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Abstract

The dentate gyrus is part of the hippocampal memory system and special in that
it generates new neurons throughout life. Here we discuss the question of what the
functional role of these new neurons might be. Our hypothesis is that they help the
dentate gyrus to avoid the problem of catastrophic interference when adapting to new
environments. We assume that old neurons are rather stable and preserve an optimal
encoding learned for known environments while new neurons are plastic to adapt to
those features that are qualitatively new in a new environment. A simple network
simulation demonstrates that adding new plastic neurons is indeed a successful strategy
for adaptation without catastrophic interference.
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1 Introduction

The hippocampus is a structure in the mammalian brain that is instrumental for acquiring
episodic and declarative memories (see Sec. 2). If the hippocampus is lesioned, no new
episodes or facts can be stored in long term memory. Skills, however, can still be learned
(procedural memory). Because of its importance for learning and memory the hippocampus
has been being extensively studied anatomically, physiologically, psychophysically, and by
means of computational models.

One curious fact about the hippocampus is that one of its substructures, the dentate gyrus,
generates new neurons even in the adult brain (see Sec. 2.4). This is very unusual and has
been found to this extent only in one other brain structure, namely the olfactory bulb or
rather the subventricular zone (Carleton et al., 2002) (there is some evidence of weak
neurogenesis also in cortical areas (Gould & Gross, 2002)). In the olfactory bulb there
seems to be a turnover of neurons, so that the new neurons simply replace old ones. In the
dentate gyrus, on the other hand, the new neurons seem to be added to the existing network
of neurons and somehow enhance its performance. What exactly is the functional role of
these new neurons that are generated in the dentate gyrus throughout life? What makes the
dentate gyrus so special? This question is not only interesting in itself but also offers a new
approach for investigating the hippocampus as a whole.

We follow the view that the dentate gyrus performs an encoding operation and assume that
this encoding has to adapt to a changing environment the animal lives in. Our hypothesis
is that the new neurons are necessary to avoid the negative side effects of this adaptation,
referred to as catastrophic interference. In this paper we lay out our arguments in detail and
present a simple network model that illustrates our hypothesis and shows that adding new
neurons is indeed a reasonable strategy for avoiding catastrophic interference.

In the following section the neurobiology of the hippocampus is briefly summarized. Then
we will introduce relevant concepts from the theory of neural networks. The basic model
of hippocampal function we have adopted is described in Section 4 and motivated by the
facts and concepts of the preceding two section. Within this basic model we present our
hypothesis in Section 5. The computational model illustrating our hypothesis is defined in
Section 6, which also includes the simulation results. We conclude with a discussion. The
basic ideas presented here have earlier been sketched in (Kempermann & Wiskott, 2004).
The model simulations have been described in detail in (Rasch, 2003).

2 The hippocampal formation

2.1 Neuroanatomy

The hippocampal formation is part of the medial temporal lobe and consists of the en-
torhinal cortex (EC), the hippocampus, and the subicular complex (Amaral & Witter,
1989; Hammond, 2001). The hippocampus is composed of the dentate gyrus (DG) and the
Ammon’s horn (cornu ammonis), which is sometimes referred to as hippocampus proper.
The Ammon’s horn can be further subdivided into four subregions, CA1–CA4 (CA stands
for cornu ammonis); however, often only CA1 and CA3 are distinguished. The subicular
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complex includes the subiculum, presubiculum, and parasubiculum.

The entorhinal cortex receives highly integrated multimodal information from many associa-
tive cortical areas via the perirhinal and parahippocampal cortices (mainly into the super-
ficial layers) and also sends information back (mainly from the deep layers) (Lavenex &
Amaral, 2000; Witter et al., 2000). It therefore seems to serves as an interface between
the hippocampus and other cortical areas.

The different regions of the hippocampal formation can be ordered based on their connec-
tivity in a loop like EC - DG - CA3 - CA1 - subiculum - presubiculum/parasubiculum - EC
(Amaral & Witter, 1989; Chrobak et al., 2000; Lavenex & Amaral, 2000). From
the superficial layers II/III of the entorhinal cortex originates the perforant path projecting
to the dentate gyrus (mainly from II), the CA regions, and the subiculum (mainly from
III). CA3 also receives input from dentate gyrus through the mossy fibers, which are not so
numerous as the perforant path input fibers but have very large and strong synapses (Henze
et al., 2000). The mossy fiber input is often thought to be the primary input into CA3,
but see (Urban et al., 2001) for a critical discussion of this view. CA3 projects to CA1
via the Schaffer collaterals; CA1 projects to the subiculum and somewhat weaker also to the
deep layers V/VI of the entorhinal cortex; the subiculum projects to the entorhinal cortex,
partly via the pre- and parasubiculum. The direct projections from subiculum to entorhinal
cortex terminate in the deep layers V/VI while those coming from pre- and parasubiculum
terminate in the superficial layers II/III.

The dentate gyrus as well as the CA3-region also have some recurrent connectivity, i.e. from
DG to DG cells and from CA3 to CA3 cells (Amaral & Witter, 1989; Witter, 1993).
This recurrent connectivity is more direct and particularly strong in CA3 and has been
estimated to be around 2% in rats (Amaral et al., 1990).

The connections between different regions are typically formed between principal cells
(Lavenex & Amaral, 2000), which are excitatory. The principal cells in the dentate
gyrus are granular cells, which are particularly small and densely packed; in the Ammon’s
horn the principal cells are pyramidal cells (Patton & McNaughton, 1995; Hammond,
2001). There are also various types of locally-connected inhibitory interneurons present in
these regions (Freund & Buzsáki, 1996; Jones & Yakel, 1999). They are much less
numerous than the principal cells.

The number of neurons varies between the different regions. In humans West & Slomi-
anka (1998) have estimated that the entorhinal cortex has about 8.1 million neurons, which
are distributed over the layers as follows (in millions): II: 0.7, III: 3.7, V: 1.2, and VI: 2.5.
The number of neurons within the hippocampus and subicular complex have been estimated
to be (in millions): 11 ± 3 in DG, 1.1 ± 0.3 in CA4, 2.3 ± 0.6 in CA2–3, 6.1 ± 1.6 in CA1,
4.6 ± 1.1 in subiculum, and 9.8 ± 2.4 in presubiculum (Harding et al., 1998). In rats
it has been estimated that the number of neurons (in millions) is about 0.2 in EC layer II,
1.0 in DG, 0.33 in CA3, 0.42 in CA1, and 0.13 in the subiculum (Amaral et al., 1990,
Fig. 1).
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2.2 Psychophysics and lesion studies

Lesion studies have been instrumental in investigating the functional role of the hippocampal
formation (Gluck & Myers, 2001, chap. 2). In humans lesions to the hippocampus and
related regions lead to anterograde amnesia, i.e. an inability to form new memories, and
graded retrograde amnesia, i.e. a loss of past memories which is more severe for recent
events than for events long ago. This only applies to memories of facts and events, which
constitute the declarative memory; nondeclarative memory, such as skill learning, seems to
be unaffected. The effect of graded retrograde amnesia has led to the hypothesis that the
hippocampus is required to acquire and consolidate memory, but that after some time (many
years in humans) declarative memory is independent of the hippocampus, but see (Nadel
& Moscovitch, 1997) for a critical discussion of this view.

In monkeys it has been found that lesions to the hippocampal formation lead to deficits
in the delayed nonmatch to sample (DNMS) task, in which the monkey has to memorize
an object and then after some delay (usually 5 to 60 seconds) avoid this object in a choice
situation (Gluck & Myers, 2001). In lesioned monkeys performance is normal with little
or no delay but poor if the delay is longer than a few seconds. Thus short-term memory
seems to be intact but new memories that last for more than a few seconds cannot be formed.
The same pattern has been found in humans and rats (Gluck & Myers, 2001).

In rats it has been shown that lesions to the hippocampal formation lead to impaired spatial
learning and navigation, for example in the water maze task, in which the rat has to learn to
swim to a platform hidden right below the surface in a pool of milky water (Morris et al.,
1982; D’Hooge & De Deyn, 2001, sec. 3.2). Even though this task is very different from
the DNMS task, it shares with it that the rat has to memorize and combine views of the
surrounding (landmarks) in order to navigate successfully. Thus the reason for impairment
may again be the inability to form appropriate memories (Gluck & Myers, 2001, sec.
2.3).

2.3 Neurophysiology

Much of the neural activity in the hippocampal formation is characterized by oscillatory
firing patterns (Chrobak & Buzsáki, 1998; Chrobak et al., 2000; Buzsáki, 2002).
During exploratory behavior and REM sleep the hippocampus shows so called gamma os-
cillations (40-100 Hz) amplitude modulated by slower theta oscillations (4-12 Hz). In the
inactive state and during slow-wave sleep, sharp waves (50-150 ms long large amplitude field
potentials) can be observed with associated short high-frequency bursts (200 Hz) referred
to as ripples. The theta-modulated gamma oscillations seem to synchronize the input path
as they propagate from the superficial layers II/III of entorhinal cortex (where they are
generated by input from the medial septum and supramammillary nucleus) to the dentate
gyrus and the CA-regions; the sharp waves/ripples seem to synchronize the output path as
they originate in CA3, become most visible in CA1, and can also be observed in the deep
layers V/VI of entorhinal cortex. It has been suggested that these two different physio-
logical states correspond to a write-in or storage mode and a read-out or retrieval mode,
respectively. Interestingly, one finds that in the sharp waves/ripples state, neural firing pat-
terns are spontaneously reactivated that were earlier observed during exploration and in the
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theta/gamma state (Sutherland & McNaughton, 2000), which supports the idea of
consolidation of memory during (slow-wave) sleep.

In rats it has been found that some cells in the hippocampus fire only when the rat is at a
particular location (O’Keefe, 1979; Moser & Paulsen, 2001); such cells are referred to
as ’place cells’. Similarly, cells selective to a particular view have been found in monkeys
(Rolls, 1999). These types of cells are thought to be instrumental for spatial navigation,
which we know is hippocampus dependent.

Experimental data suggest that overall the patterns of neural activity in the hippocampus
are sparse compared to those of the entorhinal cortex or the subiculum (Barnes et al.,
1990; Jung & McNaughton, 1993). O’Reilly & McClelland (1994) have estimated
from such data activity levels of 0.4% in dentate gyrus, 2.5% in CA1 and CA3, but 7% in
entorhinal cortex and 9.2% in subiculum.

The hippocampal formation is highly plastic (Kandel, 2000; Henze et al., 2000; Abra-
ham & Williams, 2003). Depending on the neural activities (in experiments usually gov-
erned by the stimulation protocol) the synaptic efficacies can increase or decrease. This
effect can be long lasting (several hours up to weeks) and is then referred to as long-term
potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD can occur
in the same synapse (e.g. Dudek & Bear, 1992). LTP in the perforant path (DG) and
Schaffer collaterals (CA1) is associative, i.e. it requires pre- and postsynaptic activity while
LTP in the mossy fiber synapses (CA3) can also be nonassociative, i.e. it only depends on
presynaptic activity, if a long-lasting high-frequency stimulus is given. LTP and LTD are
generally considered to be the underlying mechanism of memory formation (Martin &
Morris, 2002), but see (Hölscher, 1999) for a critical discussion of this view.

2.4 Adult neurogenesis

One peculiar property of the dentate gyrus is that it generates new neurons throughout
life, a phenomenon referred to as adult neurogenesis (Altman & Das, 1965; Gould &
Gross, 2002; Kempermann et al., 2004). The new cells arise from precursor cells and
differentiate into granular cells that appear to become fully functional and integrated over
a time course of several weeks (van Praag et al., 2002; Jessberger & Kempermann,
2003). However, young granular cells seem to differ from old ones in that they show enhanced
long-term potentiation (LTP), which has a lower threshold of induction (Schmidt-Hieber
et al., 2004) and cannot be inhibited by GABA (Wang et al., 2000; Snyder et al.,
2001). It has also been argued that it is reasonable to assume that new cells form synaptic
connections more rapidly (Gould & Gross, 2002).

The number of newly added neurons depends on the rate of proliferation, i.e. cell genera-
tion, and the probability of cell survival, since most of the newly generated cells actually
die again after a short period of time (apoptosis) (Eriksson et al., 1998; Gould et al.,
2001; Kempermann et al., 2003). If they survive the initial phase, they can last for a long
time, e.g. at least 1 year in mice (Kempermann et al., 2003), 8 months in rats (Altman
& Das, 1965), and 2 years in humans (Eriksson et al., 1998). Cell proliferation decreases
with age (Altman & Das, 1965; Seki & Arai, 1995; Kempermann et al., 1998) and
can also be reduced by stressful experiences (Gould et al., 1997, 1998; Tanapat et al.,
2001). Both might be explained by the dependency of the proliferation on hormones (glu-
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cocorticoids); other hormones (ovarian steroids / estrogen) stimulate the proliferation (see
Gould & Gross, 2002, for an overview). Other factors that increase neurogenesis are di-
etary restriction (rat) (Lee et al., 2000), voluntary physical activity (mouse, running but
not swimming) (van Praag et al., 1999a,b; Kronenberg et al., 2003), enriched envi-
ronments (mouse, rat) (Kempermann et al., 1998; Nilsson et al., 1999; van Praag
et al., 1999b), and some hippocampal-dependent learning-tasks (Gould et al., 1999),
the former factors effecting more the proliferation the latter ones effecting more the cell
survival. Genetics also has a strong influence on neurogenesis (Kempermann et al., 1997;
Kempermann & Gage, 2002). The total number of new cells generated per day by prolif-
eration in the dentate gyrus of young adult rats (9 weeks old) has been estimated to be 9000
(Cameron & McKay, 2001), only about 60% of which survive the first four weeks. The
effect of neurogenesis seems to be accumulative, but since its rate decreases quickly with age
the overall addition of new neurons over the whole lifetime is relatively small. Kempermann
et al. (1998) have estimated an overall increase in mice of about 40,000 (approx. 10%);
more recent results indicate that it might be more in the range of 30% (Kempermann et
al., unpublished data).

Like behavioral and environmental factors have an effect on the generation and survival
of new neurons, there is also some evidence that neurogenesis affects performance in some
hippocampal-dependent learning-tasks, such as trace conditioning (Shors et al., 2001,
2002) or the acquisition in the water maze task (Kempermann & Gage, 2002). Reduced
neurogenesis might contribute to major depression (Santarelli et al., 2003; Kemper-
mann & Kronenberg, 2003).

3 Artificial neural networks and catastrophic interfer-

ence

3.1 Feedforward and Hopfield networks

Like physiological neural networks, artificial neural networks consist of a number of rela-
tively simple computational units that are mutually connected (see Hertz et al., 1991,
for an introduction). Each unit integrates the activity it receives from other units via the
connections, performs some simple stereotype operation on it, and sends its own activity
to other units it is connected to. The connections have weights that determine how much
one unit contributes to the activity of another unit and thereby what kind of computation
the whole network performs. It is characteristic for neural networks that the computation
is distributed over many weights, which has advantages and disadvantages. There are a
number of learning rules that adapt the weights such that the network performs a certain
desired computation, such as pattern recoding or memory storage and retrieval. Feedforward
networks (see Bishop, 1995, for an introduction) and Hopfield networks (see Amit, 1989,
for an introduction) are two classes of artificial neural networks that are commonly used for
modeling hippocampal function.

Feedforward networks have an input layer of units, possibly several intermediate (so called
hidden) layers, and an output layer. As the name indicates connections only go from earlier
layers to later layers. Thus the network has no particular dynamics but simply computes
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an output based on an input. It is therefore equivalent to a mathematical function with
vectors as an input and vectors as an output. Feedforward networks are usually trained in a
supervised fashion, which means that the network gets told explicitly what output it should
generate for a given input. Thus the training patterns are actually input-output pairs, for
each input there is a desired output and the training procedure is designed such that the
difference between desired output and actual output is minimized.

Hopfield networks are very different. Every computational unit serves as an input as well as
an output unit and, in its simplest form, can only assume the values 0 or 1. All units are
reciprocally connected, so that the network has a highly recurrent connectivity. Since each
unit has an influence on every other unit, such a network can have quite a complex dynamics.
However, it is typically designed such that after some time the network activity settles in a
stable state (a certain combination of zeros and ones) and stays there. Training a Hopfield
network means choosing the connection weights such that the stable states the network can
settle in correspond to a given set of desired patterns. These are the stored patterns. If
one initializes the activity of the network with a corrupted version of a stored pattern, the
dynamics of the network will typically arrive at the stable state that corresponds to the
uncorrupted pattern. This effect is known as auto-association and is the main advantage of
a Hopfield network.

3.2 Catastrophic interference

Due to the distributed nature of the computation performed in a neural network, learning
a new pattern typically requires to change all weights. This poses a problem. Assume
the weights have been trained for input pattern a, so that the network behaves as desired.
Then training pattern b is given and all weights change to be optimal for input b. This
will typically degrade the performance on pattern a. If a third pattern c is learned, the
performance on a will degrade even further and very quickly pattern a will be forgotten
completely. This effect can be quite dramatic and is referred to as catastrophic interference
(McCloskey & Cohen, 1989, cited in McClelland et al., 1995).

In feedforward networks the problem of catastrophic interference is typically solved by
interleaved training, which means that patterns a, b, and c in the example above are
presented repeatedly in an interleaved fashion, like abcabcabcabc or more irregularly
abbcbaaccbacccaabacbb, with a relatively small learning rate, which makes the weights
change only little per pattern presentation. The patterns are therefore effectively learned si-
multaneously and no pattern dominates another one. Interleaved learning, however, requires
that all training patterns are available all the time. A sequence like aaaabbbbcccc would
not work.

One way to avoid catastrophic interference in a feedforward network even if the training
sequence is of the form aaaabbbbcccc is to use a dual network (e.g. Ans & Rousset,
1997; French, 1997). Such an architecture takes advantage of the fact that some networks
can spontaneously reproduce patterns that they have learned earlier. In a dual network two
such networks are coupled and (partially) train each other. Assume both networks have
learned pattern a already. During training of the next pattern, b, network 1 is trained and
network 2 is used to generate samples of previously learned patterns for network 1, in this
case a2, where the index 2 indicates that a2 is not an original training pattern but one that
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has been spontaneously reproduced by network 2. Thus network 1 may receive the training
sequence a2ba2a2ba2bba2. If no training of new patterns happens, network 1 generates
training patterns for network 2, in this case something like a1b1b1a1a1b1a1a1b1, with index 1
indicating that the patterns have been generated by network 1. Next network 1 learns new
pattern c and is trained with a sequence like a2b2cb2ca2b2b2ca2b2ca2. Then network 2 is
updated again and trained with a sequence like a1b1a1c1b1c1c1a1c1a1b1c1. Thus networks 1
and 2 train each other in turns by interleaved training and new patterns enter network 1.
None of the networks has the problem of catastrophic interference. However, even in this
architecture there may be some degradation of learned patterns in the course of learning
new patterns, because after the initial learning of a new pattern the stabilization is always
done with a spontaneously reproduced version of it, which may be somewhat corrupted.

Hopfield networks solve the problem of catastrophic interference very differently. They can
be easily setup in such a way that orthogonal patterns, i.e. patterns that are uncorrelated,
do not interfere with each other at all. Thus if a set of patterns has to be stored in a Hopfield
network, it is good to first encode them such that the transformed patterns are orthogonal
to each other. They can then be stored without any interference. Of course, one has to also
memorize the encoding and in addition the encoding must be invertible, otherwise one could
not retrieve patterns from the memory anymore.

One way to make patterns orthogonal is to generate a very sparse representation of them
(Bentz et al., 1989). This means that they are encoded such that only few units are
significantly active at a time. If only very few units are active, there is a good chance
that two different patterns have no active units in common and are therefore orthogonal.
This technique might require to increase the number of units for representing the patterns,
though. To compensate for this increase one can compress the patterns first, so that irrelevant
dimensions are eliminated and only relevant dimensions are represented.

Even with a sparse representation of the patterns, if there are more and more patterns stored
in the Hopfield network, at some point the capacity will be exhausted, and new patterns
will interfere with old ones. This effect again can be quite dramatic, so that all in a sudden
none of the patterns can be retrieved anymore, even those that have been stored recently.
Measures can be taken to avoid also this type of catastrophic interference, at least to some
extent. For example with the learning of each new pattern all previous weights could be
decreased a little bit, so that old patterns are gradually forgotten and make room for new
patterns.

When discussing the problem of catastrophic interference, which results from the distributed
representation in neural networks, one should not forget the advantages that distributed rep-
resentations provide. For instance, they are much more robust with respect to damage like
the loss of units or connections, a property known as graceful degradation. More impor-
tantly, feed forward networks can generalize. Only a limited number of training patterns can
be learned exactly. As the number of training patterns increases and the network cannot
memorize all of them individually, the network has to find an input-output function that
is a compromise and provides a reasonably good performance on all training patterns. In
finding this compromise the network discovers and employs regularities in the data which
results in the nice effect that the network will generate reasonable responses also for new
patterns never seen before. This property is referred to as generalization.

The problem of catastrophic interference is somewhat related to the stability-plasticity dilem-
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ma (Carpenter & Grossberg, 1987, cited in Gerstner & Kistler, 2002). The latter
refers to the problem of setting the right learning rate. If the rate is too low the network
cannot learn new patterns; if the rate is too high the network can learn new patterns well,
but old patterns are forgotten quickly, catastrophic interference occurs.

Catastrophic interference is very distinct from the bias-variance dilemma (Geman et al.,
1992), which refers to the problem of choosing the right network complexity (does not apply
to Hopfield networks). If the network is too simple (large bias case) it will not even be able
to represent the training patterns well and will produce a large error; if it is too complex
(large variance case) it can memorize all training patterns individually and does not need to
discover regularities, thus it will not generalize well.

4 A model of hippocampal function

In our considerations we adopt a standard model of hippocampal function as proposed and
discussed previously (Treves & Rolls, 1994; McClelland et al., 1995) and summa-
rized in this section.

We have seen above that neural networks tend to have the problem of catastrophic interfer-
ence and that measures have to be taken to avoid it. It is clear that the cortex is neither
simply a feedforward network nor a Hopfield network. However, conceptually it shares im-
portant properties with artificial neural networks and will most likely have the same problem
of catastrophic interference. If in particular we have in mind its ability to learn from exam-
ples by exploiting their regularities and thereby generalizing to new situations, we see that it
would be useful to store examples temporarily and permit the cortex to perform some variant
of interleaved training. The function as a temporary storage of patterns is usually assigned
to the hippocampus with the entorhinal cortex serving as an interface between cortex and
hippocampus.

Simply storing input patterns can be done in a Hopfield network. Characteristic for a Hop-
field network is its highly recurrent connectivity. This fits well to the recurrent connectivity
in the CA3 region of the hippocampus, and it is mainly for this reason that CA3 is often
considered the actual site of storage in the hippocampus.

We have seen above that a Hopfield network has two versions of the catastrophic-interference
problem. The first can be solved by making the input patterns orthogonal, which can, for
instance, be done by generating a sparse representation. This role is usually assigned to the
dentate gyrus for two reasons. Firstly, it provides the main input to CA3 and secondly it
has a very sparse activity.

In order to use the CA3 memory efficiently, it is assumed that dentate gyrus must also learn
to select the important dimensions of the patterns and discard others that are redundant,
thereby performing a lossy compression.

There are different views on whether CA3 also suffers from the second version of the problem
of catastrophic interference. Theoretically, it is simply a question of capacity. Either one
assumes that CA3 has sufficient capacity for lifelong storage of patterns, then there is no
interference problem due to an exhausted capacity, or the capacity is not sufficient, then the
measures described above have to be taken, so that old patterns are gradually forgotten to
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make room for new patterns. This issue does not effect our ideas about the functional role
of neurogenesis much, so we will not discuss it further.

If one wants to retrieve the encoded patterns in CA3, one also needs a decoding network.
This role is commonly assigned to CA1 (and the subiculum), mainly for the reason that there
are strong connections from CA3 via CA1 and subiculum back to the entorhinal cortex, which
is thought to be the interface between cortex and hippocampus.

In summary we have the following picture. The hippocampus serves as a temporary (or
even permanent) storage that can store new patterns quickly. CA3 serves as the actual
storage site and works like a Hopfield network. Dentate gyrus performs an encoding of the
patterns to make them suitable for storage. This includes compression and sparsification.
CA1 and subiculum perform a decoding of patterns retrieved from CA3. The entorhinal
cortex serves as an interface between hippocampus and cortex. In the following, patterns
of activity arriving at the entorhinal cortex will be indicated by x; patterns encoded by the
dentate gyrus and possibly stored in CA3 will be indicated by x′; encoded and possibly stored
patterns decoded again by CA1 and subiculum and sent back to the entorhinal cortex will
be indicated by x′′. In general x′′ should be similar to x for successful retrieval of patterns
from CA3. When we refer to specific environments the animal lives in, we will use a and b
instead of x.

There are a number of important issue we do not consider in this paper, such as the processing
of temporal pattern sequences, the details of the storage and retrieval process, the function of
the various oscillations one finds in the hippocampus, and the consequences of having spike
trains instead of graded responses. However, we believe that these issues do not interfere
too much with the issue of neurogenesis the way addressed here.

5 Why new neurons?

What might be the role of new neurons in the dentate gyrus in the overall framework given
above? Why are they generated only in the dentate gyrus and not in CA3 or CA1? Why is
it sufficient to add only about 30% new neurons over the whole lifetime? Why should adult
neurogenesis be regulated by activity or richness of the environment?

5.1 Avoiding catastrophic interference in the dentate gyrus with
new neurons

In the framework presented above, the dentate gyrus has the role of encoding input patterns
coming from entorhinal cortex such that they can be efficiently stored in CA3. This includes
sparsification and compression. The optimal encoding depends, of course, on the distribution
of the input patterns or, in other words, on the environment the animal lives in. When the
environment changes, the encoding should change, too, to guarantee an optimal encoding
and efficient storage of new patterns.

However this adaptation of the dentate gyrus to the environment conflicts with the require-
ment that also older patterns should be retrievable from CA3. Imagine an animal lives in
environment A for a while and has its dentate gyrus fully adapted to the distribution of
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stimuli it encounters in A. Consider one stimulus that gives rise to pattern a in the en-
torhinal cortex. This pattern is encoded by the dentate gyrus to produce pattern a′ suitable
for storage in CA3. Now imagine the animal moves to environment B with a different dis-
tribution of stimuli. Again dentate gyrus should adapt to perform an optimal encoding of
patterns b in this new environment. However, after adaptation the old pattern a will be
encoded differently and produce a pattern of activity a′new that differs significantly from the
originally stored pattern a′, thereby making it impossible to retrieve pattern a from CA3.

Thus we see that the dentate gyrus also has the problem of catastrophic interference. As it
adapts to a new environment, the encoding learned in the preceding environment gets lost
quickly. The solution of interleaved training cannot be applied, because the animal does not
have arbitrary access to the different stimuli to generate an interleaved stimulus sequence
nor does the hippocampus have an intermediate buffer, which in any case would have the
same problem of catastrophic interference again. Thus, the dentate gyrus must have another
strategy to be able to adapt to a new environment without forgetting the encoding learned
in the old environment.

Our hypothesis is that the problem of catastrophic interference in the dentate gyrus can
be avoided by extending the encoding by adding new neurons instead of changing it by
modifying existing synaptic weights; old neurons and their synaptic weights are fixed and
preserve the old code while new neurons are added and provide those features that are
novel. In Section 6 it will be shown with a computational model that this is indeed a
possible strategy to avoid catastrophic interference.

5.2 Why no new neurons in CA3 and CA1?

If the dentate gyrus has the problem of catastrophic interference and can solve it by adding
new neurons, wouldn’t neurogenesis also be helpful in CA3 and CA1?

If we take a Hopfield network as a good model of CA3, then it is clear it does not have the
problem of catastrophic interference in the same way as the dentate gyrus. Adding a few
new neurons in a Hopfield network would neither help much in making patterns orthogonal
nor would it increase the capacity significantly. Therefore neurogenesis does not seem a good
strategy in CA3.

The situation is different in CA1. Dentate gyrus and CA1 are complementary networks.
One performs the encoding; the other performs the decoding approximately inverting the
encoding. It is indeed the case that, due to the close relationship between en- and decoding,
CA1 has the problem of catastrophic interference to the same extent as the dentate gyrus.
However, for exactly this reason it is sufficient to solve the problem in the dentate gyrus
alone. If the encoding is stabilized, the optimal decoding learned by CA1 is stabilized as
well. Therefore no new neurons are necessary in CA1. Thus we assume that while dentate
gyrus employs new neurons to avoid catastrophic interference, CA1 will simply always adapt
such that it optimally inverts the encoding performed by dentate gyrus.

In the model simulation in Section 6 we will see that this argument is not quite as straight
forward as it appears here, because the optimal decoding depends not only on the encoding
but also on the pattern statistics. But we will also see that it is basically valid in the case
of neurogenesis. On the other hand, if one really wanted to employ new neurons in CA1
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as well, it might be difficult to coordinate the learning in DG and CA1, for instance the
new CA1 might need to ’know’ which DG-neurons are old (fixed) and which ones are new
(plastic) in order to take advantage of the new neurons in CA1, something that does not
seem feasible.

5.3 Why are 30% enough?

In a naive view one could argue that new neurons have to be added whenever new stimuli
occur and have to be stored. Thus the number of neurons should increase linearly with the
number of stored patterns. It is clear that 30% new neurons added over the whole lifetime
it too little to support this view.is

To understand why 30% might actually be sufficient it is important to make a distinction
between new and novel stimuli. A new stimulus, in our view, is a stimulus that has not
occurred before but is made up of features that are all known, much like a new word might
occur in text, not seen before but made up of letters that are all known. A novel stimulus,
in contrast, is not only new but also contains features not encountered before, much like
a Chinese character would be novel to people used to Latin characters. We assume that
a new stimulus can be represented without difficulty with the existing code, while a novel
stimulus actually requires an extension of the code to represent the novel features. It seems
reasonable to assume that new stimuli occur with almost constant rate throughout life while
novel stimuli occur primarily early in life or if the environment changes significantly. Thus
overall 30% new neurons might be sufficient to account for novel stimuli occuring after the
early phase of life.

5.4 How is adult neurogenesis regulated?

New neurons are generated in the dentate gyrus all the time. Some of these neurons are
integrated in the DG-network and become functional, but most of them are not used but
removed through apoptosis (cell death). Both processes, the generation of new neurons and
the integration, are regulated and depend on behavioral parameters.

One problem of this regulation are the different time scales. Since the generation and inte-
gration of new neurons takes weeks, the animal cannot start generating new neurons when
they are needed. It must have some of them in stock all the time; the greater the chance of
encountering novel stimuli the more of the new neurons in stock are needed.

This problem of different time scales and delay might explain two observations. Firstly,
if we assume that new neurons not integrated in the network cannot be maintained for a
long time, it is clear that new neurons must be generated all the time and most of them
are removed again just to have some available quickly when needed. Secondly, in order
not to waste too many resources on the generation of new neurons, neurogenesis should be
regulated depending on what the expectancy of the occurrence of novel stimuli is. However,
since the generation of new neurons is such a slow process, the prediction of the occurrence
of novel stimuli is fairly unreliable in any case which makes unspecific indicators such as
simply physical activity a reasonable predictor.
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6 A simple computational model of neurogenesis in the

dentate gyrus

6.1 Methods

Network architecture

As a first step, we have decided to model the encoding and decoding performed by dentate
gyrus and CA1, respectively, with a linear autoencoder network; see Figure 1. Such a network
consists of an input layer, a smaller hidden layer, and an output layer that has as many units
as the input layer. We identify the input layer with layer II of the entorhinal cortex (EC-II),
the hidden layer with the dentate gyrus (DG), and the output layer with layers V/VI of
the entorhinal cortex (EC-V/VI). For storage and retrieval experiments we take the hidden
layer also as a representation of CA3, implicitly making the simplifying assumption of a
one-to-one connectivity between DG and CA3. We do not have a layer representing the CA1
region, but the mapping realized by the connectivity from the hidden to the output layer is
interpreted as the decoding performed by CA1. One could extend the model by inserting
two additional layers between the hidden and the output layer, one for CA3 and one for CA1
(possibly plus one more for the subiculum). But in this first step we keep the network as
simple as possible and consider just one hidden layer representing the dentate gyrus and in
some cases also the CA3 region.

x

x’

x’’

DG / CA3

CA1 / Subiculum

EC−II

EC−V/VI

Figure 1: Architecture of the linear autoencoder network. The input and output
layer represent layer II and layers V/VI of the entorhinal cortex, respectively. The hidden
layer represents the dentate gyrus and in the retrieval experiments also CA3. CA1 and
subiculum are not represented explicitly but summarized in the hidden-to-output-layer con-
nections. The whole network is linear. In the simulations input and output layer each had
60 units and the hidden layer had 15 units plus 5 units due to neurogenesis.

Since we will consider a number of different test scenarios, we need a concise notation of
network architecture and training procedure. The number of units in each layer will be
denoted by lowercase letters and little triangles pointing from one layer to the next will
denote the direction of connectivity. Thus n . m . n indicates a network with n input units,
m hidden units, and n output units. As mentioned above, an autoencoder network has
always the same number of units in the input and output layer. The hidden layer may
undergo neurogenesis in which case the network may change from n.m.n to n. (m+ l).n,
where l is the number of added units. This basic notation will be extended below to include
information about the training procedure.
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Network computation

The input layer represents the input patterns and does not perform any computation. The
hidden layer performs an encoding and the output layer performs a decoding. Both layers are
linear, and so is the whole network, since a combination of linear functions is also linear. The
name ’autoencoder network’ indicates that the task of the network is simply to reproduce
its input in the output layer. However, since the hidden layer has fewer units than the input
and output layer, the network has a bottleneck, which enforces a dimensionality reduction
and therefore a compression from the input to the output layer. Compression is one of
the hypothesized functions of the dentate gyrus that is captured by the model. We do not
consider sparsification, since this is a nonlinear operation, which is not within the scope of
the model. Such a model may seem ridiculously simple, but we will see that it provides some
interesting insights into the possible role of adult neurogenesis. The simplicity is actually a
great advantage, because it permits an analytical treatment of the network (see Appendix A).

Now consider an input vector x representing the pattern of activity in EC-II. We have argued
above that it will be propagated through dentate gyrus, CA3, CA1, and subiculum back to
layers V/VI of EC (EC-V/VI) and will, on its way, undergo several transformations. In our
simplified model, we just have two of these stages, the hidden layer corresponds to dentate
gyrus and the output layer corresponds to the reconstruction of the pattern in EC-V/VI.
The representation of input vector x in the hidden layer (dentate gyrus) will be referred to
as x′; the reconstruction in entorhinal cortex will be referred to as x′′.

Figure 2 illustrates optimal en- and decoding for a given data distribution. It is known from
principal component analysis that the encoding subspace as well as the decoding subspace
should ideally lie in the direction of maximal variance (with identical orientation, of course)
(see Appendix A.2).

However, how should the decoding be done if the encoding was not optimal? Figure 3 illus-
trates that neither the original direction of encoding nor the direction of maximal variance
are optimal. A direction in between these two cases is actually optimal including some scal-
ing. If the data distribution is more spherical with similar variance in all directions then the
optimal decoding should lie close to the direction of the encoding; if the data distribution
is more elongated then the optimal decoding should lie close to the direction of maximal
variance (see Rasch, 2003, and Appendix A.4).

Finally, as Figure 4 illustrates, if the encoding is optimal, but the decoding is random, the
recoding error is large. It is often actually greater than if one would not decode anything,
i.e. set all output vectors to zero. Thus, no decoding is better than random decoding.

Network adaptation

We assume the animal lives in two different environments, which we denote by uppercase
letters A and B. Within these environments the animal encounters different stimulus sit-
uations (or events), which give rise to different patterns of activity in EC-II representing
the stimulus situation. Such patterns will be denoted by vectors a and b (instead of x) for
the environments A and B, respectively. The distribution of stimulus situations depends, of
course, on the environment. We model this by drawing the input vectors a and b from two
different multidimensional Gaussian distributions. The distributions in the different envi-
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Figure 2: Optimal recoding. Illustration of the computation performed by an autoen-
coder network with two input and output units and just one unit in the hidden layer, i.e. with
the architecture 2.1.2. Left: The stimuli are represented by points x in a two-dimensional
space X; the gray ellipse indicates the distribution of data points (stimuli) and three points
are shown explicitly. During encoding, the two-dimensional distribution of points has to be
reduced to a one-dimensional distribution, since there is only one unit in the hidden layer.
In the linear case this corresponds to a projection (indicated by the arrows) onto a line
(neglecting any scaling for simplicity and without loss of generality). In this example the
line lies in the direction of maximal variance of the distribution, which is the optimal choice
in order to minimize the reconstruction error. Middle: In the hidden layer, the stimuli
are now points x′ in a lower-dimensional space X ′, thus some information is lost. In this
example X ′ is only one-dimensional. Right: In order to obtain a reconstruction of the
original high-dimensional data points, the data points x′ of the space X ′ are embedded in a
high-dimensional space X ′′ which can be identified with the original space X. In this case
the optimal direction of embedding is again in the direction of maximal variance of the data
distribution. The recoding error made by the transformation from x to x′′ is indicated by
the thin solid lines (red).

X X’’=XX’

x

x’

x’’

Figure 3: Optimal decoding given random encoding. If the encoding is suboptimal,
i.e. the subspace to project onto does not lie in the direction of maximal variance, the optimal
decoding is neither in the direction of the original encoding nor in the direction of maximal
variance but somewhere in between.

ronments differ only in their orientation in space. Thus, the distribution in environment B is
a rotated version of the distribution in environment A. Mathematically this means that the
eigenvalues of the covariance matrices are identical. Figure 5 illustrates data distributions
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Figure 4: Random decoding given optimal encoding. If the encoding is optimal but
the decoding is random, the recoding error can be greater than if all output vectors would
simply be set to zero.

of the two different environments and shows the eigenvalues of the actual distributions used
in the simulation experiments.
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Figure 5: Distribution of stimulus vectors a and b in environments A and B.
Left: Schematic drawing of the two distributions. They differ only in their orientation in
space but not in any other statistical characteristics. Right: Eigenvalues of the covariance
matrices of the stimulus distributions in environments A and B. They correspond to the
variances along the principal components of the distributions. The graph illustrates that
out of the 60 principal components of the stimulus vectors the first 15 carry most of the
variance. The other 45 are interpreted as noise.

Since the input layer only serves as a representation of the input and does not perform any
computation, it is only the hidden layer and the output layer that can adapt to a particular
environment. This will be denoted by subscripts to the indices of the number of units per
layer. n . mA . nA, for instance, indicates that the hidden layer as well as the output layer
are optimally adapted to environment A. We assume that units in the hidden layer always
adapt jointly with the output layer. Units in the output layer, however, can adapt with the
connections from the input to the hidden units fixed. Assume the animal with a network
adapted to environment A, i.e. n .mA . nA, moves to environment B. One can imagine that
the hidden layer does not adapt but the output layer does. The result would be a network
with a hidden layer adapted to environment A and an output layer adapted to B given a
hidden layer adapted to environment A. Such a network is denoted by n . mA . nB. Note
that the adaptation of the output layer to environment B depends on the hidden layer, so
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that the networks n . mA . nB and n . mB . nB actually have different output layers. In our
context it is particularly interesting to consider a situation where we add some neurons to the
hidden layer when the animal has moved to environment B which would result in the network
architecture n . (mA + lB) . nB. The hidden layer now contains m old units still adapted
to A and l new units adapted to B. The output layer is fully adapted to environment B
given the hidden layer with the (mA + lB) units. In the results presented here we always
impose the constraint that weight vectors of different hidden units are normalized to one
and orthogonal to each other, i.e. maximally different.

Storage and retrieval

Although our model does not include an explicit CA3 layer, we can still address the question
of how well patterns can be stored and retrieved under different scenarios. We assume the
role of a CA3 layer would only be to store patterns coming from the dentate gyrus and later
recall them. Thus patterns in CA3 would be identical to those coming from the dentate
gyrus, which is the reason why we do not need to represent CA3 by an extra layer. Consider
the network n . mA . nA. Given an input vector a this network would produce a hidden
vector a′ and an output vector a′′. The hidden vector would be stored, which we denote
with a′2, the square indicating the storage process. Obviously a′2 = a′.

In a later stage the network may have changed, let say it has adapted to environment B, so
that it has changed to n . mB . nB. The question now is how well the original pattern a is
reconstructed when the stored pattern a′2 is retrieved from CA3. We probe that by decoding
pattern a′2 with the new output layer of network n . mB . nB. The decoded stored pattern
is denoted by a′′2. In other words, a′′2 results from encoding a with network n . mA . nA and
decoding it with network n . mB . nB.

In case of neurogenesis, the number of units in the hidden layer changes. For instance the
network may first be n . mA . nA in environment A and then change to n . (mA + lB) . nB

in environment B. Since the stored vector a′2 has only m components, it does not have the
right size to be decoded by the second network. We solve this problem by simply adding
the required number of components and setting them to zero. For instance, if m = 3 and
l = 2 the hidden vector stored by the first network might be a′2 = (0.3,−0.2, 0.4)T and
before decoding it with the second network it would be extended by two zeros to become
a′2 = (0.3,−0.2, 0.4, 0, 0)T . The latter can be used for decoding by the second network to
produce a′′2.

Performance measures

To assess the performance of the autoencoder network we determine two kinds of reconstruc-
tion errors. Firstly, we are interested in how well the patterns in EC-II are reconstructed
in EC-V/VI and how large the error is due to the recoding. Thus, we compare the input
vector a with the output vector a′′ and call the mean squared difference the recoding error.
Secondly, we are interested in how well patterns stored in CA3 can be reconstructed when
they are retrieved (spontaneously or by a cue). The corresponding error is called the retrieval
error. To get reliable measures we average over a great number of input vectors indicated
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by angle-brackets 〈·〉.

recoding error: E :=
〈
|a− a′′|2

〉
(1)

retrieval error: E2 :=
〈
|a− a′′2|2

〉
(2)

We will also consider the recoding error for patterns b.

6.2 Results

Assume our model animal first lives in environment A, then it moves to a new environment B,
and finally it returns to the old environment A. For best performance in this setting the
autoencoder network should adapt somehow to the different pattern statistics of the two
environments. In this section we consider three different adaptation strategies, which are
illustrated in Figure 6. In all three cases the decoding part of the network (hidden-to-output-
layer connections) always fully adapts to the current environment to minimize the recoding
error. The encoding part (input-to-hidden-layer connections), however, may have one of the
following three strategies:

(a) No DG-adaptation: In this strategy (Fig. 6 left) we assume there is something like a
critical period in which the animal adapts to environment A. After that no adaptation
takes place in the encoder part of the network anymore, so that the encoder does not
change when the animal moves to environment B. The hidden layer has 20 units.

(b) Neurogenesis: In this strategy (Fig. 6 middle) the network starts with a few units
in the hidden layer and new units are added as required. Only the most recent hidden
units adapt to a new environment to account for those feature dimensions that are not
yet well represented. Here we start with 15 hidden units that adapt to environment A
and add five new units after the animal has moved to environment B.

(c) Full adaptation: In this strategy (Fig. 6 right) all neurons always fully adapt to the
current environment, first A then B. The hidden layer has 20 units.

Note that even though the decoding part of the network always fully adapts to environment B
after the animal has moved there, this does not mean that the decoding part is identical for
the three different strategies. The reason is that the optimal decoding, of course, depends
on the encoding, and since the encoding depends on the strategy, the optimal decoding will
do as well. Furthermore, the optimal decoding also depends on the statistics of the patterns,
so that it can be different even if the encoding is identical.

To assess the performance of the system we will consider five different errors. The first
two are determined for the network adapted to environment A and the other three for the
network adapted to environment B.

(A) Network adapted to environment A.

(i) Recoding error A: When adapted to environment A the recoding error of patterns
a, i.e. 〈|a− a′′|2〉, should obviously be small. The retrieval error for patterns a should
also be small, but since the network has not changed yet, the retrieval error is the same
as the recoding error and is not considered separately.
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Figure 6: Three different adaptation strategies. Assume the animal first lives in
environment A (top row) and then moves to environment B (bottom row). In either case we
assume that the output layer, i.e. CA1/subiculum/entorhinal cortex, fully adapts to the new
environment. For the hidden layer, i.e. the dentate gyrus, consider three different adaptation
strategies (connections adapted to environment A and B are drawn as solid (green) and
dashed (blue) lines, respectively). Left (no DG-adaptation): Once the hidden layer has
adapted to an environment (A) its weights are fixed and no adaption to a new environment
occurs. This corresponds to a transition from n. (m+ l)A .nA to n. (m+ l)A .nB. Middle
(neurogenesis): Those units in the hidden layer that have adapted to an environment
(A) are fixed, but new units are added that can adapt to the new environment (B). This
corresponds to a transition from n.mA .nA to n.(mA + lB).nB. Right (full adaptation):
The hidden layer always fully adapts to the current environment (A or B). This corresponds
to a transition from n. (m+ l)A .nA to n. (m+ l)B .nB. On the very right the five different
errors are indicated that are of interest in our scenarios.

(ii) Recoding error B: When the animal has just moved to environment B it did not
have the time yet to adapt to the new environment but ideally the recoding error for
patterns b, i.e. 〈|b− b′′|2〉, should already be small right from the beginning. However,
we will find that this is generally not the case in our simulations.

(B) Network adapted to environment B.

(iii) Recoding error B: Of course, performance improves with adaptation, so we are also
interested in the recoding error for patterns b, i.e. 〈|b− b′′|2〉, after the network has
adapted to environment B.

(iv) Retrieval error A: Next we ask how well the animal can retrieve memories that it
has stored earlier in environment A. This is the retrieval error 〈|a− a′′2|2〉.

(v) Recoding error A: Finally we want to look at the performance of the animal when
it returns to environment A but does not have the time to newly adapt to it. This is
measured by the recoding error 〈|a− a′′|2〉.
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Note that in (i) and (v) as well as in (ii) and (iii) the same recoding errors are computed,
but that the values will differ because the network has changed due to adaptation.

Table 1 lists the five different errors for the three different adaptation strategies described
above. As one would expect, if a network is fully adapted to environment A, recoding
error A (i) is small and recoding error B (ii) is large. Furthermore, performance is obviously
better if the network has more units in the hidden layer; compare (a, c) with (b). In fact
the error would go down to zero if the network had as many hidden units as input or output
units, because then no dimensions would be lost in the hidden layer.

(a) (b) (c)
no DG-adaptation neurogenesis full adaptation

(A)
network

adapted to
environment A

n . (m + l)A . nA n . mA . nA n . (m + l)A . nA

(i)
recoding error A〈

|a− a′′|2
〉 0.30 0.33 0.30

(ii)
recoding error B〈

|b− b′′|2
〉 0.67 0.75 0.67

(B)
network

adapted to
environment B

n . (m + l)A . nB n. (mA + lB).nB n . (m + l)B . nB

(iii)
recoding error B〈

|b− b′′|2
〉 0.44 0.36 0.30

(iv)
retrieval error A〈

|a− a′′2|2
〉 0.61 0.45 1.69

(v)
recoding error A〈

|a− a′′|2
〉 0.61 0.41 0.67

Table 1: Five different errors (i–v) for three different adaptation strategies (a–
c); see text for details. An error value of 0 would indicate no error, i.e. perfect recoding or
retrieval, and a value of 1 would be obtained if a network would always return a zero vector,
i.e. if it would not do anything. Thus a value greater 1 indicates that the network produces
misleading outputs. Each error is an average over 5000 simulation runs with randomly
rotated data distributions; standard deviations were between 0 and 0.05. Rows (iv, v)
show that neurogenesis (b) indeed avoids the problem of catastrophic interference with still
reasonable performance in cases (i, iii). None of the networks performs well in case (ii).
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With adaptation to environment B, the performance on patters b improves, of course; com-
pare recoding error B before (ii) and after (iii) adaptation. The more complete the adaptation
the better the performance, thus no adaptation (a) is worst and full adaptation (c) is best;
neurogenesis (b) lies in between. In the no-adaptation case (a) the encoding learned for en-
vironment A is actually random with respect to the distribution of patterns b, because the
distributions in the two environments are randomly rotated relative to each other. Thus this
case (a-iii) corresponds to the situation of random encoding and optimal decoding illustrated
in Figure 3.

So far the results were as one would expect. The interesting question now is how the networks
adapted to environment B perform on patterns a; see (iv, v). With no DG-adaptation (a)
performance degrades significantly due to catastrophic interference within the decoding part
of the network; compare (iv, v) with (i). Recoding and retrieval error are identical, because
the encoding part of the network has not changed. Note that in this case decoding changes
even though encoding is fixed, because the pattern statistics to optimize for changes. Thus of the

input has
changed

stabilizing the encoding does not necessarily stabilize the optimal decoding as was argued
in Section 5. But see below and Figure 7 for why the argument basically holds in the
neurogenesis case.

With full adaptation (c), the effect of catastrophic interference is even more severe. The
recoding error A (v) increases to the level of the recoding error B (ii) of the network adapted
to environment A, which is clear for symmetry reasons. The retrieval error A even increases
beyond the value of 1, indicating that the reconstructed output is not only not helpful but
even misleading. The reason for this is that the representation of the hidden layer has
changed completely, so that the stored patterns a′2 cannot be interpreted anymore. The
network effectively hallucinates random output patterns, which leads to the large retrieval
error. This is equivalent to the case of optimal encoding and random decoding discussed in
Figure 4.

With neurogenesis (b), the network can largely avoid the effect of catastrophic interference
and achieves a performance that is better than that of the two other strategies.

Figure 7 illustrates catastrophic interference and how neurogenesis can avoid it. If the final
number of units is limited, the idea is that instead of wasting the units early on to represent
also the low-variance directions of distribution A, one starts with fewer units and adds
new units later to represent high-variance directions of distribution B without the effect of
catastrophic interference.

7 Discussion

7.1 Hypothesis and model

In this paper we have addressed the question of what the functional role of adult neurogenesis
in the dentate gyrus is. As a basis for our discussion we have adopted one of the standard
models of hippocampal function (Sec. 4) based on concepts from neural network theory
(Sec. 3). In this model the dentate gyrus serves as an encoder, the CA3-region as a memory,
and the CA1/subiculum-system as a decoder. We assume that the dentate gyrus, like most
neural systems, suffers from the problem of catastrophic interference when adapting to new
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Figure 7: Effect of catastrophic interference in the no-DG-adaptation scenario
and how the problem is avoided by neurogenesis. See next page for figure caption.
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Figure 7: Effect of catastrophic interference in the no-DG-adaptation scenario
and how the problem is avoided by neurogenesis. In contrast to previous figures, the
2D-plots represent a suitable two-dimensional projection of a high-dimensional space of input
(and output) vectors. Otherwise, the figure uses the same conventions as Figure 2. In the
top row the two networks are adapted to environment A and recoding error A is considered;
in the middle and bottom row they are adapted to B and the recoding errors A and B,
respectively, are considered. No DG-adaptation, Panel (a-i): In the network adapted
to environment A the encoding as well as the decoding is optimal for input vectors a taken
from distribution A. The recoding error A is correspondingly low (right). Panel (a-iii):
If the encoding is fixed and no new units can be added (no DG-adaptation), the network
can only optimize the decoding to environment B (right). This corresponds to the case
of random encoding and optimal decoding already illustrated in Figure 3. The network
reduces the recoding error by misusing the encoding dimension (left) optimized for A to
represent the high-variance direction of distribution B (right). Panel (a-v): Now that the
decoding is optimized for B the decoding of vectors a is poor (right) and the recoding error A
correspondingly large. Neurogenesis, Panel (b-i): In these 2D-plots the initial network in
the neurogenesis scenario looks identical to that in the no-DG-adaptation scenario. However,
note that the number of hidden units is smaller, so that there are some dimensions (with
low variance in distribution A) not shown here that are less well represented than in the
no-DG-adaptation scenario. Panel (b-iii): The old hidden units are fixed, like in the no-
DG-adaptation scenario, but the network can add new hidden units (only one is shown here),
which adapt to environment B. Thus the encoding gets extended by dimensions that are not
yet represented but have high variance in distribution B (left). This reduces (in this figure
eliminates) the misuse of encoding dimensions optimized for distribution A (right) and also
improves the recoding of vectors b. Panel (b-v): The good decoding of vectors a is largely
preserved (right). In this figure the recoding actually looks perfect, since we now have
two hidden units representing the two plotted dimensions. Other dimensions (with lower
variance) not plotted still suffer from the misuse of encoding dimensions and contribute to
the recoding error, but to a much lesser degree than in the no-DG-adaptation scenario.
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environments. Our basic hypothesis for the role of adult neurogenesis says that new neurons
help the dentate gyrus avoiding the problem of catastrophic interference by keeping the old
neurons, which are adapted to earlier environments, fixed and adding new neurons, which
are more plastic and can code for those aspects that are qualitatively new in the current
environment.

We have used a linear auto-encoder network-model to illustrate and quantify the advantage
new neurons might offer according to our hypothesis. This model is very simple and obviously
neglects many prominent features of the biological system. Nevertheless, it demonstrates and
explains several aspects of our hypothesis and yields some non-trivial insights.

Let us summarize some of the key features of our hypothesis and the network model.

• Our hypothesis requires that old neurons are relatively stable while new neurons are
plastic. This is consistent with physiological findings (see Sec. 2.4).

• The results summarized in Table 1 show that adult neurogenesis can indeed reduce the
effect of catastrophic interference significantly; see rows (iv) and (v) and compare the
neurogenesis strategy (b) with the other two (a, c).

• The results of the no-adaptation strategy show that even if the encoding optimized for
environment A is kept fixed does the performance on patterns a degrade drastically if
the decoding is optimized for environment B. This is a somewhat surprising result and
a consequence of the misuse of high-variance A-dimensions for representing b-patterns,
as illustrated in Figure 7. This misuse is reduced significantly by adding new neurons.

• It is clear theoretically and can also be observed in the simulation results that in the
neurogenesis scenario in order to achieve a small recoding error a large number of new
hidden units is necessary initially, but that fewer new units suffice later. Compare
entry (b-i) with entry (b-iii) in Table 1; the former required 15 new units, the latter
only 5 new units, but both errors are relatively small. Thus the effect of neurogen-
esis accumulates and with increasing age the need for new units decreases, which is
consistent with neuroanatomical observations (see Sec. 2.4).

• According to our hypothesis CA1 always fully adapts to optimize the decoding for the
current environment. We have made this assumption mainly because we did not see
a feasible way of coordinating learning in dentate gyrus and CA1 in a more specific
way. However, the simulations at least partially justify this assumption because in the
neurogenesis case performance is good with full CA1 adaptation, see Table 1. The
strong plasticity observed in CA1 physiologically also seems to be consistent with our
assumption (see Sec. 2.3).

• According to our hypothesis new neurons are only added when the pattern statistics
changes, i.e. it depends on the environment. However, the generation of new neurons
takes too much time to initiate neurogenesis exactly when needed. Instead there must
always be new neurons available that could be used quickly. This is consistent with
the fact that most new neurons are not integrated but die after some time.
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7.2 Comparison with other models

There are a number of artificial neural networks that employ new units (artificial neurons)
as part of their learning strategy. A prominent example in the field of vector quantization
is the adaptive resonance theory (ART) (Carpenter & Grossberg, 1987; Carpenter
et al., 1991). In the ART-network new units are added as new patterns have to be learned
that cannot be well represented by the existing units. This is similar in spirit to the model we
propose, but the representation is very different. In the ART-network a pattern is represented
by a single unit while in our model a pattern is represented with a population code.

Self-organizing maps (SOM) differ from vector quantization networks in that also the topo-
logical neighborhood structure of the units is being represented. SOM-networks that employ
new units have been extensively studied by Fritzke (1994). In his growing cell structures
new units can be added to represent new patterns, much like in the ART-network, or to re-
fine the representation. Again, patterns are represented by single units and not populations
of units.

Vector quantization and self-organizing maps are examples of unsupervised learning tasks.
For feedforward networks supervised learning algorithms are of particular interest. Also for
this class of networks do algorithms exist that successively add new units to improve the
performance (see Bishop, 1995, sec. 9.5, for an overview). The model most closely related to
ours is probably the cascade-correlation learning architecture (Fahlman & Lebiere, 1990).
This architecture is a feedforward network with initially no hidden unit. After having trained
this reduced network, a single hidden unit is added and the whole network trained again with
only new connections of this hidden unit being modified and all old units and connections
kept fixed. Then the first hidden unit is kept fixed, too, and a second hidden unit is added
and trained. This way the network is extended by single hidden units and retrained until
network performance is satisfactory. The resulting network has an unusual structure in
that each hidden unit forms its own hidden layer and most connections skip a number of
hidden layers. Like our model this network learns a distributed representation. The main
difference is that in the cascade-correlation network new units are added to improve the
performance on identical training data, while we have considered the problem of extending
a representation to new patterns without catastrophic interference, a problem not addressed
at all by Fahlman & Lebiere (1990).

Cecchi et al. (2001) have proposed a biologically motivated model for neurogenesis in
the olfactory bulb. They used laterally connected inhibitory units to perform an orthogo-
nalization of odor representations. Neurogenesis was assumed to occur at a constant rate
while survival of an inhibitory unit was taken to depend on activity and was highest for
units establishing an inhibitory interaction between correlated units. This way correlations
between output units were reduced and the network converged to a 1-of-N code. This is
an interesting model, although neurogenesis does not seem to be really essential, since the
same effect could probably have been achieved with a fixed number of inhibitory units with
adapting synaptic weights, like in other models that perform pattern orthogonalization.

Deisseroth et al. (2004) have developed a model for neurogenesis in the hippocampus.
Like ours it is a three layer network with the hidden layer showing neurogenesis. However, it
is nonlinear and trained to learn hetero-associations (input and output patterns are different).
The authors make the assumption that there is a turnover of units in the hidden layer, i.e.
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some units die and are replaced by the same number of new units. Such a network tends
to forget old memories more quickly but is able to store new memories without the effect of
catastrophic interference. Insofar the model offers an interesting explanation for the role of
adult neurogenesis. It would be interesting to see, however, whether neurogenesis is really
necessary. The same effect might be more efficiently achieved by some kind of weight decay
as can be done in Hopfield networks (Howard et al., 1987, cited in Amit, 1989). We
also believe that the assumption of a neural turnover in dentate gyrus is not supported by
experimental data but that neurogenesis is rather an accumulative effect (see Sec. 2.4).

7.3 Future perspectives

The model presented here is obviously only a very first step. It illustrates our hypothesis
about the functional role of adult neurogenesis and has the advantage of being simple, which
provides insights that might not be so easily accessible with a more complex model. However,
it neglects a number of important aspects of the hippocampal formation and needs to be
extended in several ways. Let us list only a few important extensions:

• It is entirely unclear what the optimal encoding is the dentate gyrus has to learn.
Compression might be an important part of it, but it is definitely not all. A plausible
additional objective might be sparsification to achieve orthogonalization. This requires
a nonlinear network and will lead to a greater number of units in the dentate-gyrus
layer, more consistent with the neuroanatomy (Sec. 2.1).

• CA3 not only receives input via the dentate gyrus but also directly from entorhinal
cortex. It is an open question how these two very different pathways complement each
other. One hypothesis is that they serve different modes of operation such as write-
in and read-out (Treves & Rolls, 1992); another hypothesis states that they help
learning to predict events (Borisyuk et al., 1999). We will have to reconsider such
hypotheses with respect to neurogenesis and extend the model correspondingly.

• The latter will also require that we model CA3 more explicitly.

• Another interesting direction is to consider how neurogenesis is regulated and how this
depends on the functional requirements.

Finally, we would like to emphasize that the simple model presented here is mainly illustra-
tive. Our hypothesis that adult neurogenesis helps the dentate gyrus to avoid the problem
of catastrophic interference is much more general than that and could be realized with very
different network models.
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A Mathematical model

A.1 Definition of the model

The model considered in this paper is a linear autoencoder network with three layers (Fig. 1).
In- and output layer have n units; the hidden layer has m ≤ n units. Patterns presented to
the network are indicated by n-dimensional vectors x. The resulting m-dimensional vectors
of activity in the hidden layer and the n-dimensional vectors in the output-layer are denoted
by x′ and x′′, respectively. The linear encoding from the input to the hidden layer can be
written as an m×n matrix E and the decoding can be written as an n×m matrix D. Thus,
the activities in the hidden and the output-layer are

x′ := Ex , (3)

x′′ := Dx′ = DEx = Rx , (4)

with R := DE . (5)

The recoding matrix R is an n× n matrix and has been defined for brevity. The goal of the
network is optimal compression in the least-squares sense, i.e. the output patterns should
be as similar to the input patterns as possible as measured by the mean squared Euclidean
distance

E :=
〈
|x− x′′|2

〉
(6)

(4)
=

〈
(x−DEx)T (x−DEx)

〉
, (7)

see equations (1) and (2).

The input patterns x presented to the network are drawn from an n-dimensional multivariate
Gaussian distribution (probability density function) with zero mean, completely character-
ized by its covariance matrix

C := 〈xxT 〉 , (8)

with 〈·〉 indicating averaging over all input patterns. The eigenvalues and eigenvectors of
the covariance matrix, ordered by decreasing eigenvalue, will be indicated by λi and ci,
respectively, with i ∈ 1, ..., n. Eigenvectors are normalized to norm 1. In our simulations
the eigenvalues are chosen such that the total variance is 1. The first 15 eigenvalues follow
an exponential decay, together explaining 2/3 of the total variance, while the remaining ones
have a constant value of 1/135, summing up to the missing 1/3. The first 15 dimensions are
meant to carry the relevant information while the remaining ones are interpreted as noise
(cf. Fig. 5).

A.2 Optimal autoencoder

From principal component analysis (PCA) it is known that an optimal linear encoder-decoder
pair can be obtained by choosing the rows of E and the columns of D to be the first m
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eigenvectors (having largest eigenvalues) of the covariance matrix, i.e.

E? := (c1, ..., cm)T (9)

and D? := (c1, ..., cm) (10)

=⇒ R? = D?E? (11)

=
m∑

i=1

cic
T
i . (12)

R? projects the input patterns into the subspace spanned by the first m eigenvectors.

Equations (9, 10) were used to determine the weights of those networks in Table 1 that are
fully adapted, i.e. networks (A-a, b, c) and (B-c). Also the encoding weights of network (B-a)
and of the old units in network (B-b) are now known, since they are fixed and taken from
the networks adapted to environment A.

For an optimal autoencoder the preserved variance of the data is just the sum over the first
m eigenvalues and the error made is the sum over the remaining (n−m) eigenvalues

E(R?) =
n∑

i=m+1

λi . (13)

Equation (13) yields the recoding errors for the networks fully adapted to a particular
environment. With the known eigenvalues (Sec. A.1) we find that with 15 hidden units
E = 1− 2/3 = 1/3 ≈ 0.33 and with 20 hidden units E = 1− 2/3− 5/135 ≈ 0.30, see row (i)
and entry (c-iii) of Table 1.

A.3 Neurogenesis

Assume that m hidden units have been optimized for environment A according to (9, 10).
How should new units adapt in the neurogenesis case after the animal has moved to envi-
ronment B?

We did not derive a closed form expression for the optimal encoding-weights of the new
units. Instead, in analogy to what we know about the optimal autoencoder, we have chosen
the encoding weight-vectors of the new units (i) to be orthogonal to the weight vectors of the
old units and (ii) to span the space of greatest remaining variance of the pattern distribution
of environment B. In mathematical terms, if E? and D? are the optimal en- and decoders of
the m old units in environment A, then (I−D?E?)b is the component of patterns b from the
new environment orthogonal to the space spanned by the weight vectors of the old units. The
first l eigenvectors of the corresponding covariance matrix 〈(I−D?E?)bbT (I−D?E?)T 〉 are
taken as the weight vectors of the l newly added units. This is the way we have determined
the encoding weights of newly added units in network (B-b).

In Table 2 we also considered the case where the encoding weight-vectors where not con-
strained to be orthogonal to the weight vectors of the old units. In that case they were simply
chosen to be the first eigenvectors of the covariance matrix of patterns b. This strategy is
indicated with the notation l(B∠A) and the standard neurogenesis-strategy with the notation
l(B⊥A). In Table 1 this distinction is not made, but only the standard strategy is considered.
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A.4 Optimal decoder given an arbitrary encoder

Let us now try to determine an optimal decoder D? given an arbitrary encoder E. Without
loss of generality we assume that E has highest rank, because otherwise some of the hidden
units would be redundant and could be discarded without loss of information (although with
loss of robustness). After discarding the redundant units E would have highest rank again
and the following considerations would apply. We also assume that the covariance matrix
C has full rank, again without loss of generality, because if it did not have full rank some
dimensions would have zero variance in the data and could be discarded without loss of
information. The remaining covariance matrix would have full rank. Full rank implies that
C is invertible.

Since C and E are fixed, consider the error only as a function of the decoder, i.e. E = E(D).
By definition

D? := min
D∈R(n,m)

E(D) (14)

(7, 3)
= min

D∈R(n,m)

〈
(x−Dx′)T (x−Dx′)

〉
. (15)

A necessary condition for such a minimum is that the derivative of the error with respect to
the decoder matrix vanishes, i.e.

0
!
=

∂E(D)

∂D

∣∣∣∣
D?

(16)

(7, 3)
=

∂

∂D

〈
(x−Dx′)T (x−Dx′)

〉∣∣∣∣
D?

(17)

=

〈
∂

∂D
(x−Dx′)T (x−Dx′)

∣∣∣∣
D?

〉
(18)

=

〈
∂

∂D

(
xTx− 2xTDx′ + x′

T
DTDx′

)∣∣∣∣
D?

〉
(19)

(since x′TDTx is a scalar and thus

equal to its transpose xTDx′)

=
〈
−2xx′

T
+ 2D?x′x′

T
〉

(20)

(according to the rules of matrix derivatives)
(3)
= −2

〈
xxT

〉
ET + 2D?E

〈
xxT

〉
ET (21)

(8)
= −2CET + 2D?ECET (22)

⇐⇒ D?ECET = CET (23)

⇐⇒ D? = CET
(
ECET

)−1
(24)

(ECET is invertible because C and E have highest rank)

Condition (16) is necessary but not sufficient for a minimum. However, since the error
function (7) is quadratic in the coefficients of D, bounded below by zero but not bounded
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above, and D? is unique, is must yield a minimum (see (Rasch, 2003) for a more detailed
proof).

With (24) we have arrived at an expression that gives us the optimal decoder in a closed form
given a data distribution with covariance matrix C and an arbitrary encoder matrix E, both
matrices having highest rank. This determines the decoding weights of the networks (B-a)
and (B-b).

A.5 Recoding error

Now consider the recoding error for an arbitrary en- and decoder. From the definition of the
recoding error we can derive

E(R)
(7, 5)
=

〈
(x−Rx)T (x−Rx)

〉
(25)

=
〈
xT (I−R)T (I−R)x

〉
(26)

=
〈
tr

(
xT (I−R)T (I−R)x

)〉
(27)

(since the argument is a scalar)

=
〈
tr

(
(I−R)xxT (I−R)T

)〉
(28)

(since tr (AB) = tr (BA) for valid matrices A and B)

= tr
(
(I−R)

〈
xxT

〉
(I−R)T

)
(29)

(since tr (·) and 〈·〉 commute)

= tr
(
(I−R)C(I−R)T

)
. (30)

This expression permits us to compute the recoding error directly from the covariance ma-
trix C and the en- and decoder matrices E and D without the need to sample over the
input patterns. This simplifies the simulations significantly. The retrieval error can also be
computed this way by using the encoder before adaptation and the decoder after adaptation.

Equation (30) was used to compute all the errors in Table 1. If the relation between distri-
bution A and B mattered, like in rows (ii, iii, iv, v) except for entry (c-iii), we averaged over
5000 randomly drawn distributions for B keeping distribution A fixed.

It is of theoretical interest that for the optimal decoder D? equation (30) simplifies further
like

E(D?,E)
(30, 5)
= tr

(
(I−D?E)C(I−D?E)T

)
(31)

= tr
(
(I−D?E)C(I− ETD?T )

)
(32)

= tr
(
C −CETD?T −D?EC + D?ECETD?T

)
(33)

(24)
= tr

C −CETD?T −D?EC + CET (ECET )−1ECET︸ ︷︷ ︸
=I

D?T

 (34)

= tr ((I−D?E)C) . (35)

From this equation it is easy to derive equation (13) for optimal en- and decoder if one takes
into account that tr (C) =

∑n
i=1 λi and that the row and column vectors of E? and D?,
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respectively, are the first m eigenvectors of covariance matrix C, resulting in tr (E?CD?) =∑m
i=1 λi.

B Control experiments

Table 2 shows results from a number of control experiments and includes also the results of
Table 1. It is divided into three blocks depending on how many hidden units were used in
environment A and B. Within each block the results are ordered by the degree to which the
network adapts to environment B.

The table has a number of regularities and symmetries. Columns (A), (i), and (ii) have
identical values for all experiments within the first and the second block, and for all exper-
iments within the third block. The networks adapted to environment B (B) are the same
in the third block as in the second block. Therefore, since the recoding errors depend only
on the current network, the results of columns (iii) and (v) in the third block are identical
to those in the second block. If the roles of A and B are exchanged completely, the results
are identical for symmetry reasons; compare, for instance, (11-i) with (14-iii), (11-ii) with
(14-v), (31-i) with (34-iii), and (31-ii) with (34-v). If the encoding part of the network does
not change between storage and retrieval of patterns a, then retrieval error A is identical to
recoding error A; compare (11-iv) with (11-v) and (31-iv) with (31-v).

In general performance improves as more units are used in the hidden layer; compare experi-
ment (11) with (21) and (31) and experiment (14) with (24) and (34). One exception to this
rule is retrieval error A, which increases from (24) to (34). In this case, the representation in
the hidden layer changes completely and the retrieved patterns are effectively hallucinated
random patterns leading to errors greater than one (cf. Sec. 6.2). The more hidden units the
greater the error.

From the order within each block one would expect that recoding error B (iii) decreases
and retrieval and recoding error A (iv, v) increase. While the former is true, the latter does
actually not hold. Recoding error A, for instance, decreases from (11) to (14) even though
the network adapts more to environment B. This is due to the fact that for (11) the effect
of misuse of dimensions illustrated in Figure 7 is particularly strong, since there are only
few units in the hidden layer. With more hidden units this effect is less severe; compare
the decrease from (11) to (14) with the increase from (31) to (34). The effect of misuse of
dimensions in column (v) is greatly reduced by neurogenesis; compare experiments (22, 23)
with (21, 24) and experiments (32, 33) with (31, 34). For retrieval error A (iv) the error
depends a lot on whether the new units have encoding weight-vectors that are orthogonal
to the old ones or not. Neurogenesis with orthogonal weight-vectors performs clearly better;
compare experiment (22) with (23) and experiment (32) with (33).
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Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33:325–340.

Cameron, H. A. and McKay, R. D. (2001). Adult neurogenesis produces a large pool of
new granule cells in the dentate gyrus. The Journal of Comparative Neurology, 435(4):406–
417.

Carleton, A., Rochefort, C., Morante-Oria, J., Desmaisons, D., Vincent, J.-
D., Gheusi, G., and Lledo, P.-M. (2002). Making scents of olfactory neurogenesis.
J. Neurophysiology - Paris, 96:115–122.

Carpenter, G. A. and Grossberg, S. (1987). ART 2: Self-organization of stable
category recognition codes for analog input patterns. Applied Optics, 26:4919–4930.

Carpenter, G. A., Grossberg, S., and Rosen, D. B. (1991). ART 2-A; an adap-
tive resonance algorithm for rapid category learning and recognition. Neural Networks,
4(4):493–504.

Cecchi, G. A., Petreanu, L. T., Alvarez-Buylla, A., and Magnasco, M. O.
(2001). Unsupervised learning and adaptation in a model of adult neurogenesis. The
Journal of Computational Neuroscience, 11(2):175–182.

34
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Chrobak, J. J., Lörincz, A., and Buzsáki, G. (2000). Physiological patterns in the
hippocampo-entorhinal cortex system. Hippocampus, 10(4):457–465.

Deisseroth, K., Singla, S., Toda, H., Monje, M., Palmer, T. D., and Malenka,
R. C. (2004). Excitation-neurogenesis coupling in adult neural stem/progenitor cells.
Neuron, 42(4):535–552.

D’Hooge, R. and De Deyn, P. P. (2001). Applications of the morris water maze in the
study of learning and memory. Brain Research Reviews, 36(1):60–90.

Dudek, S. M. and Bear, M. F. (1992). Homosynaptic long-term depression in area CA1
of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the
National Academy of Sciences of the United States of America, 89(10):4363–4367.

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg,
C., Peterson, D. A., and Gage, F. H. (1998). Neurogenesis in the adult human
hippocampus. Nature Medicine, 4(11):1313–1317.

Fahlman, S. E. and Lebiere, C. (1990). The cascade-correlation learning architec-
ture. In Touretzky, D., editor, Advances in Neural Information Processing Systems 2
(NIPS’1989), pages 524–532. Morgan-Kaufmann.

French, R. M. (1997). Pseudo-recurrent connectionist networks: An approach to the
”sensitivity-stability” dilemma. Connection Science, 9:353–379.
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