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We have made three major extensions to this systemin order to handle larger galleries and larger variationsin pose, and to increase the matching accuracy, whichprovides the potential for further techniques to improverecognition rate.� Firstly, we use the phase of the complex Gaborwavelet coe�cients to achieve a more accurate loca-tion of the nodes and to disambiguate patterns whichwould be similar in their coe�cient magnitudes.� Secondly, we employ object adapted graphs, so thatnodes refer to speci�c facial landmarks, called �du-cial points. The correct correspondences betweentwo faces can then be found across large viewpointchanges.� Thirdly, we have introduced a new data structure,called the bunch graph, which serves as a generalizedrepresentation of faces by combining jets of a smallset of individual faces.This allows the system to �nd the �ducial points in onematching process, which eliminates the need for match-ing each model graph individually. This reduces compu-tational e�ort signi�cantly. A more detailed descriptionof this system is given in [2].2 The System2.1 JetsA jet is based on a wavelet transform, de�ned as a con-volution of the image with a family of Gabor kernels [3] j(~x) = k2j�2 exp �k2jx22�2 !�exp(i~kj~x)� exp���22 ��(1)in the shape of plane waves with wave vector ~kj , re-stricted by a Gaussian envelope function with relativewidth � = 2�. We employ a discrete set of 5 di�erentspatial frequencies and 8 orientations. For images of size128�128 pixels, the lowest and highest frequency havea wavelength of 16 and 4 pixels, respectively. The lastterm in Equation (1) makes the kernels DC-free, i.e. the1



integral R  j(~x)d2~x vanishes. This is known as a wavelettransform because the family of kernels is self-similar, allkernels being generated from one mother wavelet by dila-tion and rotation.A jet J is de�ned as the set fJjg of 40 complex Gaborwavelet coe�cients obtained for one image point. It canbe written as Jj = aj exp(i�j) with magnitudes aj(~x),which slowly vary with position, and phases �j(~x), whichrotate with a rate set by the spatial frequency or wave vec-tor ~kj of the kernels. Due to this phase rotation, jets takenfrom image points only a few pixels apart have very dif-ferent coe�cients, although representing almost the samelocal feature. This can cause severe problems for match-ing. We therefore either ignore the phase or compensatefor its variation explicitly. The similarity functionSa(J ;J 0) = Pj aja0jrPj a2jPj a02j (2)ignores phase [1]. With a jet J 0 taken at a �xed imageposition and jets J = J (~x) taken at variable position~x, Sa(J (~x);J 0) is a smooth function with local optimaforming large attractor basins (see Figure 1), leading torapid and reliable convergence with simple search meth-ods such as gradient descent or di�usion.
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horizontal displacement [pixels]Figure 1: Similarities Sa(J ;J 0) (dashed line) andS�(J ;J 0) (solid line) with jet J 0 taken from the lefteye of a face, and jet J taken from pixel positions ofthe same horizontal line. The dotted line shows the es-timated displacement ~d(J ;J 0) (divided by 8 to �t theordinate range). The right eye is 24 pixels away from theleft eye, generating a local maximum for both similarityfunctions and zero displacement close to dx = �24.Using phase has two advantages. Firstly, phase infor-mation is required to discriminate between patterns withsimilar magnitudes, should they occur. Secondly, since

phase varies so quickly with location, it provides a meansfor accurate jet localization in an image. Assuming thattwo jets J and J 0 refer to object locations with smallrelative displacement ~d, the phase shifts can be approx-imately compensated for by the terms ~d~kj , leading to aphase-sensitive similarity functionS�(J ;J 0) = Pj aja0j cos(�j � �0j � ~d~kj)rPj a2jPj a02j : (3)In order to compute it, the displacement ~d has to be esti-mated. This can be done by maximizing S� in its Taylorexpansion around ~d = 0, which is a constrained �t of thetwo-dimensional ~d to the 40 phase di�erences �j��0j [2, 4].Large displacements of up to 8 pixels can be estimated ifthe phases of higher frequency coe�cients are correctedby multiples of 2� depending on the disparity estimatedfrom lower frequency coe�cients. It is a great advan-tage of this second similarity function that it yields thisdisplacement information. Pro�les of similarities and es-timated displacements are shown in Figure 1.2.2 GraphsA labeled graph G representing a face consists of N nodesconnected by E edges. The nodes are located at faciallandmarks ~xn; n = 1; :::; N , called �ducial points, e.g. thepupils, the corners of the mouth, the tip of the nose, thetop and bottom of the ears, etc. This face graph is object-adapted since its geometrical structure is adapted to thestructure of the object (see Figure 2). The nodes arelabeled with jets Jn. The edges are labeled with two-dimensional distance vectors �~xe = ~xn�~xn0 ; e = 1; :::; E,where edge e connects node n0 with n. (We refer to thegeometrical structure of a graph, unlabeled by jets, asa grid.) Graphs for di�erent head pose di�er in geome-try and local features (jets). Although the �ducial pointsrefer to corresponding object locations, some may be oc-cluded, and jets as well as distances vary due to rotationin depth. To be able to compare graphs of di�erent poses,we manually de�ned pointers to associate correspondingnodes in the di�erent graphs.In order to extract image graphs automatically for newfaces, one needs a general representation rather thanmodels of individual faces. This representation shouldcover a wide range of possible variations in the appear-ance of faces, such as di�erently shaped eyes, mouths, ornoses, di�erent types of beards, variations due to sex, age,and race etc. It is obvious that it would be too expensiveto cover each feature combination by a separate graph.We instead combine a representative set of M individualmodel graphs GBm (m = 1; :::;M) into a stack-like struc-ture, called a face bunch graph (FBG) (see Figure 3).2



Figure 2: Object-adapted grids for di�erent poses. Thenodes are positioned automatically by elastic bunch graphmatching. (The grids used in Section 3 for the FERETdatabase had about 14 additional nodes which are notshown here for simplicity). One can see that, in general,the matching �nds the �ducial points quite accurately.But mispositioning occurred, for example, for the facein the center. The chin was not found accurately; theleftmost node and the node below should be at the topand the bottom of the ear respectively.Each model graph has the same grid structure and thenodes refer to identical �ducial points. A set of jets re-ferring to one �ducial point is called a bunch. An eyebunch, for instance, may include jets from closed, open,female, and male eyes etc. to cover these local variations.The corresponding FBG B is then given the same gridstructure as the individual graphs, its nodes are labeledwith the bunches of jets J Bmn and its edges are labeledwith the averaged distances �~xBe =Pm�~xBme =M . Dur-ing the location of �ducial points in a new image of a face,the procedure described below selects the best �tting jet,called the local expert, from the bunch dedicated to each�ducial point. Thus, the full combination of jets in thebunch graph is available, covering a much larger rangeof facial variation than represented in the constitutingmodel graphs themselves.2.3 Elastic Bunch Graph MatchingA �rst set of graphs is generated manually. Nodes arelocated at �ducial points and edges between the nodes aswell as correspondences between nodes of di�erent posesare de�ned. Once the system has an FBG (possibly con-sisting of only one manually de�ned model), graphs fornew images can be generated automatically by elasticbunch graph matching. Initially, when the FBG containsonly few faces, it is necessary to review and correct theresulting matches, but once the FBG is rich enough (ap-proximately 70 graphs) one can rely on the matching andgenerate large galleries of model graphs automatically.Matching a FBG on a new image is done by maximizinga graph similarity between an image graph and the FBGof identical pose. It depends on the jet similarities and atopography term, which takes into account the distortion

face bunch graphFigure 3: The Face Bunch Graph (FBG) serves as a gen-eral representation of faces. Each stack of discs representsa jet. From a bunch of jets attached to a single node onlythe best �tting one is selected for a match, indicated bygrey shading.of the image grid relative to the FBG grid. For an imagegraph GI with nodes n = 1; :::; N and edges e = 1; :::; Eand an FBG B with model graphs m = 1; :::;M the sim-ilarity is de�ned asSB(GI ;B) = 1N Xn maxm �S�(J In ;J Bmn )�� �EXe (�~xIe ��~xBe )2(�~xBe )2 ; (4)where � determines the relative importance of jet sim-ilarities and the topography term. Jn are the jets atnode n and �~xe are the distance vectors used as labelsat edges e. Since the FBG provides several jets for each�ducial point, the best one is selected and used for com-parison. These best �tting jets serve as local experts forthe image face. A heuristic algorithm is used to �nd theimage graph which maximizes the graph similarity func-tion. First, the location of the face is found by a sparsescanning of the FBG over the image. Then, the FBGis varied in size and aspect ratio to adapt to the rightformat of the face. These steps are of no cost in the to-pography term of the similarity function because the edgelabels are transformed accordingly. Finally all nodes aremoved locally and relative to each other to optimize thegraph similarity further. Only node locations with smallestimated disparity are considered. This local distortionis constrained by the topography term.3



Since in the FERET database faces vary in size by afactor of three, the matching is done twice. In the �rstmatching step the size and location of the face is deter-mined and the face image normalized in size. The sec-ond matching step is used to �nd the �ducial points forrecognition. The two steps use di�erent FBGs with dif-ferent emphasis and number of nodes. The �rst step re-quires several FBGs of di�erent size, the best �tting oneof which is used for size estimation. Each image has a la-bel which indicates the pose, so that pose does not need tobe determined automatically, though our system is ableto determine pose automatically in the same way as sizeis estimated [5]. The two steps together take less than 30seconds on a SPARCstation 10-512. Figure 2 shows someautomatically positioned grids.2.4 RecognitionAfter having extracted model graphs from the gallery im-ages and image graphs from the probe images, recogni-tion is possible with relatively little computational e�ortby comparing an image graph to all model graphs andselecting the one with the highest similarity value. Thesimilarity function we use here for comparing graphs isan average over the similarities between pairs of corre-sponding jets. Some jets in one pose may not have acorresponding jet in the other pose because of occlusions.We use the jet similarity function without phase here. Itturned out to be more discriminative, possibly because itis more robust with respect to change in facial expressionand other variations. Grid distortions are not taken intoaccount. This graph similarity induces a ranking of themodel graphs relative to an image graph. A person is rec-ognized correctly if the correct model yields the highestgraph similarity, i.e. if it is of rank one. A comparisonagainst a gallery of 250 individuals took slightly less thana second.3 ExperimentsOne set of tests was done on the ARPA/ARL FERETdatabase provided by the US Army Research Laboratory.The poses used here are: neutral frontal view (fa), frontalview with di�erent facial expression (fb), half-pro�le right(hr) or left (hl) (rotated by about 40-70�), and pro�leright (pr) or left (pl) (see Figure 2 for examples). Thesize of the faces varies by about a factor of three, whichwas compensated for by the �rst matching step. Theformat of the original images is 256�384 pixels, 256 greylevels. Recognition results are shown in Table 1.The recognition rate is very high for frontal againstfrontal images (�rst row). This is mainly due to the factthat in this database two frontal views show only little

Model Probe First rank First 10gallery images # % # %250 fa 250 fb 245 98 248 99250 hr 181 hl 103 57 147 81250 pr 250 pl 210 84 236 94249 fa + 1 fb 171 hl + 79 hr 44 18 111 44171 hl + 79 hr 249 fa + 1 fb 42 17 95 38170 hl + 80 hr 217 pl + 33 pr 22 9 67 27217 pl + 33 pr 170 hl + 80 hr 31 12 80 32Table 1: Recognition results for cross-runs between dif-ferent galleries. The di�erent compositions in the fourbottom rows are due to the fact that not all poses wereavailable for all people. The table shows how often thecorrect model was identi�ed as rank one and how often itwas among the �rst 10 (4%).variation, and any face recognition system should per-form well under these circumstances. See results on theBochum database for a more challenging test.Before comparing left against right poses we ipped allleft pose images over. Since human heads are bilaterallysymmetric to some degree and since our present systemperforms poorly on such large rotations in depth (see be-low), we proceeded under the assumption that it wouldbe easier to deal with di�erences due to facial asymme-try than with di�erences caused by substantial head ro-tation. This assumption is born out at least by the highrecognition rate of 84% for right pro�le against left pro�le(third row). The sharply reduced recognition rate of 57%(second row) when comparing left and right half-pro�lescould be due to inherent facial asymmetry, but the morelikely reason is the poor control in rotation angle in thedatabase | visual inspection of images shows that rightand left rotation angles may di�er by up to 30�.When comparing half pro�les with either frontal viewsor full pro�les another reduction in recognition rate isobserved (although even a correct recognition rate of 10%out of a gallery of 250 is still high above chance level,which would be 0.4%!). The results are asymmetrical,performance being better when frontal or pro�le imagesserve as model gallery rather than if half-pro�les are used.This is due to the fact that both frontal and pro�le posesare much more standardized than half-pro�les, for whichthe angle varies between 40� and 70�. We interpret this asbeing due to the fact that similarity is more sensitive todepth-rotation than to inter-individual face di�erences.Thus, when comparing frontal probe images to a half-pro�le gallery, a 40� half-pro�le gallery image of a wrongperson is often favored over the correct gallery image if, inthe latter, the head is rotated by a larger angle. A largenumber of such false positives considerably degrades thecorrect-recognition rate. In these experiments we alsoipped all left pose images over, so that to a large extent4



the recognition was not only done across pose but alsoacross mirror reection.A second set of tests has been done on the Bochumdatabase [1]. It contains neutral frontal views (fa), frontalviews with di�erent facial expression (fb), 11� rotatedposes (refered to as 15� in [1] because the gaze is at 15�,but the head rotation is less), 22� rotated poses. For theBochum database we did not use the normalization stage,because faces varied only little in size.We used 108 neutral frontal views as a model galleryand the other images as probe galleries. The recognitionrates for galleries fb, 11�, and 22� were 91%, 94%, and88%, respectively. On the same galleries the precedingsystem [1] achieved 92%, 97%, and 85%. Thus the over-all performance is the same. The performance on thefb-gallery is worse than for the corresponding fb-galleryof the FERET database, because the Bochum databaseshows more variation in facial expression, some faces be-ing even half covered by a hand or hair.We have introduced phase information in order to im-prove matching accuracy. We have tested the accuracy onthe Bochum database by matching a face bunch graph toimages for which all �ducial points were controlled man-ually. We always left the person on the image out ofthe face bunch graph, so that no information about thatparticular person could be used for matching. We ranthe same algorithm with phase information and withoutphase information, i.e. all phases set to zero. Matchingaccuracy was calculated as the mean Euclidean distancebetween matching positions and manually controlled ref-erence positions. It was 1.6 and 5.2 pixels with and with-out phase, and the histograms had their maximum at 1and 4 pixels distance, respectively. The images had a sizeof 128�128 pixels.4 ConclusionThe system presented is general and exible. It is de-signed for an in-class recognition task, i.e. for recognizingmembers of a known class of objects. We have applied itto face recognition but the system is in no way specializedto faces and we assume that it can be directly applied toother in-class recognition tasks, such as recognizing indi-viduals of a given animal species, given the same level ofstandardization of the images. In contrast to many neu-ral network systems, no extensive training for new facesor new object classes is required. Only a moderate num-ber of typical examples have to be inspected to build upa bunch graph, and individuals can then be recognizedafter storing a single image.We tested the system with respect to rotation in depthand di�erences in facial expression. Some experimentsincluded mirror reection. We did not investigate robust-

ness to other variations, such as illumination changes orstructured background. The performance is high on facesof same pose. We also showed robustness against rotationin depth up to about 22�. For large rotation angles theperformance degrades signi�cantly. Our system perfomswell compared to other systems. Results of a blind test ofdi�erent systems on the FERET database were publishedin [6, 7].In comparison to the system [1] on the basis of whichwe have developed the system presented here we havemade several major modi�cations. We now utilize waveletphase information for accurate node localization. Previ-ously, node localization was rather imprecise. We haveintroduced the potential to specialize the system to spe-ci�c object types and to handle di�erent poses with thehelp of object-adapted grids. The face bunch graph isable to represent a wide variety of faces, which allowsmatching on face images of unseen individuals. Theseimprovements make it possible to extract an image graphfrom a new face image in one matching process. Even ifthe person of the new image is not included in the FBG,the image graph reliably refers to the �ducial points. Thisconsiderably accelerates recognition from large databasessince for each probe image, correct node positions needto be searched only once instead of in each attemptedmatch to a gallery image, as was previously necessary.We did not expect, and the system does not show, an im-provement in terms of recognition rates compared to thepreceding system.The increased matching accuracy, the object adaptedgraphs, and the face bunch graph provide the basis forfurther improvements. In an extension of the system pre-sented here,Kr�uger has developed a method for learningweights emphasizing those nodes which are more discrim-inative and more robust against noise [8]. On model gal-leries of size 130{150 and probe images of di�erent pose,an average improvement of the �rst rank recognition ratesof 6.5% has been achieved, from a mean performance of19.8% without to 26.3% with weights.Another individual treatment of the nodes has been de-veloped by Maurer & von der Malsburg [9]. Theyapplied linear jet transformations to compensate for thee�ect of rotation in depth. On a frontal pose galleryof 90 faces and half pro�le probe images an average im-provement of the �rst rank recognition rate of 15% wasachieved, from 36% without rotation to 50% and 53%with rotation, depending on which pose was rotated.In [10] the bunch graph technique has been used tofairly reliably determine facial attributes from single im-ages, such as sex or the presence of glasses or a beard.If this technique was developed to extract independentand stable personal attributes, such as age, race, or sex,recognition from large databases could be improved andconsiderably speeded by preselecting corresponding sec-5
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