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Summary: This paper deals with the problems of con- 
trolled random search algorithms (CRS algorithms) and 
their use in regression analysis. A modified CRS al- 
gorithm of Price is described, which is more effective 
when compared with the original algorithm in optimiz- 
ing regression models, first non-linear ones. The prin- 
cipal modification consists in randomizing the search 
for the next trial points. Some results of testing the al- 
gorithm, using both real and modeled data, are given to 
illustrate its possibilities when estimating the parame- 
ters of non-linear regression models. 
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I. Introduction 

The notion of the CRS algorithm was introduced by 
Price [9] for his seeking algorithm for the global 
minimum of a mulfimodal function, f, of d variables. 
The algorithm combines the simple random search 
and the simplex method [8] into a single continuous 
process. When minimizing ~ subject to P ~ f~ ,  
where P is a d-dimensional vector and f~ a bounded 
set in R d , Price's algorithm is as follows: 

1. Set k - 0, load storage of size N by generating 
randomly points P1, P2 .... ,IN ~ f~ and store also 
j(Pi) for i -  1,2 . . . . .  N. 

2. Choose in random d+l linearly independent 
points (N >> d) from the current configuration of 
N points in store, generate the new trial point P 

by the relation 

P - 2 G -Pd+l, (1) 

where Pd+~ is one (rand(mdy taken) pole of the 
simplex PI P2 ... Pd+l and G the centroid of the 

remaining d poles of the simplex, and determine 

3. If.ill') < j~ l ) ,  M being the point with the great- 
est function value of the N points stored, then 
replace M with P. 

4. Set k - k + 1 andreturntoStep2. 

The algorithm was originally programmed in Basic 
and run on a PDP 10/20 minicomputer and on a Cy- 
bet, 72 computer [9]. 

A FORTRAN procedure based on Price's algorithm 
was also presented recently by Cordon [1 ]. 

II. Modifications of Price's algorithm 

Price's algorithm is very simple and easily pro- 
grammed on the PC, but its convergence is usually 
flower compared with optimi~fion methods based 
on function derivatives. It is possible to speed up its 
convergence in the following ways: 

* by selecting d+l simplex vertices not from the 
complete configuration of N points in store, but 
from some of its sul:~et containing points with 
the lowest function values; 

• by selecting as the simplex pole P,~1 in Eqn. (1) 
that point (from the set of d+l), which has the 
largest function value. 

Such modifications improve convergence, but at the 
same time tend to increase the risk of fmding a local 
minimum instead of a global one. 

We have investigated several quite different modifi- 
cations of the original Price's alg~'ithm. Our modifi- 
cations [3] are based on generating the next trial 
point P according to the formula 

P - G - F(ct) ( P~q - G) (2) 
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instead of using Eqn. (1). Regarding the multiplica- 
tion factor l"(ct), the following assumptions have 
been tested in detail: 

• r(cc) = ct,  

• F is a random variable with uniform distribu- 
tion on the interval (0, co), 

• F is a random variable with normal distribu- 

tion N(cc, I), 

cc being a positive constant. Special attention is paid 

to investigating the effect of the F-factor on the run- 
ning time needed for reaching acceptable optimiza- 
tion results. As shown later in Section 7, the best re- 
suits were obtained when considering F distributed 
uniformly with ct ranging from 4 to 8. 

III. Optimization criteria 

When estimating the parameters of regression mod- 
els, the following three functions are usually consid- 
ered as optimization criteria to be minimized: 

• residual sum of squares 

RSS = ~(Yi-Yi) 2 ; (3) 
iffil 

• sum of absolute deviations 
n 

SAD= ~ l y  i - ~ i l  ; (4) 
i= l  

• maximum absolute deviation 

MAD=maxlyi -~i l  f o r / -  1,2 ..... n. (5) 

w h e r e  Yi ( i - 1, 2 . . . . .  n) denote the observed values 
of the dependent variable, Y i their estimates calcu- 
lated from the estimates of regression parameters and 
n the total number of observations (sample size). 

More robust criteria for optimization (for example 
median of squares [10], trimmed squares and S- 
estimators [11 ]) can be used as well. 

A vector-type criterion is also applicable in evaluat- 
ing the quality of regression model variants. This 
criterion enables finding values of the model parame- 
ters that correspond to the optimum with respect to 
all of its components. 

When using the vector-type criterion, it is desirable 
to define a subsidiary scalar criterion for ordering the 
model variants according to their quality. Wein- 
berger [12] r~0aaamends evaluating the value of the 

scalar criterion for a given regression model variant 
(point) in store by using the expression 

m 
E w i D  i , (6) 
i l l  

where w; is a subjective weight of i-th component of 
the vector criterion (i = 1, 2 . . . . .  m) and D~ the num- 
ber of variants that are dominated in this component 
by the variant considered. 

IV. Stop Criterion 

The CRS algorithm given in Section 1 does not in- 
clude any particular stop criterion. However, it is 
clear that the criterion has to be evaluated within 
each iteration of the optimizing algorithm. 

We propose to stop the optimization process, when 

f(pN )_  f(pl) < e (7) 

fo 
e0 being a positive input value, .KI~) and 3~P l) the 
greatest and the least value of the optimization crite- 
rion for the current iteration, resp. [3]. J~ denotes an 
appropriate constant factor whose value is deter- 
mined by the variability of the dependent model 
variable. For example, when using RSS as the opti- 
mization criterion, the ~ factor is equal to the total 
sum of squares, i.e. 

f0 = ~ (Yi -  y-)2. 
iffil 

The stop condition (7) proves to be more useful, 
when compared with that defined by Conlon [1 ] in 
t e r m s  ofAP") -~'b. 

V. Input to the algorithm 

The input parameters for our modification of the 
CRS algorithm consist of. 

• number of points, N, to hold in the store, 

• value of ct in Eqn. (2), 

• value of e0 in Eqn. (7). 

VI. Implementation of the algorithm 

Our CRS algorithm was implemented (as a core of a 
program named MOR) in Turbo Pascal, version 6.0, 
using the ESTAT environment [13]. 
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The input data for the program include: 

• definition of the regression model, 

• boundaries for the individual regression parame- 
ters, 

• regression data in a text file (no more than 10 
000 data items), 

• choice of the optimization criterion (RSS, SAD, 
MAD or veaor-typo criterion with the individual 
weights of its components), 

• input for the modified CRS algorithm (given in 
Section 5). 

The regression model is defined by writing the corm- 
sponding regression function (as an arithmetic ex- 
pression in Pascal source form) on a separate input 
file. Therdore, the program unit containing this file 
together with the main program has to be compiled 
once again for each new regression model under 
consideration. 

Regarding the algorithm input, the following choices 
are usually found to be acceptable: N -  5d, a - 8, 
and e0 - 1E-16 (when minimizing RSS). All input is 
introduced interactively from the keytx3ard. 

The course of the optimization process (number of it- 
erations, running time, values of the minimized cri- 
terion, regression parameters and R-squared) is dis- 
played on the screen every ~ e r  second. 

The optimization run stops as soon as the condition 
(7) is satisfied. The user is also allowed to stop the 
calculations intetactively, e.g. in case when the esti- 
mates of the regression parameters remain constant 
for a sufficiently long time period. The final results 
are saved on a text file for the sake of a subsequent 
evaluation, if there is a need. 

The MOR source program and user guide are avail- 
able for the interested reader on request per E-mail to 
tvrdik@oudec.osu.ez or per regular mail at the ad- 
dress of the authors. 

VII. Test Results 

Both real and modelled regression data were used to 
illustrate the possibilities of our algorithm (MOR 
program) when estimating the parameters of non- 
linear regression models. All the calculations were 
performed on PC 486DX, 33 MHz, und~ MS DOS, 
version 6.0. The results for some well-known testing 
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Figure 1: Empirical dependence of T on a for 
I'(~x) = cx (x), F -  N(~, ]) ( ) ,  and r 
uniform on (0, a) (+): data [4]- 
Example 7, N = 15, f.o = 1E-16. 

examples are smnmarized in Figures 1, 2, and 3 as 
well as in Tables 1 and 2, the residual sum of squares 
(RSS) being chosen as an optimization criterion. 

Fig. 1 shows the running time, T, as a function of the 
input parameter ¢t for different distributions of F (see 
Eqn. (2)). For F(a) = a as well as for F distributed 
normally, the running time increases dramatically 
with the increasing value of a. On the other hand, 
when considering F distributed uniformly on the in- 
terval (0, a), the values of T grow almost linearly 
with increasing a, the observed line having a rela- 
tively small slope. This is true for all the data tested, 
which indicates a privileged standing of uniform 
distribution among the three distributions under 
consideration. The use of our algorithm with F dis- 
tributed uniformly on (0, a) permits reducing the 
value of N as compared with the proposal of Price [9] 
and, therefore, shortening the running time. 

Figures 2 and 3 illustrate in more detail the effect of 
¢x on the values of T provided that F has uniform 
distribution on (0, ¢t). It is clear that all the graphs T 
vs. a are very close to those of linear function, except 
perhaps, the parts for small a not exceeding approx. 
5. Starting from our experience in optimizing non- 
linear regression models, we can recommend work- 
ing with a ranging from 4 to 8. 
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Figure 2: Graphs T vs. lz. F distributed uniformly 
on (0, ~), for aata [21 (x), data [41- 
Example 7 ( ) ,  and data [6]-Model 5 
(+)" N = 15, eo = 1E-16. 

Figure 3. Graphs T vs. a. I" distributed uniform- 
ly on (0, ¢~), for data [4J-Example 8 
( ) ,  data [5J-Model IV (x) and data 
[51-Model V (+): N = 15, ~o = 1E-16. 

Table 1: The results of  testing the MOR program on well-known published data: 
N =  5d, a = 8, Eo = 1E-16. 

Reference 

[4] 
Example 1 

Regression model 

~l~3xl/(1 + [~lXl + 1~2X2) 

Time 
is] 

4.6 

RSS 

4.355E-05 

Parameters 

3.1315 
15.159 
0.7801 

[4]  1~3(exp(-I~lXl) + exp(- l~2x2) ) 13 .7  7 . 4 7 1 E - 0 5  13 .241  
Example 4 1.5007 

20.100 
[4] l~3(exp(-l~lXl) + exp(-[~2x2)) 9.9 1.252 32.000 

Example 5 1.5076 
19.920 

[4] [31 + [32exp(133x) 5.8 5.986E-03 15.673 
Example 7 0.9994 

0.0222 
[4] 13texp(~2/([33 + x)) 62.0 87.95 0.00561 

Example 8 6181.4 
345.22 

[2] exp(13~x) + exp(~2x) 3.6 124.4 0.2578 
0.2578 

[5] 131exp(133x) + 132exp(~,,x) 73.9 129.0 
Model IV 

[5] 
Model V 

2.981E-05 283.4 I~l Xp3 -I- 1~2 Xp4 

1655.2 
3.4E07 
-0.6740 
-1.8160 
0.00414 

3.8018 
2.0609 
0.2229 
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The results o f  testing the MOR program on the unpublished data of  Militk~ [6]: 
N = Sd, ct = 8, eo = lE-16. 
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Reference Regression model 

Model 2 exp([31x) + exp(132x) 

Model 3 [31 + ~2exp((133 + ~4.x) [3s ) 

Model 4 

Model 5 

Model 6 

Model 7 

131eXp(133X) + 132exp(134.x) 

131 x Ih + 133132/x 

13~ + 132x I~ + 134x 13, +l~6x I;, 

~lln(~2 + ~3X) 

Time 
[s] 

5.4 

45.4 

RSS P a r a m e ~  

8.896E-03 0.2807 
O.4064 

0.9675 

19.3 3.179E-04 

17.6 4.375E-03 

275.0 1.694E-02 

44.2 7.147E-05 

9.3593 
2.0292 
1.3366 
0.4108 
0.3551 

47.971 
102.05 

-0.2466 
-0.4965 

0.05589 
3.5489 
1.4822 

1.9295 
2.5784 
0.8017 

-1.2987 
0.8990 

0.011915 
3.0184 

2.0484 
18.601 
1.8021 

VIII. Conclusions 

Our modification of the original Price's algorithm 
(see Eqn. (2)) with F distributed unif~mly on (0, ¢0 
makes possible a significant decrease in the value of 
the tuning parameter N as compared with the value 
recommended by Price, and therefore reduces the 
running time. 

The expeximents showed that our algorithm (MOR 
program) provides results c~nparable with the best 
ones obtained using special techniques based on the 
calculation of criterial function derivatives. This al- 
gorithm proved to be successful even in the cases 
when, according to the results of Militk~ [7], most 
of the commercial statistical packages fail. 

Because the MOR program provides no information 
on the accuracy of the parameter estimates, it is de- 
sirable, whexe possible, to complete the regression 
results by using commonly used regression software. 
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