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Abstract

The dentate gyrus is part of the hippocampal memory system and special in that it generates
new neurons throughout life. Here we discuss the question of what the functional role of these
new neurons might be. Our hypothesis is that they help the dentate gyrus to avoid the problem
of catastrophic interference when adapting to new environments. We assume that old neurons
are rather stable and preserve an optimal encoding learned for known environments while new
neurons are plastic to adapt to those features that are qualitatively new in a new environment.
A simple network simulation demonstrates that adding new plastic neurons is indeed a successful
strategy for adaptation without catastrophic interference.
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1 Introduction

The hippocampus is a structure in the mammalian brain that is instrumental for acquiring episodic
and declarative memories (Gluck & Myers, 2001). If the hippocampus is lesioned, no new
episodes or facts can be stored in long term memory. Skills, however, can still be learned (procedural
memory). Because of its importance for learning and memory the hippocampus has been being
extensively studied anatomically, physiologically, psychophysically, and by means of computational
models.

The principal substructures of the hippocampal formation relevant for our discussion are the en-
torhinal cortex (EC), the dentate gyrus (DG), the CA3- and CA1-region and the subiculum (see
Amaral & Witter, 1989; Hammond, 2001, for an overview). They can be arranged in a loop
based on the connectivity like EC → DG → CA3 → CA1 → subiculum → EC. There are also
shortcut connections, e.g. from EC to CA3 or CA1. The entorhinal cortex seems to serve as an
interface between the hippocampus and other cortical areas. It sends input to the hippocampus
from the superficial layers II/III and receives its output in the deep layers V/VI. The CA3-region
has a particularly high degree of recurrent connectivity. Relevant in our context is also that DG has
many more neurons than the EC superficial layers (Amaral et al., 1990; Harding et al., 1998;
West & Slomianka, 1998) and that it has a relatively low firing rate (Jung & McNaughton,
1993; Gothard et al., 2001) compared to the entorhinal cortex (Barnes et al., 1990; Frank
et al., 2000) suggestive for a sparser representation.

One peculiar property of the dentate gyrus is that it generates new neurons throughout life, a
phenomenon referred to as adult neurogenesis (Altman & Das, 1965; Gould & Gross, 2002;
Kempermann et al., 2004b). The new cells arise from precursor cells and differentiate into
granular cells that appear to become fully functional and integrated over a time course of several
weeks (van Praag et al., 2002; Jessberger & Kempermann, 2003). However, young granular
cells seem to differ from old ones (when they are old, not when they were young) in that they are
more plastic, i.e. they show enhanced long-term potentiation (LTP), which has a lower threshold
of induction (Schmidt-Hieber et al., 2004) and cannot be inhibited by GABA (Wang et al.,
2000; Snyder et al., 2001). It has also been argued that it is reasonable to assume that new cells
form synaptic connections more rapidly (Gould & Gross, 2002).

The number of newly added neurons depends on the rate of proliferation, i.e. cell generation, and
the probability of cell survival, since most of the newly generated cells actually die again after a
short period of time (apoptosis) (Eriksson et al., 1998; Gould et al., 2001; Kempermann
et al., 2003). If they survive the initial phase, they can last for a long time, e.g. at least 1 year
in mice (Kempermann et al., 2003), 8 months in rats (Altman & Das, 1965), and 2 years in
humans (Eriksson et al., 1998). Cell proliferation decreases with age (Altman & Das, 1965;
Seki & Arai, 1995; Kempermann et al., 1998b) and can also be reduced by stressful experiences
(Gould et al., 1997, 1998; Tanapat et al., 2001). Both might be explained by the dependency
of the proliferation on hormones (glucocorticoids); other hormones (ovarian steroids / estrogen)
stimulate the proliferation (see Gould & Gross, 2002, for an overview). Other factors that
increase neurogenesis are dietary restriction (rat) (Lee et al., 2000), voluntary physical activity
(mouse) (van Praag et al., 1999a,b; Kronenberg et al., 2003), enriched environments (mouse,
rat) (Kempermann et al., 1998b; Nilsson et al., 1999; van Praag et al., 1999b), and
some hippocampal-dependent learning-tasks (Gould et al., 1999), the former factors effecting
more the proliferation the latter ones effecting more the cell survival. Genetics also has a strong
influence on neurogenesis (Kempermann et al., 1997a; Kempermann & Gage, 2002). The rate
of adult neurogenesis showed strong strain differences and so did the survival of the newborn cells.
Depending on the strain the rate of survival was between only 25% and 75% (Kempermann et al.,
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1997a). The total number of new cells generated per day by proliferation in the dentate gyrus of
young adult rats (9 weeks old) has been estimated to be 9000, only about 60% of which survive the
first four weeks (Cameron & McKay, 2001). Already the first report on adult neurogenesis by
Altman & Das (1965) had suggested a net growth and two studies from the 1980s had elaborated
on this issue (Bayer et al., 1982; Boss et al., 1985). The estimated growth was between 10
and 40%. However, these studies have been criticized because of their method of quantification.
Preliminary new data from our group that are based on stereological measurements suggest that
the increase could be as high as 30% (unpublished observation). However, strain (and species)
differences exist with regard to both the rate of neurogenesis and the total granule cell number
(Kempermann & Gage, 2002).

In any case, adult neurogenesis occurs at only a very low rate during most of the life, so that
any growth would only become noticeable relatively early in life. Adult hippocampal neurogenesis
decreases rather sharply in young adulthood and is maintained at a low level throughout most of the
remaining life (Kronenberg et al., 2005). In 20 month-old mice we found that only 11 cells were
generated over a period of 12 days (Kempermann et al., 2002). With a different method and in
rats, Cameron and colleagues estimated a somewhat higher rate that was still very low in relation
to the total granule cell count (Cameron & McKay, 1999). We and others have published rates
of neurogenesis that seemed much higher (Kempermann et al., 1997a; Cameron & McKay,
2001), but this always applied to rather young adult animals. We have also found in young mice
that experience of a complex environment has a measurable effect on the total granule cell number
and did not just result in an increased turnover (Kempermann et al., 1997b). The very low rate
of neurogenesis after young adulthood makes it unlikely that quantitatively a substantial turnover
of dentate gyrus granule cells could occur. The majority of new neurons generated during early
adulthood have a survival time of at least a year (Kempermann et al., 2003), but it is not yet
clear, whether new granule cells produced in older age have a similar long-term survival. This does
not rule out that some neuronal turnover might occur, but both the measurable increase in total
cell number at least early in adulthood and the long-term survival of the new granule cells suggest
to us that at growth is at least predominant. Nevertheless, some researchers favor the idea that
there might not be a net growth at all but rather a turnover. This issue cannot be fully settled at
present but we interpret the available data as supporting a net growth.

Like behavioral and environmental factors have an effect on the generation and survival of new
neurons, there is also some evidence that neurogenesis affects performance in some hippocampal-
dependent learning-tasks, such as trace conditioning (Shors et al., 2001, 2002) or the water
maze task (Kempermann & Gage, 2002; Snyder et al., 2005). Reduced neurogenesis might
contribute to major depression (Santarelli et al., 2003; Kempermann & Kronenberg, 2003).

What exactly is the functional role of these new neurons that are generated in the dentate gyrus
throughout life? What makes the dentate gyrus so special? This question is not only interesting
in itself but also offers a new approach for investigating the hippocampus as a whole.

We follow the view that the dentate gyrus performs an encoding operation and assume that this
encoding has to adapt to a changing environment the animal lives in. Our hypothesis is that
the new neurons are necessary to avoid the negative side effects of this adaptation, referred to as
catastrophic interference. In this paper we lay out our arguments in detail and present a simple
network model that illustrates our hypothesis and shows that adding new neurons is indeed a
reasonable strategy for avoiding catastrophic interference.

In the following section we will introduce relevant concepts from the theory of neural networks. The
basic model of hippocampal function we have adopted is described in Section 3. Within this basic
model we present our hypothesis in Section 4. The computational model illustrating our hypothesis
is defined in Section 5, which also includes the simulation results. We conclude with a discussion.
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The basic ideas presented here have earlier been sketched in (Kempermann & Wiskott, 2004).
The model simulations have been described in detail in (Rasch, 2003). A mathematical description
of the model can also be found in (Wiskott et al., 2004).

2 Artificial neural networks and catastrophic interference

2.1 Feedforward and Hopfield networks

Like physiological neural networks, artificial neural networks consist of a number of relatively simple
computational units that are mutually connected (see Hertz et al., 1991, for an introduction).
Each unit integrates the activity it receives from other units via the connections, performs some
simple stereotype operation on it, and sends its own activity to other units it is connected to. The
connections have weights that determine how much one unit contributes to the activity of another
unit and thereby what kind of computation the whole network performs. It is characteristic for
neural networks that the computation is distributed over many weights, which has advantages and
disadvantages. There are a number of learning rules that adapt the weights such that the network
performs a certain desired computation, such as pattern recoding or memory storage and retrieval.
Feedforward networks (see Bishop, 1995, for an introduction) and Hopfield networks (see Amit,
1989, for an introduction) are two classes of artificial neural networks that are commonly used for
modeling hippocampal function.

Feedforward networks have an input layer of units, possibly several intermediate (so called hidden)
layers, and an output layer. As the name indicates connections only go from earlier layers to later
layers. Thus the network has no particular dynamics but simply computes an output based on an
input. It is therefore equivalent to a mathematical function with vectors as an input and vectors
as an output. Feedforward networks are usually trained in a supervised fashion, which means
that the network gets told explicitly what output it should generate for a given input. Thus the
training patterns are actually input-output pairs, for each input there is a desired output and the
training procedure is designed such that the difference between desired output and actual output
is minimized.

Hopfield networks are very different. Every computational unit serves as an input as well as an
output unit and, in its simplest form, can only assume the values 0 or 1. All units are recipro-
cally connected, so that the network has a highly recurrent connectivity. Since each unit has an
influence on every other unit, such a network can have quite a complex dynamics. However, it is
typically designed such that after some time the network activity settles in a stable state (a certain
combination of zeros and ones) and stays there. Training a Hopfield network means choosing the
connection weights such that the stable states the network can settle in correspond to a given set of
desired patterns. These are the stored patterns. If one initializes the activity of the network with
a corrupted version of a stored pattern, the dynamics of the network will typically arrive at the
stable state that corresponds to the uncorrupted pattern. This effect is known as auto-association
and is the main advantage of a Hopfield network.

2.2 Catastrophic interference

Due to the distributed nature of the computation performed in a neural network, learning a new
pattern typically requires to change all weights. This poses a problem. Assume the weights have
been trained for input pattern a, so that the network behaves as desired. Then training pattern b is
given and all weights change to be optimal for input b. This will typically degrade the performance
on pattern a. If a third pattern c is learned, the performance on a will degrade even further and
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very quickly pattern a will be forgotten completely. This effect can be quite dramatic and is referred
to as catastrophic interference (see McClelland et al., 1995; French, 1999, for an overview).

In feedforward networks the problem of catastrophic interference is typically solved by interleaved
training, which means that patterns a, b, and c in the example above are presented repeatedly in
an interleaved fashion, like abcabcabcabc or more irregularly abbcbaaccbacccaabacbb, with a
relatively small learning rate, which makes the weights change only little per pattern presentation.
The patterns are therefore effectively learned simultaneously and no pattern dominates another
one. Interleaved learning, however, requires that all training patterns are available all the time. A
sequence like aaaabbbbcccc would not work.

One way to avoid catastrophic interference in a feedforward network even if the training sequence is
of the form aaaabbbbcccc is to use a dual network (e.g. Ans & Rousset, 1997; French, 1997).
Such an architecture takes advantage of the fact that some networks can spontaneously reproduce
patterns that they have learned earlier. In a dual network two such networks are coupled and
(partially) train each other, thereby retraining old patterns while learning new ones and thus
avoiding catastrophic interference.

Hopfield networks solve the problem of catastrophic interference very differently. They can be easily
setup in such a way that orthogonal patterns, i.e. patterns that are uncorrelated, do not interfere
with each other at all. Thus if a set of patterns has to be stored in a Hopfield network, it is good
to first encode them such that the transformed patterns are orthogonal to each other. They can
then be stored without any interference. Of course, one has to also memorize the encoding and
in addition the encoding must be invertible, otherwise one could not retrieve patterns from the
memory anymore.

One way to make patterns orthogonal is to generate a very sparse representation of them (Bentz
et al., 1989). This means that they are encoded such that only few units are significantly active
at a time. If only very few units are active, there is a good chance that two different patterns have
no active units in common and are therefore orthogonal. This technique might require increasing
the number of units for representing the patterns, though. To compensate for this increase one
can compress the patterns first, so that irrelevant dimensions are eliminated and only relevant
dimensions are represented.

Even with a sparse representation of the patterns, if there are more and more patterns stored in
the Hopfield network, at some point the capacity will be exhausted, and new patterns will interfere
with old ones. This effect again can be quite dramatic, so that all in a sudden none of the patterns
can be retrieved anymore, even those that have been stored recently. Measures can be taken to
avoid also this type of catastrophic interference, at least to some extent. For example with the
learning of each new pattern all previous weights could be decreased a little bit, so that old patterns
are gradually forgotten and make room for new patterns (Howard et al., 1987, cited in Amit,
1989).

When discussing the problem of catastrophic interference, which results from the distributed repre-
sentation in neural networks, one should not forget the advantages that distributed representations
provide. For instance, they are much more robust with respect to damage like the loss of units or
connections, a property known as graceful degradation. More importantly, feed forward networks
can generalize. Only a limited number of training patterns can be learned exactly. As the number
of training patterns increases and the network cannot memorize all of them individually, the net-
work has to find an input-output function that is a compromise and provides a reasonably good
performance on all training patterns. In finding this compromise the network discovers and employs
regularities in the data which results in the nice effect that the network will generate reasonable
responses also for new patterns never seen before. This property is referred to as generalization.
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The problem of catastrophic interference is somewhat related to the stability-plasticity dilemma
(Carpenter & Grossberg, 1987, cited in Gerstner & Kistler, 2002). The latter refers to
the problem of setting the right learning rate. If the rate is too low the network cannot learn
new patterns; if the rate is too high the network can learn new patterns well, but old patterns are
forgotten quickly, catastrophic interference occurs.

Catastrophic interference is very distinct from the bias-variance dilemma (Geman et al., 1992),
which refers to the problem of choosing the right network complexity (does not apply to Hopfield
networks). If the network is too simple (large bias case) it will not even be able to represent the
training patterns well and will produce a large error; if it is too complex (large variance case) it
can memorize all training patterns individually and does not need to discover regularities, thus it
will not generalize well.

3 A model of hippocampal function

In our considerations we largely adopt a standard model of hippocampal function as proposed and
discussed previously (e.g. Treves & Rolls, 1994; McClelland et al., 1995) and summarized
in this section. The next section will introduce our hypothesis that adult neurogenesis can prevent
catastrophic interference. The model illustrating our hypothesis is described in detail in Section 5.

We have seen above that neural networks tend to have the problem of catastrophic interference and
that measures have to be taken to avoid it. It is clear that the cortex is neither simply a feedforward
network nor a Hopfield network. However, conceptually it shares important properties with artificial
neural networks and will most likely have the same problem of catastrophic interference. If in
particular we have in mind its ability to learn from examples by exploiting their regularities and
thereby generalizing to new situations, we see that it would be useful to store examples temporarily
and permit the cortex to perform some variant of interleaved training. The function as a temporary
storage of patterns is usually assigned to the hippocampus with the entorhinal cortex serving as an
interface between cortex and hippocampus. (There is actually a debate whether the hippocampus
is temporarily or permanently necessary for episodic memories (Nadel & Moscovitch, 1997).
However, this is not essential for our discussion here since we focus on en- and decoding and not
on the storage of memories in hippocampus.)

Simply storing input patterns can be done in a Hopfield network. Characteristic for a Hopfield
network is its highly recurrent connectivity. This fits well to the recurrent connectivity in the CA3
region of the hippocampus, and it is mainly for this reason that CA3 is often considered the actual
site of storage in the hippocampus.

We have seen above that a Hopfield network has two versions of the catastrophic-interference
problem, one because stored patterns are too similar, and one because too many patterns are
stored. The first can be solved by recoding the input patterns such that they become pairwise
orthogonal, at least approximately, which can be done by generating a sparse representation. This
role is usually assigned to the dentate gyrus for two reasons. Firstly, it provides a strong input
to CA3 and secondly it has a very sparse activity. The role of the dentate gyrus in generating
a sparse representation has been theoretically studied in detail by O’Reilly & McClelland
(1994). In order to use the CA3 memory efficiently, it is assumed that dentate gyrus must also
learn to select the important dimensions of the patterns and discard others that are redundant,
thereby performing a lossy compression.

There are different views on whether CA3 also suffers from the second version of the problem of
catastrophic interference. Theoretically, it is simply a question of capacity. Either one assumes that
CA3 has sufficient capacity for lifelong storage of patterns, then there is no interference problem
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due to an exhausted capacity, or the capacity is not sufficient, then the measures described above
have to be taken, so that old patterns are gradually forgotten to make room for new patterns. This
issue does not effect our ideas about the functional role of neurogenesis much, so we will not discuss
it further.

If one wants to retrieve the encoded patterns in CA3, one also needs a decoding network. This
role is commonly assigned to CA1 (and the subiculum), mainly for the reason that there are strong
connections from CA3 via CA1 and subiculum back to the entorhinal cortex. We too will refer to
CA1 as the decoding network, but one should keep in mind that the exact location of decoding is
not so clear.

In summary we have the following picture. The hippocampus serves as a temporary (or even
permanent) storage that can store new patterns quickly. CA3 serves as the actual storage site and
works like a Hopfield network. Dentate gyrus performs an encoding of the patterns to make them
suitable for storage. This includes compression and sparsification. CA1 and subiculum perform
a decoding of patterns retrieved from CA3. The entorhinal cortex serves as an interface between
hippocampus and cortex.

So far we have discussed the model for a fixed environment, where only CA3 is plastic to store new
patterns. In the following section we discuss how an additional catastrophic-interference problem
arises if the model adapts to a changing environment and how adult neurogenesis might contribute
to its solution.

4 Why new neurons?

What might be the role of new neurons in the dentate gyrus in the overall framework given above?
Why are they generated only in the dentate gyrus and not in CA3 or CA1? Why is it sufficient to
have a very low rate of adult neurogenesis over most of the lifetime? Why should adult neurogenesis
be regulated by activity or richness of the environment?

4.1 Avoiding catastrophic interference in the dentate gyrus with new neurons

In the framework presented above, the dentate gyrus has the role of encoding input patterns coming
from entorhinal cortex such that they can be efficiently stored in CA3. This includes sparsification
and compression. The optimal encoding depends on the distribution of the input patterns or,
in other words, on the environment the animal lives in. We assume that when the environment
changes, the encoding should change, too, to guarantee an optimal encoding and efficient storage
of new patterns.

However, as the dentate gyrus adapts to a new environment, the encoding learned in the preceding
environment might get lost quickly due to catastrophic interference. A pattern that has been
encoded and stored previously can no longer be recognized and retrieved, because the encoding has
changed and the representation of the same pattern now looks very different as it arrives in CA3
(Treves & Rolls (1994) have suggested to perform the recognition and retrieval via the direct
perforant-path connections from EC to CA3, which might reduce this problem but cause a more
subtle version of catastrophic interference, since the perforant path could presumably accommodate
only a very limited number of different DG-encodings). Note that this problem of catastrophic
interference is distinct from the ones discussed in Section 3. Here the problem arises within the
dentate gyrus due to an adaptation to a new environment while in Section 3 it was a problem
within CA3 that arose if similar or too many patterns had to be stored.

The solution of interleaved training to avoid catastrophic interference cannot be applied, because
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the animal does not have arbitrary access to the different stimuli to generate an interleaved stimulus
sequence nor does the hippocampus have an intermediate buffer, which in any case would have the
same problem of catastrophic interference again. Thus, a different strategy is needed.

French (1991) has shown that catastrophic interference in a feedforward network trained with the
back-propagation algorithm can be significantly reduced by using a sparse representation in the
hidden layer. This fits well to the sparse firing patterns found in the dentate gyrus and seems to
be one possible strategy. However, this solution comes at the price that generalization is reduced
because of the localizing effect of sparsification.

Here we want to consider an alternative or complementary hypothesis, namely that the problem of
catastrophic interference in the dentate gyrus can be avoided by extending the encoding by adding
new neurons instead of changing it by modifying existing synaptic weights; old neurons and their
synaptic weights are fixed and preserve the old code while new neurons are added and provide
those features that are novel. In Section 5 it will be shown with a computational model that this
is indeed a possible strategy to avoid catastrophic interference and stabilize the encoding.

4.2 Why no new neurons in CA3 and CA1?

If we assume that the dentate gyrus has the problem of catastrophic interference and can solve it
by adding new neurons, wouldn’t neurogenesis also be helpful in CA3 and CA1?

If we take a Hopfield network as a good model of CA3, then it is clear it does not have the problem
of catastrophic interference in the same way as the dentate gyrus. Adding a few new neurons in
a Hopfield network would neither help much in making patterns orthogonal nor would it increase
the capacity significantly. Therefore neurogenesis does not seem a good strategy in CA3.

The situation is different in CA1. Within the framework considered here, dentate gyrus and
CA1 are complementary networks. One performs the encoding; the other performs the decoding
approximately inverting the encoding. Due to the close relationship between en- and decoding,
one can expect that CA1 has the problem of catastrophic interference to the same extent as the
dentate gyrus. However, for exactly this reason it might be sufficient to solve the problem in the
dentate gyrus alone. If the encoding is stabilized by neurogenesis, the optimal decoding learned by
CA1 might be stabilized as well. If that is true, no new neurons are necessary in CA1. Following
this argument, we assume that while dentate gyrus employs new neurons to avoid catastrophic
interference, CA1 simply always adapts such that it optimally inverts the encoding performed by
dentate gyrus.

In the model simulation in Section 5 we will see that this argument is not quite as straight forward
as it appears here, because the optimal decoding depends not only on the encoding but also on
the pattern statistics. But we will also see that it is basically valid in the case of neurogenesis. On
the other hand, if one really wanted to employ new neurons in CA1 as well, it might be difficult
to coordinate the learning in DG and CA1, for instance the new CA1 might need to ’know’ which
DG-neurons are old (fixed) and which ones are new (plastic) in order to take advantage of the new
neurons in CA1, something that does not seem feasible.

4.3 How few new cells might make a big difference

In a naive view one could argue that new neurons have to be added whenever new stimuli occur
and have to be stored. Thus the number of neurons should increase linearly with the number
of stored patterns. Even if there is at present no definite evidence how many new neurons are
actually generated in adulthood and in how far the net effect of adult neurogenesis is a turnover,
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a cumulative growth, or a combination of both, there can be no doubt that the levels of adult
neurogenesis after young-adulthood are very low. For our present study we have assumed that
there is net growth and no turnover, even if the growth is very small for most part of the life.
However, most parts of our model are not dependent on this assumption. What is essential is the
experimental evidence that adult neurogenesis occurs at high rates early in life and then strongly
declines to very low levels throughout the remaining life (Kronenberg et al., 2005) and that
new neurons have a long survival time. To understand how few new cells might actually make a
difference two things are important to consider: firstly, the location of adult neurogenesis in an
anatomical bottleneck situation, where large amount of information has to pass through a small
network (the hippocampus is very small compared to the cortical layers where the input comes
from), and secondly, the distinction between new and novel stimuli. A new stimulus, in our view,
is a stimulus that has not occurred before but is made up of features that are all known, much
like a new word might occur in a text, not seen before but made up of letters that are all known.
A novel stimulus, in contrast, is not only new but also contains features not encountered before,
much like a Chinese character would be novel to people used to Latin characters. We assume that
a new stimulus can be represented without difficulty with the existing code while a novel stimulus
actually requires an extension of the code to represent the novel features. It seems reasonable to
assume that new stimuli occur with almost constant rate throughout life while novel stimuli occur
primarily early in life or if the environment changes significantly. Thus a very low rate of adult
neurogenesis might be sufficient to account for novel stimuli occurring after the early phase of life.

This argumentation, of course, suffers from the difficulty to define what new and novel actually
means. In our simulations new stimuli are new input vectors that lie within the region populated
by previous stimuli, while novel stimuli are farther away and require the representation of a new
dimension.

4.4 How is adult neurogenesis regulated?

New neurons are being generated in the dentate gyrus continually. Some of these neurons are
integrated into the DG-network and become functional, but most of them are not used and are
removed through apoptosis (cell death). Both, the generation of new neurons and their integration,
are regulated and depend on behavior.

Neurogenesis is thus primarily regulated by two key mechanisms: firstly, control of the proliferation
of precursor cells leading to an expansion of the pool of immature new neurons with the potential to
become integrated, and secondly, control of the selective recruitment of new neurons or otherwise
apoptotic elimination (Kempermann et al., 2004a). Many stimuli affect the proliferation phase
of adult neurogenesis, most notably physical exercise (van Praag et al., 1999b) and seizures
(Parent et al., 1997) but including many others (for a review see Lie et al., 2004). With
respect to hippocampal function these stimuli are considered more or less non-specific. Exposure
to an enriched environment (Kempermann et al., 1997b) or in some instances the application of
specific learning stimuli (Gould et al., 1999; Dobrossy et al., 2003; Leuner et al., 2004)
resulted in an increase in survival and neuronal recruitment. Such stimuli would thus be considered
to be more specific. In some sense, environmental enrichment is a less reductionistic and more
natural setting that incorporates specific and non-specific aspects, although the specific, survival-
promoting stimuli seem to prevail. However we found that depending on the genetic background,
environmental enrichment might not only exert a survival-promoting but also a pro-proliferative
effect on adult neurogenesis (Kempermann et al., 1998a).

One problem of this regulation are the different time scales. Since the generation and integration of
new neurons takes weeks, the animal cannot start generating new neurons when they are needed.
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Instead, it must have some of them in stock all the time; the greater the chance of encountering
novel stimuli, the more new neurons need to be held in reserve.

The different time scales of neurogenesis and behavior might explain two observations. Firstly, if
we assume that new neurons have a limited life-span if they are not integrated in the network,
then new neurons must be generated all the time and most of them are removed again just to
have some available quickly when needed. Secondly, in order not to waste too many resources on
the generation of new neurons, the rate of neurogenesis should depend on the likelihood of novel
stimuli. However, since the generation of new neurons is such a slow process, the likelihood of novel
stimuli has to be predicted on a fairly long time-scale of weeks. Thus, unspecific indicators such as
the level of an animal’s activity seem to be reasonably good predictors.

5 A simple computational model

In this section we present a very simple computational model to illustrate the main point of our hy-
pothesis, namely that catastrophic interference in an encoding network can be avoided by keeping
old units stable and adding new units, which are plastic. The model is not meant to be biologically
plausible but to elucidate the mechanisms by which adult neurogenesis can prevent catastrophic in-
terference in a network with a distributed representation. Compared to the general model sketched
in Section 3, we make the following major simplifications:

• To make the model as simple as possible, so that it can be well understood and treated also
analytically, we have disregarded sparsification, which we know might also play an important
role in preventing catastrophic interference (see Sec. 4.1). We suggest neurogenesis as a com-
plementary mechanism. Further modeling work will have to build on this and investigate the
interactions between sparsification and neurogenesis. As a consequence of this simplification
we use a small hidden layer (with sparsification the hidden layer would be larger but without
necessarily increasing the effective dimensionality of the representation).

• Since we are not concerned with the problem of how CA3 itself stores and recalls patterns,
we do not model its recurrent dynamics explicitly. Instead, for each network we compute the
retrieval error analytically under the assumption of perfect storage and recall within CA3,
i.e. we assume that the retrieval error only results from compression and a mismatch between
en- and decoding during storage and retrieval.

• We make the simplifying assumption that the encoding performed by the dentate gyrus is
done in the EC-to-DG connections and that the DG-to-CA3 connections can be approximated
by a linear one-to-one connectivity. This allows us to model DG and CA3 with just one layer,
since the activities in CA3 would be a copy of the DG-activities in any case.

Making these assumptions we arrive at a simple linear autoencoder network as described in detail
below.

5.1 Methods

Network architecture

The model considered here is a linear autoencoder network; see Figure 1. Such a network consists
of an input layer, a smaller hidden layer, and an output layer, which has as many units as the
input layer. We identify the input layer with layer II of the entorhinal cortex (EC-II), the hidden
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layer with the dentate gyrus (DG), and the output layer with layers V/VI of the entorhinal cortex
(EC-V/VI). For storage and retrieval experiments we take the hidden layer also as a representation
of CA3, implicitly making the simplifying assumption of a one-to-one connectivity between DG and
CA3. The mapping realized by the connectivity from the hidden to the output layer is interpreted
as the decoding performed by CA1 and subiculum.

x’

x’’

x

DG / CA3

CA1 / Subiculum

EC−V/VI

EC−II

Figure 1: Architecture of the linear autoencoder network. The input and output layer
represent layer II and layers V/VI of the entorhinal cortex, respectively. The hidden layer repre-
sents the dentate gyrus and in the retrieval experiments also CA3. CA1 and subiculum are not
represented explicitly but summarized in the hidden-to-output-layer connections. The whole net-
work is linear. In the simulations input and output layer each had 60 units and the hidden layer
had 15 units plus 5 units due to neurogenesis.

The number of units in each layer is denoted by lowercase letters and a triangle (.) denotes the
direction of connectivity from left to right. Thus n . m . n indicates a network with n input units,
m hidden units, and n output units. As mentioned above, an autoencoder network has always the
same number of units in the input and output layer. The hidden layer may undergo neurogenesis
in which case the network may change from n . m . n to n . (m + l) . n, where l is the number of
added units. This basic notation will be extended below to include information about the training
procedure.

Network computation

The input layer represents the input patterns, denoted by a vector x, and does not perform any
computation. The hidden layer performs an encoding and the output layer performs a decoding.
Both layers are linear, and so is the whole network, since a combination of linear functions is also
linear. The representation of input vector x in the hidden layer (dentate gyrus) will be referred to
as x′; the reconstruction in entorhinal cortex will be referred to as x′′.

The name ’autoencoder network’ indicates that the task of the network is simply to reproduce
its input in the output layer. However, since the hidden layer has fewer units than the input and
output layer, the network has a bottleneck, which enforces a dimensionality reduction and therefore
a compression from the input to the output layer. Compression is one of the hypothesized functions
of the dentate gyrus that is captured by the model. We do not consider sparsification, since this
is a nonlinear operation, which is not within the scope of the model. Such a model may seem
ridiculously simple, but we will see that it provides some interesting insights into the possible role
of adult neurogenesis. The simplicity is actually a great advantage, because it permits an analytical
treatment of the network (Wiskott et al., 2004).

Figure 2 (a) illustrates optimal en- and decoding for a given data distribution. It is known from
principal component analysis that the encoding subspace as well as the decoding subspace should
ideally lie in the direction of maximal variance (with identical orientation, of course).

11



(d)

(b)

(c)

(a)

go
od

 e
nc

od
in

g
po

or
 e

nc
od

in
g

x

x

x’

x’

x’’

x’’ x’’

x’’

hidden vectorsinput vectors output vectors output vectors

good decoding poor decoding

X

X

X’

X’

X’’ X’’

X’’X’’

Figure 2: Different en- and decodings. Illustration of the computation performed by an
autoencoder network with two input and output units and just one unit in the hidden layer, i.e.
with the architecture 2 . 1 . 2. Column 1: The stimuli are vectors x in a high-dimensional
vector-space X. Here X is only two-dimensional. Vectors can be identified with their end-points,
which are here visualized as big dots. The gray ellipses indicate the distribution of input vectors
and three of them are shown explicitly (dots). During encoding, the two-dimensional distribution
has to be reduced to a one-dimensional distribution, since there is only one unit in the hidden
layer. In the linear case this corresponds to a projection (indicated by the arrows) onto a line
(neglecting any scaling for simplicity and without loss of generality). Top row: In this example
the line lies in the direction of maximal variance of the distribution, which is the optimal choice in
order to minimize the reconstruction error. Bottom row: In this example the line has a random
orientation corresponding to a poor encoding. Column 2: In the hidden layer, the stimuli are
now represented by vectors x′ in a lower-dimensional vector-space X ′, thus some information is
lost. Here X ′ is only one-dimensional. Columns 3 and 4: In order to obtain a reconstruction of
the original high-dimensional input-vectors, the vectors x′ of the space X ′ are embedded in a high-
dimensional vector-space X ′′, which can be identified with the original space X. The direction of
the embedding is referred to as decoding direction. The recoding error made by the transformation
from x to x′′ is indicated by the thin solid lines. (a) In case of optimal encoding, the optimal
decoding-direction is again in the direction of maximal variance of the data distribution. (b) A
random decoding-direction leads to a large error. (c) The optimal decoding-direction in case of
poor encoding lies somewhere between the original encoding-direction and the direction of maximal
variance. (d) Embedding the vectors in the direction of the original encoding may actually lead to
a relatively large error.
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If the encoding was not optimal, neither the original direction of encoding (Fig. 2 d) nor the
direction of maximal variance are optimal for decoding. A direction in between these two cases is
actually optimal including some scaling (Fig. 2 c). If the data distribution is more spherical with
similar variance in all directions then the optimal decoding should lie close to the direction of the
encoding; if the data distribution is more elongated then the optimal decoding should lie close to
the direction of maximal variance (Rasch, 2003; Wiskott et al., 2004).

Finally, as Figure 2 (b) illustrates, if the encoding is optimal, but the decoding is random, the
recoding error is large. It is often actually greater than if one would not decode anything, i.e. set
all output vectors to zero. Thus, no decoding is better than random decoding.

Input data

We assume the animal lives in two different environments, which we denote by uppercase letters A
and B. Within these environments the animal encounters different stimulus situations (or events),
which give rise to different patterns of activity in EC-II representing the stimulus situation. Such
patterns will be denoted by vectors a and b (instead of x) for the environments A and B, re-
spectively. The distribution of stimulus situations depends, of course, on the environment. We
model this by drawing the input vectors a and b from two different multidimensional Gaussian
distributions (we used 60 dimensions in the simulations). The distributions in the different envi-
ronments differ only in their orientation in space. Thus, the distribution in environment B is a
rotated version of the distribution in environment A. Mathematically this means that the eigen-
values of the covariance matrices are identical. Figure 3 illustrates data distributions of the two
different environments and shows the eigenvalues of the actual distributions used in the simulation
experiments.

Gaussian distributions are, of course, far from the true data distribution one would expect in the
entorhinal cortex. But since the network is linear and the error function is the mean squared
error (1, 2), the model is insensitive to higher-order moments. More realistically structured data
distributions would lead to identical results as long as the eigenvalues of the covariance matrix are
the same, and an exponential decay of eigenvalues, as used here, is rather generic.
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Figure 3: Distribution of input vectors a and b in environments A and B. Left:
Schematic drawing of the two distributions. They differ only in their orientation in space but not in
any other statistical characteristics. Dotted lines indicate the principal axes. Right: Eigenvalues of
the covariance matrices of the input-vector distributions in environments A and B. They correspond
to the variances along the principal axes of the distributions. The graph illustrates that out of the
60 principal components the first 15 carry most of the variance. The other 45 are interpreted as
noise.
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Network adaptation

Since the input layer only serves as a representation of the input and does not perform any compu-
tation, it is only the hidden layer and the output layer that can adapt to a particular environment.
This will be denoted by subscripts to the indices of the number of units per layer. We assume that
units in the hidden layer always adapt jointly with the output layer. Units in the output layer,
however, can adapt with the connections from the input to the hidden units fixed. n . mA . nA,
for instance, indicates that the hidden layer as well as the output layer are optimally adapted to
environment A. n . (mA + lB) . nB indicates that an animal fully adapted to environment A has
moved to environment B, where the hidden layer got l new units, which adapted to B along with
the complete output layer. Note that the adaptation of the output layer to environment B depends
on the hidden layer, so that the networks n . mA . nB and n . mB . nB actually have different
output layers. In the results presented here we always impose the constraint that weight vectors
of different hidden units are normalized to one and are orthogonal to each other, i.e. maximally
different. Results for non-orthogonal weight vectors can be found in (Wiskott et al., 2004).

Storage and retrieval

Although our model does not include an explicit CA3 layer, we can still address the question of
how well patterns can be stored and retrieved under different scenarios. We assume the role of a
CA3 layer would only be to store patterns coming from the dentate gyrus and later recall them.
Thus patterns in CA3 would be identical to those coming from the dentate gyrus, which is the
reason why we do not need to represent CA3 by an extra layer. Storage with a network n.mA .nA

adapted to environment A and later retrieval with a network n . mB . nB adapted to B is thus
modeled by storing the vector a′ encoded by the first network, indicated by a′

2, and then decoding
the stored vector by the second network, indicated by a′′

2. In case of neurogenesis, the number
of units in the hidden layer changes. We take that into account by simply adding an appropriate
number of zeros to the stored vector a′

2.

Performance measures

To assess the performance of the autoencoder network we determine two kinds of reconstruction
errors. Firstly, we are interested in how well the patterns in EC-II are reconstructed in EC-V/VI
and how large the error is due to the recoding. Thus, we compare the input vector a with the output
vector a′′ and call the mean squared difference the recoding error. Secondly, we are interested in
how well patterns stored in CA3 can be reconstructed when they are retrieved (spontaneously
or by a cue). The corresponding error is called the retrieval error. To get reliable measures we
average over the whole distributions (analytically) and, if applicable, over 5000 randomly rotated
data distributions B (numerically) both indicated by angle-brackets 〈·〉.

recoding error: E :=
〈
|a− a′′|2

〉
(1)

retrieval error: E2 :=
〈
|a− a′′

2|2
〉

(2)

We will also consider the recoding error for patterns b.

5.2 Results

Assume our model animal first lives in environment A, then it moves to a new environment B, and
finally it returns to the old environment A. For best performance in this setting the autoencoder
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network should adapt somehow to the different pattern statistics of the two environments. In this
section we consider three different adaptation strategies. In all three cases the decoding part of
the network (hidden-to-output-layer connections) always fully adapts to the current environment
to minimize the recoding error. The encoding part (input-to-hidden-layer connections), however,
may have one of the following three strategies:

(a) No DG-adaptation: In this strategy (Tab. 1 left) we assume there is something like a
critical period in which the animal adapts to environment A. After that, no adaptation takes
place in the encoder part of the network anymore, so that the encoder does not change when
the animal moves to environment B. The hidden layer has 20 units.

(b) Neurogenesis: In this strategy (Tab. 1 middle) the network starts with a few units in the
hidden layer and new units are added as required. Only the most recent hidden units adapt to
a new environment to account for those feature dimensions that are not yet well represented.
Here we start with 15 hidden units that adapt to environment A and add five new units after
the animal has moved to environment B.

(c) Full adaptation: In this strategy (Tab. 1 right) all neurons always fully adapt to the current
environment, first A then B. The hidden layer has 20 units.

To assess the performance of the system we consider five different errors. The first two are deter-
mined for the network adapted to environment A and the other three for the network adapted to
environment B.

(A) Network adapted to environment A.

(i) Recoding error A: When adapted to environment A the recoding error of patterns a, i.e.〈
|a− a′′|2

〉
, should obviously be small. The retrieval error for patterns a should also be small,

but since the network has not changed yet, the retrieval error is the same as the recoding
error and is not considered separately.

(ii) Recoding error B: When the animal has just moved to environment B it did not have the
time yet to adapt to the new environment but ideally the recoding error for patterns b, i.e.〈
|b− b′′|2

〉
, should already be small right from the beginning, e.g. because of the experience

gathered earlier in other environments. However, we will find that this is generally not the
case in our simulations.

(B) Network adapted to environment B.

(iii) Recoding error B: Of course, performance improves with adaptation, so we are also inter-
ested in the recoding error for patterns b, i.e.

〈
|b− b′′|2

〉
, after the network has adapted to

environment B.

(iv) Retrieval error A: Next we ask how well the animal can retrieve memories that it has
stored earlier in environment A. This is the retrieval error

〈
|a− a′′

2|2
〉
.

(v) Recoding error A: Finally we want to look at the performance of the animal when it
returns to environment A but does not have the time to newly adapt to it. This is measured
by the recoding error

〈
|a− a′′|2

〉
.

Note that in (i) and (v) as well as in (ii) and (iii) the same recoding errors are computed, but that
the values will differ because the network has changed due to adaptation.
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Table 1 lists the five different errors for the three different adaptation strategies described above.
As one would expect, if a network is fully adapted to environment A, recoding error A (i) is small
and recoding error B (ii) is large. Furthermore, performance is obviously better if the network has
more units in the hidden layer; compare (a, c) with (b). In fact the error would go down to zero if
the network had as many hidden units as input or output units, because then no dimensions would
be lost in the hidden layer.

With adaptation to environment B, the performance on patters b improves, of course; compare
recoding error B before (ii) and after (iii) adaptation. The more complete the adaptation the better
the performance, thus no adaptation (a) is worst and full adaptation (c) is best; neurogenesis (b)
lies in between. In the no-adaptation case (a) the encoding learned for environment A is actually
random with respect to the distribution of patterns b, because the distributions in the two envi-
ronments are randomly rotated relative to each other. Thus this case (a-iii) corresponds to the
situation of random encoding and optimal decoding illustrated in Figure 2 (c).

So far the results were as one would expect. The interesting question now is how the networks
adapted to environment B perform on patterns a; see (iv, v). With no DG-adaptation (a) per-
formance degrades significantly due to catastrophic interference within the decoding part of the
network; compare (iv, v) with (i). Recoding and retrieval error are identical, because the encoding
part of the network has not changed. Note that in this case decoding changes even though encod-
ing is fixed, because the pattern statistics of the input has changed. Thus stabilizing the encoding
does not necessarily stabilize the optimal decoding as was argued in Section 4. But see below and
Figure 4 for why the argument basically holds in the neurogenesis case.

With full adaptation (c), the effect of catastrophic interference is even more severe. The recoding
error A (v) increases to the level of the recoding error B (ii) of the network adapted to environ-
ment A, which is clear for symmetry reasons. The retrieval error A even increases beyond the value
of 1, indicating that the reconstructed output is not only not helpful but even misleading. The rea-
son for this is that the representation of the hidden layer has changed completely, so that the stored
patterns a′

2 cannot be interpreted anymore. The network effectively hallucinates random output
patterns, which leads to the large retrieval error. This is equivalent to the case of optimal encoding
and random decoding discussed in Figure 2 (b). This dramatic effect of catastrophic interference
is partly due to the fact that we find the optimal weights analytically, so that the new weights are
chosen independently of the old ones. With an incremental learning rule one would expect that the
old weights bias the solution for the new ones, so that interference would be somewhat reduced.

With neurogenesis (b), the network can largely avoid the effect of catastrophic interference and
achieves a performance that is better than that of the two other strategies.

Figure 4 illustrates catastrophic interference and how neurogenesis can avoid it. If the final number
of units is limited, the idea is that instead of wasting the units early on to represent also the
low-variance directions of distribution A, one starts with fewer units and adds new units later to
represent high-variance directions of distribution B without the effect of catastrophic interference.

6 Discussion

6.1 Hypothesis and model

In this paper we have addressed the question of what the functional role of adult neurogenesis in
the dentate gyrus is. As a basis for our discussion we have largely adopted one of the standard
models of hippocampal function (Sec. 3) based on concepts from neural network theory (Sec. 2).
In this model the dentate gyrus serves as an encoder, the CA3-region as a memory, and the
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(a) (b) (c)
no DG-adaptation neurogenesis full adaptation

(A)
network

adapted to
environment A

n . (m + l)A . nA n . mA . nA n . (m + l)A . nA

(i)
recoding error A〈

|a− a′′|2
〉 0.30 0.33 0.30

(ii)
recoding error B〈

|b− b′′|2
〉 0.67 0.75 0.67

(B)
network

adapted to
environment B

n . (m + l)A . nB n . (mA + lB) . nB n . (m + l)B . nB

(iii)
recoding error B〈

|b− b′′|2
〉 0.44 0.36 0.30

(iv)
retrieval error A〈

|a− a′′
2|2

〉 0.61 0.45 1.69

(v)
recoding error A〈

|a− a′′|2
〉 0.61 0.41 0.67

Table 1: Five different errors (i–v) for three different adaptation strategies (a–c); see
text for details. In the network icons connections adapted to environment A and B are drawn as
solid (grey) and dashed (black) lines, respectively. An error value of 0 would indicate no error, i.e.
perfect recoding or retrieval, and a value of 1 would be obtained if a network would always return
a zero vector, i.e. if it would not do anything. Thus a value greater 1 indicates that the network
produces misleading outputs. If not computed completely analytically, each error is an average over
5000 simulation runs with randomly rotated data distributions; standard deviations were between
0 and 0.05. Rows (iv, v) show that neurogenesis (b) indeed avoids the problem of catastrophic
interference with still reasonable performance in cases (i, iii). None of the networks performs well
in case (ii). If in the neurogenesis case (b) the weight vectors are not constrained to be orthogonal
but would always be along the principal axes, only the retrieval error A would change from 0.45 to
0.56, the other errors (iii, v) would remain the same.
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Figure 4: Effect of catastrophic interference in the no-DG-adaptation scenario and
how the problem is avoided by neurogenesis. See next page for figure caption.
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Figure 4: Effect of catastrophic interference in the no-DG-adaptation scenario and
how the problem is avoided by neurogenesis. In contrast to previous figures, the 2D-plots
represent a suitable two-dimensional projection of a high-dimensional space of input (and output)
vectors. Otherwise, the figure uses the same conventions as Figure 2. In the top row the two
networks are adapted to environment A and recoding error A is considered; in the middle and
bottom row they are adapted to B and the recoding errors A and B, respectively, are considered.
No DG-adaptation, Panel (a-i): In the network adapted to environment A the encoding as well
as the decoding is optimal for input vectors a taken from distribution A. The recoding error A is
correspondingly low (right). Panel (a-iii): If the encoding is fixed and no new units can be added
(no DG-adaptation), the network can only optimize the decoding to environment B (right). This
corresponds to the case of random encoding and optimal decoding already illustrated in Figure 2 (c).
The network reduces the recoding error by misusing the encoding dimension (left) optimized for A
to represent the high-variance direction of distribution B (right). Panel (a-v): Now that the
decoding is optimized for B the decoding of vectors a is poor (right) and the recoding error A
correspondingly large. Neurogenesis, Panel (b-i): In these 2D-plots the initial network in the
neurogenesis scenario looks identical to that in the no-DG-adaptation scenario. However, note
that the number of hidden units is smaller, so that there are some dimensions (with low variance
in distribution A) not shown here that are less well represented than in the no-DG-adaptation
scenario. Panel (b-iii): The old hidden units are fixed, like in the no-DG-adaptation scenario,
but the network can add new hidden units (only one is shown here), which adapt to environment B.
Thus the encoding gets extended by dimensions that are not yet represented but have high variance
in distribution B (left). This reduces (in this figure eliminates) the misuse of encoding dimensions
optimized for distribution A (right) and also improves the recoding of vectors b. Panel (b-v):
The good decoding of vectors a is largely preserved (right). In this figure the recoding actually
looks perfect, since we now have two hidden units representing the two plotted dimensions. Other
dimensions (with lower variance) not plotted still suffer from the misuse of encoding dimensions
and contribute to the recoding error, but to a much lesser degree than in the no-DG-adaptation
scenario.
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CA1/subiculum-system as a decoder. We assume that the dentate gyrus, like most neural systems,
suffers from the problem of catastrophic interference when adapting to new environments. Our
basic hypothesis for the role of adult neurogenesis is that new neurons help the dentate gyrus
avoiding the problem of catastrophic interference by keeping the old neurons, which are adapted to
earlier environments, fixed and adding new neurons, which are more plastic and can code for those
aspects that are qualitatively new in the current environment.

We have used a linear auto-encoder network-model to illustrate and quantify the advantage new
neurons might offer according to our hypothesis. This model is very simple and obviously neglects
many prominent features of the biological system. Nevertheless, it demonstrates and explains
several aspects of our hypothesis and yields some non-trivial insights.

Let us summarize some of the key features of our hypothesis and the network model.

• Our hypothesis requires that old neurons are relatively stable while new neurons are plastic.
This is consistent with physiological findings (see Sec. 1).

• The results summarized in Table 1 show that adult neurogenesis can indeed reduce the effect
of catastrophic interference significantly; see rows (iv) and (v) and compare the neurogenesis
strategy (b) with the other two (a, c).

• The results of the no-adaptation strategy show that even if the encoding optimized for envi-
ronment A is kept fixed does the performance on patterns a degrade drastically if the decoding
is optimized for environment B. This is a somewhat surprising result and a consequence of the
misuse of high-variance A-dimensions for representing b-patterns, as illustrated in Figure 4.
This misuse is reduced significantly by adding new neurons.

• In the neurogenesis scenario in order to achieve a small recoding error a large number of
new hidden units is necessary initially (in environment A) but fewer new units suffice later
(in B). This can be easily shown mathematically and can also be seen in the simulation
results. Compare entry (b-i) with entry (b-iii) in Table 1; the former required 15 new units,
the latter only 5 new units, but both errors are relatively small. Thus in the model the effect
of neurogenesis accumulates and with increasing ’age’ the need for new units decreases, which
is consistent with neuroanatomical observations.

• According to our hypothesis CA1 always fully adapts to optimize the decoding for the cur-
rent environment. We have made this assumption mainly because we did not see a feasible
way of coordinating learning in dentate gyrus and CA1 in a more specific way. However,
the simulations at least partially justify this assumption, because in the neurogenesis case
performance is good with full CA1 adaptation, see Table 1. The strong plasticity observed
in CA1 physiologically also seems to be consistent with our assumption.

• According to our hypothesis new neurons are only added when the pattern statistics changes,
i.e. it depends on the environment. However, the generation of new neurons takes too much
time to initiate neurogenesis exactly when needed. Instead, there must always be new neurons
available that could be used quickly. This is consistent with the fact that most new neurons
are not integrated but die after some time.

6.2 Comparison with other models

There are a number of artificial neural networks that employ new units (artificial neurons) as
part of their learning strategy. A prominent example in the field of vector quantization is the
adaptive resonance theory (ART) (Carpenter & Grossberg, 1987; Carpenter et al., 1991).
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In the ART-network new units are added as new patterns have to be learned that cannot be
well represented by the existing units. This is similar in spirit to the model we propose, but the
representation is very different. In the ART-network a pattern is represented by a single unit while
in our model a pattern is represented with a population code.

Self-organizing maps (SOM) differ from vector quantization networks in that also the topological
neighborhood structure of the units is being represented. SOM-networks that employ new units
have been extensively studied by Fritzke (1994). In his growing cell structures new units can be
added to represent new patterns, much like in the ART-network, or to refine the representation.
Again, patterns are represented by single units and not populations of units.

Vector quantization and self-organizing maps are examples of unsupervised learning tasks. For
feedforward networks supervised learning algorithms are of particular interest. Also for this class
of networks do algorithms exist that successively add new units to improve the performance (see
Bishop, 1995, sec. 9.5, for an overview). The model most closely related to ours is probably
the cascade-correlation learning architecture (Fahlman & Lebiere, 1990). This architecture is
a feedforward network with initially no hidden unit. After having trained this reduced network,
hidden units are added one by one with repeated retraining of the new units and keeping old units
fixed. Like our model this network learns a distributed representation. The main difference is that
in the cascade-correlation network new units are added to improve the performance on identical
training data while we have considered the problem of extending a representation to new patterns
without catastrophic interference, a problem not addressed by Fahlman & Lebiere (1990).

There are also a few more biologically motivated models. Cecchi et al. (2001) have proposed
a model for neurogenesis in the olfactory bulb. They used laterally connected inhibitory units to
perform an orthogonalization of odor representations. Neurogenesis was assumed to occur at a
constant rate while survival of an inhibitory unit was taken to depend on activity and was highest
for units establishing an inhibitory interaction between correlated units. This way correlations
between output units were reduced and the network converged to a 1-of-N code. In contrast to our
model, this model reduces interference for a given set of patterns and does not address the issue of
adaptation to a changing input statistics.

Deisseroth et al. (2004) and Chambers et al. (2004) have independently investigated the
effect of neurogenesis in a nonlinear three-layer network trained to learn hetero-associations (input
and output patterns are different). The authors make the assumption that there is a turnover of
units in the hidden layer, i.e. some units die and are replaced by the same number of new units.
Such a network tends to forget old memories more quickly but is able to store new memories without
the effect of catastrophic interference. This is a convincing role for neurogenesis if one assumes
neural turnover. It would be interesting, however, to see how it compares to simple weight decay
as another means to achieve the same goal (Howard et al., 1987, cited in Amit, 1989).

The most detailed functional model of neurogenesis currently is probably the one presented by
Becker (2005). This model is based on the assumption that the encoding and storage of patterns
is done via the dentate gyrus while the retrieval is mediated by the perforant path connections to
CA3. A neural turnover in the dentate gyrus is used to change the encoding over time to represent
similar patterns differently and thereby avoid their interference. This is an interesting proposal in
direct contrast to our hypothesis that the encoding of the dentate gyrus should be stabilized.

Finally, it should be mentioned that Lehmann et al. (2005) have taken a very different perspective
and have considered the role of neurogenesis for the stability of the network dynamics due to
homeostatic processes. They do not consider functional implications.
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6.3 Future perspectives

The model presented here is obviously only a very first step. It illustrates our hypothesis about
the functional role of adult neurogenesis and has the advantage of being simple, which provides
insights that might not be so easily accessible with a more complex model. However, it neglects
a number of important aspects of the hippocampal formation and needs to be extended in several
ways. Let us list only a few important extensions:

• Sparsification has been disregarded in our computational model but is thought to play an
important role in orthogonalizing patterns for storage in CA3 and it might also help to prevent
catastrophic interference in the dentate gyrus. A refined model should have a larger hidden
layer for the dentate gyrus and use a sparse code, more consistent with the neuroanatomy. It
will be important to investigate the interactions between sparseness and neurogenesis as two
strategies for avoiding catastrophic interference.

• CA3 not only receives input via the dentate gyrus but also directly from entorhinal cortex. It
is an open question how these two very different pathways complement each other. One hy-
pothesis is that they serve different modes of operation such as storage and retrieval (Treves
& Rolls, 1992; Becker, 2005); another hypothesis states that they help learning to predict
events (Borisyuk et al., 1999). We will have to reconsider such hypotheses with respect
to neurogenesis and extend the model correspondingly with an explicit layer for CA3.

• Another interesting direction is to consider how neurogenesis is regulated and how this de-
pends on the functional requirements.

The most obvious experimental prediction to be made from our model is that after consecutive
exposure to two different novel environments A and B, each of which should have a measurable
effect on adult neurogenesis, return to environment A should lack this regulatory effect of adult
neurogenesis because it is not novel any more. We have begun pilot studies for this experiment to
identify sufficiently different environments to yield enough statistical power to detect a difference in
the number of recruited new granule cells after consecutive exposure. After experimental blockade
of adult neurogenesis, e.g. by means of a pharmacological, irradiative, or preferably transgenic
approach, our model would predict that the ability to identify novel stimuli or environments as novel
would be reduced and the computational expenses to deal with novel stimuli would be increased.
These might be measurable.
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