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Abstract. We apply Slow Feature Analysis (SFA) to image sequences
generated from natural images using a range of spatial transformations.
An analysis of the resulting receptive fields shows that they have a rich
spectrum of invariances and share many properties with complex and
hypercomplex cells of the primary visual cortex. Furthermore, the de-
pendence of the solutions on the statistics of the transformations is in-
vestigated.

1 Introduction

In the past years there has been an increasing interest in understanding the
computational principles of sensory coding in the cortex. One of the proposed
principles is known as temporal coherence or temporal smoothness [1,2,3,4]. It is
based on the assumption that the sources of the sensory input (e.g. objects in
vision) vary on a slower time scale than the sensory signals themselves, which
are highly sensitive even to small transformations of the sources (e.g. rotation
or translation). By extracting slow features from the raw input one can recover
information about the sources independently of these irrelevant transformations.
We focus here on vision and apply Slow Feature Analysis (SFA) [4,5] to image
sequences for a comparison with receptive fields of cells in the primary visual
cortex V1.

2 Methods

The problem of extracting slow signals from time sequences can be formally
stated as follows: given an input signal x(t) = (x1(t) . . . xN (t)), t ∈ [t0, t1] and a
set of real-valued functions F , find a function g(x) = (g1(x), . . . , gM (x)), gj ∈ F
so that for the output signals yj(t) := gj(x(t))

∆(yj) := 〈ẏj2〉 is minimal (1)



Fig. 1. Optimal excitatory and inhibitory stimuli for Run #1.

under the constraints: 〈yj〉 = 0 (zero mean) , (2)
〈y2
j 〉 = 1 (unit variance) , (3)

∀i < j, 〈yiyj〉 = 0 (decorrelation) , (4)

with 〈.〉 indicating time averaging. Here we choose F to be the set of all polyno-
mials of degree 2 and use Slow Feature Analysis (SFA) [4,5] to find the optimal
input-output functions gj(x).

Like in electrophysiological studies of neurons in V1, we are interested in
characterizing the receptive fields (RFs) of the single components gj being ex-
tracted. We do that by determining the input vector with norm r that maximizes
and the one that minimizes the output signal yj , yielding the optimal excitatory
stimulus (S+) and the optimal inhibitory stimulus (S−) (cf. Fig. 1). We choose
r to be the mean norm of the training input vectors, since we want the optimal
stimuli to be representative of the typical input.

Of interest are also the invariances learned by the system, which correspond
to the directions in which a variation of S+ has the least effect on the output. We
extract them by computing the Hesse matrix of the function gj(x) restricted to
the sphere of radius r in x =S+and then choosing the directions corresponding to
the smallest eigenvalues. For visualization we move the S+ vector on the sphere
of points with norm r in the direction of the invariance, thereby producing image
sequences as those shown in Figure 2 1.

1 Animations corresponding to the image sequences shown in Figure 2 can be found
at http://itb.biologie.hu-berlin.de/~berkes/ICANN02/results.html



Training data were taken from 36 natural images from van Hateren’s natural
stimuli collection and preprocessed as suggested in the original paper [6]. The
end resolution was 2 minutes of arc per pixel. We produced input sequences by
choosing an initial position in a randomly chosen image, cutting a 16×16 pixels
patch (ca. 0.5×0.5 degrees of arc) and moving it around according to differ-
ent transformations: translation, rotation and zoom. The transformations were
performed simultaneously, so that each frame differed from the previous one by
position, orientation, and magnification. Patches were computed by bilinear in-
terpolation. In the default settings, the translation speed v was chosen uniformly
between 1 and 5 pixel/frame, the rotation speed ω between 0 and 0.1 rad/frame
and the magnification factor z between 0.98 and 1.02 per frame. The parameters
were varied every 30 frames, for a total of 150,000 frames per simulation.

A run with these settings requires the computation of a covariance matrix
having O(N4) elements, where N is the input dimension. We thus performed
a standard preprocessing step using PCA to reduce the dimensionality of the
input patches to 50 components.

3 Results

3.1 Receptive field analysis

Figure 1 shows the S+/S− pairs of the first 48 components for a typical run in
decreasing order of temporal slowness. Notice that these optimal stimuli cannot
be interpreted as linear filters and only give a first hint at the response properties
of the RFs. Additional information can be extracted from their invariances;
examples of the main types of invariances found are shown in Figure 2. The
analysis of the units led to the following observations:

Gabor-like optimal stimulus The optimal excitatory stimulus for most of
the components looked like an oriented Gabor wavelet and tended to be
localized, i.e. it did not fill the entire patch. This property is linked to rotation
and zoom, as localized receptive fields are less sensitive to them (since they
are less localized in the Fourier space). If rotation and zoom are absent,
localization disappears (cf. Sec. 3.2).

Phase invariance The first invariance for almost all analyzed units was phase
shift invariance (Fig. 2a). In fact, the response of the units never dropped
by more than 20% changing the phase of S+. As a consequence the units
responded well to an oriented edge but were not selective for its exact po-
sition, and thus matched the properties of complex cells in V1 [7]. Some
units showed in addition to the phase insensitive response a phase sensi-
tive response at a lower frequency and different orientation. These cells thus
showed complex cell as well as simple cell behavior, which might be difficult
to detect in an experimental situation, since the optimal simple and com-
plex cell responses have different frequency and orientation. The simple cell
component, being linear, was relatively stronger for stimuli of low contrast.
The clear dichotomy between simple and complex cells in V1 has already
been questioned in the experimental literature (see [8] for a discussion).



Complex cells with phase invariant optimal responses to Gabor stimuli have
been modeled earlier [3,9]. In addition we found properties that have to our
knowledge not yet been reproduced through unsupervised learning in a compu-
tational model:

End-inhibition Some S+ only filled one half of the patch, while the missing
half was filled by S− (e.g. Units 28, 41, 44 in Fig. 1). These units responded
to edges with a specific orientation in the S+ half of the patch but failed to
respond if the stimulus was extended into the S− half. Complex cells with
this behavior are called end-inhibited or hypercomplex cells [7].

Orientation tuning The optimal inhibitory stimulus was typically also a wave-
let. Its orientation was often non-orthogonal to the preferred one (e.g. Units
14, 15, 24 in Fig. 1) resulting in sharpened or bimodal orientation tuning.
This is often the case for cells in V1 and thought to contribute to the orien-
tation selectivity of complex cells [10]. On the other side, some units showed
invariance to orientation changes (Fig. 2e) and had a broad orientation tun-
ing, a feature also found in V1 [10].

Frequency tuning Similar mechanisms can lead to sharp frequency tuning.
In some units S− had the same orientation and shape as S+, but had a
different frequency (e.g. Units 20, 36, 40 in Figure 1). Such units reacted to
a change in frequency by an abrupt drop in their response, in contrast to
other units which showed an invariance to frequency changes (Fig. 2d). This
suggests that our results can account for the wide range of spatial frequency
bandwidths found in complex cells [11].

Non-oriented receptive fields The first two units in all 6 runs with these
settings responded to the mean and the squared mean pixel intensity, as was
inferred directly from the learned functions. These units are comparable to
the tonic cells described in [12]. A few other units responded to edges and
had phase invariance but showed identical responses for all orientations. A
small percentage of the neurons in V1 consists of non-oriented complex cells
with these characteristics [10].

Additional invariances For each unit we found 4 to 7 highly significant in-
variances. These included the invariances mentioned above (phase shift, ori-
entation change and frequency change) and also change in position, size, and
curvature of the S+ wavelet (Fig. 2b,c,f). Units corresponding to faster sig-
nals showed also more complex invariances, which were sometimes difficult
to interpret. Some of the units were found to be responsive to corners or
T-shaped stimuli (Fig. 2g-h).

Although the precise shape and order of the components can vary in different
simulations, we observed a systematic relationship between the slowness of the
output of a unit and its behavior. For example, slower functions have usually
a non-structured or orthogonal S−, while inhibition at non-orthogonal orienta-
tions was typical for units with a faster output. It is possible that this kind of
dependence also holds for neurons in V1.



Fig. 2. Invariances. The central patch is S+, while the other are produced
by applying an invariance as described in Section 2. Each patch elicits in the
considered unit the percent of the maximal output indicated over it.

3.2 The role of transformations

The characteristics of optimal stimuli and invariances apparently depend more
on the statistics of the transformations than on the statistics of the images.
Results similar to the ones described above were found by replacing the natural
images by a colored noise image with a natural power spectrum of 1/f2. However,
when changing the transformation settings during training we found significant
differences:

– If we increased the influence of rotation by choosing ω to lie between 0.15
and 0.25 rad/frame, many optimal stimuli assumed a curved shape and often
included in their invariance spectra (in addition to the previously discussed
transformations) rotation and curvature changes both parallel and orthogo-
nal to the orientation of the wavelet (Fig. 2i-k). Wavelets of this shape have
been proposed in context of object and face recognition as banana wavelets.
[13].

– Units in simulations involving only translation did not show any localization
and had fewer invariances.

– Optimal stimuli in simulations involving only rotations or only zooms did
not look like Gabor wavelets anymore, but assumed a circular and a star-like
shape, respectively.

4 Conclusion

We have shown that SFA applied to image sequences generated by translation,
rotation, and zoom yields a rich repertoire of complex cell properties. We found



receptive fields with optimal stimuli in the shape of Gabor wavelets and in-
variance to wavelet phase. These properties were found also in earlier modeling
studies (e.g. [3,9]). However, since SFA provides a more general functional archi-
tecture than these earlier models, we were able to reproduce additional complex
cell properties, such as end-inhibition, inhibition at non-orthogonal orientations,
inhibition at different frequencies, and non-oriented receptive fields. The units
also showed additional invariances, such as invariances with respect to posi-
tion, size, frequency, orientation, and/or curvature. Our experiments suggest
that there could be a relation between the slowness of the output of complex
cells and their behavior. They also suggest that some complex cells could exhibit
a simple cell behavior at non-optimal frequency and orientation, particularly at
low contrast. It is remarkable that the temporal smoothness principle is able to
reproduce so many different properties found in the primary visual cortex, which
indicates that it might be an important learning principle in cortex in general.
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