
Volman, 1976a, 1976b, 1976c; De Valois, Albrecht, & 

Thorell, 1982; De Valois, Yund, & Hepler, 1982; Dobbin, 
Zucker, & Cynade, 1987; Versavel, Orban, & Lagae, 1990; 
Skottun et al., 1991; DeAngelis, Freeman, & Ohzawa, 
1994; Shevelev, 1998; Walker, Ohzawa, & Freeman, 1999; 
Ringach, Bredfeldt, Shapley, & Hawken, 2002).  

A possible approach to the study of the organization of 
the visual cortex is to assume that it is philo- or ontogeneti-
cally adapted to the statistics of its input to satisfy one (or 
possibly more) computational objectives (e.g., Field, 1994). 
The neurons resulting from such an information-processing 
strategy would compute input-output functions that pro-
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vide particular advantages for further decoding and process-
ing. The computational approach does not necessarily pro-
vide an explanation of the cortical mechanisms involved in 
the computation, but it can give a powerful functional ex-
planation of experimental data.  

In this work we investigate temporal slowness as a possi-
ble computational principle for the emergence of complex 
cell receptive fields in the visual cortex. The slowness prin-
ciple is based on the observation that the environment, 
sensory signals, and internal representations of the envi-
ronment vary on different time scales. The environment 
(e.g., the objects we see around us) changes usually on a 
relatively slow time scale. Sensory signals on the other 
hand, such as the responses of single receptors in the ret-
ina, vary on a faster time scale, because even a small eye 
movement or shift of a textured object may lead to a rapid 
variation of the light intensity received by a receptor neu-
ron. The internal representation of the environment, fi-
nally, should vary on a time scale similar to that of the en-
vironment itself (i.e., on a slow time scale). If we succeed in 
extracting slowly varying features from the quickly varying 
sensory signal, then the features are likely to reflect the 
properties of the environment and are in addition invariant 
or at least robust to frequent transformations of the sensory 
input, such as visual translation, rotation, or zoom. Our 
working hypothesis in this study is that the cortex organizes 
according to this principle to build a consistent internal 
representation of the environment. To verify this hypothe-
sis we consider a space of nonlinear input-output functions 
(here the space of all polynomials of degree 2), determine 
those functions that extract the slowest features in response 
to natural image sequences, and compare their properties 
to those of complex cells in V1 described in the literature.  

An early description of this principle was given by Hin-
ton (1989, p. 208) and early models based on temporal 
slowness were presented by Földiák (1991) and Mitchison 
(1991). Successive studies applied this principle to the ex-
traction of disparity from stereograms (Stone, 1996) or 
from artificially generated simple cell outputs (Wiskott & 
Sejnowski, 2002) and to blind source separation (Stone, 
2001). Ideas and learning rules related to temporal slow-
ness can also be found in the works by Becker and Hinton 
(1993), O’Reilly and Johnson (1994), and Peng, Sha, Gan, 
and Wei (1998). For other studies modeling complex and 
simple cells, see Discussion.  

The following section introduces the slow feature 
analysis algorithm. Section 3 presents the input data set 
and the methods used to analyze the results. Section 4 de-
scribes the simulation results and compares the learned 
functions with neurons reported in the physiological litera-
ture. In Section 5 we investigate the role of spatial trans-
formations, the statistics of the input images, dimensional-
ity reduction, and asymmetric decorrelation in our results 

with a set of control experiments. The work concludes with 
a discussion in Section 6. Appendix A contains additional 
notes to the text that concern more technical aspects of our 
model that might be useful to the theoretical reader but are 
not central to the main results. 

2. Slow feature analysis 

2.1 Problem statement 
The learning task we want to solve is the following. 

Given a multi-dimensional input signal x(t) we want to find 
(scalar) functions gj(x), which generate output signals  
yj(t) = gj(x(t)) from the input signals that vary as slowly as 
possible but carry significant information. To ensure the 
latter we require the output signals to have unit variance 
and be mutually uncorrelated. It is important to note that 
even though the objective is the slowness of the output sig-
nals, the process by which the output is computed from the 
input is very fast or in the mathematical idealization even 
instantaneous. Slowness can therefore not be achieved 
simply by low-pass filtering. Thus only if the input signal 
has some underlying, slowly varying causes does the system 
have a chance of extracting slowly varying output signals at 
all. It is exactly this apparent paradox of instantaneous 
processing on the one hand and the slowness objective on 
the other hand that guarantees that the extracted output 
signals represent relevant features of the underlying causes 
that gave rise to the input signal.  

In more mathematical terms the problem can be stated 
as follows (Wiskott & Sejnowski, 2002): given a multi-
dimensional input signal x(t) = (x1(t),…,xN(t)) t∈  [t0,t1], 
find a set of real-valued functions g1(x),…, gK(x) lying in a 
function space F so that for the output signals yj(t):=gj(x(t)) 

2( ) :    is minimaj j t
y y∆ = � l  (1) 

under the constraints 

0  (zero mean),j t
y =  (2) 

2 1  (unit variance),j t
y =  (3) 

, 0  (decorrelation and order),i j t
i j y y∀ < =  (4) 

with . t  and y�  indicating time-averaging and the time de-
rivative of y, respectively. Equation 1 introduces a measure 
of the temporal variation of a signal (the ∆-value of a signal) 
equal to the mean of the squared derivative of the  
signal. This quantity is large for quickly varying signals  
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and zero for constant signals. We will also use a more  
intuitive measure of slowness, the β-value, defined as 

( ) (1/ 2 ) ( )jyβ π= ∆ jy . A sine wave with period T and  
unit variance has a β-value of 1/T when averaged over an 
integer number of oscillations. The zero-mean Constraint 2 
is present for convenience only, so that Constraints 3 and 4 
take a simple form. Constraint 3 means that each signal 
should carry some information and avoids the trivial solu-
tion gj(x) = 0. Alternatively, one could drop this constraint 
and divide the right side of Equation 1 by the variance 

2
jy

t
. Constraint 4 forces different signals to be uncorre-

lated and thus to code for different aspects of the input. It 
also induces an order, the first output signal being the 
slowest one, the second being the second slowest, etc. Con-
trol Experiment 4 (Section 5.4) investigates the role of this 
constraint on the learned functions. 

We solve the optimization problem with slow feature 
analysis (SFA) (Wiskott, 1998; Wiskott & Sejnowski, 
2002), an unsupervised algorithm that permits us to find 
the optimal set of functions gj in a general finite dimen-
sional function space and that is efficient enough to do 
simulations of reasonable scale in terms of size and dimen-
sionality of the input signals. Because SFA is based on an 
eigenvector approach (e.g., like principal component analy-
sis), it finds the global solutions in a single iteration and 
has no convergence problems. 

The following three sections sketch the mathematical 
background and the definition of the algorithm. They are 
not necessary for understanding the remainder of the work. 
The reader less interested in the mathematical details might 
want to skip them and continue with Section 3. For the 
purposes of this study, it is sufficient to remember that slow 
feature analysis finds input-output functions that extract 
slowly varying features from a typical input signal in a non-
trivial way (i.e., instantaneously and without low-pass filter-
ing). 

2.2 The linear case 
Consider first the linear case  for some  

input x and weight vectors wj. In the following we  
assume x to have zero mean (i.e.,

( ) T
jg =x w xj

0t =x ) without loss of 
generality. This implies that Constraint 2 is fulfilled, be-
cause 0T T

j j j tt t
y = =w x w x = . 

We can rewrite Equations 1, 3, and 4 as 

2 2( ) ( )

:

T
j j jt t

T T T
j j jt

y y∆ = =

= =

w x

w xx w w Aw

� �

� � j

 (5) 

( )( )

: .

T T
i j i jt t

T T
i t

T
i j

y y =

=

=

w x w x

w xx w

w Bw

j  (6) 

If we integrate Constraint 3 in the objective function 1, as 
suggested in the previous section, we obtain 

2

2
( )   

Tj j jt
j T

j jj t

y
y

y
∆ = =

w Aw

w Bw

�
.  (7) 

It is known from linear algebra that the weight vectors wj 
that minimize this equation correspond to the eigenvectors 
of the generalized eigenvalue problem 

 ,=AW BWΛ  (8) 

where W is the matrix of the generalized eigenvectors and 
Λ  is the diagonal matrix of the generalized eigenvalues 
λ1,…,λN (e.g., see Gantmacher, 1959, Chap. 10.7, Theo-
rems 8, 10, and 11). In particular, the vectors wj can be 
normalized such that T

i j ijδ=w Bw , which implies that 
Constraints 3 and 4 are fulfilled: 

2 1  ,T
j j jt

y = w Bw =  (9) 

,  0  .T
i j i jt

i j y y≠ = w Bw =  (10) 

Note that by substituting Equation 8 into Equation 7 one 
obtains ∆(yj) = λj, so that by sorting the eigenvectors  
by increasing eigenvalues we induce an order where  
the most slowly varying signals have lowest indices [i.e., 

1 2( ) ( ) ( )Ny y y∆ ≤ ∆ ≤ ≤ ∆… ]. 

2.3 The general case 
In the more general case of a nonlinear but finite-

dimensional function space F, consider a basis h1,…,hM of 
F. For example, in the standard case where F is the space of 
all polynomials of degree n, the basis will include all mo-
nomials up to order n.  

Defining the expanded input 

1( ) : ( ( ), , ( ))   ,T
Mh h=h x x x…  (11) 

every function g∈F can be expressed as 

1
( ) ( ) ( )  .

M
T

k k
k

g w h
=

= =∑x x w h x  (12) 

This leads us back to the linear case if we assume that h(x) 
has zero mean (again, without loss of generality), which can 
be easily obtained in practice by subtracting the mean over 
time 0( ) :t =h x h  from the expanded input signal.  
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For example, in the case of 3 input dimensions (N = 3) 
and polynomials of degree 2 we have  

2 2 2
1 1 2 1 3 2 2 3 3 1 2 3 0( ) ( , , , , , , , , )Tx x x x x x x x x x x x=h x h−

2

 (13) 

and 

2 2
1 1 2 1 2 3 1 3 4 2 5 2 3 6 3

7 1 8 2 9 3 0

( )

  .T

g w x w x x w x x w x w x x w x

w x w x w x

= + + + + +

+ + + −

x

w h
 (14) 

Every polynomial of degree 2 in the 3 input variables can 
then be expressed by an appropriate choice of the weights 
wj. 

2.4 The SFA algorithm 
We can now formulate the slow feature analysis (SFA) 

algorithm (cf. Wiskott & Sejnowski,  2002): 
Nonlinear expansion: expand the input data and sub-

tract the mean over time to obtain the expanded signal 
. 0 1: ( ) ( ( ), , ( ))T

Mh h= − = −z h x h x x h… 0
Slow feature extraction: solve the generalized eigen-

value problem 

  (15) ,=AW BWΛ

with : T
t

=A zz� �  (16) 

and : T
t

=B zz . (17) 

The K eigenvectors w1, …, wK (K M) corresponding to 
the smallest generalized eigenvalues λ1 λ2 …

≤
≤ ≤ ≤ λK define 

the nonlinear input-output functions 1( ), , ) Fg g (K ∈x x… : 

0( ) ( ( ) )T
j jg = −x w h x h , (18) 

which satisfy Constraints 2-4 and minimize 1. 
In other words, to solve the optimization problem 

(Equation 1), it is sufficient to compute the covariance ma-
trix of the signals and that of their derivatives in the ex-
panded space and then solve the generalized eigenvalue 
problem (Equation15). In the simulations presented here, 
the derivative of z(t) is computed by the linear approxima-
tion  (∆t = 1 throughout this 
work). Simulations performed with cubic interpolation 
showed equivalent results.  

( ) ( ( ) ( )) /t t t t≈ + ∆ − ∆z z z� t

3. Methods  

3.1 Input data 
Our data source consisted of 36 gray-valued natural  

images extracted from the natural stimuli collection of  
van Hateren (available online at http://hlab.phys.rug.nl 
/archive.html). The images were chosen by the authors to 

contain a variety of natural contents, including trees, flow-
ers, animals, water, and so on. We avoided highly geomet-
rical human artifacts. The images were preprocessed as sug-
gested in van Hateren and van der Schaaf (1998) by block-
averaging (block size 2×2) and by taking the logarithm of 
the pixel intensities. This procedure corrects possible cali-
bration problems and reshapes the contrast of the images. 
After preprocessing, the images were 768×512 pixels large. 
An extensive discussion of the images and of the preproc-
essing can be found in van Hateren and van der Schaaf 
(1998). 

We constructed image sequences by moving a quad-
ratic window over the images by translation, rotation, and 
zoom and subsequently rescaling the frames (to compensate 
for the zoom) to a standard size of 16×16 pixels. The input 
window was not masked or weighted in any way. The initial 
position, orientation, and zoom for each sequence were 
chosen at random. The transformations were performed 
simultaneously, so that each frame differed from the previ-
ous one by position, orientation, and scale. If the window 
moved out of the image, the sequence was discarded and a 
new one was started from scratch. Each individual se-
quence was 100 frames long with a total of 250,000 frames 
per simulation. (The length of the sequences is irrelevant to 
the algorithm as long as the total number of input vectors is 
preserved.) Each image contributed an equal number of 
frames. Figure 2 shows one example sequence. The dis-
placements per frame in horizontal and vertical direction 
were Gaussian-distributed with zero mean and standard 
deviation 3.56 pixels. The angular speed measured in radi-
ans/frame and the magnification difference (defined as the 
difference between the magnification factor of two succes-
sive frames) followed a Gaussian distribution with mean 0 
and standard deviation 0.12 and 0.03, respectively. Other 
simulations showed qualitatively similar results within a 
reasonable range of parameters, although the distribution 
of some unit properties might vary. See Control Experi-
ment 1 (Section 5.1) for a study of the influence of the in-
dividual transformations. To include temporal informa-
tion, the input vectors to SFA were formed by the pixel 
intensities of two consecutive frames at times t and ∆t = 1, 
so that the second frame in one input vector was equal to 
the first frame in the next, as illustrated in Figure 2. (The 
time difference ∆t was the same used to compute the time 
derivative.) Note that with two frames as an input, process-
ing is not strictly instantaneous anymore, but slowness still 
cannot be achieved by low-pass filtering. 

The function space F on which SFA is performed 
(Section 2.1) is chosen here to be the set of all polynomials 
of degree 2, as discussed extensively in Section 6.2. A run 
with SFA requires the computation of two large covariance 
matrices having in the order of O(M2) elements, where M is 
the dimension of the considered function space. In the case 
of polynomials of degree 2 this corresponds to a number of 
elements in the order of O(N4), where N is the input di-
mension. Because this is computationally expensive, we 
performed a standard preprocessing step using principal 

 

http://hlab.phys.rug.nl/archive.html
http://hlab.phys.rug.nl/archive.html


Journal of Vision (2005) 5, 579-602 Berkes & Wiskott 583 

...

input vectors

...

single frames

 

Figure 2. Natural image sequences. A close-up of one of the natural images used in the simulations (left). The numbered squares show
the position, size, and orientation of the input window for a short sequence of 20 frames. The content of the window is then rescaled to
16×16 pixels (center). The input to SFA consists of pairs of successive frames (right) to include temporal information. 

component analysis (PCA) to reduce the dimensionality of 
the input vectors from 16×16×2=512 to N = 100, capturing 
93% of the total variance (see Appendix A.1 for additional 
remarks). In Control Experiment 3 (Section 5.3), we pre-
sent the results of a simulation performed with smaller 
patches (10×10 pixels) and no dimensionality reduction. 

3.2 Analysis methods 
In the simulations presented here, SFA learns polyno-

mials of degree 2 that applied to our visual input stimuli 
have the most slowly varying output (which does not imply 
that processing is slow; see Section 2.1). We refer to the i-th 
polynomial as the i-th unit. The units are ordered by slow-
ness (the first one being the slowest) and their outputs are 
mutually uncorrelated. Because the sign of a unit’s response 
is arbitrary in the optimization problem, we have chosen it 
here such that the strongest response to an input vector 
with a given norm is positive (i.e., the magnitude of the 
response to the optimal excitatory stimulus, x+, is greater 
than that to the optimal inhibitory stimulus, x–; see below).  

Because the input vectors are pairs of image patches, 
the functions gj can be interpreted as nonlinear spatiotem-
poral receptive fields and be tested with input stimuli much 
like in neurophysiological experiments. The units can have 
a spontaneous firing rate (i.e., a non-zero response to a 
blank visual input). As in physiological experiments we in-
terpret an output lower than the spontaneous one as active 
inhibition. The absolute value of the spontaneous firing 
rate is fixed by the zero mean constraint (Equation 2) and 
has no direct interpretation.  

To analyze the units, we first compute for each of them 
the optimal excitatory stimulus x+ and the optimal inhibi-
tory stimulus x–, which correspond to the input that elicits 
the strongest positive and strongest negative output from 
the unit, respectively, given a constant norm r of the input 
vector (i.e., a fixed energy constraint) (Figure 3). We choose 

r to be the mean norm of the training vectors because we 
want x+ and x– to be representative of the typical input. 
This is in analogy to the physiological practice of character-
izing a neuron by the stimulus to which the neuron re-
sponds best (e.g., Dayan & Abbott, 2001, Chap. 2.2). Be-
cause in our model we have an explicit definition of the 
input-output functions of our units, x+ and x– can be com-
puted analytically (Berkes & Wiskott, 2005). 

From the two x+ patches we compute the size and posi-
tion of the receptive field and by Fourier analysis the pre-
ferred frequency, orientation, speed, and direction of a 
unit. In some units the preferred parameters for the patch 
at time t and that at time t + ∆t are slightly different, in 
which case we take the mean of the two. 

Although the optimal stimuli carry much information, 
they give only a partial view of the behavior of a unit, be-
cause these are nonlinear. To gain further insight into the 
response properties we use an appropriate pair of test images 
(one at time t and one at time t + ∆t) and compute for each 
unit the corresponding response image (Figure 4). The re-
sponse image is computed by cutting a 16×16 window at 
each point of the test images, using it as the input to the 
unit and plotting its output at the corresponding point (cf. 
Creutzfeldt & Nothdurft, 1978). 

To study the response to a range of frequencies and 
orientations we use a test image that consists of a circular 
pattern of sine waves with frequency increasing from the 
circumference to the center. The frequency increase is loga-
rithmic (i.e., an equal distance along the radius corresponds 
to an equal frequency difference in octaves) to make the 
comparison with physiological data easier. We let the ring 
patterns move outward at the preferred speed of the unit 
(Figure 4a). These images contain information not only 
about the whole range of frequencies and orientations to 
which the unit responds or by which it is inhibited but also 
about the sensitivity of the unit to the phase of the grating.  
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Figure 3. Optimal stimuli. Top five rows: optimal excitatory stimuli (x+) and optimal inhibitory stimuli (x–) of the first 35 units of the simu-
lation described in the text. For most units x+ and x– look like Gabor wavelets in agreement with physiological data. x+ gives information
about the preferred frequency and orientation of a unit and about the size and position of its receptive field. A comparison between the
patches at time t and at time t + ∆t hints at the temporal structure of the receptive field (e.g., its preferred speed and direction). The
units surrounded by a black frame are analyzed in more detail in Figure 7, Figure 10, and Figure 11. Bottom three rows: optimal excita-
tory stimuli for Units 94-100, 194-200, and 394-400. The Gabor-like shape of x+ begins to degrade around Unit 100, and becomes un-
structured for successive units corresponding to functions with quickly varying output. (More optimal stimuli can be found online as indi-
cated in Additional Material.)  

 



Journal of Vision (2005) 5, 579-602 Berkes & Wiskott 585 

 

Figure 4. Test and response images. (a). This image illustrates how the response images are computed. Given a test image at time t
and at time t + ∆t, at every position two 16×16 input patches are cut out and used as the input to the considered unit. The output is then
plotted at the corresponding point of the response image. The colors are normalized such that red corresponds to excitation, blue to
inhibition, and green to the spontaneous firing rate. The square at the upper left corner of the response image indicates the size of the
input patches. The circular test image shown on the left is used to investigate the response of a unit to a range of frequencies and ori-
entations. The gratings move outward at the preferred speed of the considered unit, as indicated by the white arrows. (b). Test image
used to investigate end- and side-inhibition. The hexagonal shape is oriented such that it is aligned to the preferred orientation of the
considered unit, indicated by the central bar. The gratings are tuned to the preferred frequency and move at the preferred speed of the
unit in the direction shown by the thin arrows. 

If a unit is sensitive, the response image shows oscillations 
in the radial direction, whereas if there are no oscillations, 
the unit is phase-invariant. Moreover, at two opposite 
points of a ring the orientation is equal but the grating is 
moving in opposite directions, and different responses in-
dicate selectivity to the direction of motion. An illustrative 
example for the classical simple and complex cell model is 
shown in Figure 5. Because the gratings are curved, an ad-
ditional factor due to curvature selection might be present 
in the response images. However, we find that in general 
this effect is negligible. 

The circular response images are similar to the Fourier 
representation of neural responses used by Ringach et al. 
(2002) (with the radial axis inverted), but they are more in-
formative in that they also contain information about 
phase-shift behavior and direction selectivity. Experimental 
readers might be more familiar with orientation and fre-
quency tuning curves. The circular response images contain 
this information, too (a slice of the response image along 
the radial direction would give a frequency-tuning curve, 
whereas a circular slice would give an orientation-tuning 
curve), but in addition it shows how the unit behaves at 
non-optimal parameters.  

 

 

Figure 5. Response images for the classical models of simple and complex cells. (a). Response image for the classical model of simple
cells (Figure 1a). The model shows a narrow orientation- and frequency-tuning and oscillations due to phase sensitivity. (b). Response
image for the classical model of complex cells (Figure 1b). The orientation and frequency tuning are the same as in (a), but the oscilla-
tions have disappeared because the model is phase-insensitive.  
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We use hexagonal-shaped test images (Figure 4b) to in-
vestigate end- and side-inhibition in our units. The hexagon 
is oriented such that two of the branches are aligned to the 
preferred orientation as indicated by the central bar. The 
gratings are set to the preferred frequency and move at the 
preferred speed as shown by the arrows. The branches of 
the hexagon are useful to determine if a unit is end- or side-
inhibited: on their border the receptive field is only par-
tially filled while in the middle the grating occupies the 
whole input patch. If the response drops between border 
and center, the unit is end- or side-inhibited. Of particular 
interest are the branches at the preferred orientation; on 
the additional four branches it is possible to see if the inhi-
bition is effective also at other orientations. The central 
hexagonal part contains angles at various orientations, and 
is useful to study the curvature selectivity of the units. If the 
preferred speed is not zero, in the second image there is 
one junction for each branch where the sine gratings of two 
branches do not coincide anymore. This might in principle 
distort the response in those areas. (Note that the hexago-
nal response image shown in Figure 10b has preferred 
speed zero, and is thus not affected.)  

We additionally performed experiments with drifting 
sine gratings to compute various unit properties and com-
pare them with physiological results. The sine-grating pa-
rameters were always set to the preferred ones of the con-
sidered unit. For example, the polar plots of Figure 7a-c.3 
were generated by presenting sine gratings to a unit at dif-
ferent orientations and with frequency, speed, position, 
and size fixed to the preferred ones. The plots show the 
response of the unit normalized by the maximum (radial 
axis) versus orientation of the sine grating (angular direc-
tion). Unless stated otherwise, comparisons are always 
made with experimental data of complex cells only.  

Another technique that consists in computing the in-
variances of the optimal stimuli (i.e., the directions in 
which a variation of x+ or x– has the least effect on the out-
put of the unit) was described in Berkes and Wiskott 
(2005).  

4. Results 
We now describe units obtained in a single simulation 

and make a comparison with corresponding cells reported 
in the experimental literature. For each simulation SFA 
extracts a complete basis of the considered function space 
ordered by decreasing slowness. In our case this corre-
sponds to 5150 polynomials of degree 2. Of course, the last 
functions are actually the ones with the most quickly varying 
output signal and will not be considered. We use the mean 
β-value of the pixel intensities as a reference, because we 
don’t want functions that compute a signal varying more 
quickly than their input. Figure 6 shows the β-values of the 
first 400 units when tested on training data or on previ-
ously unseen sequences with a total of 400,000 frames. The 
units remain slowly varying also on test data, and their or-

der is largely preserved. At about Unit 100 the shape of the 
optimal excitatory stimulus begins to degrade (Figure 3, 
bottom rows) and the β-values come close to that of the 
input signal (>90%). For these reasons we consider here 
only the first 100 functions. 

Although for illustrative purposes we mainly concen-
trate on individual units, we also find a good qualitative 
and quantitative match on population level between the 
considered units and complex cells in V1. We did not find 
any unit among the first 100 whose properties were in con-
tradiction with those of neurons in V1. 
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Figure 6. Beta-values. The β-values of the first 400 units when
applied to the training data (thin line) or to the test data (novel
sequences with a total of 400,000 frames, thick line). The units
remain slow and ordered also on test data. The horizontal solid
line corresponds to the mean β-value of the input signals. The
horizontal dotted line corresponds to the β-value of Unit 100,
which is slightly higher than 90% of that of the input signals. 

Gabor-like optimal stimuli  
and phase invariance 

The optimal stimuli of almost all units look like Gabor 
wavelets (Figure 3), in agreement with physiological data. 
This means that the units respond best to edgelike stimuli. 
The response of all these units is largely invariant to phase 
shift as illustrated by the lack of oscillations in the response 
images (Figure7, Figure 10, and Figure 11). To quantify this 
aspect we presented to each unit a sine grating tuned to the 
preferred orientation, frequency, speed, length, width, and 
position as revealed by x+ and computed the relative modu-
lation rate F1/F0 (i.e., the ratio of the amplitude of the first 
harmonic to the mean response). Neurons are classified as 
complex if their F1/F0 ratio is less than 1.0; otherwise they 
are classified as simple, as defined in Skottun et al (1991). 
All units have a modulation rate considerably smaller then 
1.0 (the maximum modulation rate is 0.16) and would thus 
be classified as complex cells in a physiological experiment. 
Out of 100 units, 98 had both a Gabor-like x+ and phase-
shift invariance; the missing two cells are described in 
Tonic cells. (See Appendix A.2 for additional remarks.) 
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ctive inhibition. This figure illustrates the ways in which active inhibition can shape the receptive field of a unit. Subfigures (a-
the optimal excitatory and inhibitory stimuli x+ and x– of the considered units. Subfigures (a-d.2) show the response images
ing to the circular test image (Figure 4a). The small square in the upper left corner represents the size of an input patch.
 (a-c.3) show a polar plot of the response of the unit to a sine grating. The orientation of the grating varies along the angular
hile the radial axis measures the response normalized to the maximum. In subfigures (a-c.4) we show for comparison

plots showing the response in spikes/s of neurons of the primary visual cortex of the cat (De Valois, Yund et al., 1982). Sub-
 shows the normalized response of the unit to a sine grating of varying frequency. (a). This unit shows maximal inhibition at
ion orthogonal to the optimal excitatory one while there is no inhibition in frequency. The unit has a relatively broad tuning to
ation and frequency. (The cell shown in (a.4) has been classified as simple but seems to be representative for complex cells
). Although this unit responds to edges (as shown by x+), the polar plot reveals that it is not selective for any particular orien-
 unit is thus classified as non-oriented. There is a slight inhibition at lower frequencies. (c). This unit has inhibitory flanks with
ion near the preferred one. In such a case it is sometimes possible to observe a second peak of activity appearing at the
 orientation, known in the experimental literature as secondary response lobe. (d). x+ and x– of this unit have the same orien-
 different frequency. This results in a very sharp frequency tuning. On the other hand the unit responds to a broad range of

s.  
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Active inhibition  
(orientation and frequency tuning) 

In the classical model, complex cells have no inhibition 
and are correspondingly restricted in their functional prop-
erties (e.g., see MacLennan, 1991). In physiological neu-
rons, however, active inhibition is present and useful (e.g., 
to shape the tuning to orientation and frequency) (Sillito, 
1975; De Valois, Yund et al., 1982). (See Appendix A.3 for 
additional remarks.)  

In our model inhibition is present in most units and 
typically makes an important contribution to the output. 
As a consequence x– is usually well structured and has the 
form of a Gabor wavelet as well (Figure 3). Its orientation 
plays an important role in determining the orientation-
tuning. It can be orthogonal to that of x+ (Figure 7a), but it 
is often not, which results in sharpened orientation-tuning 
(because the response must decrease from a maximum to a 
minimum in a shorter interval along the orientation). On 
the other hand, we also find units that would be classified 
as complex by their response to edges and their phase in-
variance but which are not selective for a particular orienta-
tion (Figure 7b) (4 units out of 100). Similar cells are pre-

sent in V1 and known as nonoriented cells (De Valois, Yund 
et al., 1982). Figure 8a compares the distribution of the 
orientation bandwidth of our units with that of complex 
cells reported in De Valois, Yund et al. (1982) and Gizzi, 
Katz, Schumer, and Movshon (1990). Our units seem to 
have a slightly broader tuning, but the difference is not sig-
nificant (one-sided Kolmogorov-Smirnov test, p > .8).  

When the orientation of x– is very close to that of x+, it 
is possible to observe a second peak of activity at an orien-
tation orthogonal to the optimal one (Figure 7c) known as 
secondary response lobe. Out of 100 units, 9 had this charac-
teristic. (We classify a unit as having a secondary response 
lobe if on the orientation-tuning curve its output expressed 
in percentage of the maximal response decreases from 
100% to less than 10% and then it increases again to more 
than 50% at the orthogonal orientation.) De Valois, Yund 
et al. (1982) repeatedly stress that non-orthogonal inhibi-
tion is common among neurons in V1 and show some ex-
ample cells (one of which is shown in Figure 7c.4). The 
fraction of such cells in V1 is not reported. Ringach et al. 
(2002) quantitatively studied the relative angle between 
maximal excitation and suppression. Figure 8b shows the 
histograms of the angle between maximal excitation and 
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Figure 8. Population statistics. (a). The distribution of half-height orientation bandwidth in complex cells and in our simulation. (b). The
distribution of the angle between the orientation of maximal excitation and maximal inhibition. The data from Ringach et al. (2002) con-
tain simple cells as well as complex cells, which might explain the more pronounced peak at 90 deg. (c).The distribution of half-height
frequency bandwidth in complex cells and in our simulation. The bandwidth is measured by the units’ contrast sensitivity function as in
De Valois, Albrecht et al. (1982). Units whose contrast sensitivity does not drop below 50% of the maximum are classified in the last
bin. (d). The distribution of the directionality index of complex cells and in our simulation (the data from De Valois, Yund et al., 1982,
also contain simple cells, but in the study it is stated that there was no significant difference between the two populations). 
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inhibition in our simulation and in their study. In the lat-
ter there is a more pronounced peak at orthogonal orienta-
tions. This difference might be due to the small fraction of 
complex cells in the population considered in the study (24 
complex cells out of 75). To draw the histogram, the cells 
that responded to very low frequencies were discarded. (It 
was not specified how many complex cells remained in the 
final set.) To the extent simple cells are well described by 
linear functions, they are likely to show maximal suppres-
sion at 90 deg.  

Analogous considerations also hold for the frequency 
domain: Here again the tuning varies from a sustained re-
sponse within a range of frequencies (Figure 7a) to a sharp 
tuning due to active inhibition (Figure 7d). Figure 8c shows 
the distribution of frequency bandwidth in octaves in our 
simulation and in complex cells as reported by De Valois, 
Yund et al. (1982). The bandwidth was computed from the 
units’ contrast sensitivity like in the cited study. Complex 
cells have a rather flat distribution, while the bandwidth of 
our units is concentrated between 0.3 and 1.4 octaves with 
a peak at 0.5. The reason for this difference is not yet en-
tirely clear (but see Appendix A.4). 

Figure 9 shows the joint distribution of frequency and 
orientation bandwidth in V1 in our simulation and as re-
ported by De Valois, Albrecht et al. (1982). Because the 
marginal distribution of frequency bandwidth is different, 
in our case the data points are more concentrated in the 
left part of the graph. However, the two distributions are 
similar in that they have a large scatter and no strong corre-
lation between orientation and frequency bandwidth. (The 
data from De Valois, Albrecht et al., 1982, also contains 
simple cells. The distribution of frequency and orientation 
bandwidth was found to be similar in simple and in com-
plex cells (De Valois, Albrecht et al., 1982; De Valois, Yund 
et al., 1982), but the correlation of the two variables within 
the two groups is not reported.) 

End- and side-inhibition 
Some of the complex cells in V1 are selective for the 

length (end-inhibited cells) or width (side-inhibited cells) of 
their input. While in normal cells the extension of a grating 
at the preferred orientation and frequency produces an 
increase of the response up to a saturation level, in these 
cells the response drops if the grating extends beyond a cer-
tain limit (DeAngelis et al., 1994).  

End- and side-inhibition are present also in our simula-
tion (Figure 10). We computed for each unit a quantitative 
measure of its degree of end- or side-inhibition by present-
ing sine gratings of different length and width (keeping all 
other parameters equal to the preferred ones). We define 
the end- and side-inhibition index as in DeAngelis et al. 
(1994) by the decrease of the response in percentage be-
tween optimal and asymptotic length and width, respec-
tively. Out of 100 units, 10 had an end-inhibition index 

greater than 20%, and 7 units of 100 had a side-inhibition 
index greater than 20%. In contrast to DeAngelis et al. 
(1994) we found only 2 units that showed large (>20%) 
end- and side-inhibition simultaneously. 

End- and side-inhibited units can sometimes be identi-
fied by looking directly at the optimal stimuli. In these 
cases x+ fills only one-half of the window while the missing 
half is covered by x– with the same orientation and fre-
quency (Figure 10a.1 and b.1). In this way, if we extend the 
stimulus into the missing half, the output receives an in-
hibitory contribution and drops. This receptive field or-
ganization is compatible with that observed in V1 by 
Walker et al. (1999) in that inhibition is asymmetric and is 
tuned to the same orientation and frequency as the excita-
tory part. 

A secondary characteristic of end- and side-inhibited 
cells in V1 is that they are sometimes selective for different 
signs of curvature (Dobbins et al., 1987; Versavel et al., 
1990). This can be observed in our simulation (e.g., in 
Figure 10b.2 where the dashed circles indicate two opposite 
curvatures). One of them causes the unit to respond 
strongly while the other one inhibits it. 

Direction selectivity 
Complex cells in V1 are sensitive to the motion of the 

presented stimuli. Some of them respond to motion in 
both directions while others are direction-selective (Hubel 
& Wiesel, 1962; Schiller et al., 1976a; De Valois, Yund 
et al., 1982; Gizzi et al., 1990). Similarly, in our model 
some units are strongly selective for direction (Figure 11) 
while others are neutral. In the latter case the optimal 
speed may be non-zero but the response is nearly equal for 
both directions. 

We measure direction selectivity by the directionality in-
dex given by (1 / ) 100np pDI R R= − ⋅  with Rp and Rnp being 
the response in the preferred and in the nonpreferred di-
rection, respectively (Gizzi et al., 1990). The index is 0 for 
bidirectional units and 100 for units that respond only in 
one direction of motion. Figure 8d shows the histogram of 
DI in our simulation compared to three distributions from 
the physiological literature. The distributions are quite 
similar, although there is a more pronounced peak for bidi-
rectional units. (See Appendix A.5 for additional remarks.) 

Tonic cells 
The first unit in every simulation codes for the mean 

pixel intensity and is thus comparable to the tonic cells 
found in V1 (Schiller et al., 1976a). Tonic cells respond to 
either bright or dark stimuli but do not need a contour to 
respond. We find in addition one unit (the second one) 
that responds to the squared mean pixel intensity and 
therefore to both bright and dark stimuli. (See Appendix 
A.6 for additional remarks.) 
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and orientation bandwidth. This figure compares the joint distribution of frequency and orientation bandwidth in our
n De Valois, Albrecht et al. (1982) (right). The two distributions are similar in that they have a large scatter and no
tween orientation and frequency bandwidth. (The data set on the right contains simple and complex cells. The dis-
n bandwidth was found to be similar for both classes, but the correlation of the two variables within the two groups

 

side-inhibition. This figure illustrates end-and side-inhibition in our simulation. Subfigures (a-b.1) show the optimal
 the considered units. Subfigures (a-b.2) show the response image corresponding to a hexagonal test image
ll square in the upper left corner represents the size of an input patch. Subfigures (a-b.3) show the response of the
with varying length or width, respectively. For comparison, equivalent plots of the response in spikes/s of end- and
x cells published in DeAngelis et al. (1994) are shown in subfigures (a-b.4). The four curves (a-b.3 and a-b.4) have
ainly differ in their inhibition index (the ratio between maximal and asymptotic response), which has a broad distri-
s. (a). This unit is end-inhibited. The optimal stimuli indicate how the receptive field is organized: the optimal exci-
ly one half of x+ while the missing half is in x–. Inhibition is thus asymmetric and tuned to the same orientation and

on, in agreement with Walker et al. (1999). From left to right, the first arrow in the hexagonal response image indi-
ximal response, when only the right part of the input window is filled. In the region indicated by the second arrow,
hole input window; the response is decreased, which corresponds to end-inhibition. The third arrow indicates the
 left part of the input window is filled, and the unit is inhibited. (b). This is a side-inhibited unit. The interpretation of

 arrows is similar to that in (a), except that the grating extends laterally, which corresponds to side-inhibition. The
urround two regions with opposite curvature. The unit responds strongly in one case and is inhibited in the other,
ture selectivity. 
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Response to complex stimuli 
As can be inferred from the invariances (see Berkes & 

Wiskott, 2002), some units give a near-optimal output 
(>80% of the optimum) in response to corners and  
T-shaped stimuli and are related to the V1 cells described 
in Shevelev (1998). In a physiological experiment these 
stimuli could be classified as the optimal ones if the con-
trast instead of the energy is kept constant (e.g., a T-shaped 
stimulus has a larger energy than a bar with the same length 
and contrast). Other units respond to one sign of curvature 
only. These behaviors are often associated with end- or side-
inhibition, as described above. In a few cases the two wave-
lets in the optimal stimuli have a slightly different orienta-
tion or frequency at time t and at time t + ∆t, which indi-
cates a more complex behavior in time, such as selectivity 
for rotation or zoom.  

Relations between slowness and behavior 
Although the precise shape and order of the units can 

vary in different simulations, there seem to be relations 
between the slowness of unit responses and the receptive 
field properties. The slowest units are usually less selective 
for orientation and frequency, have orthogonal inhibition, 

and their preferred speed is near zero. Units with non-
orthogonal inhibition, direction selectivity, and end- or 
side-inhibition predominate in a faster regime. It would be 
interesting to see if similar relations can also be found ex-
perimentally by comparing the temporal variation of the 
response of a neuron stimulated by natural scenes and its 
receptive field properties. We could not find any relation 
between preferred orientation and slowness. 

5. Control experiments 
We performed a set of control experiments to assess 

the role of spatial transformations, the statistics of the in-
put images, dimensionality reduction, and asymmetric 
decorrelation in our results.  

5.1 Control experiment 1  
In this set of experiments we investigated the role of 

the three spatial transformations used in our simulation: 
translation, rotation, and zoom. The settings for these ex-
periments are identical to those of the main simulation 
described in Section 4 except that to achieve a reasonable 
total simulation time the input vectors consisted of single 
frames (instead of pairs of consecutive frame). The input 
dimension is reduced accordingly to N = 50, so that the 
proportion betweens input and reduced dimensions is the 
same as in the main simulation. We analyzed the first  
50 units for each experiment. We performed a first simula-
tion to be used as a reference using all three spatial trans-
formations, followed by six simulations where only one or 
two transformations where used: translation only, rotation 
only, zoom only, translation and rotation, translation and 
zoom, and rotation and zoom. The parameters used for the 
transformations are the same as in the main simulation.  

 

Figure 11. Direction selectivity. This figure shows a direction-
selective unit. See the caption of Figure 7 for the description of
the subfigures. The two wavelets in x+ at time t and at time t + ∆t
are identical except for a phase shift. This means that the unit
responds best to a moving edge. This is confirmed by the re-
sponse image, which shows different responses at opposite
points of a ring. At those points the orientation is equal but the
grating is moving in opposite directions. 

Figure 12a-h shows the optimal excitatory stimuli of all 
seven simulations. It can be seen that optimal stimuli simi-
lar to Gabor wavelets appear only in simulations with trans-
lation, including the one with only translation. Sine-grating 
experiments show that all units have phase-shift invariance 
(all relative modulation rates are smaller than 0.27). Trans-
lation is thus a necessary and sufficient spatial transforma-
tion to obtain complex cell receptive fields from natural 
images with SFA. On the other hand, the optimal stimuli 
in the simulation with only translation seem to occupy the 
whole patch in contrast to the more localized optimal stim-
uli in the simulations where translation is combined with 
the other transformations. Zoom and especially rotation are 
necessary to obtain more localized receptive fields. (This is 
not directly evident from Figure 12 because of the small 
number of optimal stimuli shown. Images containing more 
optimal stimuli can be found online; see Additional Mate-
rial.) In simulations including translation but no rotation, 
the distribution of orientation bandwidth is skewed toward 
small bandwidths. High bandwidths therefore seem to be a 
consequence of the amount of rotation included in the 
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simulation, as one would expect because it results in an 
improved tolerance to changes in orientation. 

Functions learned with rotation only and with both ro-
tation and zoom show optimal stimuli with a circular struc-

ture (cf. Kohonen, Kaski, & Lappalainen, 1997). Functions 
learned with zoom only have optimal stimuli with small 
white/black spots in the center of the receptive field. These 
two last receptive field structures are not found in V1. 
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Figure 12. Control Experiments 1 and 2. This figure shows the optimal excitatory stimuli of Units 15-30 for Control Experiments 1 and 2.
One or more icons representing the spatial transformations applied in a particular experiment are displayed on the top of each plot. A
legend for the icons can be found in (e). (a-h). Optimal excitatory stimuli for Control Experiment 1. In this set of experiments we investi-
gated the role of the three spatial transformations used in our simulation. The input image sequences were constructed from natural
images like those in the main simulation, and all combinations of one, two, or three spatial transformations were applied. The results
show that translation is a necessary and sufficient spatial transformation to obtain complex cell characteristics. (i-p). Optimal excitatory
stimuli for Control Experiment 2. In this set of experiments we investigated the role of the spatial statistics of natural images in our re-
sults. The input images were replaced by colored noise images with a power spectrum equal to that of natural images. The results sug-
gest that spatial second-order statistics are sufficient to obtain complex cell characteristics. 
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5.2 Control experiment 2  
In this set of experiments we investigated the role of 

the spatial statistics of natural images in our results. The 
settings are identical to those of Control Experiment 1 ex-
cept that instead of natural images we used colored noise 
images with a 1/f 2 power spectrum, similar to the one 
shown in Figure 12m. The statistical properties of such im-
ages are equivalent to those of natural images up to the 
second order (Ruderman & Bialek, 1994; Dong & Atick, 
1995). For each experiment we generated 36 new noise 
images that replaced the natural ones. The results of these 
experiments were almost identical to those of Control Ex-
periment 1. The experiments including translation show 
Gabor-like optimal stimuli (Figure 12i-p) and phase-shift 
invariance. All relative modulation rates are smaller than 
0.14 except for two units (one in the experiment with all 
transformations and one in the experiment with translation 
and rotation), which have a modulation rate of 1.47 and 
1.53, respectively. The distributions of the various parame-
ters are very similar to those obtained in Control Experi-
ment 1. This suggests that spatial second-order statistics are 
sufficient to learn complex cell receptive fields. In principle 
our model considers spatial statistics up to the fourth order 
because the matrices A and B (Equations 16 and 17) con-
tain products of monomials of degree 2.  

5.3 Control experiment 3  
This experiment was performed to exclude an influ-

ence of the dimensionality reduction on our results (see 
also Appendix A.1). The settings of the simulation are 
identical to those used in the main simulation except that 
the input vectors consisted in single frames only and, most 
importantly, that the input patches were 10×10 pixels large 
and no dimensionality reduction was performed. The trans-
lation speed was reduced by 10/16th, so that the propor-
tion with the patch size was preserved. The first 100 units 
were analyzed. 

The first two units were classified as tonic units. All 
other units have Gabor-like optimal stimuli (Figure 13) and 
phase-shift invariance (maximum modulation rate 0.23), 
excluding Units 9 and 10, which are described below. 
Units 4 and 11 have checkerboardlike optimal excitatory 
stimuli. Further analysis reveals that they are nonoriented 
units that only respond to very high frequencies. Units 9 
and 10 have optimal excitatory stimuli with one bright re-
gion in a corner. The optimal inhibitory stimuli are similar, 
but their bright corner is opposite to the excitatory one. 
The role of these units is unclear, but it is possible that they 
give a nonlinear response to a luminance gradient along the 
diagonal. This experiment shows that the learning of com-
plex cell receptive fields is not a consequence of the dimen-
sionality reduction step. 

5.4 Control experiment 4  
In our mathematical formulation of the slowness prin-

ciple the units are learned “one after the other” 
(Constraint 4) in the sense that in an online implementa-
tion of SFA the units would be learned using an asymmet-
ric decorrelation term (i.e., unit j would be adapted to op-
timize Equation 1 and to be decorrelated to all units i with 
i < j). In a biological system it might seem more realistic to 
use symmetric decorrelation, where each unit is adapted to 
optimize Equation 1 and to be decorrelated to all other 
units.  

In this control experiment we relax Constraint 4 and 
mix the units of the main simulation by an orthonormal 
transformation. The resulting units still satisfy Con-
straints (2-4) and span the slowest subspace (i.e., they 
minimize the total variance of the derivative in a 100-
dimensional subspace). However, the asymmetry that is 
inherent in the algorithm and induces the order is no 
longer effective, so none of the units is distinguished over 
the others anymore.  

All resulting units have Gabor-like optimal stimuli and 
phase-shift invariance (maximum modulation rate 0.37) 
and would thus be classified as complex cells. However, 
their response images are more unstructured than in the 
main simulation and they sometimes show a few peaks at 
different orientations and frequencies, which is not consis-
tent with the behavior of complex cells (e.g., see the plots 
reported in Ringach et al., 2002). Moreover, the distribu-
tion of orientation bandwidth is skewed toward small 
bandwidths, and in the distribution of the relative angle 
between excitation and suppression the peak at 90 deg is 
missing and there is a maximum at 45 deg. It thus seems 
that asymmetric decorrelation is necessary to obtain the 
more structured results found in the main simulation. 
Note, however, that every breaking in the symmetry of 
decorrelation would make the units converge to the asym-
metric solution. Because perfect symmetry is difficult to 
enforce in a biological system, the asymmetric case might be 
more realistic.  
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he results show that the learning of complex cell receptive
elds is not a consequence of the dimensionality reduction step. 
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6. Discussion  
In this work we have shown that SFA applied to natu-

ral image sequences learns a set of functions that have a 
good qualitative and quantitative match with the popula-
tion of complex cells in V1. In the following section we 
discuss other theoretical models of complex cells. In 
Section 6.2 we discuss the properties of the chosen func-
tion space, present a neural network architecture equivalent 
to a given polynomial of degree 2, and compare it with the 
neural networks used in other studies. We conclude with 
some remarks about other learning rules.  

6.1 Other theoretical studies  
Several theoretical studies have successfully reproduced 

the basic properties of simple cells (Olshausen & Field, 
1996; Bell & Sejnowski, 1997; Hoyer & Hyvärinen,  2000; 
Szatmáry & Lõrincz, 2001; Olshausen, 2002; Einhäuser, 
Kayser, Körding, & König, 2002; Hurri & Hyvärinen, 
2003a) or complex cells (Hyvärinen & Hoyer 2000; Körd-
ing, Kayser, Einhäuser, & König, 2004) in models based on 
the computational principles sparseness (Olshausen & Field, 
1996; Olshausen, 2002), statistical independence (Bell & Se-
jnowski, 1997; Hoyer & Hyvärinen, 2000; Hyvärinen & 
Hoyer, 2000; Szatmáry & Lõrincz,  2001), or slowness (Ein-
häuser et al., 2002; Hurri & Hyvärinen, 2003a; Körding 
et al., 2004). Among the simple cell models, two included 
direction selectivity (Szatmáry & Lõrincz, 2001; Olshausen, 
2002), two color selectivity (Hoyer & Hyvärinen, 2000; 
Einhäuser et al., 2002), and one disparity (Hoyer & Hy-
värinen, 2000). Most of these models focused on one par-
ticular aspect of the behavior of cells in V1. In particular, 
the two complex cell models (Hyvärinen & Hoyer, 2000; 
Körding et al., 2004) learned units that were equivalent to 
the classical model and thus reproduced only the Gabor-
like receptive fields and the phase-shift invariance. One 
important limitation of these models was that they assumed 
linear or nonlinear but simple neural network architectures 
that belong to a function set much smaller than the one we 
consider (see Section 6.2). None of the nonlinear models 
included inhibition while many of the illustrated complex 
cell behaviors are impossible to obtain without it.  

Hashimoto (2003) learned quadratic forms (without 
the linear term) from natural image sequences using three 
computational principles: independent component analysis 
(ICA), a gradient descent variant of SFA, and an objective 
function that maximizes the sparseness of the derivatives of 
the output. In the experiments performed using ICA, 
Hashimoto obtained a set of units corresponding to the 
squared output of simple cells. The results obtained with 
the gradient descent variant of SFA showed a few units 
with complex cell properties; most of them were not struc-
tured. Although it is difficult to make a direct comparison 
because only the largest eigenvectors of two of the quadratic 
forms are reported, the results are in contradiction with the 
ones presented in this work. It is possible that the size of 

the input patches (8×8 pixel) was too small in comparison 
with the transformations of the image sequences that were 
used, so that two consecutive frames would have had al-
most no correlation. It is also possible that the gradient 
descent converged to a local minimum. In this respect it 
would be interesting to compare the β-value of the quad-
ratic forms. The experiments performed by maximizing the 
sparseness of the derivatives learned some units with com-
plex cell properties (including a few with structured inhibi-
tion) and others with the characteristics of squared simple 
cells. These results seemed in general more structured than 
the ones obtained with the SFA variant. It would be inter-
esting to explore the relation between these two objective 
functions further.  

The studies mentioned up to now learned visual recep-
tive fields directly from the pixel intensities of natural im-
ages or movies. Zetzsche and Röhrbein (2001), on the other 
hand, considered as an input the response of a set of artifi-
cial simple cells (i.e., linear Gabor wavelets, whose outputs 
were split into an ON (positive) and an OFF (negative) 
pathway by half-wave rectification). The two pathways were 
then used as an input to PCA or to ICA. The main result 
of the study is that PCA applied to the output of Gabor 
wavelets having the same orientation and frequency but 
different positions in the visual field learns units with sim-
ple and others with complex cell characteristics. Addition-
ally, some units of both classes showed end-inhibition. An-
other experiment performed by applying ICA to the output 
of Gabor wavelets with same orientation, different posi-
tions, and even- and odd-symmetric filter properties pro-
duced simple cells, some of which were end-inhibited and 
others side-inhibited. It is known that the Gabor wavelets 
used to form the first layer can be learned directly from 
natural images (e.g., by ICA), so that these results could in 
principle be obtained directly from pixel intensities. In this 
case, however, an additional criterion should be provided 
to group the resulting wavelets, so that only the ones with 
equal orientation and frequency are connected to a second-
layer unit. 

To our knowledge the model presented here is the first 
one based directly on input images that is able to learn a 
population of units with a rich repertoire of complex cell 
properties, such as active inhibition, secondary response 
lobes, end-inhibition, side-inhibition, direction selectivity, 
tonic cell behavior, and curvature selectivity. 

6.2 Function space and  
equivalent network architecture  

We performed SFA on the function space F of all 
polynomials of degree 2 mainly because of limited compu-
tational resources. In principle one would like to consider a 
function space as large as possible. On the other hand, 
neurons have computational constraints, too, and thus 
considering too large a set could lead to unrealistic results. 
This leads to an interesting question: Which functions of 
its input can a neuron compute? In other words, in which 
function space does the input-output map of a neuron lie?  
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Lau, Stanley, and Dan (2002) have fitted the weights of 
a nonlinear two-layer neural network to the output of com-
plex cells. They found that the relation between the linear 
output of the subunits and the output of the complex cell is 
approximately quadratic (mean exponent 2.3 1.1). This 
result describes which functions the neurons do compute 
and not which ones it could compute, which would deter-
mine the function space. It suggests, however, that consid-
ering the space of polynomials of degree 2 might be suffi-
cient. Kayser, Körding, and König (

±

2003) adapted the 
weights and the exponents of a neural network similar to 
the classical model of complex cells using an objective func-
tion based on the slowness principle (but see Section 6.3 
for some remarks regarding the definition of slowness). The 
exponent of most of the units converged to 2. This experi-
ment also suggests that quadratic nonlinearities might be 
an appropriate choice in our context. Polynomials of degree 
2 also correspond to a Volterra expansion up to the second 
order of the spatio-temporal receptive field of a neuron 
(e.g., see Dayan & Abbott, 2001, Sect. 2.2) when time is 
discretized in small steps. Such an approximation has been 
used with some success to describe complex cells (e.g., 
Touryan, Lau, & Dan, 2002).  

Polynomials of degree 2 are closely related to but at the 
same time much more general than the functions corre-
sponding to the neural networks used in standard studies 
in the field (Hyvärinen & Hoyer, 2000; Hyvärinen & 
Hoyer, 2001; Körding et al., 2004; also see Section 6.1). 
Those models usually rely either on linear networks, which 
lie in the space of polynomials of degree 1, or on networks 
with one layer of a fixed number of linear units (2 to 25) 
followed by a quadratic nonlinearity (Figure 14b), which 
form a small subset of the space of polynomials of degree 2. 
This can be seen from the following considerations. Each 

polynomial of degree 2 can be written as an inhomogene-
ous quadratic form 

1( ) T T

2
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As also noticed by Hashimoto (2003), for each quadratic 
form there exists an equivalent two-layer neural network, 
which can be derived by rewriting the quadratic form using 
its eigenvector decomposition: 
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where V is the matrix of the eigenvectors vk of H and D is 
the diagonal matrix of the corresponding eigenvalues µk, so 
that VTHV=D. One can thus define a neural network with 
a first layer formed by a set of N linear subunits 

 followed by a quadratic nonlinearity weighted 
by the coefficients µk/2. The output neuron sums the con-
tribution of all subunits plus the output of a direct linear 
connection from the input layer (

( ) T
ks =x vk x

Figure 14a). Because the 
eigenvalues can be negative, some of the subunits give an 
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alent neural network. (a). Neural network architecture equivalent to a polynomial of degree 2. The first layer consists of
hose outputs are squared and weighted. The output neuron on the second layer sums the contribution of all subunits
f a direct linear connection from the input layer. (The ellipse in the input layer represents a multidimensional input.) (b).

network used in some theoretical studies. The output of the linear subunits is squared but not weighted and can give
ry (positive) contribution to the output. There is no direct linear connection between input and output layer. 
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inhibitory contribution to the output. The weight vectors 
vk are uniquely determined only if the eigenvalues of H are 
all different; otherwise the decomposition of H is arbitrary 
in the subspace that corresponds to the multiple eigen-
value. Moreover, the coefficients to the subunits are fixed 
only if one assumes that the weight vectors have unit norm. 

The equivalent neural network clarifies the relation be-
tween the general case of polynomials of degree 2 (Figure 
14a) and the smaller neural networks used in other model-
ing studies and described above (Figure 14b). An evident 
difference is the lack of a direct linear contribution to the 
output and the size of the networks: in our study each 
learned function has N = 100 subunits, which is much lar-
ger than the fixed numbers used in the studies mentioned 
above. The most important difference, however, is related 
to the normalization of the weights. In the theoretical stud-
ies cited above, the weights are normalized to a fixed norm 
and the activity of the subunits is not weighted. In particu-
lar, because there are no negative coefficients, no inhibition 
is possible.  

The equivalent neural network shows that the choice 
of the space of all polynomials of degree 2 is compatible 
with the hierarchical organization of the visual cortex first 
proposed by Hubel and Wiesel (1962) in the sense that 
every learned function can be implemented by a hierarchi-
cal model similar to the energy model. The learning of the 
linear subunits would be modulated by the application of 
the slowness principle to the complex cell (see Section 6.3). 
According to this interpretation, the subunits would corre-
spond to simple cells, and their receptive fields should thus 
look like Gabor wavelets. However, typically only a few 
subunits (those corresponding to the largest eigenvalues) 
are structured like simple cells (see also Berkes & Wiskott, 
2005).  

A possible alternative would be that simple cells are 
learned by a parallel computational principle and then 
grouped and weighted by the slowness principle to form 
complex cells. A similar distinct grouping step has been 
used in Zetzsche and Röhrbein (2001) and Hurri and Hy-
värinen (2003b). Computational principles that have led to 
simple cells are sparseness, statistical independence, and 
slowness (see Section 6.1).  

Although the function space of polynomials of degree 2 
is mathematically attractive and has proved to be appropri-
ate in experimental and theoretical studies as discussed 
above, it is not able to encompass all input-output nonlin-
earities of visual neurons. Divisive contrast gain control 
(Ohzawa, Sclar, & Freeman, 1982), saturation effects, and 
pattern adaptation are examples of nonlinear effects pre-
sent in the visual cortex that cannot be realized.  

6.3 Relation to other learning rules  
We would like to point out that the definition of slow-

ness in the models described in Einhäuser et al. (2002), 
Hurri and Hyvärinen (2003a), Körding et al. (2004), and in 
the present work are different to some extent. In Körding 
et al. ( )2004  the weights of neural networks equivalent to 
the classical model of complex cells are adapted by gradient 
descent to optimize a decorrelation and a slowness term. 
The slowness term is defined by the mean of the ∆-values in 
Equation 1. If one fully enforces the decorrelation con-
straint (Equation 4), the units found by this rule lie in the 
subspace of the most slowly varying functions, but they are 
unique only up to an orthogonal transformation (i.e., by 
mixing the resulting functions through a rotation in the 
space of polynomials one would find different but equally 
optimal units). In the cited study, however, the architecture 
of the neural networks imposes additional constraints in 
the sense that the polynomials that the networks can com-
pute form a subset and not a subspace of the space of poly-
nomials of degree 2. This implies that an arbitrary rotation 
could lead to functions that do not lie in the subset and are 
thus not representable by such neural networks (K. P. 
Körding, personal communication, 2003). This argument 
shows that the two objective functions are different in some 
aspects. 

In Einhäuser et al. (2002) and Hurri and Hyvärinen 
(2003a) the temporal variation of the output is minimized 
after a rectifying nonlinearity. When the nonlinearity is 
symmetric (e.g., when squaring or taking the absolute value 
of the output), solutions oscillating strongly around zero 
can be optimal because the sign is canceled out by the recti-
fication. Also in the nonsymmetric case the solutions found 
are different from the ones extracted by SFA. Further inves-
tigations are needed to compare the different definitions 
and to find a unifying framework. In this context it is inter-
esting to notice that in our model the learning rule at the 
level of the subunits is similar to the one proposed by Hurri 
and Hyvärinen (2003a) plus some cross-correlation terms. 
As shown in Appendix A.7, if we consider a neural network 
like that of Figure 14b and we expand the SFA objective 
function (Equation 1) at the level of the subunits, we ob-
tain the equivalent objective function 

' '
2 2 2

1 , 1
( ) ( 1) ( ) ( 1) ,

N N

i i i j
i i j

i j

s t s t s t s t
= =

≠
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which has to be maximized (si(t) is the activity of subunit i 
at time t). The first term of Equation 22 is equal to the ob-
jective function proposed by Hurri and Hyvärinen (2003a) 
and is based on a computational principle related to tem-
poral slowness and called temporal coherence. According 
to that principle the energy of the output has to be similar at 
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successive time steps. Hurri and Hyvärinen (2003a) showed 
that temporal coherence applied to natural video sequences 
learns simple cell receptive fields. The second term of 
Equation 22 maximizes the coherence of the energy of dif-
ferent subunits at successive timesteps. As a consequence, 
the subunits are encouraged to code for frequently occur-
ring transformations of the features represented by the oth-
ers. According to this analysis, it is tempting to conclude 
that temporal slowness at the level of complex cells modu-
lates temporal coherence at the level of simple cells.  

Temporal and spatial slowness are closely related con-
cepts. For example, in our model, temporal slowness could 
be reformulated as a spatial one by adapting each unit to 
respond in a similar way to neighboring visual regions. The 
slowness objective could thus be reformulated as a spatial 
optimization criterion (Wiskott & Sejnowski, 2002). How-
ever, the former seems more natural to us and easier to im-
plement in a biological system.  

As mentioned above, another proposed computational 
principle is based on the sparseness of the output of a cell 
or on the independence of the outputs of a set of cells, 
which turns out to be equivalent in this context (Hy-
värinen, Karhunen, & Oja, 2001, Chap. 21.2). Sparse 
codes are advantageous because they increase the signal-to-
noise ratio, improve the detection of “suspicious coinci-
dences,” and allow effective storage in associative memories 
(Field, 1994). The sparseness of a code can be measured by 
its kurtosis, where higher kurtosis corresponds to a sparser 
code (Willmore & Tolhurst, 2001). Interestingly, the kur-
tosis of our units (mean kurtosis 12.85 3.46) is much 
higher than that of their input (mean kurtosis 0.42

±
± 0.04). 

This is due to the selectivity characteristics of the units. 
They can therefore take advantage of the benefits of a 

sparse representation without being explicitly optimized for 
it. Figure 15 shows an excerpt of the activity trace of a unit 
and the distribution of its output in response to 400,000 
test frames. In a complex cell in V1 the activity would be 
half rectified at some threshold because the firing rate can-
not be negative.  

Statistical independence can be defined on the basis of 
higher order statistics, like in the studies cited above, or on 
the basis of second-order temporal statistics of the input 
signals. In this case, the correlation between different input 
signals at different time delays is minimized (Molgedey & 
Schuster, 1994; Belouchrani, Abed Meraim, Cardoso, & 
Moulines, 1997; Ziehe & Müller, 1998). Blaschke, Wiskott, 
and Berkes (2004) investigated the relation between SFA 
and second-order ICA and proved that in the linear case if 
only one time delay is considered both methods are equiva-
lent. 

6.4 Conclusion  
In summary we have shown that slowness leads to a 

great variety of complex cell properties found also in 
physiological experiments. Our results demonstrate that 
such a rich repertoire of receptive field properties can be 
accounted for by a single unsupervised learning principle. 
Our results suggest that there is a relation between the be-
havior of a neuron and the slowness of its output. It will be 
interesting to see whether this prediction will be confirmed 
experimentally. Earlier modeling studies with SFA (Wiskott 
& Sejnowski, 2002) have shown that translation, scale, and 
other invariances can also be learned for whole objects in a 
hierarchical network of SFA modules: When trained with 
moving random 1D objects, such a network learns to repre-
sent the what and the where information (i.e., the identity 
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ure 15. Unit activity. (a). Excerpt of the activity trace of Unit 5. In a complex cell in V1, the activity would be half rectified at some
eshold because the firing rate cannot be negative. In the plot, the spontaneous activity level has been put to zero, and negative val-
s corresponding to inhibition have been plotted in gray. (b). Distribution of the activity of Unit 5 in response to 400,000 test frames.
e kurtosis of the output of this unit is 19.74, which is much higher than that of its input (mean kurtosis 0.42 ± 0.04). 
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and position) of novel objects in an invariant fashion, re-
sults that have been derived also analytically in Wiskott 
(2003). This suggests that slowness might be a rather gen-
eral learning principle in the visual and possibly also other 
perceptual systems.  

Additional material  
Additional material and software concerning the model 

described in this study are available at http://itb.biologie. 
hu-berlin.de/~berkes/slowness/slowness_index.shtml.  

Appendix A 
This appendix contains additional notes on the more 

technical aspects of our model that might be useful to the 
theoretical reader but are not central to the main results of 
this study. 

A.1 Dimensionality reduction by PCA  
In our model, the dimensionality of the input vectors is 

reduced by PCA. This corresponds to a low-pass filtering of 
the input patches because it is known that the principal 
components of natural images are linear filters of increas-
ing frequency (Hancock, Baddeley, & Smith, 1992). The 
exact form of the filters learned in the PCA step, however, 
is completely irrelevant (and thus not shown), because SFA 
is independent of any linear transformation of its input. An 
arbitrary linear mix of the principal components would 
lead to identical results. Due to the self-similar structure of 
natural images (Ruderman & Bialek, 1994; Dong & Atick, 
1995), it is in principle equivalent to work with low-pass 
filtered large patches or with small patches with no pre-
processing. Large, low-pass filtered patches, however, are 
smoother and easier to analyze, especially in experiments 
with drifting sine gratings. In smaller patches, higher fre-
quencies are represented as alternating positive and nega-
tive values. This raw sampling has undesired effects, espe-
cially for diagonal orientations, where the highest frequen-
cies assume a checkerboardlike appearance whose orienta-
tion is often ambiguous. Moreover, the anisotropy due to 
the square shape of the pixels has more influence on meas-
urements. Control Experiment 3 (Section 5.3) shows that 
there is no major qualitative difference between results ob-
tained with large, low-passed filtered patches or with 
smaller unprocessed patches.  

A.2 Receptive field localization  
The optimal stimuli are somewhat localized (Figure 3), 

especially for end- or side-inhibited units. However, their 
size is necessarily relative to that of the input patches (i.e., 
by making the input patches larger we would expect to ob-
tain larger optimal stimuli), because there is nothing in the 
algorithm nor in the statistics of natural images that would 

define an absolute scale. This is analogous to what happens 
in the linear case for PCA, which also produces a set of 
filters extending over the whole image patches when ap-
plied to natural images. In contrast, the wavelets learned by 
independent component analysis (ICA) (e.g., Bell & Se-
jnowski, 1997) are more localized and do not scale with 
input patch size (but might depend on the resolution used, 
because the frequencies of the learned filters seem to clus-
ter around the highest possible frequency). The difference 
between PCA and ICA suggests that if we would replace 
the decorrelation constraint (Equation 4) (like in PCA) 
with an independence constraint (like in ICA) we might 
expect to find more localized filters with a fixed absolute 
scale.  

A.3 Inhibition in cortical neurons  
The exact shape and tuning of inhibition in cortical 

neurons are usually difficult to determine experimentally 
from the firing rate, which cannot be negative. Experiments 
studying inhibition must rely on the membrane potential, 
increase the neuron’s firing by superimposing a “condition-
ing stimulus,” or block inhibition with pharmacological 
manipulations. Each of these methods has specific draw-
backs. For example, adaptation to the conditioning stimu-
lus influences the orientation-tuning of the neurons 
(Dragoi, Rivadulla, & Su, 2001). Ringach et al. (2002) ap-
plied a new reverse-correlation technique and found that 
suppression and enhancement have similar magnitudes  
and that peak enhancement tends to be slightly larger than 
suppression. This is compatible with our results (note that 
peak enhancement is larger by construction). They also 
showed a positive correlation between suppression and  
orientation selectivity. Because they used nonlocalized,  
oriented stimuli, it is impossible to say if inhibition  
was oriented or localized. It was also not possible to  
make precise statements on the feedback/feedforward or 
broadly/narrowly tuned structure of inhibition, although it 
was found to be compatible with a tuned, feedforward, ad-
ditive inhibition like the one present in our model. Walker 
et al. (1999) showed that the inhibitory part of end- and 
side-inhibited cells in V1 is localized and oriented, which is 
compatible with our results (Section 4). In the two cells 
reported in Walker et al. (1999), the inhibitory part has 
also the same orientation- and frequency-tuning as the exci-
tatory part.  

A.4 Frequency-tuning, digitalization,  
and dimensionality reduction  

The difference between the two distributions of fre-
quency bandwidths in Figure 8c might be partly due to 
digitalization and dimensionality reduction. Our input 
patches are 16×16 pixels large, which means that the 
maximal bandwidth of our units is 3 octaves (from 1 to  
8 cycles/patch, somewhat more on the diagonal). However, 
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we reduced the number of input dimensions to 100 for 
both time steps using PCA. There are thus about 50 com-
ponents per input patch (assuming that the two patches are 
independent). Because the principal components of natural 
images are linear filters of increasing frequency (see 
Appendix A.1), we are only considering the 7×7 central 
Fourier components (because we have  princi-
pal components). This corresponds to frequencies from 1 
to 4 cycles/patch and thus to at most 2 octaves. The actual 
bandwidth would in general be much smaller because to 
reach the theoretical limit the response of a unit at the two 
extreme frequencies of 1 and 4 cycles/patch would need to 
be exactly half of the maximum response. Simulations with 
a higher number of input components could yield a 
broader distribution.  

50 7 7 1= ⋅ +

A.5 Direction selectivity  
and velocity distribution  

We observed in other simulations (data not shown) 
that the distribution of the direction selectivity index de-
pends on the distribution of velocities in the input se-
quences. Direction selectivity disappears for a velocity dis-
tribution that includes mostly very small translations and 
increases if it is skewed toward larger translations. A better 
estimation of the real-world distribution of velocities (both 
of the observer and of the environment) could improve the 
match between the histograms. One would perhaps need to 
increase the size of the input patches, because it limits the 
maximum velocity.  

A.6 Tonic cells  
The first two units in our simulation code for the mean 

pixel intensity and for the squared mean pixel intensity. It 
might be argued that the first two units code for such sim-
ple features argues against the slowness principle, because 
they might seem “uninteresting” when compared with suc-
cessive units described in Section 4. However, although 
simple, the features coded by the first two cells might be 
fundamental ones, just like the first terms in a Taylor ex-
pansion.  

A.7 Derivation of the  
relation to temporal coherence  

As proved in Blaschke et al. (2004), if the first  
derivative is approximated by the time difference ( )jy t ≈�  

, it is equivalent to minimize ( ) ( 1)j jy t y t− − Equation 1 or 
to maximize the expression 
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where in the last step we applied the unit variance 
Constraint 3.  

For a neural network like that shown in Figure 14b, we 
can express Equation 23 at the level of the subunits by ex-
panding the output yj:  
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where in the last step we split the sum over all terms into 
one sum over all terms with equal indices and one sum 
over all terms with different indices. N′ is the number of 
the subunits.  

As discussed in Section 6.2, the first term is equal to 
the objective function proposed by Hurri and Hyvärinen 
(2003a) and maximizes the correlation of the energy of the 
output of each subunit, whereas the second term maximizes 
the correlation of the energy of the output of different sub-
units.  
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