
Hierarchical Slow Feature Analysis on Visual Stimuli
and Top-Down Reconstruction

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Biologie

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät I

Humboldt-Universität zu Berlin

von
Dipl.-Phys. Niko Wilbert MSc

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I:
Prof. Dr. Stefan Hecht

Gutachter:
1. Prof. Dr. Richard Kempter
2. Prof. Dr. Laurenz Wiskott
3. Prof. Dr. Felix Wichmann

eingereicht am: 5.5.2011
Tag der mündlichen Prüfung: 23.4.2012





To my parents.





Abstract

This thesis examines a model of the visual system, which is based on the princi-
ple of unsupervised slowness learning and using Slow Feature Analysis (SFA). We
apply this model to the task of invariant object recognition and several related prob-
lems. The model not only learns to extract the underlying discrete variables of the
stimuli (e.g., identity of the shown object) but also to extract continuous variables
(e.g., position and rotational angles). It is shown to be capable of dealing with
complex transformations like in-depth rotation. The performance of the model is
first measured with the help of supervised post-processing methods. We then show
that biologically motivated methods like reinforcement learning are also capable of
processing the high-level output from the model. This enables reinforcement learn-
ing to deal with high-dimensional visual stimuli. In the second part of this thesis
we try to extend the model with top-down processes, centered around the task of
reconstructing visual stimuli. We utilize the method of vector quantization and
combine it with gradient descent. The key components of our simulation software
have been intregrated into an open-source software library, the Modular toolkit for
Data Processing (MDP). These components are presented in the last part of the
thesis.

v





Zusammenfassung

In dieser Dissertation wird ein Modell des visuellen Systems untersucht, basierend
auf dem Prinzip des unüberwachten Langsamkeitslernens und des SFA-Algorithmus
(Slow Feature Analysis). Dieses Modell wird hier für die invariante Objekterken-
nung und verwandte Probleme eingesetzt. Das Modell kann dabei sowohl die zu
Grunde liegenden diskreten Variablen der Stimuli extrahieren (z.B. die Identität des
gezeigten Objektes) als auch kontinuierliche Variablen (z.B. Position und Rotations-
winkel). Dabei ist es in der Lage, mit komplizierten Transformationen umzugehen,
wie beispielsweise Tiefenrotation. Die Leistungsfähigkeit des Modells wird zunächst
mit Hilfe von überwachten Methoden zur Datenanalyse untersucht. Anschließend
wird gezeigt, dass auch die biologisch fundierte Methode des Verstärkenden Lernens
(reinforcement learning) die Ausgabedaten unseres Modells erfolgreich verwenden
kann. Dies erlaubt die Anwendung des Verstärkenden Lernens auf hochdimensiona-
le visuelle Stimuli. Im zweiten Teil der Arbeit wird versucht, das hierarchische Modell
mit Top-down Prozessen zu erweitern, speziell für die Rekonstruktion von visuellen
Stimuli. Dabei setzen wir die Methode der Vektorquantisierung ein und verbinden
diese mit einem Verfahren zum Gradientenabstieg. Die wesentlichen Komponenten
der für unsere Simulationen entwickelten Software wurden in eine quelloffene Pro-
grammbibliothek integriert, in das “Modular toolkit for Data Processing” (MDP).
Diese Programmkomponenten werden im letzten Teil der Dissertation vorgestellt.

vii





Contents

1 Introduction 1

I Hierarchical Slow Feature Analysis 3

2 Slow Feature Analysis 5
2.1 Slowness Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SFA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Linear SFA and Parallelization . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Invariant Object Recognition with Hierarchical SFA 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Hierarchical Network Architecture . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Stimulus Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Object Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Random Walk Procedure . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Theoretical Predictions . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Feature Extraction with Linear Regression . . . . . . . . . . . . . . 19
3.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.1 Reduced Transformation Set . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Full Transformation Set . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 Comparison with Neural Structures . . . . . . . . . . . . . . . . . 33
3.6.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Application to other Stimuli 39
4.1 Leaf Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



Contents

4.2 Multiple Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Depth Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Combining Hierarchical SFA with Reinforcement Learning 45
5.1 Introduction to Reinforcement Learning . . . . . . . . . . . . . . . . . . . 45
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Neural Circuits for Reward-Based Learning . . . . . . . . . . . . . 50
5.2.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Morris Water Maze Task . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Variable-Targets Task . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

II Top-Down Processes in
Hierarchical SFA Models 63

6 Top-Down in the Visual System and Hierarchical SFA 65
6.1 Obstacles for Top-Down Processing . . . . . . . . . . . . . . . . . . . . . 65
6.2 Bayesian Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Input Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Capturing the Input Distribution 69
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3.1 Integration of VQ into the SFA network . . . . . . . . . . . . . . . 72
7.3.2 Distribution of Layer Output Data . . . . . . . . . . . . . . . . . 74
7.3.3 Vector Quantization Methods . . . . . . . . . . . . . . . . . . . . 76

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.1 Network performance . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.2 Binned Growing Neural Gas . . . . . . . . . . . . . . . . . . . . . . 78
7.4.3 Competitive Learning Vector Quantization . . . . . . . . . . . . . 80
7.4.4 Control Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.1 Manifold Learning Algorithms . . . . . . . . . . . . . . . . . . . . 85

x



Contents

7.5.2 Other Hierarchical Networks . . . . . . . . . . . . . . . . . . . . . 86

8 Top-down Input Reconstruction with Gradient Descent 87
8.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.2 Optimization for Multiple Layers . . . . . . . . . . . . . . . . . . 88

8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.1 Stimulus Reconstruction Results . . . . . . . . . . . . . . . . . . . 91
8.2.2 Reconstruction from Distorted Stimuli . . . . . . . . . . . . . . . . 96
8.2.3 Control Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.3.1 Global Network Optimization . . . . . . . . . . . . . . . . . . . . 99
8.3.2 HMAX Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . 101

III The Modular toolkit for
Data Processing 103

9 Introduction to the Modular toolkit for Data Processing (MDP) 105
9.1 The Python Programming Language . . . . . . . . . . . . . . . . . . . . . 105
9.2 MDP in the Scientific Python Ecosystem . . . . . . . . . . . . . . . . . . 106
9.3 Basic Elements of MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.3.1 Usage of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3.2 Implementation of Nodes . . . . . . . . . . . . . . . . . . . . . . . 108
9.3.3 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10 Hierarchical SFA with MDP 111
10.1 Hierarchical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.1.1 Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.1.2 FlowNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.1.3 Switchboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.1.4 Additional Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.2.1 Overview and Example . . . . . . . . . . . . . . . . . . . . . . . . 116
10.2.2 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.3 Node Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.3.1 Node Extension Mechanism . . . . . . . . . . . . . . . . . . . . . . 118
10.3.2 Extension Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.3.3 Extending Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.3.4 Creating Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11 Bidirectional data flow with BiMDP 123
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xi



Contents

11.2 Targets, id’s and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.3 BiFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.4 BiNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.4.1 Extending BiNode and Message Handling . . . . . . . . . . . . . . 127
11.4.2 Coroutines for Stateful Nodes . . . . . . . . . . . . . . . . . . . . 128

11.5 Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.6 Hierarchical Networks and Parallelization . . . . . . . . . . . . . . . . . . 129

12 Conclusion 131

Acknowledgements 133

Bibliography 135

List of Figures 145

List of Tables 147

Selbständigkeitserklärung 149

Veröffentlichungsliste 151

xii



1 Introduction

Understanding how the human brain works is one of the great challenges in modern
science. Current efforts to find answers are covering processes from the subcellular
level up to phenomena that involve multiple brain areas. A wide range of experimental
methods has consequently been developed, which are, for example, optimized for specific
spatial and temporal scales. Not surprisingly there is a corresponding need for a diverse
arsenal of theoretical tools. Approaches that target a large scale often require a high
level of abstraction from the biological substrate of the brain. Eventually it should be
possible to transition between different scales, in order to explain how low-level structures
implement high-level objectives.
The model that is explored in this thesis addresses how the brain can learn to process

large amounts of information, which it receives from its sensory organs. We focus on
the visual system, though some aspects might be transferable to other modalities as
well. Due to the size and complexity of the visual cortex the model is formulated at
an abstract level and does not attempt to provide a description in terms of individual
neurons. Instead it defines high-level functional units and their underlying principles.
Such a functional description is not only useful for the scientific understanding of the
brain, there is also the possibility of using the same principles for technical applications.
For models that have to deal with large amounts of data (like visual stimuli) it is

often inevitable to use numerical simulations in order to evaluate the model. This also
means that we are limited by the capabilities of contemporary computers. However, one
should not forget that computations in the brain are subject to constraints as well. For
example, our primate brain consumes a significant fraction of our overall energy budget.
The resulting evolutionary pressure probably led to its remarkable efficiency. One can
therefore assume that the brain is cutting corners whenever possible. Efficiency is a
major concern for credible models of brain functions.
Most scientists (including us) use heavily simplified data sets to test their computa-

tional models. This naturally leads to the question of scalability. For example, it would
be problematic if the computational requirements for a visual system grow exponentially
with the number of objects that it can recognize. However, one also has to take into
account that the brain is fundamentally different from current computers. The con-
nectivity and parallelism in neuron populations are very costly to simulate on standard
hardware. A realistic evaluation might ultimately require that the model is formulated in
terms of the brain’s building blocks (e.g., neurons and synapses). Since this can be very
difficult for large-scale models we only aim for the lesser goal of biological plausibility.
The model discussed in this thesis seems to be a good compromise in the light of all

these different questions and requirements. In its basic form it is elegant and efficient to
simulate, thanks to the underlying algorithm of Slow Feature Analysis (SFA). This thesis

1



1 Introduction

tries to provide more data points for its evaluation, by analysing both some strengths
(e.g., performance for invariant object recognition) and pointing out possible weaknesses
(especially with regard to top-down processing).

Overview of the Thesis
This thesis is split into three parts. Part I introduces the SFA algorithm (Chapter 2)
and based on it a hierarchical model of the visual system. This model is then applied to
the problem of invariant object recognition (Chapter 3 and Chapter 4). In Chapter 5 the
hierarchical SFA model is combined with reinforcement learning to demonstrate that it
can provide an adequate basis for models of other brain areas (in analogy to the role of
the visual system). Overall Part I demonstrates the strength of hierarchical SFA for the
biologically relevant task of invariant object recognition.
Part II is centered around extending the feed-forward model in order to enable top-

down processes, which are assumed to play an important role in the visual system. In
Chapter 6 we start by defining the top-down task of input reconstruction, which is our
test case throughout this part. Chapter 7 describes how the required information for
top-down processes can be captured in our model with the method of vector quantiza-
tion. Some results that emerge from that are presented as well. The actual top-down
reconstruction is then explored in Chapter 8, together with the method of gradient
descent.
Part III focuses on some technical aspects of the simulations from the previous parts.

As mentioned earlier, computer simulations are an important part of computational
neuroscience. The ever-increasing complexity of these simulations is a problem with
regard to the scientific principle of reproducibility. We have therefore integrated several
key parts of our model into an open source software library, the Modular toolkit for Data
Processing (MDP). This enables other groups to reproduce, modify and reuse our model
with minimal effort. A basic introduction to the MDP library is provided in Chapter 9.
In Chapter 10 we discuss additions to the library that were created for Part I of this
thesis, while Chapter 11 introduces the additions for Part II.
In chapters that are the result of a collaboration we point out the individual contri-

butions at the beginning. This is especially relevant throughout Part I of this thesis and
in Part III, Chapter 9.

2



Part I

Hierarchical Slow Feature Analysis

3





2 Slow Feature Analysis

2.1 Slowness Principle
Animals and humans are faced with sensory signals that often change very rapidly. For
example a simple head movement can completely alter the light pattern that falls on
the retina. Receptors that were previously in a bright sport end up in dark patches and
vice versa. When an animal or object passes through the visual field this has a similar
effect, again causing rapid intensity changes for the rods and cones in the retina. On
the other hand the underlying structure of the scene typically changes on a much slower
time scale (e.g., which objects are present and where).
A simple object that passes through our visual field can be described by its pose

(consisting of the position and angle relative to the observer) and identity. In principle
only this underlying configuration is behaviourally relevant, representing the important
features of the scene. Such a reduced and abstract description is generally called a
high-level representation. The corresponding visual stimulus is called a view, and it is
often approximated as a pixel-based image (in turn represented by an input vector x).
The visual system has to extract all the relevant high-level features from the stimulus,
making them available to other parts of the brain in an appropriate representation.
The postulated difference in the timescale of the changes on the retina and the high-

level representation leads to the idea that slowness can be used as a learning objective
in the brain. If high-level features are expected to be slowly changing then it might be
possible to extract them by looking for slowness in the raw visual data. The resulting
learning principle does not require an external supervision signal, it is purely based on
the statistics of the visual stimuli. This is critical for the plausibility of its use in the
brain.
The hierarchical networks that are at the core of this thesis are based on the Slow

Feature Analysis (SFA) algorithm [Wiskott, 1998; Wiskott and Sejnowski, 2002], which
is one particular implementation of learning based on slowness. There have been various
earlier approaches to slowness, e.g., [Hinton, 1989; Földiák, 1991; Mitchison, 1991; Becker
and Hinton, 1992]. Slowness has previously been used in some hierarchical models as
well [Wallis and Rolls, 1997; Einhäuser et al., 2005; Wyss et al., 2006].
Unsupervised learning based on the slowness principle (i.e., learning that exploits tem-

poral continuity of real-world stimuli) has also attracted the attention of experimentalists
[Miyashita, 1988; Li and DiCarlo, 2008]. It has been shown in monkey experiments that
features in monkey inferior temporal cortex are adapted in a way that is consistent with
the slowness principle [Li and DiCarlo, 2008, 2010].

5



2 Slow Feature Analysis

2.2 SFA Algorithm
SFA as defined in [Wiskott, 1998] solves the following learning task: Given a multidi-
mensional input signal we want to find instantaneous scalar input-output functions that
generate output signals that vary as slowly as possible but still carry significant infor-
mation. To ensure the latter we require the output signals to be uncorrelated and have
unit variance. In mathematical terms, this can be stated as follows:

Optimization problem: Given a function space F and an I-dimensional input signal
x(t) find a set of J real-valued input-output functions gj(x) ∈ F such that the output
signals yj(t) := gj(x(t))

minimize ∆(yj) := 〈ẏ2
j 〉t (2.1)

under the constraints

〈yj〉t = 0 (zero mean), (2.2)
〈y2
j 〉t = 1 (unit variance), (2.3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order), (2.4)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.

Equation (2.1) introduces the ∆-value, which is a measure of the temporal slowness (or
rather fastness) of the signal y(t). It is given by the mean square of the signal’s temporal
derivative, so that small ∆-values indicate slowly varying signals. The constraints (2.2)
and (2.3) avoid the trivial constant solution and constraint (2.4) ensures that different
functions gj code for different aspects of the input. Because of constraint (2.4) the gj
are also ordered according to their slowness, with g1 having the smallest ∆.
It is important to note that although the objective is slowness, the functions gj are

instantaneous functions of the input, so that slowness cannot be achieved by low-pass
filtering. Slow output signals can only be obtained if the input signal contains slowly
varying features that can be extracted instantaneously by the functions gj . Note also
that for the same reason, once trained, the system works fast, not slowly.
In the computationally relevant case where F is finite-dimensional the solution to the

optimization problem can be found by means of Slow Feature Analysis (SFA) [Wiskott,
1998; Wiskott and Sejnowski, 2002]. This algorithm, which is based on an eigenvector
approach, is guaranteed to find the global optimum. Biologically more plausible learning
rules for the optimization problem do exist as well [Hashimoto, 2003; Sprekeler et al.,
2007].
If the function space F is unrestricted the optimization problem can be solved with

variational calculus as described in [Wiskott, 2003; Franzius et al., 2007]. In this case
the optimization problem for the high-dimensional visual input can be reformulated for
the low-dimensional configuration input (e.g., position, orientation, and object iden-
tity). Therefore the variational calculus approach becomes tractable and allows making
analytical predictions, which are discussed for our specific case in Section 3.3.4.

6



2.3 Linear SFA and Parallelization

2.3 Linear SFA and Parallelization
For simplicity we assume that the data has zero mean (i.e., 〈xi〉t = 0). The solutions of
the optimization problem for linear SFA have the form

gj(x) = wT
j x , (2.5)

where the wj are weight vectors. For the nonlinear case a nonlinear expansion of the
input signal is performed and afterwards the same linear SFA algorithm is applied (this
is discussed in Section 3.2).
The data set that is used for the calculation of the weight vectors wj is called the

training data. Once the weights have been computed, the resulting functions gj can be
applied to new data as well, which in this context is called the test data. This distinction
between training and testing is a general pattern for learning algorithms (the test data
is often used to check for overfitting). It is also possible to formulate SFA as an online
learning procedure by periodically recalculating the weight vectors, so that an output y
is produced right from the start. Learning processes in the brain generally have to work
online, but since we only want look at the fully trained system we can use the standard
SFA algorithm.
We use the SFA implementation from the MDP software library (see Part III), which

is based on the formulation of the algorithm in [Berkes and Wiskott, 2005]. A detailed
derivation is provided there, and mathematically this is equivalent to the original algo-
rithm in [Wiskott and Sejnowski, 2002]. In this formulation the weight vectors wj are
the eigenvectors of a generalized eigenvalue problem

Awj = λjBwj (2.6)

and the λj ∈ R are their eigenvalues, which are equal to the corresponding ∆-values
∆(yj). The symmetric matrices A and B are defined as

A := 〈xTx〉t and B := 〈ẋT ẋ〉t . (2.7)

The first matrix is the covariance matrix of the data, while the second one is the second
moment matrix of the time derivative. In our computer simulations time t is discrete, so
it can be replaced with an index t = 1, . . . , n. Correspondingly the temporal averaging
〈·〉t becomes a sum.
The covariance matrix A requires the product xTx for all t, so its computational

complexity is proportional to the number of training samples n. Solving the generalized
eigenvalue problem on the other hand is independent of the number of training samples.
Beyond a certain n the overall computational cost is therefore dominated by the covari-
ance matrices. The summands xTx for different t can be calculated independently, so the
training data can be split up into multiple chunks. For each chunk the covariance matrix
is calculated separately, combining them in the end to construct the overall covariance
matrix (one also has to keep track of the mean and number of data points in each chunk
for normalization). The same method can be used for B. This means that the SFA

7



2 Slow Feature Analysis

algorithm is easy to parallelize, reducing the computing time for large sets of training
data. This has first been exploited in [Franzius et al., 2007] and we use it throughout
this thesis. Further details are discussed in Section 10.2.

8



3 Invariant Object Recognition with
Hierarchical SFA

3.1 Introduction
Object recognition is one task a vision system has to master in order to enable successful
interaction with the environment. Naturally this recognition should be independent of
object position, relative angle, lighting conditions, and other factors. In other words
it should be invariant. However, the position and relative rotational angle can be just
as crucial (e.g., when faced with a predator), so they too must be extracted. In the
previous chapter we called the combination of all these relevant features the high-level
representation. The concept of invariance can be extended to these other features as
well. For example it does not matter if a hunter throws a spear at a zebra or a gazelle.
The aiming procedure is only based on the relative position, which is independent from
the type of animal (or object identity).
Primates can perform invariant object recognition successfully in most situations of

everyday life and behave accordingly, which requires that the information about object
identity is available for higher brain areas in a sufficiently explicit format. Since it is
hard to answer which specific format is most adequate for later stages of the brain, we
just postulate that a simple classifier should be able to distinguish between the objects
representations after few training examples and that a simple linear regression should
be able to extract pose information. A special case of such a representation would, of
course, be an explicit population code where one set of neurons codes for object identity
and a different set codes for object pose.
A good vision system should also generalize to previously unseen configurations, i.e., it

should learn the relevant statistics of transformations rather than just memorizing spe-
cific views. It should also generalize to new objects, e.g., it should successfully estimate
the position and orientation1 of an object that was never shown before.
In general, the process of extracting the configuration of an object from a view is very

hard to solve, especially in the presence of a cluttered background and many different
possible objects. In this chapter we use high-resolution views of complex objects but
restrict the problem to the cases of only one object present at a time and a static
homogeneous background. Due to the high variability of views caused by changing
configuration there is an infinitely large space of possible views of even a single object.
The manifold of all possible views of an object is embedded in in a highly complex way
within the visual (“pixel”) space and two views of distinct objects are often closer to

1Generally, there is no canonical “0◦”-view of an object, thus a random phase offset of absolute phase
for a new object is to be expected.

9



3 Invariant Object Recognition with Hierarchical SFA

each other in pixel space than two views of the same object [DiCarlo and Cox, 2007].
One approach to solve such complex computational problems is to break them up into a
series of simpler computations. Functionally, each stage or layer should represent views
belonging to a single object more compactly and views of distinct objects more separately,
thus “untangling the view manifolds”. Furthermore, the dimensionality of the object
representation should be sufficiently low on the highest layer, such that object-specific
behavior (or in the simplest case just an object classifier) needs only few labeled training
examples. Both properties, modularized computation and dimensionality reduction, can
be implemented by a converging visual hierarchy.
The slowness principle has been applied for object recognition before [e.g., Wallis and

Rolls, 1997; Becker, 1999; Stringer and Rolls, 2002; Einhäuser et al., 2005]. However,
our model goes beyond these earlier ones by not only extracting translation-invariant
and view-invariant representations of object identity but also simultaneously information
about position and viewing angles. Furthermore, we show meaningful generalization of
the model to previously unseen objects. The structure of the resulting representation
solely depends on the statistics of presentation of the training views. We show that in a
restricted scenario these representations are encoded independently of each other in an
analytically predictable way. In a more complex scenario the solutions tend to mix but
are still very simple to decode by linear regression.
To optimize the slowness based objective function we use the Slow Feature Analysis

(SFA) algorithm as discussed in the previous chapter. Except for minor changes, the
model used here is identical to that used earlier for the modeling of place cells, head
direction cells, and spatial view cells in the hippocampal formation [Franzius et al.,
2007]. The complete mathematical framework of this publication carries over to the
problem of invariant object recognition as presented here (leading to the predictions in
Section 3.3.4).
Our model is able to learn both view-invariant object-specific representations and

position and rotational information from complex high-dimensional data in a biologically
plausible model of the ventral visual system. We therefore speculate that slowness might
serve as a general principle for sensory coding in the brain.
The work presented in this chapter has been done in close collaboration with Mathias

Franzius and will be published in [Franzius et al., 2011], which is the basis for this
chapter. All the simulations and the data analysis presented here were programmed and
applied by myself. They are a continuation of our earlier work presented in [Franzius
et al., 2008]. In this earlier version the hierarchical network was programmed and trained
by Mathias Franzius, while the stimulus generation and the data analysis were done by
myself. My rewrite of the model software for [Franzius et al., 2011] led to a significant
improvement in performance, thanks to some optimizations in the model architecture
and better control over the stimulus generation (eliminating issues like clipping of the
objects). All the required building blocks for the hierarchical network are now available in
the “Modular toolkit for Data Processing” (MDP) library, which is discussed in Part III
of this thesis.

10



3.2 Hierarchical Network Architecture

linear SFA

linear SFA

additive noise

quadratic
expansion

input from 
 layer N-1

output to 
layer N+1

512 outputs

6x6 x 32 outputs

14x14 x 32  outputs

30x30 x 32 outputs

155x155 pixels 

S
F

A

clipping

linear regression classifier

input image

S
F

A

S
F

A

S
F

A

Figure 3.1: Model architecture and stimuli. An input image is fed into the hierar-
chical network. The circles in each layer symbolize the overlapping receptive
fields, which converge towards the top layer. The same set of steps is applied
on each layer, which is visualized on the right hand side.

3.2 Hierarchical Network Architecture
The visual system is, to a first approximation, structured in a hierarchical fashion, first
extracting local features which are then integrated to more and more global and ab-
stract features. We apply SFA in a similar hierarchical manner to the raw visual input
data. First, the slow features of small local image patches are extracted. The inte-
gration of spatially local information exploits the local correlation structure of visual
data. A second layer extracts slow features of these features (again integrating spatially
local patches), and so on. Each SFA node in the hierarchical network basically performs
the following sequence of operations: linear SFA for dimensionality reduction, quadratic
expansion, and another linear SFA step for slow-feature extraction. SFA has been ap-
plied successfully to visual data in this hierarchical fashion previously [e.g., Wiskott and
Sejnowski, 2002; Franzius et al., 2007].
A hierarchical organization turns out to be crucial for the applicability of the ap-

proach for computational reasons, since the application of non-linear SFA on the whole
high-dimensional input would be infeasible. Efficient use of resources is also an issue in
biological neural circuits. It has been suggested that connectivity is the main constraint
there [Chklovskii and Koulakov, 2000; Legenstein and Maass, 2005]. Since a hierar-
chical organization requires nearly exclusively local communication, it avoids extensive
connectivity.

3.2.1 Network Structure
The detailed network structure is shown in Figure 3.1. It consists of four layers of
SFA nodes, connected topographically in a feed-forward manner. We first describe the

11



3 Invariant Object Recognition with Hierarchical SFA

field size

field overlap

input for node
in layer 3

layer 3
(6 x 6 nodes)

layer 2
(14 x 14 nodes)

Figure 3.2: Input fields of nodes in layer 3. Each dot represents the 32 dimensional
SFA output from one node. The field overlap is 2 nodes and the borders of
the receptive fields are represented by the black lines between the dots.

internal organization of each individual SFA node before we give a detailed description
of the connection architecture below. In each SFA node, first additive Gaussian white
noise (with a variance of 10−6) is introduced for numerical reasons, to avoid possible
singularities in the subsequent SFA step. Then a linear SFA is performed for a first
reduction of the input dimensionality. In a subsequent quadratic expansion, the incoming
data x1, . . . , xn is mapped with a basis of the space of polynomials with degree up to
two. So in addition to the original data, all quadratic combinations like (x1)2 or x1x2
are concatenated to the data block. Another linear SFA stage is then applied to the
expanded data. The solutions of linear SFA on this expanded data is equivalent to those
of SFA in the space of polynomials up to degree two. After the second SFA stage we
apply a clipping at ±4. This clipping removes extreme values that can occur on test data
due to the divergence of the quadratic functions for larger values. However, both the
additive noise and the clipping are mostly just technical safeguards and have typically
no effect on the network performance.
The number of SFA components used from the first linear SFA stage in each node

depends on the layer in which the SFA node is situated. The first linear SFA stage
in each node reduces the dimensionality to 32 in the first two layers, 42 in the third
layer, and 52 in the fourth layer (the increase in dimensionality across layers leads to
a small performance increase). Accordingly, the quadratic expansion then increases
dimensionality to 560, 560, 945 and 1430, in the first, second, third, and fourth layer
respectively. The second linear SFA stage reduces the dimensionality of the expanded
signal to 32, except for the top layer, where the output is reduced to 512 dimensions.
We now describe how the nodes are connected (see Figure 3.2). We use a layered

feed-forward architecture, i.e., the nodes in the first layer receive inputs only from the
input image, and nodes in higher layers receive inputs exclusively from their previous

12



3.2 Hierarchical Network Architecture

Layer Number of
nodes

Input area
of node

Overlap per
direction

SFA outputs
per node

0 (Image) 155× 155 - - (1 pixel)
1 30× 30 10× 10 5 32
2 14× 14 4× 4 2 32
3 6× 6 4× 4 2 32
4 1 6× 6 - 512

Table 3.1: Overview over the network architecture. Layer 0 denotes the input
image, a node corresponds to a pixel in that image. The input area denotes
the number of nodes in the previous layer from which a node receives input.
An example for layer 3 is visualized in Figure 3.2.

layer. Additionally, connections are topographically structured such that a node receives
inputs from neighboring nodes in the previous layer. In the following, the part of the
input image that influences a node’s output is denoted as its receptive field. On the
lowest layer, the receptive field of each node consists of an image patch of 10 by 10
grayscale pixels. The receptive fields jointly cover the input image of 155 by 155 pixels.
The nodes form a regular (i.e., non-foveated) 30 by 30 grid with partially overlapping
receptive fields, resulting in an overlap of five pixels in each direction. The second
layer contains 14 by 14 nodes, each receiving input from 4 by 4 layer 1 nodes with
neighboring receptive fields, resembling a retinotopic layout (the overlap is two nodes
in each direction). The third layer contains 6 by 6 nodes, each receiving input from
4 by 4 layer 2 nodes with neighboring receptive fields, again in a retinotopic layout
(with 2 nodes overlap in each direction, as shown in Figure 3.2). All 6 by 6 layer 3
outputs converge onto a single node in layer 4, whose output we call SFA-output. This
organization is summarized in Table 3.1.
Thus, the hierarchical organization of the model captures two important aspects of

cortical visual processing: increasing receptive field sizes and accumulating computa-
tional power at higher layers. The latter is due to the quadratic expansion in each layer,
so that each layer computes a subset of higher polynomials than its predecessor. The
SFA-outputs at the top layer compute subsets of polynomials of degree 24 = 16.

3.2.2 Network Training
The network layers are trained sequentially from bottom to top. For computational
efficiency, we train only one node with stimuli from all node locations in its layer and
replicate this node throughout the layer. For example this means that the node in
the lowest layer sees 30 × 30 = 900 times as much data as if it was only trained at a
single location. This mechanism effectively increases the number of training samples
and implements a weight-sharing constraint. However, the system performance does
not depend on this mechanism. The statistics of the training data are approximately
identical for all receptive fields, so individually learned nodes would lead to the same
results (but at higher computational cost). While the weight-sharing does ease the

13



3 Invariant Object Recognition with Hierarchical SFA

emergence of translation invariance it is not at all sufficient.
We used 50,000 time points for the training of the two lower layers and 200,000 for the

two top layers. These training sequences were generated with a random walk procedure,
which is described in the next section. The random walk parameters of the training data
are identical for all layers. The larger training set for the top layers is motivated by the
smaller multiplicative effect of the weight-sharing and by the slower time scales towards
the top (though one has to combine this factor with the complexity of the data structure).
The simulated views are generated from their configuration (position, angles, and object
identity) with floating point precision and are not artificially discretized. Therefore it is
highly unlikely that any two images in the training set are identical.

3.3 Stimuli
The model was trained and tested with image sequences containing views of different
objects. OpenGL was used to render the views of the objects as textured 3D-models in
front of a white homogeneous background. We initially used colored stimuli and found
color to be a very strong cue especially for object classification. In order to prevent the
model from using this simple cue, we only used grayscale views for the results presented
here. Two different object classes were used that are described below. For each object
class the model was trained with a number of different objects. In the testing phase we
also added new objects that the model had never seen during training. The stimulus set
in the form of sourcecode or data is available upon request. Note that, in contrast to
many other models, the model was trained with image sequences consisting of tens of
thousands of distinct views (see Section 3.2.2).
We introduced the two dissimilar fish and sphere stimulus sets to show that our results

do not critically depend on one particular kind of stimulus. Using new stimulus sets
instead of established ones like the COIL100 database [Nayar et al., 1996] makes it
difficult to compare the results with those of other models. Unfortunately, no freely
available databases could give us a comparable amount of control over the object pose,
which is critical for the evaluation of our model. Our implementation allows us controlled
simultaneous rotation around multiple axis and, specifically, allows control over the
temporal presentation order.

3.3.1 Stimulus Classes
In the first experiment the objects were clusters of textured spheres as shown in Fig-
ure 3.3A, which provide a difficult but generic task. The same six textured spheres were
used in different spatial arrangements for all the objects. For each object the spheres
were randomly fixed on a lattice (hexagonal close packing) with three layers of size two
by two. Five such objects were used for training and five additional were added for
testing. As the examples in Figure 3.3A illustrate, identifying the rotation angles and
identities for such objects is quite difficult even for human observers.
Using the same building blocks for all objects should force the model into using high-

level configural features for object classification since the objects have the same low-level

14



3.3 Stimuli

A B

C old fish:

D

E

new fish:

Figure 3.3: Objects used for stimulus generation. A shows the sphere objects
(each cluster of 6 spheres is one object). The first two views show the same
object under different in-depth rotation angles, while the third view shows
a different object. B shows the top right and bottom left corner positions
for a single object, to illustrate the translation range. In C some of the fish
objects used for training and testing are shown with examples for the effect
of in-depth rotation. The first row illustrates a rotation from 0◦ to 270◦. D
shows the corner positions for a single fish and the smallest and largest scale.
In E we show some of the images which were actually used for training and
testing.

15



3 Invariant Object Recognition with Hierarchical SFA

features. On the other hand, the common low-level features of the objects help the model
to generalize to untrained objects. Using spheres has the advantage that the outline does
not give a simple clue for the in-plane rotation angle.
In the second experiment, models of different fish (see Figure 3.3B) were used to

provide more natural stimuli from a single object class (all models taken from [Toucan
Corporation, 2005] with permission). We used 15 different fish for training and added
10 additional ones for testing, raising the number of different objects to 25.

3.3.2 Object Configurations
For sphere objects, the horizontal x-coordinate, the vertical y-coordinate, the in-depth
rotation angle φy, and the in-plane rotation angle φz were chosen as configuration vari-
ables. x and y range from 0 to 1, φy and φz from 0◦ to 360◦. Another configuration
variable was the object identity ranging from one to ten, with objects one to five being
the training objects. So the transformations the model had to learn consisted of transla-
tions in the plane, rotations along the y and z axes (with the in-depth rotation coming
first) and changes of object identity. The field of view used in the rendering of the sphere
objects was 10◦, so the views look almost like an orthographic projection.
For the fish objects, the configuration variables were x, y, φy, object identity, and

the size. So compared to the sphere objects we added changes in size and removed the
in-plane rotations. The maximum size of the objects was 33% larger than the minimum
size in each direction (see Figure 3.3D). A greater range of scale variations would have
required larger images as well, since even for the smallest scale and difficult angles all
configuration variables should be extractable. Introducing scale transformations is also
an additional safeguard against the model relying purely on the size of a fish for classi-
fication. The field of view was set to 45◦, leading to significant perspective projection
distortions. This results in an additional position dependency of the fish object views,
which is clearly visible in Figure 3.3E. A size or image area normalization of the different
fish objects is not possible due to the configuration dependency of the effective object
area in the image (which varies most for the in-depth rotation).

3.3.3 Random Walk Procedure
The configurations for the training sequences were generated by a random walk proce-
dure. To generate a configuration in the sequence we add a random term to the current
spatial, angular, and scaling velocities of the object. The random term is drawn from
an interval with a homogeneous probability density and zero mean. The velocities are
cut off at certain limits and by adjusting these limits one can effectively determine the
transformation timescales. The position, angles, and scale are then updated according
to these velocities. If an object reaches the position boundary, it is bounced back. All
the parameter values are given in Table 3.2. The whole procedure produces flat config-
uration histograms (given enough time points) and the velocity profiles are independent
of the configuration values.
Let us illustrate this procedure with an example for the x-position of a sphere object.

16



3.3 Stimuli

Spheres Fish
max. vel. max. acc. ∆ max. vel. max. acc. ∆

x (in [0; 1]) 0.025 0.005 0.008 0.03 0.005 0.008
y (in [0; 1]) 0.025 0.005 0.008 0.03 0.005 0.008

size (in [0.75; 1]) 0.005 0.001 0.014
φz in-plane) 0.04 0.01 0.007

φy rad (in-depth) 0.04 0.01 0.007 0.04 0.01 0.007

Table 3.2: Parameters for the random walk procedure. All velocity values are
given “per frame” and the angle values are in radiant measure. The “max.
vel.” parameter is the maximal velocity, “max. acc.” is the maximal change
in velocity per frame (i.e. acceleration). The ∆’s are rounded empirical values
from the actual random walk sequences of the training data.

The allowed interval for these position values is [0, 1]. Assume that the current position
is 0.99 and that the current velocity (change in position per frame) is 0.022, which is
still below the maximum value of 0.025. The velocity update is now randomly picked
from [−0.005, 0.005], e.g., 0.004. This brings the velocity value to 0.026, so it is cut
off at 0.025. The new position would therefore be 1.015, but since this is beyond the
boundary, the object bounces back and the final new position is 0.985.
In each step the object identity was changed with low probability (p = 0.002). A blank

frame was inserted if a switch took place to avoid linking together different objects in
identical poses in the stimulus, which would introduce an element of supervised training.
The effect of the blank frame on the coding of the configuration variables is described
in Section 3.3.4.
Note that the time structure of the stimuli resurfaces in the SFA output of our model.

The SFA algorithm does not change the timescales of the features, these timescales are
purely determined by the parameters of the random walk.

3.3.4 Theoretical Predictions
In Section 2.2 we mentioned that it is possible to predict the optimal SFA solutions if
the available function space is unrestricted. For our model this condition is obviously
not met, but if the hierarchical model is computationally powerful enough then it can
come close to these optimal predictions. Therefore we briefly describe the theoretical
predictions for our stimulus set, which follow directly from the detailed work in [Wiskott,
2003] and [Franzius et al., 2007].
The optimal solution for the slowness optimization problem is generally a function

of the slowest configuration variable. For example, let us assume that c1(t) (e.g., the
position x or y from Section 3.3) is the configuration variable that varies on the slowest
timescale (i.e., has the smallest ∆-value after normalization to unit variance). The
configuration values are mapped to the input signal x(t), which corresponds to the
raw pixel data in our model. Further assume that the values of c1 are homogeneously

17



3 Invariant Object Recognition with Hierarchical SFA

distributed in the interval [0;L] (with L > 0) and that the velocity profile does not
depend on the value of c1. As shown in [Franzius et al., 2007] the slowest possible
output signal y1(t) := g1(x(t)) is then given by

g1(x(t)) =
√

2 cos
(
π
c1(t)
L

)
. (3.1)

So g1 is a half cosine over the c1-interval, i.e., a monotonically increasing representation
of c1-position, which is invariant to all other configuration variables. If the timescale of c2
is only slightly faster than that of c1, and both are uncorrelated, then the second slowest
solution g2(x(t)) is a similar half cosine of c2. However, the decorrelation condition (2.4)
is also satisfied by solutions of the form

g(x(t)) =
√

2 cos
(
π
nc1(t)
L

)
with 1 < n ∈ N. (3.2)

These higher order harmonics are all uncorrelated, with their timescales being multiples
of the original timescale. Similar harmonics exist for c2. Another class of solutions
consists of products of the solutions in c1 and c2 mentioned above. If the configuration
variables are uncorrelated, then the products of their solutions are uncorrelated as well.
All these solutions are naturally ordered by their timescales (i.e., their ∆-value).
If two variables vary on equal timescales, then any normalized linear combination of

their solutions has the same ∆-value as well. Thus any two uncorrelated solutions from
the two-dimensional subspace spanned by the solutions of the individual variables form
a valid set of solutions. We refer to this ambiguity as the problem of linear mixing and
discuss its practical implications in Section 3.4. Depending on their timescales, higher
order harmonics or products of solutions can also take part in linear mixtures.
There are two other special cases that are relevant for our model: cyclic configuration

variables like φy or φz and variables coding for object identity. Cyclic variables arise if
the input data x(t) consists of periodic functions of a hidden variable φ(t) ∈ [0; 2π], i.e.,

x(t) = x(φ, . . .) = x(φ+ 2π, . . .) (3.3)

Again we assume a uniform distribution of φ and an independent velocity profile. The
optimal uncorrelated solutions based on the periodic x(t) are then

g1(x(t)) =
√

2 sin(φ(t) + φ0) and g2(x(t)) =
√

2 cos(φ(t) + φ0) (3.4)

with an arbitrary phase offset φ0. As g1 and g2 vary on the same timescale, φ0 simply
reflects the linear mixing ambiguity.
The second special case is a variable that takes only discrete2 values, like the object

identity k(t) ∈ {1, 2, . . . , N}. If the transitions between the values are all equal (e.g.,
switching from object 1 to object 3 is just as likely as switching to object 2), then there

2When using a continuous time t this implies non-differentiable changes of the variable, leading to
infinities in the analytical analysis. For practical applications of the SFA-algorithm this does not
pose a problem, since the time t has to be discrete in any case.

18



3.4 Post-Processing

are N − 1 uncorrelated optimal solutions. Those solutions are different step functions
of k [Berkes, 2005]. Their exact shapes are determined by the decorrelation conditions.
As mentioned earlier we insert a blank frame whenever the object identity changes.

Since SFA is instantaneous and deterministic, the SFA outputs always take the same
value for this blank frame. Therefore there is no penalty if the SFA outputs become
object dependent. It allows the SFA solutions for variables like position and angles to
become object dependent without increasing their ∆-value (i.e., reducing their slowness).
Therefore the dimension of the space of ∆-optimal solutions increases for all variables
apart from the identity. A basis of slowest solutions is now given by functions that are of
the form (3.1) or (3.4) for a single object and are zero for all others. So for one particular
variable and N objects there are now N uncorrelated optimal solutions instead of just
one.

3.4 Post-Processing
In Section 3.3.4 we already presented the form of the expected SFA-output and the
problem of linear mixing of solutions for variables with identical timescales. The limited
sampling of the training sequence and the function space used by the model generally
leads to deviations from the theoretical predictions. Thereby a mixing in the SFA-output
can occur even if the underlying timescales are different. The higher order harmonics
are also affected by this. Overall this makes it practically impossible to prevent the
mixing for complex applications with many different transformations, which complicates
the interpretation of the SFA-output.

3.4.1 Feature Extraction with Linear Regression
Our main objective here is to show that pose information is indeed extracted from the
raw image data even if linearly mixed. The easiest way to do this is by calculating a
multivariate linear regression of the SFA-output against the known configuration values.
This gives us a projection vector for each configuration variable (plus a constant offset).
To calculate the variable value from a given output one takes the scalar product of the
projection vector with the SFA-output vector and adds the offset value.
While the regression procedure is obviously supervised due to the use of the reference

configuration values, it nevertheless shows that the relevant signals are easily accessible.
Extracting this information from the raw image data linearly is not possible, as shown in
Section 3.5.3. One should also note that the dimensionality of the SFA-output is smaller
than the raw image data by two orders of magnitude.
For technical convenience, the configuration reference values were binned, which, for

example, simplified the calculation of error bars. For each configuration variable (apart
from object identity) 60 bins were used, which is sufficient to not influence the results
(tests with smaller bin sizes did not show any significant differences). Since the predicted
SFA solutions are cosine functions of the position values (see Section 3.3.4), one has to
map the reference values correspondingly before calculating the regression. The results
from the regression are then mapped with the inverse function. For example one does

19



3 Invariant Object Recognition with Hierarchical SFA

not calculate the regression for position x, but for the predicted solution y(x) = cos(πx)
instead. The result from the linear regression is then mapped with arccos(y)/π (after
cutting off the values outside the interval [−1; 1]) to get the estimated position values.
This method is also used for the size transformations of the fish stimuli.
For those SFA solutions that code for rotational angles, the theory predicts both

sine and cosine functions of the angle value (as described in Section 3.3.4). Therefore
we calculated regressions for both mappings and then calculated the angles via the
arctangent. This automatically matches the phase of the extracted angles to that of the
reference values.
If multiple objects are trained and separated with a blank, the solutions for the position

and rotational angles are in general object dependent. In theory a global regression
for all objects should work nevertheless, since the different solutions can be linearly
combined into an object independent solution (i.e., it lies in the space spanned by the
solutions). However, for the complicated stimuli used here this generally only works for
the “simpler” features like object position (see Section 3.5). For the rotational angles the
limited function space of the model leads to complicated dependencies on object identity.
The easiest solution to this is to perform an individual regression for every object. While
this procedure sacrifices the object invariance it does not affect the invariance under all
other transformations (e.g., the extracted angles are still invariant with respect to the
position).

3.4.2 Classification
As described in Section 3.3.4, the object identity of N different objects is optimally
encoded (under the SFA objective) by up to N − 1 uncorrelated step functions, which
are invariant under all other transformations. In the SFA-output this should lead to
separated clusters for the trained objects. For untrained objects, those SFA-outputs
coding for object identity should take new values, which are again invariant under all
other transformations. Thus it should be possible to separate old and new objects.
Linear mixing of the identity solutions with other features is to be expected.
To explore the potential classification ability of the model we applied two very simple

classifiers on the SFA-output: a k-nearest-neighbor and a Gaussian classifier. Since the
linear mixing does not affect cluster separation it should not affect the classifiers. On
the other hand the classification performance is affected by imperfect transformation
invariance of the identity solutions (i.e., dependencies beyond the linear mixing). This
can cause overlap between object clusters. Clusters also have to intersect if two distinct
objects share an identical or highly similar view. Note that the dimensionality of the
regression input also has to be matched with enough reference points to capture the
shapes of the clusters.

20



3.5 Results

Figure 3.4: Five slowest SFA-outputs for the simulation with a reduced trans-
formation set. The in-plane angle dependence of the five slowest SFA-
outputs is shown for the two trained sphere objects. The centers of the lines
indicate the mean values, the outer line borders represent ± one standard
deviation or root mean square error (RMSE). Note that for each rotational
angle the objects were shown at many different positions, so the small RMSE
illustrates the position invariance of the outputs. The slowest output (out-
put 1) codes for object identity. The other four outputs code for the sine and
cosine of the angle. Both the amplitudes and the phases of the solutions are
object dependent, as described in Section 3.3.4.

3.5 Results
First, we consider the raw SFA-output for an experiment with a reduced transformation
set and clearly separated timescales. Then the experiments with a larger transformation
set and similar timescales are analyzed with the methods described above.

3.5.1 Reduced Transformation Set
To illustrate the SFA-outputs of our model we first present a simplified example, with
fewer transformations and well separated timescales. This should lead to SFA-outputs
that code only for one specific configuration variable per output and are invariant under
all other transformations. Two sphere objects with translation and in-plane rotation
were used for this example. Both objects were already used for the training of the
model. The two lowest layers were, as usually, trained with similar timescales for all
transformations. In the training data of the two highest layers very fast translations
were used. Identity was the slowest feature and in-depth rotation lay in-between. Note
that this manipulation of the timescales was only done in this educational example. By
varying the position very fast we are effectively discarding this feature, improving the
clarity of the other features.

21



3 Invariant Object Recognition with Hierarchical SFA

As predicted in Section 3.3.4, the slowest output channel codes for object identity
(Figure 3.4). The output value is almost completely invariant under both rotation and
translation. Outputs two to five are the model outputs coding for rotation angle. They
nicely fit the theoretical prediction (i.e., the outputs are a basis for the predicted space
of the slowest solutions). As expected we get 4 = 2 × 2 uncorrelated solutions for the
angle, since we trained with two different objects.
In summary, for cases of clearly separated timescales and few simultaneous decorre-

lated transformations as presented in this section, the model outputs are clearly pre-
dictable by variational calculus methods and directly encode the configuration parame-
ters in an invariant manner.

3.5.2 Full Transformation Set
The results in this section are based on the full transformation set (as described in
Section 3.3) and the SFA-outputs are subjected to supervised postprocessing (see Sec-
tion 3.4). The stimulus sets used for testing consisted of 100,000 views in total for the
sphere objects (covering both old and new objects) and 100,000 views for the fish ob-
jects. Both were generated in the same way as the training data and were then shown
to a hierarchical network that was trained with the same object type (as described in
Section 3.2). So each stimulus type (fish or sphere objects) has its own hierarchical
network.
We refer to objects that were shown during the training phase of the SFA layers in the

hierarchical network as old objects, while the additional objects that were only shown
in the testing phase of the hierarchical network are called new objects. So there are 15
old and 10 new fish objects and 5 old and 5 new sphere objects. For the postprocessing
step the 100,000 data points were divided into training and test data. From now on the
terms training and test data will therefore refer to the postprocessing, even though they
are both test data from the point of view of the fully trained hierarchical SFA-network.

Position and Rotation Angles

To extract the x and y object coordinates from the model SFA-output, we used multi-
variate linear regression, as described in Section 3.4. Half of the old object data (the
training data) was used to calculate the regressions, the other half for testing. The same
regression was also tested with the new objects (only half of the data was used for this,
to match the number of test samples for the old objects). As one can see in Table 3.3 and
Figure 3.5, the regressions work reasonably well for the x and y coordinates, especially
given the large size of the objects (which can reach 70% of the image, see Figure 3.3).
For the sphere objects we get a root mean square error (RMSE) of 7% (relative to the
position range) for old objects and around 9% for new objects. For the old and new fish
objects the error in the x-direction increases to 9% and 12% due to the large object size
in this direction.
To extract the in-plane and in-depth rotation angles for the spheres, an individual

regression for each object was necessary. This still requires invariance of the representa-

22



3.5 Results

Spheres Fish
old new all old new all

x 7% 8% 7% 9% 12% 10%
y 7% 9% 8% 7% 7% 7%

φz (in-plane) 30◦ 94◦ 62◦
φy (in-depth) 37◦ 97◦ 67◦ 49◦ 68◦ 57◦

size 13% 12% 12%
φz (in-plane) 9◦ 9◦ 9◦
φy (in-depth) 10◦ 13◦ 11◦ 15◦ 19◦ 17◦

φy no front/back 9◦ 11◦ 10◦
Gaussian classifier 99.9% 99.0% 98.4% 96.4% 97.8% 95.2%
KNN classifier 99.2% 99.7% 99.0% 97.2% 97.5% 95.2%
NC classifier 89.9% 70.2% 65.9% 83.4% 77.8% 74.0%

Table 3.3: Results for sphere and fish objects. The first part shows the root mean
square error (RMSE) for the global regressions of the x- and y-coordinates
given in percent relative to the coordinate range (chance level is 28.9%). For
reference we also provide the results of the global regressions for the rotational
angles (chance level is 104◦). In the second part of the table we show the
mean RMSE for the individual object regressions. The mean RMSE for the
object size is given relative to the size value range (only fish). The next rows
show the mean RMSE for the rotational angles (chance level is again 104◦).
The last row in the second part was calculated by omitting the ambiguous
front and back views of the fish objects. In the third part of the table
the classifier hit rates in percent are shown. The second row refers to the k-
nearest-neighbour classifier (k = 5), the last row is the nearest center classifier.
Chance level is 10% for all sphere objects and 4% for all fish objects.

23



3 Invariant Object Recognition with Hierarchical SFA

old objects new objects

y coordinate (regression for all objects)

in-plane rotation (regression for one object)

in-depth rotation (regression for one object)

Figure 3.5: Reconstruction of sphere object position and angle on test data.
The variable values that were calculated with linear regression are plotted
against the correct reference values. The gray dots are data points, the black
line is the mean and the gray area shows ± one RMSE. The regression of the
y coordinate was based on all five training objects. For the rotational angles
we show object specific regressions. Object 1 was used during training of the
SFA layers, object 6 was not.

24



3.5 Results

tions under the other transformations (including the other rotation type). As the results
in Table 3.3 show, the in-plane angles were extracted with a mean RMSE of about 9◦,
the in-depth angles with about 11◦. The RMSEs for individual objects vary, ranging
from 9◦ to 17◦ for the in-depth rotation. We also verified that calculating the angles
with global regressions for all objects did not work well (see Table 3.3).
For the fish, the mean RMSE for the in-depth angles is about 17◦ for all 25 objects.

A large part of this increase compared to the sphere objects is due to systematic errors.
The fish models naturally have a very similar front and back view and therefore the
model has difficulties to differentiate between those two views, which can be clearly seen
in Figure 3.6A. To verify this we did the same analysis after removing all data points
within 30◦ of the front and back view. This brought the error down to the level of the
sphere objects (see Table 3.3).
As for the angles, individual regressions for all objects were used to calculate the size

for the fish objects (size transformations were not used for the sphere objects). This
works with a RMSE of about 12% on average (see Figure 3.6B). The model cannot
simply use the object area to infer the size, since the area covered by an object largely
depends on the in-depth rotation angle and the object identity.

Classification

To quantify the classification ability of the model, two classifiers were used on the SFA-
output. The classifiers were trained with about 5,000 data points for each sphere object
and 2,000 data points for each fish object (i.e., half of the data, as for the regressions).
The other half of the data points was then used as test data to test the classifier perfor-
mance. The Gaussian classifier performed with about 95% hit rate for all 25 fish objects
(see Table 3.3) and 98% for all 10 sphere objects. Training and testing with only the
old or only the new sphere objects resulted in a performance of 99.9% (old) and 99.0%
(new). The k-nearest-neighbour classifier (k = 5) worked at about the same performance
level. In Figure 3.7 some 2D projections of the data clusters are shown. They indicate
that the data clusters for different objects are reasonably well separated (as shown by
the classifier results). The classification errors for the fish objects mostly occur around
the difficult front or back views. Removing all data points within 30◦ of the front and
back view raised the hit rate of the Gaussian classifier to 99.8% on all 25 fish objects.
We also tested the ability of the model to classify based on limited training data for

the post-processing step (the hierarchical network was left unchanged). The fish objects
were used for these tests and training data was restricted to views where the fish were in
the upper left image area. The in-depth rotation angles were restricted to the interval
between 0◦ and 90◦. Testing of the classifiers was then done with the fish object in the
opposite lower right area and with angles from 120◦ to 330◦ (i.e., a distance of at least
30◦ to the known object views). Since the number of training data points was below the
output dimensionality of 512 we used Fisher discriminant analysis (based on the full data
set for the old objects only) to project the data down to 14 dimensions. This number
matches the theoretically predicted uncorrelated SFA solutions for object identity (as
described in Section 3.3.4). The results are shown in Table 3.4.

25



3 Invariant Object Recognition with Hierarchical SFA

in-depth rotation (regression for single object)

size (regression for single object)B

A

Figure 3.6: Reconstruction of in-depth rotation angle and size for fish objects
on test data. In A we show the regression results for the in-depth rotation
angle for one fish used during training of the SFA layers (obj. 7, last one
second row Figure 3.3C) and one new object (obj. 16, first one third row
Figure 3.3C). The first plots at the top show the regression angle versus the
correct reference angle. The plots below show the regression values for the
sine and cosine of the in-depth rotation angle. The shades of the points
indicate the correct reference angle value. The mean regression values for
the 60 different reference angle bins are shown as larger dots connected with
a line to ideal values on the circle, which are also indicated by a large dot.
The deviations at 90◦ and 270◦ for object 7 are a result of the similar front
and back view of this fish model. Object 7 was selected to illustrate this
effect, which is less of a problem for many of the other objects (including
object 16 shown on the right). B shows the regression for the size of a single
object.

26



3.5 Results

spheres

A

B

old objects new objects

fish

spheres

Figure 3.7: 2D projections of the data clusters. Two-dimensional projections of
the data points are shown, which are colored according to object identity.
The projection plane was chosen for each plot to maximize cluster separation
(using Fisher discriminant analysis). A shows the data for the five old sphere
objects on the left and the five new ones on the right. B shows the projected
data for the fifteen old and ten new fish objects.

27



3 Invariant Object Recognition with Hierarchical SFA

# of training old objects new objects all objects
samples per obj. G KNN G KNN G KNN

1 79.9% 57.9% 60.5%
≈ 34 82.2% 90.6% 53.9% 75.6% 58.5% 76.6%
≈ 174 84.5% 90.7% 64.8% 82.3% 63.5% 79.0%

Table 3.4: Classifier hit rates for reduced training data of fish objects. Training
and test data were taken from different regions of the configuration space
to test the generalization ability of the model, see text for details. Columns
labeled with “KNN” refer to the k-nearest-neighbor classifier (k = 1 in the first
line, otherwise k = 3), while those with “G” refer to the Gaussian classifier.

For the first test only a single randomly picked view per object was used to train the
classifier (so the k of the k-nearest-neighbor classifier had to be set to one as well). This
resulted in a hit rate on the 10 old objects of 79.9%. For the new objects this decreased
to 57.9% and to 60.5% for all 25 fish objects (which is still well above the 4% chance
level). Increasing the number of samples increases the performance, up to 79.0% on all
25 objects for the k-nearest-neighbour classifier (k = 3). Note that the training and test
data were still drawn from the non-overlapping parameter intervals described above.
An analogous test for the extrapolation of the regression results is not easily possible.

Restricting the regression reference values to a limited interval (e.g., 0◦ to 90◦ for the
angle) leads to large systematic errors in the regression, since features like the sine and
cosine of an angle are no longer uncorrelated. Therefore one cannot use the standard
procedure for linear regression. Using a more complicated algorithm one could overcome
this restriction, but would also make the post-processing part of our model more complex.

3.5.3 Controls
To verify the robustness of our model and to justify the model structure we performed
several control experiments.

Normal Transformation Set

The following control experiments were done with the full transformation set for the
sphere or fish objects:

Choice of time scales. Our model strongly depends on the timescale of the transfor-
mations in the training images. We chose the random walk parameters such that
the ∆-values of the transformations were in the same range (e.g., for the spheres
the smallest ∆ is about 0.0045, the largest 0.0081). Moving away from such bal-
anced timescales generally leads to a decrease of the performance for the more
quickly varying configuration variables. On the other hand one can increase the
performance for a particular variable by making it slower relative to the other vari-

28



3.5 Results

outputs 32 64 128 256 512
φy 40◦ 32◦ 25◦ 20◦ 17◦

classifier hit rate 80.7% 87.6% 91.2% 94.0% 95.2%

Table 3.5: Influence of the number of SFA outputs on the performance (for fish
objects). The table presents results for different channel numbers. The first
row shows the mean RMSE for the in-depth rotation angle of all 25 objects.
The second row shows the hit rate of the Gaussian classifier on all objects.

ables. These dependencies were to be expected, as a result of the limited function
space available in the model.
To verify this we modified the fish random walk and trained a network with the
new data. In one example we increased the maximal velocity of the x-position
from 0.06 to 0.12 and later 0.18, which increased the ∆-value to 0.017 and then
0.33. The RMSE for x on all 25 fish rose from 10% to 12% and then 22%. At
the same time the performance for all other configuration variables improved. For
example the Gaussian classifier performance on all 25 fish increased from 95.2%
to 98.6% and 99.0%. If the goal was to maximize only the classifier performance
one would therefore make all other variables very fast. In this special case SFA
approximates nonlinear Fisher discriminant analysis [Berkes, 2005]. Note, however,
that maximum transformation speed is limited by receptive field size: if speed is
too high, no spatiotemporal structure can be extracted anymore on lower layers
with smaller receptive field sizes.

Blank frame. In the training sequences we separated views of different objects with
a blank frame. However, we found that the performance of the model is largely
unaffected by omitting the blank.

Output dimensionality. The results presented so far are based on 512 SFA-output
dimensions i.e., the 512 slowest outputs of the top layer, which may seem excessive.
We found that a high number of outputs increased the quality of the results (see
Table 3.5). The computational cost of working with 512 outputs is still relatively
low (except for the k-nearest neighbor classifier). If the number of transformations
is low, one can reduce the output number without sacrificing performance (the
results in Figure 3.4 are an extreme case of this).

Nonlinearity. To verify that the nonlinear expansion is really necessary we trained
and tested a purely linear network on the same fish object data as before. The
hierarchical structure was still used, since otherwise the covariance-matrix sizes
would have been prohibitive. So in each layer we omitted the quadratic expansion
and the second SFA step. While the position of the objects was still extracted with
an RMSE of 16%, in the x-direction (as compared to 10% in the nonlinear network),
the mean RMSE for the in-depth rotation angle increased to 60◦ (as compared to
17◦). The hit rate of the Gaussian classifier dropped to 39% (as compared to

29



3 Invariant Object Recognition with Hierarchical SFA

95.2%) for all 25 fish objects. These results demonstrate the importance of the
nonlinear expansion in the hierarchical network.
We also verified that the performance drops significantly if the linear terms are
removed from the quadratic expansion. Adding third degree terms in the expansion
(e.g., xixjxk) on the other hand did not significantly improve network performance
(due to the large number of terms only a random selection was added).

Nonlinearity without SFA. It was verified that a nonlinear expansion alone is not
sufficient to reach the performance level of our full model. This was done by mod-
ifying the second SFA step after the quadratic expansion in each layer. Instead of
picking the slowest directions, random directions were used. Note that a dimen-
sionality reduction like this is necessary to keep the computational requirements
of the next layer in the network under control. The first linear SFA step in each
layer was left unchanged. Again the model was trained and tested with the same
fish object data as before. This seriously degraded performance, with the mean
RMSE for the in-depth rotation angle rising to 77◦ (as compared to 17%). The hit
rate of the Gaussian classifier dropped to 10% (as compared to 95.2%).

Baseline performance on pixel data. To verify that our stimulus set is non-trivial
we trained a supervised nearest cluster center classifier on the raw image data. It
achieved a hit rate of only 14% on all 25 fish and 13% on the 10 sphere cluster
objects. The dimensionality of the data (1552 = 24025 pixel) makes it difficult
to test more sophisticated classifiers, and the computational cost would quickly
exceed that of our model.

PCA instead of SFA. We compared the performance of SFA with Principal Com-
ponent Analysis (PCA). This was done by replacing all SFA steps in our network
with PCA, leaving everything else unchanged (including the dimensionalities). The
PCA networks were then trained and tested exactly like the SFA ones. While the
results were better than chance level they were also vastly inferior to the SFA
performance. The Gaussian classifier achieved only about 41% hit rate on the 10
spheres and 56% on all 25 fish. For the in-depth angle of the fish the mean RMSE
was about 77◦ (for the spheres the results were even worse). Under the condition
that the input data has an appropriate time structure this demonstrates that SFA
can clearly outperform PCA.

Modified Transformation Set

In the following control experiments we explore the impact of a reduced or otherwise
modified transformation set during training. This helps to understand the ability of the
network to actually learn the transformations that were used in the training stimuli.
On the other hand this is also important for understanding the contribution of the
post-processing steps to the overall performance.

Generalization to new stimulus class. As a test of the generalization capabilities
of our model we took a network that had been trained with sphere cluster objects

30



3.5 Results

and tested it with fish objects (the original random walk parameters from Table 3.2
were used). Surprisingly the performance of this network was practically identical
to that of the dedicated fish network. On the other hand the performance of a fish
network when applied to sphere cluster objects was clearly inferior to that of the
dedicated sphere cluster network. In this case the performance of the Gaussian
classifier dropped to 91% (as compared to 98%) and the mean RMSE for the
angles grew by a factor of two. Note that the sphere cluster objects incorporated
the additional in-plane rotation, which was not present in the fish training data.
We then used the random walk parameters of the fish for the sphere cluster objects
and tested the performance of the fish network on this new stimulus set. The per-
formance was now excellent (mean RMSE for the in-depth angle was 7◦ and 99.97%
hit rate of the Gaussian classifier on all 10 objects). Together with the previous
results this suggests that the additional in-plane rotation caused the problems for
the fish network, since it was not trained with two simultaneous rotations.

Untrained transformation. As another variant of the previous control experiments
we trained networks with reduced transformation sets and then tested their per-
formance on stimuli with a larger transformation set: we trained a network with
translations and different identities, but without any rotations (this experiment
was performed for both fish and sphere cluster objects). When the resulting net-
work was tested with a stimulus set that included in-depth rotation the results
were surprisingly good. In general the mean RMSE for the in-depth angle was a
few degrees larger than in the normal case and the classifier performance was just
below 90%. However, when the in-plane rotation was added as well (for the sphere
cluster objects) the performance took a major hit (the mean RMSE for the angles
rose above 40◦ for both in-plane and in-depth rotation and the Gaussian classi-
fier performance dropped to 77% on all 10 sphere cluster objects). We also did a
complementary experiment by training a network with in-depth rotation only and
then testing it with a stimulus set that also included translation. In this case the
performance was very poor (e.g., only 50% hit rate of the Gaussian classifier).

Random network. One interpretation of the previous results would be that the
extraction of the in-depth angle is primarily made possible by the supervised linear
regression in combination with the 512 dimensions. To verify this we tested a
network in which the two SFA nodes in each layer are replaced with nodes that
pick random orthogonal directions (which are fixed throughout the experiment)
and added a whitening stage in each layer. On a stimulus set containing only in-
depth rotation this produced reasonable results (mean RMSE for the angle was 23◦,
Gaussian classifier hit rate was 93.3% on all 10 sphere cluster objects). However, as
soon as translations were introduced as well the performance went down to chance
level. In both cases the whitening stage was trained with the same transformations
that were used during testing.

Reduced output dimensionality. To check whether the post-processing results for
untrained transformations are purely an artifact of the large number of dimensions

31



3 Invariant Object Recognition with Hierarchical SFA

we also checked the performance for a reduced number of outputs (by taking only
the slowest 128 network outputs, as in one of the earlier control experiments).
It turned out that the decrease in performance is comparable to that of a nor-
mal network. So the performance gap between a network trained on a reduced
transformation set and a fully trained network does not depend on the output
dimensionality.

In-depth versus in-plane rotation. The sphere cluster stimuli were also used to
determine whether there is a qualitative difference in network learning between
stimuli with in-depth and in-plane rotation. One network was trained without
in-plane rotation and a second one was trained without in-depth rotation (all
other transformations were left unchanged and conformed to Table 3.2). Then
both networks were tested with the standard sphere cluster testing stimuli, which
include both in-depth and in-plane rotation. As expected the performance in both
cases was worse than that of a fully trained network. However, the performance of
the network that was trained with in-plane rotation was slightly better than that
with in-depth rotation (e.g., 96.7% versus 93.4% Gaussian classifier hit rate and
16.6◦ versus 20.8◦ mean RMSE for the in-depth angle). The fact that the network
was not able to create an efficient representation of the in-depth rotational angle
supports the view that in-depth rotation is harder to learn than in-plane rotation.

Overall, the results suggest that for a single continuous transformation type (e.g., in-
depth rotation) the post-processing alone is able to produce reasonable results. But as
soon as multiple transformations are present this is no longer true and the SFA network is
critical for the performance. A network that has been trained with translations can only
deal reasonably well with a single kind of rotation (even though it is still outperformed
by a properly trained network). When two rotations are included then at least one of
them must have been trained.
Our results also support the assumption that in-depth rotation is harder to extract

and learn than in-plane rotation. This is not surprising, since mathematically the effect
of in-plane rotation on the input image is simpler to describe than in-depth rotation.
Generalization across different objects is especially hard for in-depth rotation, since the
effect on the input image can be highly dependent on individual object details like shape.
However, for the two object classes that we used it is at least theoretically possible to
find general rules for the in-depth rotation (e.g., based on the fact that the two sides of
a fish are very similar).

Cluttered Scenes

So far we only used a white background without distractors. In principle the model
should be able to deal with changing background to some extent, since those changes
typically happen on a different timescale than those of object identity. While the back-
ground properties would enter the model output, the relevant object variables should
still be present as well. One could also artificially render the model invariant to the

32



3.6 Discussion

background or distractors by rapidly changing them [Einhäuser et al., 2005], thus sacri-
ficing some realism. Unfortunately our tests in that direction were not very promising.
The reason might be that the computational power of the network was not sufficient.
Furthermore, in our simulations, contrary to those in [Einhäuser et al., 2005], objects
were not centered in the input image, such that a suppression of peripheral areas is no
solution to cope with clutter influence. In general we believe that recognizing objects in
cluttered scenes cannot be solved with the slowness principle in a feed-forward network.
It seems necessary to employ top-down mechanisms for that, which will be explored to
some extend in Part II of this thesis.

3.6 Discussion
We have demonstrated how the extraction of slowly varying signals leads to relevant
latent variables coding for object identity and pose. In Section 3.5.1 we have shown that
these representations in principle can encode object identity and pose independently of
each other without any supervised postprocessing. As the time structure of object pre-
sentation determines the learned representations, behavior determines representations
in our model. For instance, in our model rotation invariance increases for an object if it
is rotated rather quickly and switched rarely (similar to a child turning an object in its
hands).
However, the results in Section 3.5.2 show that the theoretically determined optimal

solutions in our model mix for higher numbers of objects. As the stimuli get more com-
plex we find that the SFA outputs start to deviate from the theoretical ideal. A relatively
simple supervised postprocessing step can then still lead to good pose estimation and
classification rates. With this method the desired invariance can be recovered for most
of the features. The only broken invariance is the object identity dependency for the
in-depth and in-plane angles, but they are still invariant with respect to position. We
have demonstrated supervised classification and regression, but unsupervised steps (e.g.,
clustering) or reinforcement learning, as demonstrated in Chapter 5, are an alternative.
Nevertheless, as a small number of slow features on the top of the hierarchy code for
object identity and pose, there are few parameters to fit in a supervised postprocessing
step and thus little training data is necessary, which minimizes the number of labeled
training examples.

3.6.1 Comparison with Neural Structures
The primate visual system is organized in two hierarchical pathways. Classically, the
ventral pathway is assumed to perform invariant object recognition (“what pathway”).
This pathway involves the cortical areas V1 (primary visual cortex), V2, V4, and IT (in-
ferotemporal cortex). On the way from V1 to IT, neurons show increasing receptive field
size, stimulus specificity and invariance. At the top of this hierarchy, in IT, many neurons
code for objects with high invariance to position, angle, scale etc. The dorsal pathway is
assumed to perform complementary spatial computation (“where pathway”) [Ungerlei-
der and Mishkin, 1982]. Most models of invariant object recognition are inspired by this

33



3 Invariant Object Recognition with Hierarchical SFA

interpretation of the ventral path and implement mechanisms for hard-coded position
invariance [e.g., Fukushima, 1980; Wersing and Körner, 2003; Rolls and Stringer, 2006],
which successfully reduces view-dependence of their representations. There is, however,
some more recent evidence against a complete segregation of “what” and “where” infor-
mation in the macaque brain [e.g., Hung et al., 2005; Lehky et al., 2008], showing that
information about position and size of objects is also represented in the inferotemporal
cortex of macaques, i.e., in a top layer of the ventral pathway. This latter view is more
consistent with our model, which performs invariant object recognition and simultaneous
pose estimation. We conjecture that object identity and pose are tightly coupled: pose
estimation requires information on object identity (or at least object category) and ob-
ject identity needs to be inferred from an object’s view in a specific pose. Therefore, an
early segregation of identity and spatial configuration into separate processing streams
would likely require redundant computing hardware.
We provide no layer-by-layer comparison of our model with the ventral stream, because

such a comparison would not only require that the computational principle is similar
but that also the specific implementation is comparable. Specifically, the computational
power of a layer in our model is determined by the employed nonlinearity, which is hard
to estimate for neural substrate and we thus did not try to match it against that of
the visual system. Nevertheless, some model properties can be matched to the visual
system or can serve as predictions for testing the model. The input data for our model
consists of a high-dimensional pixel images, which could be associated with a retinal
representation. The first layer of our model computes quadratic functions on patches of
these images. Earlier work has established that these functions closely approximate V1
complex cell properties [Berkes and Wiskott, 2005]. On the top of the ventral stream,
in IT, we predict neurons coding for invariant object representations as well as neurons
representing object pose. Although information on object pose might be mixed with
object identity information, we predict that a linear regression should be able to ex-
tract the 3D rotational angles from a population of IT neurons for well-known objects.
Furthermore, in a system optimizing a slowness function, the presentation statistics of
newly seen objects should influence object representation. For example, frequent switch-
ing of presented views of two distinct objects should make the representations of the two
objects in IT more similar. This matches recent experimental findings in monkeys [Li
and DiCarlo, 2008, 2010]
A comparison of intermediate layers of our model with the ventral stream is much

harder. The interpretation of the exact functional role of the intermediate layers in our
model is actually an unsolved problem, which is also discussed in Part II of this thesis.
Nevertheless, we predict that the ∆-values of the representations decrease towards the
top of the ventral hierarchy. For example, the presentation of a rotating object should
elicit more quickly varying responses in V1 than in V4 or in IT.

3.6.2 Feedback
Our model contains no feedback connections, which is in clear contrast to the massive
feedback connections present in the primate visual system [Kennedy et al., 2000]. How-

34



3.6 Discussion

ever, the latency results reported in [Nowak and Bullier, 1997] and [Hung et al., 2005]
indicate that the visual system can work in a fast feed-forward mode. In this chap-
ter we have shown how a model without feedback can indeed compute view-invariant
object-specific representations as well as object poses. Our model operates, however,
in a restricted regime without attention, scene clutter or top-down object bias, which
might all require a feedback system. We partly address the issue of feedback in Part II
of this thesis, where we try to extend our model to accommodate top-down processes.

3.6.3 Related Work
The problem of invariant object recognition has been approached from two sides in the
past [Wiskott, 2006]. One approach is mainly motivated by the “biological implementa-
tion” in the (primate) brain with a focus on biological realism, generality and unsuper-
vised learning but was so far mostly limited to very simple stimuli. The other approach
comes from computer vision, uses sophisticated machine learning approaches, works for
complex stimuli, is highly adapted to a specific problem but is often not biologically
plausible.
According to the classification by [Rolls and Deco, 2002], our network belongs to the

category of “feature hierarchy based computational object recognition devices”. Such
systems extract increasingly complex features in a hierarchical system. In contrast to
“flat” feature space systems that are typically insensitive to scrambled input images [e.g.,
Mel, 1997], object recognition in primates is highly sensitive to the relative location of
features, for example position of eyes and the nose in a face [Rolls et al., 1994; Vogels,
1999; Grill-Spector et al., 1998]. The increasing receptive field size in hierarchical feature
systems naturally preserves susceptibility to scrambling, as each layer is sensitive to local
arrangements of spatial features.
The slowness principle has been applied in many models of sensory systems in the

past [e.g., Földiák, 1991; Stone and Bray, 1995; Bartlett and Sejnowski, 1998; Becker,
1999; Kayser et al., 2001; Rolls and Deco, 2002; Wiskott and Sejnowski, 2002; Berkes
and Wiskott, 2005; Hipp et al., 2005; Wyss et al., 2006; Franzius et al., 2007]. Some of
these unsupervised models learn on naturalistic input data and generate representations
similar to neural codes, like V1 simple cells, V1 complex cells, or place cells, head direc-
tion cells and spatial view cells in the hippocampal formation. A number of publications
have used the slowness principle for invariant object or face recognition [Wallis and Rolls,
1997; Becker, 1999; Wiskott and Sejnowski, 2002; Stringer and Rolls, 2002; Rolls and
Stringer, 2006] but, to our knowledge, pose extraction has not been demonstrated before.
Furthermore, most models use simplified stimuli and apply only one transformation, i.e.,
rotation or translation.
In the remaining part of this chapter we discuss some selected models in a little more

detail. Some additional comparisons with other models can be found in [Franzius et al.,
2011]. Furthermore, we discuss other approaches in Section 5.4.1 and Section 8.3 (e.g.,
the HMAX model [Riesenhuber and Poggio, 1999]).

35



3 Invariant Object Recognition with Hierarchical SFA

The VisNet Model

VisNet [Rolls and Deco, 2002] is a model based on the trace rule [Földiák, 1991; Rolls,
1992; Wallis and Rolls, 1997], which is closely related to Slow Feature Analysis [Sprekeler
et al., 2007]. As in our model, features are learned in an unsupervised manner from the
statistics of the network’s stimuli. Only the weights on the lowest layer are initialized
explicitly to Gabor-like structures. Like our model, VisNet can learn a position-invariant
(or view-invariant) but object-specific code. In contrast to our model, only a single
invariant representation is extracted (i.e., object identity) and the other parameters (e.g.,
object position, rotation angles, lighting direction) are discarded. Furthermore, VisNet
has a number of extra variables that need to be tuned per layer (e.g., the learning rate
α and the trace length η). A further difference comes from the use of sparse coding in
VisNet by means of lateral inhibition and the winner-takes-most architecture. In our
model, redundancy reduction comes from the decorrelation constraint in SFA, which is
performed in each node, but no spatial decorrelation over adjacent nodes in the grid of
a layer is enforced.
In [Stringer and Rolls, 2002], VisNet is applied to views of six spheres rotated in-depth

over an angle of 120◦. The spheres have different surface features consisting of different
configurations of three line segments. After learning with the trace rule, a part of the
neurons in the top layer of the model code for sphere identity and are invariant to the
rotational angle.
[Stringer et al., 2006] uses a variant of VisNet with a purely Hebbian learning rule.

Interestingly, in one of their control experiments the trace rule is applied to stimuli that
rapidly change object identity and slowly change the angle. The authors find that the
resulting representation codes poorly for object identity.

Other Examples of Models based on Slowness

The work by [Becker, 1999] introduces a biologically motivated generative hierarchical
model of cortical visual processing. The model performs unsupervised clustering with
a Gaussian mixture model gated by temporal context. In one simulation, the network
performs viewpoint-independent face categorization on a set of ten faces based on tem-
poral continuity of face presentation during the training phase. In a second simulation,
the model learns a pose-specific code after relaxing the temporal context signal. This
architecture focuses on a more general “context signal”, which might be a temporal one.
In contrast to our model, it seems hard to predict the nature of the invariance properties
learned by the model for a specific set of architectural design choices.
In [Einhäuser et al., 2005] a similar learning rule as in our model is applied, which is

basically a gradient descent on the SFA optimization problem from Chapter 2. Similar to
VisNet, the first layer uses static Gabor wavelets to model complex cells in V1, whereas
the second layer is optimized according to the slowness principle. As this model uses
only two layers, the absolute sum of all outputs of the first layer with the same size and
orientation is used as input for the second layer, which introduces a hard-coded transla-
tion invariance. After optimization, output units represent object identity independently

36



3.6 Discussion

of viewpoint. Between 10 and 50 training objects from the standard COIL database are
used as stimuli in front of a homogeneous or cluttered background. The COIL database
contains photos of real-world objects centered and rotating on a turntable. Thus object
transformations combine in-depth rotation, changing object identity, and some rescal-
ing, but no translation. The model uses color information (as RGB channels). In our
model, we intentionally reduced the input data to gray scale representations because
color histograms alone can often be highly informative about object identity.

37





4 Application to other Stimuli

In this short chapter we want to further explore the performance of hierarchical SFA
networks for different kinds of stimuli, presenting some unpublished results. The param-
eters of the SFA models used here exactly match those from the previous chapter (as
described in Section 3.2).

4.1 Leaf Outlines
This stimulus set consists of leaf outlines from different tree species. The images were
created by Frank Jäkel (who kindly gave permission to use them here), by scanning dried
leafs and converting them to silhouettes. They were used in psychophysical experiments
to analyze the classification behavior of human test subjects (not yet published). Overall
there are leafs from 30 different tree species. For each kind of tree there are between
21 and 180 individual leaf silhouettes, with an average of 104. The classification task
therefore consists of assigning leafs to their tree species, discarding the individual vari-
ations of each leaf. This can be interpreted as another kind of invariance, similar to
rotation or scale invariance (though the leafs are normalized in size and orientation).
Some examples are shown in Figure 4.1. There are several leaf types that look very
similar to the untrained observer, so the classification is not an easy task.

4.1.1 Methods
For the network training we generated two different sets of stimuli. The first set is very
similar to the fish or sphere stimuli and is used for the lower two network layers. A single
leaf is shown and moves around according to the random walk algorithm from Section 3.3.
These transformations should enable the lower network layers to develop similar features
as in the previous experiments (hopefully roughly matching the characteristics of the
visual system). In each time step there is also a 0.2% chance of switching to another
tree species and a 5% chance of switching to another leaf from the same tree.
In the stimulus set for the two top layers the translations are dropped, leaving the

rotation as the only continuous transformation. The individual leaf is now switched
in each frame, while the chance of switching to another tree type remains at 0.2%.
The network layers therefore have a strong incentive to learn invariance with respect
to individual leaf deviations. The rotation transformation is not really needed at this
point, but it might help the network to deal with slight misalignments in the original
images.
The original leaf images are very large (from several hundred to several thousand

pixels wide), but most features are still clearly visible in our 155 × 155 pixel training

39



4 Application to other Stimuli

different tree species:

similar looking tree species:

leafs from one tree species:

Figure 4.1: Different leaf stimuli as presented to the SFA network. The first
two rows show leafs that are from different trees. Those in the first row are
easy to tell apart, while for those in the second row this is much harder. The
third row contains four different leafs from one tree species, illustrating the
individual variations.

images. Only half of the 30 tree species are shown during the network training, which
enables the testing of its generalization capabilities.

4.1.2 Results
To test the network classification performance each individual leaf is shown once, with
no movement or rotation. For the actual classification we use the same method as
described in Section 3.4, so half of the test data is used to train a classifier on top of the
SFA network. The other half is then used to measure the classification performance, as
we did earlier for the fish and sphere stimuli. Due to the limited number of data points
(which are not enough to train the Gaussian classifier) we only provide the results for
the nearest center classifier. It reaches a hit rate of 95% on the first 15 tree species,
which were shown during training. On the untrained second half this drops to 85% and
the performance on all 30 species is 86%. Most of the misclassifications happen for trees
with leaves that look very similar to a human observer.

40



4.2 Multiple Objects

4.2 Multiple Objects
In the previous experiments the SFA network was only confronted with single objects,
both during training and testing. One way to deal with multiple objects or distracters
is to train the SFA network with such multi-object stimuli. If the network is trained
with two objects that move around independently then theory predicts that the pose
information for both objects is encoded in the network output. This approach is used
in the next chapter (see Figure 5.2) and does indeed work. However, the requirement
of dedicated training with the specific number of objects is a serious limitation. We
therefore also tested how the SFA network reacts to multiple stimuli without this special
training. Furthermore, we want to test how the model reacts to transitions between dif-
ferent objects, which could be relevant for the implementation of attentional mechanism
(e.g., gain modulation for individual objects).

4.2.1 Methods
For the testing of our model we generated stimuli in which two fish objects are shown
simultaneously. The positions of the two fish were chosen such that there is no overlap.
We also generated “intermediate” stimuli in which the two objects are shown with varying
contrast. Technically this was achieved with alpha blending, for which the so called
alpha value defines the transparency of an object. The alpha values range from zero
(invisibility) to one (standard view with full contrast).
In the first part of the experiment we used the model from the previous chapter, which

had been trained with the standard fish stimuli (only one fish, alpha always one). For
the second part we trained a new SFA network with stimuli in which the contrast of the
single fish object varies slowly. The variation of the alpha value uses the same random
walk procedure and the same parameters (i.e., the same speed) as for the translations.
Therefore the model should treat the alpha value similar to the position (but obviously
this has to break down when the fish becomes invisible). The same number of training
stimuli was used as in the previous chapter.

4.2.2 Results
To test the performance of the network trained with varying contrast we used the same
test stimuli as in the previous chapter (alpha always one). The performance of this model
is only slightly worse than before, with a Gaussian classifier performance of 93.6% for
all 25 fish (compared to 95.2% for the standard model).
For the tests with two objects we used the previously described stimuli in which two

non-overlapping fish are shown with different contrast. Both alpha values were varied
with a fixed step size, so the value pairs describe a 2D grid. We then recorded the
512 dimensional network output for all these grid points. This effectively creates an
embedding of the 2D grid into the 512 dimensional output space. Principal Component
Analysis (PCA) was then used to project the grid points onto the first two principal
components, allowing us to plot the resulting 2D structure. The results are shown in

41



4 Application to other Stimuli

Figure 4.2: Network output for two fish with different contrast. A shows the
corner points of the 2D alpha grid, at which the alpha values are either zero
or one. The alpha values are represented by RGB colors, with the alpha
value of the upper fish defining the blue channel value and the lower one
defining the red channel (the green channel is set to zero). The first plot
in B shows the 2D PCA projection of the output from the network that
was trained with contrast transformations. The second plot is from the
standard network. The corner points of the grid are indicated by numbers,
corresponding to the numbers in A. C contains the grid plots for a different
fish angle.

42



4.3 Depth Images

Figure 4.2, for two different angles of the fish. They demonstrate that the output of
the standard network varies a lot when being confronted with these new stimuli. The
resulting alpha grid in Figure 4.2 is therefore quite irregular, even along the grid edges
that correspond to a single visible object. The output from the second network (which
was trained with varying contrast) on the other hand is fairly stable, with the grid being
much closer to its ideal 2D shape.

4.2.3 Conclusion
An SFA network that is trained with varying contrast naturally develops some invariance
with respect to this transformation. This even holds if multiple objects are shown,
which is certainly helped by the fact that the receptive fields in the lower layers are
only large enough to contain parts from a single object. The predictable nature of the
network output could be important for attentional mechanisms that are based on gain
modulation. By adjusting the effective contrast for different areas of the input image
it would be possible to move the focus of attention smoothly between different objects,
without generating abnormal network output during the intermediate steps.
A more general conclusion from these results is that the network robustness can be

increased by subjecting it to more transformations in the training stimuli. The polyno-
mial nature of our network means that untrained stimuli can result in large variations of
the output signals, as seen in Figure 4.2. This seemingly contradicts the generalization
capabilities of the network that were demonstrated in the previous chapter. However,
the control experiments in Section 3.5.3 already indicated that the SFA network has
problems to produce a good output signals (that can be interpreted with a simple linear
regression) for untrained continuous transformations.

4.3 Depth Images
Another variation of the fish stimuli is shown in Figure 4.3. These images are based on the
depth information of the 3D objects. They were originally intended as a first step towards
other sensorial modalities. For example, this data could be used for whisker simulations.
Since the fish and sphere stimuli are generated with 3D objects it is technically very
simple to extract the depth image from the rendering process.

Figure 4.3: Stimuli rendered from depth information. The brightness of each pixel
represents the distance to the virtual camera. The last image shows the
grasshopper object, which was added in this stimulus set.

43



4 Application to other Stimuli

The training stimuli consisted of 9 fish objects together with a grasshopper (as a
tribute to the original whisker idea). Instead of 2D movement the objects are moved
around in a 3D box. In addition we applied the standard in-depth rotation, but no scale
transformation. Instead of the blank frame between different objects the switch happens
each time the object reaches the back side of the 3D confinement box. In addition
the depth information is scaled such that the objects also become practically invisible
near the back side. This gives the impression of different objects sliding into view and
vanishing, which is arguably more elegant than our earlier method.
In the test stimuli the objects were restricted to the front 2D plane, in order to provide

the network with a good view. Five new fish objects were introduced during testing (for
a total of 15).
The resulting network performance is generally on par with the earlier results from

our normal stimuli. For example, the Gaussian classifier achieved a hit rate of 92.3%
on all 15 objects. While not surprising this provides an additional verification for the
flexibility of hierarchical SFA networks.

44



5 Combining Hierarchical SFA with
Reinforcement Learning

Humans and animals are able to learn complex behaviors based on a massive stream
of sensory information from different modalities. Early animal studies have identified
learning mechanisms that are based on reward and punishment such that animals tend to
avoid actions that lead to punishment whereas rewarded actions are reinforced. However,
most algorithms for reward-based learning are only applicable if the dimensionality of
the state-space is sufficiently small or its structure is sufficiently simple. Therefore,
the question arises how the problem of learning on high-dimensional data is solved in
the brain. In this chapter we present a biologically plausible generic two-stage learning
system that can directly be applied to raw high-dimensional input streams.
The system is composed of a hierarchical SFA network as described in Section 3.2 for

preprocessing and a simple neural network on top that is trained based on rewards. We
demonstrate with computer simulations that this generic architecture is able to learn
quite demanding reinforcement learning tasks on high-dimensional visual input streams
in a time that is comparable to the time needed when an explicit highly informative
low-dimensional state-space representation is given instead of the high-dimensional vi-
sual input. The learning speed of the proposed architecture in a task similar to the
Morris water maze task is comparable to that found in experimental studies with rats.
This study thus supports the hypothesis that slowness learning is one important unsu-
pervised learning principle utilized in the brain to form efficient state representations for
behavioral learning.
This model is the result of a collaboration with Robert Legenstein, who contributed

all the reinforcement learning parts. The results were published in [Legenstein et al.,
2010], which is the basis for this chapter.

5.1 Introduction to Reinforcement Learning
The nervous system of vertebrates continuously generates decisions based on a massive
stream of complex multimodal sensory input. The strength of this system is based on
its ability to adapt and learn suitable decisions in novel situations. Early animal stud-
ies have identified learning mechanisms that are based on reward and punishment such
that animals tend to avoid actions that lead to punishment whereas rewarded actions
are reinforced. The study of such reward-based learning goes back to Thorndikes law
of effect [Thorndike, 1911]. Later, the mathematically well-founded theory of reinforce-
ment learning, which describes learning by reward, has been developed [Bertsekas and
Tsitsiklis, 1996; Sutton and Barto, 1998].

45



5 Combining Hierarchical SFA with Reinforcement Learning

In a general reinforcement learning problem, an agent senses the environment at time
t via a state s(t) ∈ S, where S is the state space of the problem. The agent then chooses
an action a(t), which leads to state s(t+ 1) according to some (in general probabilistic)
state-transition relation. The agent also receives some reward signal R(t + 1), which
depends probabilistically on the state s(t + 1). By choosing an action a(t) the agent
aims at maximizing the expected discounted future reward

E

[ ∞∑
i=1

γiR(t+ i)
]
, (5.1)

where E[·] denotes the expectation and 0 � γ < 1 is some discount rate. This general
theory has a huge influence on psychology, systems neuroscience, machine learning, and
engineering, and numerous algorithms have been developed for the reinforcement learn-
ing problem. By utilizing these algorithms, many impressive control applications have
been developed.
Since physiological experiments are consistent with quite standard reward-based learn-

ing schemes, it is reasonable to speculate that the superior learning capabilities of animals
is to a high degree based on the ability to autonomously extract relevant features from the
input stream such that subsequent reward-based learning is highly simplified (though we
note that the distinction between feature extraction and reward-based learning is most
likely not so strict in the brain).
In fact, one of the most crucial design questions in the design of a reinforcement

learning system is the definition of the state space S. Most reinforcement learning
algorithms are only applicable if the state space of the problem is sufficiently small.
Thus, if the sensory input to a controller is complex and high-dimensional, the first task
of the designer is to extract from this high-dimensional input stream a highly compressed
representation that encodes the current state of the environment in a suitable way such
that the agent can learn to solve the task. In contrast, the nervous system is able to
learn good decisions from high-dimensional visual, auditory, tactile, olfactory, and other
sensory inputs autonomously.
The autonomous extraction of relevant features is of course just the problem that

was addressed in the previous chapters. After the hierarchical SFA networks have been
successfully applied to invariant object recognition it is only natural to test them in other
applications. The combination with reinforcement learning is paticaluarly interesting
since the supervision in this case only consists of a single reward signal. In terms of
biological plausibility this is a significant improvement when compared to the supervised
analysis techniques that were discussed in Section 3.4.
In this chapter, we propose a learning system where the state space representation

is constituted autonomously by SFA. A subsequent neural circuit is then trained by a
reward-based synaptic learning rule that is related to policy gradient methods or Q-
learning in classical reinforcement learning. We apply this system to two closed-loop
control tasks where the input to the system is high-dimensional raw pixel data and the
output are motor commands. We thus show for two control tasks on high-dimensional
visual input streams that the representation of the SFA output is well suited to serve as

46



5.2 Methods

a state-representation for reward-based learning in a subsequent neural circuit.

5.2 Methods
The learning system considered in this chapter consists of two components, a hierarchical
SFA network which is identical to that described in Section 3.2 and a subsequent control
network, see Figure 5.1. The SFA network reduces the dimensionality of the state-space
from 24025 to a small number n. For example, we used n = 512 in Chapter 3. In the
following experiments the n was generally reduced to 64 or less (by picking only the
slowest n components on the top level). The decisions of the subsequent control network
are based solely on the features extracted by the SFA network.
For each of the two tasks discussed in this paper (Morris water-maze and variable-

targets) we trained a dedicated hierarchical network. The number of training samples
and the training itself was done in the same way for both tasks, only the content of the
training samples was different.

5.2.1 Environment
We tested this learning system on two different control tasks where an agent (a fish)
navigates in a 2D environment with analog state- and action-space: a task similar to
the Morris water-maze task [Morris et al., 1982] and a variable-targets task (see Sec-
tion 5.2.3). The state of the universe at time t (see below for details) was used to
render a 155 × 155 dimensional 2D visual scene that showed the agent (a fish; for one
of the tasks two fish-types with different visual appearance were used) at a position
p(t) ∈ [−1, 1]2 and potentially other objects, see Figure 5.2. This visual scene consti-
tuted the input to the learning system. These tasks are to be seen as generic control
tasks of reasonable complexity. The bird’s eye perspective used here is of course not
realistic for animal agents. As demonstrated in [Franzius et al., 2007] our model should
also be able to deal with a first-person perspective, especially in the Morris water-maze.
For the variable-targets task this would introduce some complications like the target not
being in the field of view or being hidden behind the distractor. On the other hand it
would simplify the task, since the agent would not need to know its own position and
angle (it could simply center its field of view on the target).
For the training of the system, we distinguish two different phases. In a first phase

the SFA network is trained. In this phase, the fish, the target, and the distractor are
floating slowly over the 2D space of the environment. The type of fish is changed from
time to time. In a second phase the control circuit is trained. This phase consists of
several learning episodes, an episode being one trial to reach a defined target from the
initial fish-position. An episode ends when the target is reached or when a maximum
number of Tmax time-steps is exceeded.

47



5 Combining Hierarchical SFA with Reinforcement Learning

Slow Feature Analysis

Universe

high-dimensional
pixel image,
visualizing the
universe

n slowest
features

control variables

Reward

Figure 5.1: The learning system and the simulation setup. The learning system
(gray box) is based upon a hierarchical slow-feature analysis network, which
reduces the dimensionality of the high-dimensional visual input. This re-
duction is trained in an unsupervised manner. The extracted features from
the SFA network serve as inputs for a small neural network that produces
the control commands. This network is trained by simple reward-modulated
learning. We tested the learning system in a closed-loop setup. The system
controlled an agent in an environment (universe). The state of the environ-
ment was accessible to the learning system via a visual sensory stream of
dimension 155 × 155. A reward signal was made accessible to the control
network for learning.

48



5.2 Methods

distractoragent target

distractoragent target

Figure 5.2: Examples for the visual input to the learning system for the
variable-targets task. The scene consists of three objects, the agent (fish),
an object that indicates the location of the target, and a second object that
acts as a distractor. As indicated in the figure the target object depends on
the fish identity. For the fish identity shown in the upper panels the target
is always the disk, whereas for the other fish identity, the target is the cross.
In the visual input for the water-maze task the target and the distractor are
not present, and the agent representation is the non-rotated image of the
fish-type shown in the upper panels.

49



5 Combining Hierarchical SFA with Reinforcement Learning

Training Stimuli of the Hierarchical Network

Training sequences for the two tasks were created with the same random walk procedure
that was described in Section 3.3. The velocity distribution was the same for all objects
(max. velocity of 0.06 and a max. update of 0.01). For the in-plane angle of the agent
the max. velocity was 0.04 with a max. update of 0.01 (in radiant measure).
For the variable-targets task training, the objects were given a radius so that they

bounce off each other. The radii were chosen such that there could be only a small
visible overlap between any two objects (radius of 0.4 for the agent, 0.2 for target and
distractor). In each time step the agent identity was switched with a probability of
0.002.

5.2.2 Neural Circuits for Reward-Based Learning
We employed neural implementations of two reinforcement learning algorithms, one is
based on Q-learning and one is a policy-gradient method. Since this part of the simula-
tion was done by Robert Legenstein I refer to [Legenstein et al., 2010] for the detailed
description and the parameter values.
Neural versions of Q-learning have been used in various previous works on biological

reward-based learning, see e.g., [Foster et al., 2000; Sheynikhovich et al., 2005]. The
popularity of Q-learning stems from the finding that the activity of dopaminergic neu-
rons in the ventral tegmental area is related to the reward-prediction error [Montague
et al., 1996; Schultz et al., 1997; Schultz, 1998], a signal that is needed in Q-learning
[Sheynikhovich et al., 2005]. In Q-learning, decisions are based on a so-called Q-function
that maps state-action pairs (s, a) onto values that represent the current estimate of
the expected total discounted reward given that action a is executed at state s. For a
given state, the action with highest associated Q-value is preferred by the agent. How-
ever, to ensure exploration, a random action may be chosen with some probability. We
implemented the neural version of Q-learning from [Sheynikhovich et al., 2005] where
the Q-function is represented by a small ensemble of neurons and parametrized by the
connection weights from the inputs to these neurons. The system learns by adaptation
of the Q-function via the network weights. In the implementation used in this work this
is achieved by a local synaptic learning rule at the synapses of the neurons in the neuron
ensemble. The global signal that modulates local learning is the temporal difference
error (TD-error). We do not address the question how this signal is computed by a neu-
ronal network. Several possible mechanisms have been suggested in the literature [Houk
et al., 1995; Schultz, 1998; Berns and Sejnowski, 1998]. The Q-function was represented
by a set of N = 360 linear neurons that receive information about the current state from
the output x(t) of the SFA circuit.
The second learning algorithm employed was a policy gradient method. In this case,

the action is directly given by the output of a neural network. Hence, the network (which
receives as input the state-representation from the SFA network) represents a policy
(i.e., a mapping from a state to an action). Most theoretical studies of such biologically
plausible policy-gradient learning algorithms are based on point-neuron models where

50



5.2 Methods

synaptic inputs are weighted by the synaptic efficacies to obtain the membrane voltage.
The output yi(t) of the neuron i is then essentially obtained by the application of a
nonlinear function to the membrane voltage. A particularly simple example of such a
neuron model is a simple pseudo-linear rate-based model where a nonlinear activation
function f : R → R (commonly sigmoidal) is applied to the weighted sum of inputs
x1(t), . . . , xn(t) ∈ R:

yi(t) = f

 n∑
j=1

wijxj(t) + wi0 + ξi(t)

 . (5.2)

Here, wij denotes the synaptic efficacy (weight) of synapse ij that projects from neuron
j to neuron i, wi0 is a bias, and ξi(t) denotes some noise signal. We assume that a
reward signal R(t) indicates the amount of reward that the system receives at time t.
Good actions will be rewarded, which will lead to weight changes that in turn make
such actions more probable. Reinforcement learning demands exploration of the agent,
i.e., the agent has to explore new actions. Thus, any neural system that is subject to
reward-based learning needs some kind of stochasticity for exploration. In neuron model
(5.2) exploration is implemented via the noise term ξi(t).
A single neuron of type (5.2) turns out to be too weak for some of the control tasks

considered in this article. The standard way to increase the expressive power is to use
networks of such neurons. The learning rule for the network is then unchanged, each
neuron tries to optimize the reward independently from the others [Seung, 2003] (but see
[Urbanczik and Senn, 2009]). It can be shown that such a greedy strategy still performs
gradient ascent on the reward signal. However, the time needed to converge to a good
solution is often too long for practical applications. We therefore propose a learning
rule that is based on a more complex neuron model with nonlinear dendritic interactions
within neurons [Poirazi et al., 2003] and the possibility to adapt dendritic conductance
properties [Losonczy et al., 2008].
In our simulations, we needed two control variables, one to control the speed v(t) of

the agent and one for its angular velocity vα(t). Each control variable was computed
by a single neuron of this type. The nonlinearity in the branches was the tangens
hyperbolicus function tanh : R → (−1, 1). Also a logistic sigmoidal was tested which is
a scaled version of the tangens hyperbolicus to the image set (0, 1). Results were similar
with a slight increase in learning time. The nonlinearity at the soma was the tangens
hyperbolicus for the angular velocity vα(t) and a logistic sigmoid logsig : R→ (0, 1) for
the speed v(t). The noise signal ξi(t) was drawn independently for each neuron and at
each time step from a uniform distribution in [−0.5, 0.5].

5.2.3 Tasks
We tested the system on two different control tasks: a task similar to the Morris water-
maze task and a variable-targets task.

51



5 Combining Hierarchical SFA with Reinforcement Learning

Morris Water Maze Task

In the experimental setup of a Morris water maze task [Morris et al., 1982], a rat swims
in a milky liquid with a hidden platform underneath the liquid surface. Because the
rodent tries to avoid swimming in the liquid, it searches for the platform. This task
has been modeled several times [Foster et al., 2000; Sheynikhovich et al., 2005; Vasilaki
et al., 2009; Potjans et al., 2009].
In order to be able to compare the results to previous studies, we modeled the Morris

water maze task in our standard setup in the following way: We used only a single fish
type and a fixed target position at (0, 0)T . Only the fish but not the target was visible
in the visual input to the learning system. There was only one control signal which
controlled the direction of the next movement. At each time step, the fish was moved
by 0.1 length units in the direction given by the controller. The position of the fish was
hard-bounded by −1 from below and 1 from above after each update such that it stayed
within [−1, 1]. In this setup, the fish was always oriented in the same direction (facing
to the right), i. e., the fish was not rotated in the visual input. The target was reached
by the agent if it was within a radius of 0.2 of the target position.
The reward signal was defined such that reaching the target at time t resulted in

a positive reward R(t) = 1, hitting the wall at time t resulted in a negative reward
R(t) = −0.1, and the reward signal was 0 at other times. Hence this is a setup with
sparse rewards. An episode ended when the target was reached or after Tmax = 450
time-steps have evolved (this is consistent with [Vasilaki et al., 2009] where a simulation
time step was interpreted as a 200 msec time interval).

Variable-Targets Task

In order to explore the general applicability of the system we investigated a more de-
manding task with several objects in the visual input and two different types of fish of
varying orientation.
In this task, the state of the agent at time t was defined by its identity I(t) ∈ {0, 1}

(this corresponds to two types of fish, each with a unique visual appearance in the
visual input stream, see Figure 5.2), its position p(t) ∈ [−1, 1]2, and its orientation
O(t) ∈ [0, 2π). Additionally to the agent, there were two objects in the universe, one
of them acting as the target and the other as a distractor. One object appeared as a
“cross” in the visual scene and the other object as a “disk” (see Figure 5.2). The state
of object i was defined by its position ti ∈ [−1, 1]2. The current state of the universe at
time t was given by the collection of these variables.
The output of the learning system were two control variables to control the agent in the

environment, a speed signal v(t) ∈ (0, 1) and a signal vα(t) ∈ (−1, 1) for angular velocity.
These signals were used to update the orientation O(t) and position p(t) = (p1(t), p2(t))T
of the fish

O(t) = [O(t− 1) + kavα(t)] mod 2π, (5.3)
p1(t) = p1(t− 1) + kvv(t) cosO(t), (5.4)

52



5.3 Results

p2(t) = p2(t− 1) + kvv(t) sinO(t), (5.5)

where ka = 0.5 and kv = 0.1 are scaling constants. When the agent hit the boundaries
of the environment (i.e., when p1(t) or p2(t) were below −1 or above 1), the movement
was mirrored. For each training episode the object positions, fish orientation, and fish
identity were initially chosen randomly from the uniform distribution in their range.
However, when an object was initially less than 0.2 away from the other object or the
fish (which likely produced a visual overlap), a new initial state was drawn. The object
positions were then fixed. Each fish identity had a different object serving as the target,
such that the fish of type A was associated with the “cross” whereas fish-type B was
associated with the “disk”. The task was to navigate the fish to the target object for the
given fish identity. The current episode ended when the fish reached the target location
within some predefined radius (rhit = 0.4) or after a maximum of Tmax = 100 time steps
were exceeded). Although the other object did not influence the outcome of the task
(the fish could swim through it), it was still visible as a distracting stimulus.
The reward signal indicated whether the last action was successful in bringing the

agent closer to the target:

R(t) = 1
kv

∑
i

δI(t)−i (||p(t− 1)− ti(t− 1)|| − ||p(t)− ti(t)||) , (5.6)

where || · || denotes the Euclidean norm and δx = 1 if x = 0 and 0 otherwise. This is a
relatively informative reward signal.

5.3 Results
5.3.1 Morris Water Maze Task
We implemented this task with our learning system where the decision circuit consisted
of the Q-learning circuit described above. In this task, the n = 16 slowest components
as extracted by the hierarchical SFA network were used by the subsequent decision
network. The results of training are shown in Figure 5.3. The performance of the
system was measured by the time needed to reach the target (escape latency).
The system learns quite fast with convergence after about 40 training episodes. The

results are comparable to previously obtained simulation results [Foster et al., 2000;
Sheynikhovich et al., 2005; Vasilaki et al., 2009] that were based on a state representation
by neurons with place-cell-like behavior. Figure 5.3B shows the direction the system
chooses with high probability at various positions in the water maze (navigation map)
after training. Using only the 16 slowest SFA components for reinforcement learning,
the system has rapidly learned a near-optimal strategy in this task. This result shows
that the use of SFA as preprocessing makes it possible to apply reinforcement learning
to raw image data in the Morris water maze task.

53



5 Combining Hierarchical SFA with Reinforcement Learning

0 20 40 60 80 100 120 140
episode

0

50

100

150

200

250

es
ca

pe
 la

te
nc

y

A

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0B

Figure 5.3: Performance of the learning system in the Morris water maze task
with Q-learning. In A the mean escape latency is shown (in simulation
time steps) as a function of learning episodes for 10 independent sets of
episodes (full thick line). The thin dashed line indicates the standard devia-
tion. B shows the navigation map of the system after training. The vectors
indicate the movement directions the system would most likely choose at the
given positions in the water maze. An episode ended successfully when the
center of the fish reached the area indicated by the gray disk.

5.3.2 Variable-Targets Task
The Morris water maze task is relatively simple and does not provide rich visual input.
We therefore tested the learning system on the variable-targets task described above, a
control task where two types of fish navigate in a 2D environment. In the environment,
two object positions were marked by a cross and a disk, and these positions were different
in each learning episode. A target object was defined for each fish type and the task
was to navigate the current fish to its target by controlling the forward speed and the
change in movement direction (angular velocity). The control of angular velocity, the
arbitrary target position, and the dependence of the target object on the fish identity
complicates the control task such that the Q-learning algorithm used in the water-maze
task as well as a simple linear decision neuron like the one of equation (5.2) would not
succeed in this task. We therefore trained the leaning system with the more powerful
policy gradient algorithm described above on the slowest 32 components extracted by
the hierarchical SFA network.
In order to compute the SFA output fast, we had to perform the training of the control

network in batches of 100 parallel traces in this task (i.e., 100 training episodes with
different initial conditions are simulated in parallel with a given weight vector. After
the simulation of a single time step in all 100 episodes, weight changes over these 100
traces are averaged and implemented. Then, the next time step in each of the 100 traces
is simulated and weights are updated). When the agent in one of the traces arrived at
the target, a new learning episode was initiated in this trace while other traces simply

54



5.3 Results

continued. As shown below, the training in batches has no significant influence on the
learning dynamics.
Results are shown in Figure 5.4A,B. The reward converges to a mean reward above

0.75 which means that the agent nearly always takes the best step towards the target
despite the high amount of noise in the control neurons. Figure 5.5 shows that the
trajectories after training were very good. Interestingly, the network does not learn
the optimal strategy with respect to the forward speed output. Although it would be
beneficial to reduce the forward speed when the agent is directed away from the target,
first rotate the agent, and only then move forward, the output of the speed neuron is
nearly always close to the maximum value. A possible reason for this is that the agent
is directed towards the target most of the time. Thus, the gain in reward is very small
and a relatively small fraction of training examples demands low speed.
We compared the results to a learning system with the same control circuit, but with

SFA replaced by a vector which directly encodes the state-space in a straight-forward
way. For this task with two fish identities and two objects, we encoded the state-space
by a vector

s(t) = (p1(t), p2(t), sinO(t), cosO(t), δI(t),0, δI(t),1, tx,1, ty,1, tx,2, ty,2)T , (5.7)

where p(t) = (p1(t), p2(t))T is the position of the agent, O(t) is its orientation, I(t) is
its identity, and ti(t) = (tx,i(t), ty,i(t)) is the position of the ith object. Figure 5.4C,D
shows the results when the control network was trained with identical parameters but
with this state-vector as input. The Performance with the SFA network is comparable
to the performance of the system with a highly informative and precise state encoding.
For efficiency reasons, we had to perform the training of the control network in batches

of 100 traces (see above). Because no SFA is needed in the setup with the direct state-
vector as input, we can compare learning performance of the control network to perfor-
mance without batches. The result is shown in in Figure 5.4C,D (gray dashed lines).
The use of small batches does not influence the learning dynamics significantly.
In the environment considered, movement is mirrored if the agent hits a boundary.

Since this helps to avoid getting stuck in corners we performed control experiments
where the movement in the direction of the boundary is simply cut off but no reflection
happens (i.e., the dynamics of the position p(t) = (p1(t), p2(t))T of the fish is given by
p1(t) = max{−1,min{1, p1(t− 1) + kvv(t) cosO(t)}} and p2(t) = max{−1,min{1, p2(t−
1) + kvv(t) sinO(t)}}, compare to equations (5.4),(5.5)). As expected, the system starts
with lower performance and convergence takes about twice as long compared to the
environment with mirrored movements at boundaries. Interestingly, in this slightly more
demanding environment, the SFA network is converging faster than the system with a
highly informative and precise state encoding.
In another series of experiments we tested how the performance depends on the number

of outputs from the SFA network that are used as input for the reinforcement learning.
Since the outputs of the SFA network are naturally ordered by their slowness one can
pick only the first n outputs and train the reinforcement learning network on those. For
the variable-targets task we tested the performance for 16, 22, 28, 32, and 64 outputs.

55



5 Combining Hierarchical SFA with Reinforcement Learning

0 500 1000 1500 2000
time steps (x1000)

0.00

0.25

0.50

0.75

1.00
re

w
ar

d
A

0 20 40 60 80 100 120
episode (x1000)

0

10

20

30

40

50

es
ca

pe
 la

te
nc

y

B

0 500 1000 1500 2000
time steps (x1000)

0.00

0.25

0.50

0.75

1.00

re
w

ar
d

C
100 parallel traces
no parallel traces

0 20 40 60 80 100 120
episode (x1000)

0

10

20

30

40

50

es
ca

pe
 la

te
nc

y

D
100 parallel traces
no parallel traces

Figure 5.4: Rewards and escape latencies during training of the control task
with target and distractor. In A the evolution of reward during training
is shown. A simulation step for all 100 parallel traces corresponds to 100
time-steps at the x-axis. The plotted values are averages over consecutive
20,000 time steps (resulting in 100 data points for the plot). B shows the
evolution of escape latencies (measured in time steps) during training. The
number of episodes on the x-axis is the number of completed traces. The
plotted values are averages over 1,200 consecutive episodes. In C and D the
learning was performed on a highly condensed and precise state-encoding
instead of the SFA network output. Shown is the performance for learning
on 100 parallel traces (black, full line) and without parallel traces (gray,
dashed line). Convergence is comparable to learning on SFA outputs. The
results without parallel traces are very similar to the results with parallel
traces.

56



5.3 Results

starting position goal reached trajectory

1.0 0.5 0.0 0.5 1.0
x position

1.0

0.5

0.0

0.5

1.0

y 
po

si
tio

n

1 .0 0.5 0.0 0.5 1.0
x position

1.0

0.5

0.0

0.5

1.0

y 
po

si
tio

n

1 .0 0.5 0.0 0.5 1.0
x position

1.0

0.5

0.0

0.5

1.0

y 
po

si
tio

n

test trajectory 1

test trajectory 5

test trajectory 70

Figure 5.5: Three representative trajectories after training of the control task
with target and distractor. Each row summarizes one representative
learning trial. Shown is the visual input at start position (left column),
the visual input when the goal was reached (middle column), and the whole
trajectory (right column). In the trajectory, fish positions (small black discs),
target region (large circle), and distractor location (gray rhomb) are shown.

57



5 Combining Hierarchical SFA with Reinforcement Learning

For 16 outputs the average reward value always stayed below 0.6 and rose much slower
than in the case of 32 outputs. For 28 outputs the performance was already very close
to that of the 32 outputs. Going from 32 outputs to 64 did not change the average
reward, but in the case of 64 outputs the trajectories of the agent occasionally showed
some errors (e.g., the agent initially chose a wrong direction and took therefore longer
to reach the target).
We compared performance of the system to a system where the control network is

a two-layer feed-forward network of simpler neurons without dendritic branches, see
equation (5.2). We used two networks with identical architecture, one for each control
variable. Each network consisted of 50 neurons in the first layer connected to one output
neuron (increasing the number of neurons in the first layer to 100 did not change the
results). Every neuron in the first layer received input from all SFA outputs. The learning
rates of all neurons were identical. For details on parameters and results see [Legenstein
et al., 2010]. The network of simple neurons can solve the problem in principle, but it
converges much slower.
We also compared performance of the system with SFA to systems where the dimen-

sionality of the visual input was reduced by PCA. In one experiment the SFA nodes in
the hierarchical network were simply replaced by PCA nodes (like in the earlier control
experiment in Section 3.5.3). We then used 64 outputs from the network for the stan-
dard reinforcement learning training. As shown in Figure 5.6 the control network was
hardly able to learn the control task. This is also evident in the test trajectories, which
generally look erratic.
In another experiment we used PCA on the whole images. Because of the high di-

mensionality we first had to downsample the image data by averaging over two by two
pixels (reducing the dimensionality by a factor of four) before using linear PCA. The
performance was very similar to the hierarchical PCA experiment (the average reward
hovered below 0.16). A direct analysis of the PCA output with linear regression [Franz-
ius et al., 2008] indicates that except for the agent identity, no important features such
as position of the agent or the targets can be extracted in a linear way from the reduced
state representation. This hints at the possibility that the state representation given
by PCA cannot be exploited by the control network because the implicit encoding of
relevant variables is either too complex or too much important information has been
discarded.

5.4 Discussion
In this chapter, we provided a proof of concept that a learning system with an unsuper-
vised preprocessing and subsequent simple biologically realistic reward-based learning
can learn quite complex control tasks on high-dimension visual input streams without
the need for hand-design of a reduced state-space. We applied the proposed learning
system to two control tasks. In the Morris water maze task, we showed that the sys-
tem can find an optimal strategy in a number of learning episodes that is comparable
to experimental results with rats [Morris et al., 1982]. The application of the learning

58



5.4 Discussion

0 100 200 300 400 500 600 700
time steps (x10000)

0.00

0.25

0.50

0.75

1.00

re
w

ar
d

A

0 20 40 60 80 100 120 140
episode (x1000)

0

10

20

30

40

50

60

70

80

es
ca

pe
 la

te
nc

y

B

Figure 5.6: Performance of a PCA based hierarchical network. The rewards
for the variable-targets control experiment with a PCA based hierarchical
network are shown in A and the escape latencies in B. The control network
is not able to learn the task based on this state representation. Note the
larger scaling factor for the time-axis in A.

system to the variable targets task shows that also much more complex tasks with rich
visual inputs can be solved by the system. We showed that learning performance of the
system in this task is comparable to a system where the state-representation extracted
by SFA is replaced by a highly compressed and precise hand-crafted state-space. Finally,
our simulation results suggest that performance of the system is quite insensitive to the
number of SFA components that is chosen for further processing by the reinforcement
learning network as long as enough informative features are chosen.
In the previous chapter we used simple but not biologically motivated post-processing

methods to interpret the output of the SFA network. The results in this chapter indi-
cate that the network outputs are also adequate for biologically more plausible processing
methods. This further supports that slowness learning could be one important (but not
exclusive) unsupervised learning principle utilized in the brain to form efficient state
representations of the environment. On the other hand, this work suggests that au-
tonomous learning of state-representations with SFA should be further pursued in the
search for autonomous learning systems that do not - or much less - have to rely on
expensive tuning by human experts.

5.4.1 Related Work
The Morris water-maze task has been modeled before. In [Potjans et al., 2009], a network
of spiking neurons was trained on a relatively small discrete state-space that explicitly
coded the current position of the agent on a two-dimensional grid. The authors used
a neural implementation of temporal difference learning. In contrast to the algorithms
used in this article, their approach demands a discrete state space. This algorithm is
therefore not directly applicable to the continuous state-space representation that is

59



5 Combining Hierarchical SFA with Reinforcement Learning

achieved through SFA.
In [Foster et al., 2000] and [Vasilaki et al., 2009] the input to the reinforcement learning

network was explicitly coded similar to the response of hippocampal place-cells. In
[Sheynikhovich et al., 2005], the state-representation was also governed by place-cell-like
response that were learned from the input data. This approach was however tailored
to the problem at hand, whereas we claim that SFA can be used in a much broader
application domain since it is not restricted to visual input. Furthermore, in this article
SFA was not only used to extract position of an agent in space but also for position of
other objects, for object identity, and for orientation. We thus claim that the learning
architecture presented is very general only relying on temporal continuity of important
state variables.
Although the variable-targets task considered above is quite demanding, the learn-

ing system gets immediate feedback of its performance via the reward signal defined by
equation (5.6). By postulating such a reward signal one has to assume that some system
can evaluate that “getting closer to the target” is good. Such prior knowledge could have
been acquired by earlier learning or it could be encoded genetically. An example of a
learning system that probably involves such a circuitry (the critique) is the song-learning
system in the songbird. In this system, it is believed that a critique can evaluate similar-
ity between the own song and a memory copy of a tutor song [Troyer and Doupe, 2000].
However, there is no evidence that such higher-level critique is involved for example in
navigational learning of rodents. Instead, it is more natural to assume that an internal
reward signal is produced for example when some food-reward is delivered to the animal.
One experimental setup with sparse rewards is the Morris water maze task [Morris et al.,
1982] considered above. In principle, this sparse reward situation could also be learned
if the learning rules are amended with eligibility traces [Xie and Seung, 2004]. However,
the learning would probably take much longer.
Given the high-dimensional visual encoding of the state-space accessible to the learn-

ing system, it is practically impossible that any direct reinforcement learning approach
is able to solve the variable-targets task directly on the visually-induced state-space.
Additionally, in order to scale down the visual input to viable sizes, a hierarchical ap-
proach is most promising. Here, hierarchical SFA is one of the approaches that have
been proven to work well. Although it is in general not guaranteed that slowly varying
features are also important for the control task, slowly varying features such as object
identities and positions are important in many tasks. PCA tries to preserve the variance
of the training data, but the resulting features might not be useful for the behavioral
task at hand.
We compared the preprocessing with SFA to PCA preprocessing but not to more

elaborate techniques since the focus of this chapter is on simple techniques for which some
biological evidence exists. One interesting possibility not pursued in this chapter would
be to sparsify the SFA output by Independent Component Analysis (ICA). This has led
to place-cell like behavior in [Franzius et al., 2007] and might be beneficial for subsequent
reward-based learning. Information bottleneck optimization (IB) is another candidate
learning mechanism for cortical feature extraction. However, IB is not unsupervised, it
needs a relevance signal. It would be interesting to investigate whether a useful relevance

60



5.4 Discussion

signal could be constructed for example from the reward signal. Finally, the problem of
state space reduction has also been considered in the reinforcement learning literature.
There, the main approach is either to reduce the size of a discrete state space or to
discretize a continuous state-space [Moore and Atkeson, 1995; Munos and Moore, 2002].
In contrast, SFA preserves the continuous nature of the state-space by representing it

with a few highly informative continuous variables. This circumvents many problems of
state-space discretization such as the question of state-space granularity. Thus, there are
multiple benefits of SFA in the problem studied: It can be trained in a fully unsupervised
manner (as compared to IB). By taking the temporal dimension into account, it is able to
compress the state-space significantly without the need to discretize the continuous state-
space (as compared to [Moore and Atkeson, 1995; Munos and Moore, 2002]). It provides
a highly abstract representation that can be utilized by simple subsequent reward-based
learning (compared to PCA). The possibility to apply SFA in a hierarchical fashion
renders it computationally efficient even on high-dimensional input streams, both in
conventional computers and in biological neural circuits where it allows for mainly local
communication and thus avoids extensive connectivity [Legenstein and Maass, 2005;
Chklovskii and Koulakov, 2000]. The natural ordering of features based on their slowness
implies a simple criterion on the basis of which information can be discarded in each node
of the hierarchical network, resulting in a significant reduction of information that has to
be processed by higher-level circuits. Finally, SFA is relatively simple, its complexity is
comparable to PCA and it is considerably simpler than other approaches for state-space
reduction [Antoulas and Sorensen, 2001; Moore and Atkeson, 1995; Munos and Moore,
2002]. functions that generate output signals that vary as slowly as possible but

61





Part II

Top-Down Processes in
Hierarchical SFA Models

63





6 Top-Down in the Visual System and
Hierarchical SFA

In the previous chapters it was established that hierarchical SFA networks can be a good
model for some aspects of the visual system. It was also mentioned that this model is
purely feed-forward, which is a striking contradiction to the abundance of feedback con-
nections in the visual system [Kennedy et al., 2000]. Feedback connections are thought
to mediate top-down processes in the brain, transporting information against the flow of
input data from our senses, influencing or even shaping the activity of brain areas lower
in the hierarchy (e.g., V2 influencing the activity in V1). Not surprisingly our model
has been unable to solve tasks that are associated with feedback, like object recognition
in cluttered scenes. The importance of these tasks together with experimental evidence
has severely impacted the general view of the relation between the brain and the stimuli
it receives. This has led to the characterisation of the brain as a “self-sustained machine
processing mainly internal information and sampling occasionally the external world”
[Bullier, 2006].
Because of the advantages of hierarchical SFA it would be premature to simply discard

this model with respect to top-down processes. Instead we will try to extend the model
with a basic top-down mechanism. Even if the outcome is negative this will at least
provide us with more insights into the limitations of the model. Unfortunately SFA
networks are less well suited for top-down processes than other models, which will be
discussed throughout the following chapters.
The top-down part of this thesis is split into three chapters. In the current intro-

ductory chapter we establish some basic concepts and formulate a concrete top-down
task. Chapter 7 concentrates on capturing the input data distribution for each layer,
with some analysis of the results for the lowest layer. This information is then applied
in Chapter 8 for the actual top-down process, combined with the method of gradient
descent. The results in these chapters have not been published (with the exception of a
conference abstract [Wilbert and Wiskott, 2010]).

6.1 Obstacles for Top-Down Processing
A general starting point for the modeling of top-down processes is the scalar connection
weight wik for one input xi of a simple model neuron (or some other functional unit).
Typically its output yk is a monotonous nonlinear function of the weighted input hk,
defined by

hk =
∑
i

wikxi . (6.1)

65



6 Top-Down in the Visual System and Hierarchical SFA

In a classical neural network the connection weights wik are optimized for the feed-
forward processing, but they can just as easily be used to modulate information flow in
the other direction (which is actually done during training with error back-propagation
[Bryson and Ho, 1969; Rumelhart et al., 1986]). One example for the usefulness of these
connections is the famous hypothesis of feature binding via gamma oscillations [Singer
and Gray, 1995; Engel et al., 2001], which also introduces an elegant mechanism for
covert attention in the visual system. Its practical application in computational models
has been demonstrated for relatively simple neural networks in which such a coupling
wik is available (e.g., [Rao et al., 2008]).
Our model on the other hand uses a quadratic expansion and operates with positive

and negative real numbers. Sums of mixed terms like aijxixj for each output component
yk make it impossible to characterize the coupling between a single input xi and the
output yk in a simple way, let alone with a single scalar coupling. Generally speaking
the value of one input xi can influence the impact of all other inputs (e.g., switching
the sign of xi inverts the influence of xj on the output value). Since the quadratic
expansion is critical for the feed-forward network performance (see Section 3.5.3) there
is no easy way around this issue. Instead, other methods must be found for the top-down
propagation in this type of model.

6.2 Bayesian Interpretation
For a theoretical description of top-down mechanisms in hierarchical networks it is con-
venient to formulate a probabilistic “Bayesian” description [Lee and Mumford, 2003;
Kersten et al., 2004]. Even though our feed-forward SFA network is strictly determinis-
tic such a formulation is useful.
In a two-layered SFA network there is the input data x0, and the output of the first

and second layer, x1 and x2. The probability distribution of the network “state” can be
factorized as

P (x2,x1,x0) = P (x2|x1)P (x1|x0)P (x0) , (6.2)

because the output of a layer is only determined by its direct input. The conditional
probabilities P (xn+1|xn) are δ-type distributions. The layer mapping xn+1 = fn(xn)
is a well-defined function, so for a given input xn the probability distribution is only
non-zero for a single value of xn+1, i.e.,

P (x1|x0) ∼ δ(x1 − f1(x0)). (6.3)

A top-down process could use the prediction about xn based on xn+1 and P (xn|xn+1).
In this context the most straight-forward example for a top-down process is the inversion
problem: for a given network layer output xn+1 find the corresponding stimulus xn. The
conditional probability distribution P (xn|xn+1) can be calculated with Bayes’ formula:

P (xn|xn+1) = P (xn+1|xn)P (xn)
P (xn+1) . (6.4)

66



6.3 Input Reconstruction

For the purpose of this argument the P (xn) distribution is defined by the probabilities
of input patterns in the training data. This distribution cannot be deduced from the
trained SFA network alone. Furthermore, the layer function xn+1 = fn(xn) is generally
not injective. Therefore P (xn|xn+1) can be non-zero for multiple values of xn (for a
given xn+1). Accordingly we are now faced with a non-trivial probability distribution,
even though the starting point was a strictly deterministic network. Because of the
dimensionality reduction in our network we can even expect that there are manifolds of
inputs that all result in the same wanted output (implicit function theorem). However,
because of the constraints in the SFA algorithm (unit variance and decorrelation) the
layer functions are typically injective on the set of training samples.
For example, a fish-trained SFA network layer will likely produce an output that

is identical to that of a fish for special non-fishy inputs. Being able to “invert” the
mapping functions of the SFA layers (which is already a nontrivial problem) is therefore
not sufficient to reconstruct likely input images for a given output. The probability
distribution P (xn) is required to disambiguate the solutions and to pick the most likely
candidate.
The goal is of course to solve the inversion problem not only for a single layer but for

the whole multi-layered network. What we are ultimately interested in is the input x0
in image space.

6.3 Input Reconstruction
The previous section introduced the problem of reconstructing the most likely input for
a given output, taking into account the distribution of training samples. This is not only
an interesting problem in itself, it might also bring us closer to the couplings between
input and output from Section 6.1. With a successful input reconstruction for some
given output one could compare this to another given input and quantify the deviation.
We therefore think that input reconstruction is an interesting task and the efforts in the
following two chapter are centered around this.
A successful input reconstruction could also help with a related problem in hierarchi-

cal SFA networks: the interpretation of intermediate and top-layer outputs. The SFA
outputs in the first layer of our model have been extensively characterized in [Berkes
and Wiskott, 2005; Sprekeler and Wiskott, 2010]. For the top-layer outputs there are
analytical predictions (see Section 3.3.4), which are accurate if the stimuli are not too
complex (Section 3.4 and [Wiskott, 2003; Franzius et al., 2007]). However, they do not
reveal which specific features of the input image drive the output (e.g., how relevant the
relative positions of local input features are). The situation is worst for outputs in the
intermediate layers: neither their input nor output characteristics are well understood
(input here referring to the input in image space). This problem of interpreting the
trained network is relevant for all deep learning architectures, and recently there has
been some progress on this front [Erhan et al., 2010] (other related work is discussed
later in Section 8.3.1). Input reconstruction could provide a tool to investigate the re-
lation between input and output. This could also lead to new experimental predictions

67



6 Top-Down in the Visual System and Hierarchical SFA

and further hints about the function of intermediate regions in the visual cortex (like
V2).

6.3.1 Related Work
The problem of input reconstruction for hierarchical SFA networks has been addressed
before by William Softky (documented in the unpublished [Softky, 2005]). The approach
he describes is quite close to the techniques we ended up using. His suggestion was to
use some form of vector quantization in order to capture the distribution P (x0) of the
input data. A local linearization of the SFA network around these points could then
be used to modify the input according to given changes in the output. For example,
to recreate movement for training stimuli. His suggestions were aimed at the smaller
1D hierarchical SFA model from [Wiskott and Sejnowski, 2002]. Unfortunately his work
was in an early stage and no further results are known. Given the difficulties that we
encountered (see Section 8.3) it would not be surprising if his implementation ran into
similar problems.
A truly probabilistic version of SFA has been presented in [Turner and Sahani, 2007],

reformulating slowness learning in the framework of a generative model. However, the
resulting model is rather complex and training is slow compared to SFA. Therefore it
is not applicable to visual stimuli as we use them (in the publication it is only demon-
strated for low-dimensional synthetic stimuli). Overall the paper is focused on theoretical
aspects, while the practical application is not really discussed.
We should also point out that our take on top-down processes is not related to the

feedback implementation in recurrent neural networks (e.g., see [Rojas, 1996]). These
networks are used for data sequences where the interpretation of one input is improved
by taking the previous input into account (e.g., for a Markov chain or recognizing suc-
cessive characters in handwritten text [Graves et al., 2008]). The feedback connections
basically provide a short-term memory. Our model on the other hand uses time se-
quences only during the training phase, but not for the actual object recognition or
input reconstruction.

68



7 Capturing the Input Distribution

7.1 Introduction
In the previous chapter it was argued that implementing top-down processes in a hier-
archical SFA network requires that the distribution of input data P (xn) is captured for
each layer, in order to approximate P (xn|xn+1). We pursued a rather simple approach
for that, based on different forms of vector quantisation. The specific methods are intro-
duced in Section 7.3. In some cases the results can nicely reveal the underlying structure
of the data, which is illustrated in Section 7.4. However, the main objective is to gather
data for the top-down input reconstruction, which is discussed in Chapter 8.

7.2 Methods
The methods for top-down processes that we used are quite expensive in terms of com-
putation time. Therefore a smaller three-layered SFA network was used, as well as
simplified input stimuli. The vector quantization methods in the model are described in
their own Section 7.3.

7.2.1 Network Structure
The new network is very similar to that used for the fish and sphere stimuli in Chapter 3,
with the reduced size being the biggest change. All the basic network parameters are
provided in Table 7.1.
Instead of the cutoff node with a fixed cutoff (at ±4) an adaptive cutoff node was used

in some simulations, and otherwise the cutoff was completely dropped. It had already
been established that the cutoff for the outputs in each layer does not have a significant
impact on the network performance. A cutoff also means that the gradient is zero in the
affected region, which is problematic for gradient based optimization techniques (like the
one used in the next chapter). Therefore the cutoff was only used in simulations together
with a vector quantization technique that requires fixed cutoff values (the binned growing
neural gas which is presented in Section 7.3.3). The adaptive cutoff node records the
histogram of the SFA outputs during training. Afterwards the cutoff values are set for
each quadratic SFA output individually, such that a given fraction of the data (in this
case 1%) lies above / below the threshold.
Furthermore, no noise node was used in this model. As mentioned before, the noise

node does not have a significant impact on network performance and mostly serves as
a safeguard against numerical problems with singular eigenvalues. Since these problems

69



7 Capturing the Input Distribution

Layer Number of
nodes

Input area
of node

Overlap per
direction

SFA outputs
per node

0 (Image) 80× 80 - - (1 pixel)
1 13× 13 8× 8 2 32
2 4× 4 4× 4 1 32
3 1 4× 4 - 200

Table 7.1: Parameters of the network architecture. Layer 0 denotes the input
image, a node corresponds to a pixel in that image. The input area denotes
the number of nodes in the previous layer from which a node receives input.

max. vel. max. acc.

x (in [0; 1]) 0.03 0.007
y (in [0; 1]) 0.03 0.007

size (in [0.75; 1]) 0.01 0.002
φz (in-plane) 0.02 0.004
α (in [0; 1]) 0.03 0.007

Table 7.2: Parameters for the letter random walk procedure. These parameters
refer to the same procedure as those in Table 3.2.

only occurred in test runs with minimal training data the noise node was dropped to
simplify the model.

7.2.2 Stimuli
Corresponding to the smaller network the input stimuli were also reduced to a size of
80 × 80 pixels. Two new classes of stimuli were introduced, which are described below.
For the first two network layers 20,000 training samples were provided (in chunks of
200), while the top-layer was trained with 200,000 samples (in chunks of length 500).
The same random-walk parameters were used for all layers.

Single Letters

These stimuli consist of a single white letter on a black background and are shown in
Figure 7.1. They are somewhat similar in style to the black and white leaf stimuli from
Section 4.1, so we already knew that the SFA network can deal with silhouette stimuli.
The transformations consist of translations, in-plane rotations, scalings, and changes in
contrast (as described in Section 4.2 for multiple fish objects). All the random walk
parameters are specified in Table 7.2. Five different letters were shown during training
(A, B, C, D, and E). One motivation for these stimuli is that their simple structure
makes it easier for humans to interpret the results of top-down processes.

70



7.2 Methods

A

B

Figure 7.1: Letter and natural stimuli. In A we show the single letter stimuli. The
top row shows the five different training letters (i.e., “objects”). The second
row shows more examples from the actual training sequence, which illustrate
the translation-, rotation-, size-, and alpha-transformations. B shows the
natural stimuli, which are crops from a large image of a natural scene. The
actual stimulus pictures on the right illustrate the translation- and rotation-
transformations of the crop window.

71



7 Capturing the Input Distribution

Natural Image with Transformations

These stimuli closely resemble the ones used in [Berkes and Wiskott, 2005]. They are
intended for control experiments, to complement the highly artificial letter stimuli. The
stimuli are created by taking a quadratic excerpt from a large natural grayscale picture,
as shown in Figure 7.1. The position, orientation and size of the excerpt is subject to the
same random walk as used for the fish and letter stimuli (i.e., instead of an object the
excerpt window is moved around). The parameters were chosen such that the movement
looks reasonably smooth. Only a single underlying picture of size 1024× 1024 was used,
but control experiments with other pictures were done to verify that the results do not
depend on this specific one.

7.3 Vector Quantization
Vector Quantization (VQ) techniques generally approximate data with a limited number
n of representatives wi, minimizing an error measure on a set of training data {xj | j =
1, . . . ,m} [Gray, 1984]. Typically the error measure is given by the average distance from
the data points to their nearest representative. The standard choice for the distance
measure is the squared Euclidean distance, in which case the average error is given by

E =
m∑
j=1

min{(wi − xj)2 | i = 1, . . . , n}. (7.1)

The representatives wi are often called centroids, because they typically lie at the cen-
ter of the data cluster that they represent. Typical vector quantization algorithms are
iterative, approximating the optimal solution. Famous examples are k-means cluster-
ing [Lloyd, 1982] and the derived LBG algorithm [Linde et al., 1980]. Alternatively
one can apply competitive learning techniques, which is described in Section 7.3.3. Re-
lated techniques in machine learning and computational neuroscience are for example
Self-Organizing Maps [Kohonen, 1984] or Radial Basis Function Networks [Moody and
Darken, 1989]. There are numerous technical applications for vector quantization in the
area of lossy data compression (e.g., for video or speech), in which the centroids are used
as a codeword dictionary.
Vector quantization can be considered a standard option for approximating data dis-

tributions. Due to the special characteristics of our data distribution (see Section 7.3.2)
we tested different algorithms.

7.3.1 Integration of VQ into the SFA network
The integration of vector quantization into the SFA network is schematically shown for
a single node in a layer in Figure 7.2. Only a single instance of the VQ unit is used
for each layer and this instance is used for all the input fields in that layer. This was
already described in Section 3.2 for SFA.
In Figure 7.2A the vector quantization is performed on the raw input data. This

72



7.3 Vector Quantization

linear SFA

linear SFA

input from single receptive field 
in layer n-1

output to 
layer n+1

histogram / clippingvector quantization

quadratic expansion

input from single receptive field 
in layer n-1

output to 
layer n+1

vector quantization

quadratic expansion

linear SFA

linear SFA

A B

Figure 7.2: Insertion of vector quantization into the model. These diagrams de-
pict the processing steps for a single node in a layer (see Figure 3.1). In A
the vector quantization is performed for the raw input. In B the output of
the first linear SFA step is used instead. Depending on the algorithm other
data might be used as well, indicated by the dotted lines (e.g., the binned
growing neural gas quantization requires the cutoff values and the output
values for each data point).

variant is mostly used in the next chapter. In Figure 7.2B the output of the first linear
SFA stage is used for the vector quantization. This is done for efficiency reasons, taking
advantage of the reduced dimensionality. By taking the pseudoinverse1 of the linear SFA
step it is then still possible to map the centroids back into the original input space (e.g.,
for visualization). Since the linear SFA step on layer 1 behaves very similar to Principal
Component Analysis (PCA) the dimensionality reduction on the lowest layer acts like a
low-pass filtering. This information loss in the dimensionality reduction is in conflict with
the stated goal of top-down processing, so this could negate the efficiency gain. However,
this approach (quantization after linear SFA) is typically better suited for illustrating
the structure of the data distribution. In this chapter we therefore concentrate on those
results. Most of the simulations were performed in both ways and we discuss their
differences along the way.
Some of the vector quantization algorithms (like the binned growing neural gas) require

additional data during training, for example, the cutoff values for each output. This is
illustrated in Figure 7.2B by the dotted lines. The implementation of these data flows
was done in the BiMDP framework, which is discussed in Chapter 11.
One potential complication in our model is the technical fact that the training data

originated from a continuous random walk. Therefore data points that are close by in
the training sequence also tend to be close in the data space, but many VQ algorithms

1The pseudoinverse of a matrix A is defined as the matrix that solves the least-squares problem Ax = b
[Strang, 1988]. It can be calculated via a singular value decomposition of A.

73



7 Capturing the Input Distribution

expect random samples from the data distribution. Therefore we shuffle all the data
points in each training chunk before the VQ training. Due to the limited length of the
training chunks this method is not perfect, but seems to be sufficient.

7.3.2 Distribution of Layer Output Data
By capturing the input data distribution for each layer in the hierarchical SFA model we
hope to get an approximation of P (xn). If the layer input distribution for xn is known
then the layer output distribution P (xn+1) can be calculated by simply applying the
feed-forward layer function. However, the expected complexity of the input distribution
suggests that one should optimize the VQ technique with respect to the top-down step
as well. Some insight into the distribution can be gained by looking at the histograms of
the layer output, some of which are shown in Figure 7.3. These histograms are largely
independent of the specific training stimuli. While the histograms shown are based on the
artificial letter stimuli (Section 7.2.2), their general shape also holds for both natural
stimuli and the fish / sphere objects used earlier. The distribution is densely packed
around zero, with high kurtosis (i.e., being very “peaky”). For the lowest layer this
result has already been discussed in [Berkes and Wiskott, 2005]. It is a little surprising
that we get the same pattern on the top layer, while both the theoretical predictions
and the results from Section 3.5.1 suggest a more structured output distribution at the
top (i.e., a somewhat homogenous distribution for position encoding outputs, while the
object identity outputs should show clusters). However, the simplified example from
Section 3.5.1 is our only case in which the top-layer histograms actually display such a
clear structure. For any of the more complex training sets the histograms revert back to
the peaky distribution around zero. This is apparently caused by the imperfect invariance
of the network and the related feature mixing (which was discussed in Section 3.3.4).
It is worth pointing out that the peaky output histograms are “sparse” in the sense

of [Olshausen and Field, 1996]. For example, a single output with complex-cell behavior
in the lowest layer will rarely be faced with a high-contrast grating, causing a large
output value from the long tail of the distribution. Such rare events with large absolute
output are naturally the most interesting. This can be formalized with the information
theoretical concept of self-information (which is also called the surprisal). In the context
of top-down processes such a large (i.e., unlikely) output value is especially relevant for
the deduction of possible input values.
In hierarchical models the output of one layer provides the input for the next one.

Therefore the distribution of input values at the higher layers have the same peaky
shape. For the raw stimuli at the first layer this is not necessarily true (Figure 7.3B),
but if the vector quantisation is performed after the linear SFA step the relevant data
on the lowest level is already “sparsified” to some extent (Figure 7.3C).
The data histograms are relevant at this point because standard VQ algorithms match

the centroid density to that of the training data. This makes sense as it minimizes the
average quantization error. In our case this could potentially be a disadvantage, because
centroids might be “wasted” on the dense but relatively uninteresting center region of
the data distribution. By using specialized VQ algorithms this can be avoided, but as

74



7.3 Vector Quantization

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

single pixel histogram (zero-bin removed)

10 5 0 5 10
0

1000

2000

3000

4000

5000

6000

linear SFA output 2, layer 1
(zero-bin removed)

histograms with zero-bin removed:

Layer 2

20 15 10 5 0 5 10 15
0

500

1000

1500

2000

2500

3000
output  2 (layer 2)

20 15 10 5 0 5 10 15
0

5000

10000

15000

20000

25000
output  2 (layer 2)

15 10 5 0 5 10 15
0

50000

100000

150000

200000

250000

300000
output  3 (layer 1)

15 10 5 0 5 10 15
0

2000

4000

6000

8000

10000
output  3 (layer 1)

Layer 1

15 10 5 0 5 10 15
0

1000

2000

3000

4000

5000

6000
output  2 (layer 3)

15 10 5 0 5 10 15
0

500

1000

1500

2000

2500

3000

3500
output  2 (layer 3)

Layer 3A

B C

Figure 7.3: Histograms for SFA outputs. The histograms where calculated from
the letter training data of the network. A shows the histogram for one
representative output from each layer. Since the bin for the value 0 is so
dominant the plots are also shown with this bin removed (second row). In B
the histogram for a single pixel is shown, with the removed bin corresponding
to the black background color (i.e., the value 0). In C a single output from
the linear SFA step on the first layer is shown (again with the most populated
center bin removed). Its distribution is similar to the results in A and much
sparser than the raw data in B.

75



7 Capturing the Input Distribution

we will see later this is actually not necessary.

7.3.3 Vector Quantization Methods
We now discuss two different vector quantization techniques, for which the results are
presented in Section 7.4.

Competitive Learning

Competitive learning [Grossberg, 1976; Rumelhart and McClelland, 1986] provides a
simple but effective algorithm for vector quantization. First the n centroids are initialized
by randomly taking n samples from the training data. Then the centroids are refined
iteratively with these steps:

1. Pick a random data point x from the training data.

2. Find the closest centroid wi (based on the Euclidean distance).

3. Move the closest centroid towards the data point by updating its value to w′i,
which is defined by

w′i = wi + ε(x−wi). (7.2)

To simplify the implementation we use each training point exactly once (by processing a
queue containing the shuffled training data, the queue is only used once). 1000 centroids
were used in each layer, with ε = 0.1.
The VQ step represents a significant part of the overall network training time. One

standard method for speeding up vector quantization is to use a so called kd-tree for
finding the nearest centroid. Unfortunately this is only effective in k dimensions if the
number of data points is much bigger than 2k, so in our case the dimensionality is already
too high. Unlike SFA it is also not possible to parallelize this algorithm, because each
centroid movement affects the distances for all the following data points (though there
are VQ algorithms that are designed for parallelization). More sophisticated algorithms
are in principle available (e.g., [Freund et al., 2007]), but were not tested by us.

Binned Growing Neural Gas

As discussed in Section 7.3.2 we were originally worried about the concentration of
centroids around the origin and the corresponding under-representation of data in the
periphery. To counter this effect we tested an approach in which the input distribution is
captured separately for each output component. Furthermore, we split the range between
the negative and positive cutoff evenly into m bins. For each output-bin the vector
quantization of the input data is performed separately, always using the same number
of centroids (regardless of the number of data points for each bin). This ensures that
the more frequent bins around zero do not get more centroids than the more interesting
bins at the far ends. This is illustrated by the results in Section 7.4.

76



7.4 Results

εb 0.2
εn 0.006
amax 10
λ 10
α 0.5
d 0.995

Table 7.3: Growing Neural Gas parameters. The parameter table follows the nam-
ing convention from [Fritzke, 1995].

For each bin a Growing Neural Gas (GNG) [Fritzke, 1995] was trained with the cor-
responding input data. The GNG algorithm not only learns the centroid positions, it
also creates a graph structure with edges that connect two centroids. Such an edge
connection indicates that the two centroids were simultaneously close to some of the
training data points. As before, competitive learning is used to move the centroids. Like
in a self-organizing map, the graph neighbors of the closest centroid are moved towards
the data point as well. The GNG algorithm starts with only two centroids and adds
centroids until a predefined limit is reached. New centroids are only inserted on graph
edges, hopefully avoiding empty regions between data clusters. Eventually, the graph
structure represents the structure of the training data, with graph edges indicating a
continuous distribution of data between two centroids. Of course, this depends on the
number of centroids being large enough to represent this structure. For details on the
GNG algorithm see [Fritzke, 1995].
One advantage of having the graph structure is that it is preserved when the centroids

are projected into a 2D subspace for visualisation. The 2D distance between centroids
after the projection might be misleading, but the graph edges still represent the topology
from the original data space.
We set the maximum number of centroids to 30, the number of bins to 8, and there

were 32 outputs from the SFA stage at the lowest layer. The overall number of centroids
on the lowest layer is therefore 30×8×32 = 7200. All the parameter values for the GNG
algorithm are provided in Table 7.3. Our implementation of the algorithm in Python is
a speed-optimized version of the implementation in MDP (see Part III).

7.4 Results
7.4.1 Network performance
The performance of the simplified network on the letter stimuli is generally worse than
that of the larger network in Chapter 3 for the fish and sphere stimuli. For example
the average classification performance on the 5 training letters is 92.3%. The most
misclassifications happen between the letters B and E, which can be explained with
their similar shape.
The overall behavior of the network, however, does not indicate any qualitative dif-

77



7 Capturing the Input Distribution

ferences from the larger network in Chapter 3, so it should be “good enough” for our
purposes. If letter stimuli without contrast transformations are used for training then
the classification performance rises to 99.2%. Because of the earlier results in Section 4.2
we nevertheless used the network with contrast transformations, in the hope that the
added robustness might be an advantage for top-down processes. Control experiments
did not show any qualitative difference between the networks (see Section 8.2.3).
For the natural stimulus set no performance measure was recorded, and the analysis

was concentrated on the lowest network layer. While the network could theoretically
learn to extract the configuration parameters of the excerpt window (in close analogy to
the results in [Franzius et al., 2007]) this was not part of the analysis.

7.4.2 Binned Growing Neural Gas
We start with the results for the binned GNG quantization, since these visualisations
tend to be the clearest. The GNGs can be used to highlight the different characteristics
of layer 1 outputs, some of which behave similar to neurons in the primary visual cortex.
This has been discussed extensively in [Berkes and Wiskott, 2005] and [Sprekeler and
Wiskott, 2010].
Figure 7.4 visualizes the GNGs for an output with approximate complex-cell behavior.

Such an output shows the strongest response (i.e., largest output value) for a stimulus
with a grating structure. The output is sensitive to the orientation of the grating (“ori-
entation tuning”), but is invariant with respect to the phase of the grating. When the
grating is rotated away from the preferred orientation the output value drops, passes
zero, and finally takes the maximal negative value for the orthogonal orientation (which
can be compared to maximal inhibition in neurons). However, since the output sign
in the SFA algorithm is arbitrary one can also interpret the maximal negative stimulus
as the preferred orientation and vice versa. In Figure 7.4D the stimulus with maximal
negative output is shown, calculated with the method from [Berkes and Wiskott, 2006].
Figure 7.4A shows the GNGs for the four bins with negative and positive output

values in two separate plots. The graph edges are color coded from blue (for the most
negative bin) to red (most positive bin). The corresponding output values of all the
centroids are shown in Figure 7.4B. Principal Component Analysis (PCA) is used to
reduce the dimensionality of the centroids from the 32 dimensional input space down to
two dimensions for the plots. Obviously the GNGs have a concentric ring or C shape.
The radii of the rings correspond to the contrast and orientation of the input, while the
angular position on a ring is given by the phase of the grating (which has no influence
on the output value). In the 32 dimensional input space the negative (blue) GNG
centroids approximately lie in a plane that is orthogonal to that of the positive GNGs,
corresponding to the orthogonal orientations of the optimal grating stimuli.
The open C shape of the GNGs can be understood by looking at a single bin in

Figure 7.4C. In addition to the GNG several selected centroids are shown on the right
side. As mentioned earlier in Section 7.3.2 the pseudoinverse of the linear SFA step is
used to project the centroid vectors back into image space (or more precisely the image
patch for a single receptive field). The five centroid samples show a single white bar

78



7.4 Results

1000 500 0 500 1000
1st  principal com ponent

800

600

400

200

0

200

400

600

800

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t

negative GNG bins for output 4

1000 500 0 500 1000
1st  principal com ponent

800

600

400

200

0

200

400

600

800

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t

positive GNG bins for output 4A

optimal stimulus (negative output)
D

C

1

2

3

4

5
1000 500 0 500 1000

1st  principal com ponent

800

600

400

200

0

200

400

600

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t

centroids for output 4, bin 1

1

2

3

4

5

selected centroids
0 1 2 3 4 5 6 7 8

bin bound index

10

5

0

5

10

o
u

tp
u

t

GNG centroid output, output 4B

Figure 7.4: GNG centroid data for a complex-cell type output. All the data in
this figure belong to output 4. In A the GNGs for positive and negative
output bins are shown separately. They are color-coded corresponding to
their bin (from blue to red). B shows the output values for each centroid,
sorted into bins (black lines indicating the mean and variance for each bin).
C shows the GNG for the first bin. The corresponding optimal negative
stimulus is presented in D. On the right side several centroids from the
GNG are shown, with their position in the graph indicated by numbers.

79



7 Capturing the Input Distribution

that moves through the receptive field. This is clearly different from the continuous
grating in the theoretically optimal stimulus, highlighting that the GNG really contains
information about the training data. The single white bar also has to vanish on one side
before it can reappear on the other side of the receptive field, since there are no parallel
bars with the right distance in the training images. This explains why the GNG has a
C shape instead of a full ring: there are no data points in the training set for the lower
ring section and no corresponding centroids are created.
A GNG for another output is visualized in Figure 7.5. This output shows so called

secondary response lobes. This is similar to the complex-cell behavior, but instead of a
single preferred orientation there are now two. The preferred orientations are orthogonal,
while the maximal negative response is achieved by gratings that are rotated by 45◦. Not
surprisingly the 2D projection of the GNGs shows two cross structures which also have
a relative angle of 45◦. The single bin GNG in Figure 7.5B consists of two disconnected
parts, each corresponding to one preferred orientation. Each part has the now familiar C
shape, but since the second C is seen from “above” it appears as a single line in this plot.
In the centroid visualization on the right side the two overlapping ends of the second C
correspond to the centroid numbers 3 and 5.
The results presented so far nicely match our expectations, but this is not true for

all outputs. As shown by the example in Figure 7.6 there are outputs for which the
output values generated by the centroids do not match the output range of the bin that
they correspond to. This is a sign that the input data distribution was not captured in
enough detail, so the centroids are too far away from the data points that they represent.
In principle this can be solved by increasing the number of centroids, but in practice we
were not able to increase the number of centroids sufficiently. The problem persisted
up to 80 centroids per bin, which was the maximum number we tested. Reducing the
number of bins is another possible approach, but this partly counteracts the original
intention for the bins.
Originally we had intended to use the binned GNGs for a specific top-down method

that would pick the GNG bins according to the desired output value. The results were
disappointing, in line with the problem discussed in the previous paragraph. Therefore
we abandoned this approach and the binned GNGs are not used in the following chapter.

7.4.3 Competitive Learning Vector Quantization
The results from the competitive VQ are generally not as visually pleasing as the GNG
results, probably due to the missing graph structure. However, the structures that are
visible in the GNG results can still be identified. It also seems that the centroids provide
sufficient coverage for the outer regions of the data distribution.
In Figure 7.7 the centroid analysis for output 3 is shown, which has the characteristics

of a complex-cell. In Figure 7.7B one can roughly identify the orthogonal directions of
the two optimal grating orientations. After the separation into centroids with positive
and negative outputs the characteristic C shape can be found again (though the missing
part of the ring is not as prominent as in the GNG results). In Figure 7.7D only the
centroids with the smallest (i.e., negative) output values are shown. The C shape of the

80



7.4 Results

800 600 400 200 0 200 400 600 800 1000
1st  principal com ponent

800

600

400

200

0

200

400

600

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t

800 600 400 200 0 200 400 600 800
1st  principal com ponent

800

600

400

200

0

200

400

600

800
2

n
d

 p
ri

n
ci

p
a

l 
co

m
p

o
n

e
n

t

optimal negative stimulus

centroids for output 8, bin 1B

C

A all GNG bins for output 8

1

2

3

4

5

selected centroids

1

2

3 5

4

Figure 7.5: GNGs for an output with secondary response lobes. The data in
this figure belongs to output 8. A shows the GNGs for all bins (color coded
from blue to red according to the bin). One can see the blue and red cross
structure, with each axis of the crosses corresponding to one optimal orien-
tation. In B the GNG for the first bin is shown. The two disconnected parts
correspond to the two preferred orientations. This is further illustrated by
selected centroids on the right side.

81



7 Capturing the Input Distribution

0 1 2 3 4 5 6 7 8
bin bound index

8

6

4

2

0

2

4

6

8

o
u

tp
u

t

GNG centroid output, output 4

Figure 7.6: Output values for the centroids in all bins for output 4. The colored
dots indicate the output value for each centroid, sorted into bins (black lines
indicating the mean and variance for each bin). Ideally the centroid output
values should lie in the same range as the output values for the correspond-
ing data points (defined by the bin borders). This is clearly not the case,
indicating that the centroids do not represent the data points adequately in
this context.

distribution is not very clear, but can still be identified. The image patches for selected
centroids illustrate that this is indeed the expected result for a complex-cell output.
Figure 7.8 again shows some centroids, but this time for a network trained with the

natural stimuli. The plot contains only the centroids with the largest output values
for output 13, which is an output with secondary response lobes. Unfortunately the
structure of the centroids is even less apparent than for the network trained with letter
stimuli. However, one can still identify the two orthogonal orientations in the centroid
distribution.

7.4.4 Control Experiments
• Control experiments with larger networks were performed for the methods that
are introduced in this and the following chapter. These experiments included
networks of intermediate size and a training of the smaller networks with fish or
sphere stimuli.

• Different parameter values for the GNGs were tested. We picked the final values
based on visual inspection. Different numbers of centroids were tested as well. An
increase in the number of centroids beyond our chosen value did not result in any
significant improvement.

• While we focused on the letter stimuli, the results for the natural stimuli largely
verified our results. Due to the more diverse stimulus structure some of the results
are less clear than for the letters. However, the output characteristics are also

82



7.4 Results

15 10 5 0 5 10 15
1st  principal com ponent  (8.9 %)

15

10

5

0

5

10

15

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t 

(8
.0

 %
)

9
8
7
6
5
4
3
2
1

0

15 10 5 0 5 10 15
1st  principal com ponent  (8.5 %)

15

10

5

0

5

10

15

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t 

(7
.9

 %
)

0
1
2
3
4
5
6
7
8
9

positive centroids negative centroids

15 10 5 0 5 10 15
1st  principal com ponent  (5.0 %)

10

5

0

5

10

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t 

(4
.9

 %
)

8
6
4
2

0
2
4
6
8

all centroids (colored with output 3)

20 15 10 5 0 5 10 15 20
1st  principal com ponent  (27.7 %)

20

15

10

5

0

5

10

15

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t 

(1
7

.5
 %

)

9.0
8.7
8.4
8.1
7.8
7.5
7.2
6.9
6.6

most negative centroids for output 3

optimal stimuli for output 3

negative

positive

A B

C

D

Figure 7.7: Competitive learning centroids for complex-cell output. All the data
in this figure corresponds to output 3, for which the optimal stimuli are
shown in A. In B all 1000 centroids are shown, after a PCA projection
(the percentage numbers along the axes tell the explained variance) and
colored according to their output value. C shows the same centroids, but split
into those with positive and negative output. In D only the centroids with
the most negative output values are shown, together with the pseudoinverse
reconstruction for three selected centroids.

83



7 Capturing the Input Distribution

10 5 0 5 10 15
1st  principal com ponent  (30.5 %)

8

6

4

2

0

2

4

6

8

2
n

d
 p

ri
n

ci
p

a
l 

co
m

p
o

n
e

n
t 

(1
1

.2
 %

)

4.2
4.5
4.8
5.1
5.4
5.7
6.0
6.3
6.6

most negative centroids for output 13

optimal positive stimulus
for output 13

Figure 7.8: Maximal output centroids for an output with secondary response
lobes (natural stimuli). The optimal positive stimulus is shown on the
right side. The two preferred orientations can be roughly identified in the
centroid plot, which is shown together with three selected centroid image
patches.

slightly different (e.g., the optimal stimuli differ), so no direct comparison is pos-
sible. For both types of stimuli the complex-cell outputs and secondary response
lobes can be identified.

• As mentioned before we also ran simulations where the vector quantization is
trained on the raw input data, before the first linear SFA step. In principle the
results were the same as for the vector quantization after the first SFA step. Since
the linear SFA step on the lowest layer acts like a low-pass filter the resulting
centroid image patches are “edgier”. Due to the higher dimensionality the 2D
PCA projection plots of the centroids also tend to be noisier.

• The GNG results for natural stimuli are not really convincing. This can be im-
proved by replacing the Euclidean distance measure with a more sophisticated one.
Instead of the canonical scalar product (with the Gramian matrix being the unit
matrix) we constructed a Gramian matrix from the quadratic form that constitutes
the output function. That makes it possible to increase the weight of directions
for which the directional derivative of the output is large. The most direct way to
get such a Gramian matrix is by taking the square of the quadratic form matrix
(making it positive definite).

• Two additional vector quantization algorithms were tested. Since the results did
not provide any new insights they are not presented here. These algorithms were
also tested in combination with different top-down methods, but showed no im-
provements over the results with the standard competitive learning quantization
(see next chapter).

84



7.5 Discussion

The first of these vector quantization algorithms used competitive learning, but
took the output gradient into account (the vector quantization was performed inde-
pendently on each output, but without bins). Since the gradient is typically larger
in the outer regions of the input data distribution this can be used to concentrate
the centroids there, with fewer centroids in the less interesting center region.
In the second algorithm the centroids are directly taken from the data points (no
averaging), in a way that maximizes the distances between centroids. This has the
effect of spreading the centroids more evenly, away from the center region. How-
ever, this did not result in any advantage over the standard competitive learning
quantization.

7.5 Discussion
Overall the results in Section 7.4 are not surprising. They merely verify the intuitive
picture that follows from [Berkes and Wiskott, 2005] and [Sprekeler and Wiskott, 2010].
In principle the methods in this chapter could provide new insight into the characteristics
of the intermediate layers, but 2D centroid plots beyond the first layer did not show any
clear structures. Even the comparably simple structures for the layer 1 outputs can
be hard to identify (as shown in Figure 7.7D). The 2D projection probably does not
leave enough of the structure intact for a simple visual interpretation. The figures in
Section 7.4 show the most illustrative cases and do not represent the average visual
quality of the results. However, our primary goal is the input reconstruction in the next
chapter, for which the aesthetic visualization of the centroids is not relevant. To close
this chapter we now briefly discuss related work that deals with capturing the input data
distribution.

7.5.1 Manifold Learning Algorithms
Typical manifold learning algorithms like Isomap [Tenenbaum et al., 2000] and Locally-
Linear Embedding (LLE) [Roweis and Saul, 2000] take a finite number of sample points
and try to uncover their intrinsic manifold structure. The algorithms try to find an
embedding of these data points into a space with the intrinsic dimension of the mani-
fold, unwrapping it while preserving the local distance relations between points in the
manifold. This can provide some insights into the data distribution, but it would not
directly help us with the top-down input reconstruction. The number of data points in
our model is also far too large for a direct application of these algorithms. Furthermore,
these algorithms solve essentially the same problem that is already addressed by the SFA
algorithm: extracting the intrinsic structure of complicated data sets.
The only place where manifold learning algorithms would make sense is the visual-

ization of the centroid set. In Section 7.4 we used PCA to reduce the dimensionality of
the centroids for plotting. In principle a manifold learning algorithm could do a much
better job, especially in cases like Figure 7.5B (where two principal components are not
sufficient). However, our preliminary tests (using the LLE implementation in MDP)

85



7 Capturing the Input Distribution

only produced results that were inferior to those with PCA.

7.5.2 Other Hierarchical Networks
The method of vector quantization has been used in other models before, but primarily
for the feed-forward processing. Models like the Neocognitron [Fukushima, 1980], HMAX
[Riesenhuber and Poggio, 1999], or Radial Basis Function Networks [Moody and Darken,
1989] all rely on a set of “centroids” on each layer, which are activated according to their
similarity to the stimulus. The signals from all the centroids are then combined in some
way to form high-level representations. For example, the centroids in Figure 7.4C could
be combined to form a phase invariant edge detector (by using them as linear filters and
taking the maximal filter output).
The learned centroids in our model could in principle be used to build a quantized

version of the complete SFA network. While the efficiency and practicality of this ap-
proach is questionable the result might have some similarity to other slowness based
models like VisNet [Wallis and Rolls, 1997] or Hierarchical Temporal Memory [George
and Hawkins, 2009].

86



8 Top-down Input Reconstruction with
Gradient Descent

In the previous chapters the goal of input reconstruction in hierarchical SFA networks
was established and the input distribution was captured. We now want to conclude this
with an actual reconstruction algorithm, which is partly based on the method of gradient
descent.

8.1 Methods
The hierarchical SFA network mainly used in this chapter is the same one as in the previ-
ous chapter (see Section 7.2), trained with the letter stimuli. It includes the competitive
learning vector quantization, so the centroids are available.

8.1.1 Gradient Descent
Gradient descent is a simple first-order optimization algorithm for finding a local mini-
mum (or maximum) of a real-valued scalar function f(x) [Fletcher, 1980]. It requires a
starting point x0 and then iteratively calculates new points xi by repeating the following
two steps:

1. Calculate the gradient ∇f at the point xi.

2. Move along the direction of the gradient to find a better point, i.e.,

xi+1(ti) = xi + γi∇f(xi), (8.1)

where γi ∈ R is chosen such that it minimizes f(xi+1). Depending on f it can be a
challenging problem to find the optimal γi, but since the search is performed along
a single line this is much simpler than the original optimization problem. Various
heuristics for this line-search problem are available [Fletcher, 1980], but as we will
see, those are not needed in our case.

Unfortunately a gradient descent can run into various problems. The most serious issue
is that the algorithm often gets stuck in a local minimum, which can be far less optimal
than the global minimum.

Single Node Optimization

The objective of top-down stimulus reconstruction is to find an input that produces
a given output value yt (t for target). We first address this optimization problem for

87



8 Top-down Input Reconstruction with Gradient Descent

the output and input of a single node in one layer in the SFA network (i.e., the node
consisting of the two linear SFA steps and the quadratic expansion in between). To
perform a gradient descent we define the error measure E(y) by taking the squared
Euclidean distance between the output vector y and the target vector yt. The output
vector y is defined by a given input x for the network node, so the error is

E(x) = (yt − y(x))2. (8.2)

Each component of y is defined by a second degree polynomial. The function E(x) is
therefore a fourth degree polynomial in the components of x and the exact gradient ∇E
is easy to calculate.
With the exact gradient at the current point xi one can move to the second step of

the algorithm. We can insert xi+1(γi) from (8.1) into the error measure to get E(γi), a
fourth degree polynomial in γi. To find the optimal value for γi we need the extrema
of E(γi), which are at the roots of the derivative. Since the derivative of E(γi) is only
a third degree polynomial the three roots are again easy to calculate (with the cubic
formula or by numeric means). The real-valued root with the lowest error value is then
used to calculate xi+1 for the next iteration step.

Incorporating the Centroid Information

In Section 6.2 it was noted that typically there are many inputs x that produce a given
target output yt, but usually not all of them are equally similar to the original training
stimuli. Even if we reach a point with zero error for the output this might still not be
a likely stimulus. In order to identify the most likely minimum we need the probability
distribution of the training data, which was approximated in the previous chapter with
a set of centroids.
The easiest way to apply the centroids is to use them as starting points for the gradient

decent. In order to find the best starting point x for a given target yt we first pick the
centroid xcj that minimizes the output error. The hope is that this centroid is close
enough to the correct minimum, so that the gradient descent moves us further towards
it. It is somewhat misleading to speak of the distance between centroid and minimum
in this context, because the distance in input space is not relevant for our line search.
However, a smaller distance has the effect that the minimum and its region of attraction
are more likely to be hit by the search line, because its angular cross section (i.e., the
range of directions for which it is hit) is larger. Furthermore, a smaller distance generally
makes it more likely that the gradient points in the direction of the correct minimum.

8.1.2 Optimization for Multiple Layers
In order to perform input reconstruction beyond a single node there are basically two
choices: treating the whole SFA network as a single function that is optimized globally
or optimize it layer by layer. In this chapter we use the second approach, but the global
alternative is discussed in Section 8.3.1.

88



8.2 Results

Before addressing the optimization across multiple layers we first have to address the
issue of receptive field overlap. In the hierarchical SFA networks the input fields at each
layer (i.e., the areas from which the nodes receive their input from the previous layer)
overlap to some extend, which is important to achieve translation invariance and good
network performance in general. Unfortunately it also means that the reconstructed
input patches for different input fields overlap, and often the overlapping values will not
be equal. Lateral connections might be the best solution for this dilemma, as there is
experimental evidence for their importance in the visual cortex [Kennedy et al., 2000].
For example, these lateral connections would allow neighbouring nodes to somehow
negotiate matching solutions. However, implementing such a mechanism in our model
would be nontrivial. To keep things as simple as possible we therefore use a simple
winner-take-all mechanism, which is applied after the reconstruction for each input field
is finished. The input fields are first sorted according to their reconstruction error E(y).
This enables the input values with low error to overwrite results with a larger error.
Naturally this increases the error values for the loosing input fields, but we assume that
the lower error inputs still lead to an overall better result.
The next step in the reconstruction procedure is the combination of multiple layers.

This is actually quite simple: the reconstruction is started at the top layer, and the
reconstructed input from that layer is then used as the target output for the layer below.
When this procedure reaches the bottom layer it produces a complete reconstruction in
image space. A schematic diagram of this procedure for two layers in the network is
shown in Figure 8.1.

Network Priming

It is also possible to perform multiple optimization passes with the layer-by-layer opti-
mization technique. After the bottom layer has been reached, the reconstruction result
is feed-forward processed through the network, and the resulting input for each node
in the network is stored. Then another top-down reconstruction is performed for the
original target yt, but this time the centroid starting points are replaced with the stored
input data. Theoretically this might help to resolve conflicts between overlapping input
fields, because the loosing input fields get the chance to restart their optimization based
on data from the winning fields. Biologically this mechanism could be interpreted as a
short term memory at the synaptic level (e.g., as postulated in [von der Malsburg, 1994]).
This method of “priming” the network with a given input before the reconstruction can
also be used in other contexts (which are discussed in the results).
All the described optimization techniques were implemented with the BiMDP frame-

work (see Chapter 11). A simple example of gradient descent in this framework is
available on the MDP homepage.

8.2 Results
Unless noted otherwise we use an SFA network that was trained with the letter stimuli.
The same number of iterations for the gradient descent is used across all layers and

89



8 Top-down Input Reconstruction with Gradient Descent

overlap region

layer 2

layer 1

Step 1:
Perform input reconstruction
for each of the 4 x 4 nodes in the layer.

Step 2:
Resolve overlap by prefering data
from the node with smaller error.

target y

Step 3:
The x values are the new target y
for the nodes in the lower layer.

reconstructed x,
node error signal

Figure 8.1: Top-down reconstruction schematic for two layers. This figure depicts
two layers in the SFA network, in the same way that was already used in
Figure 3.2 (but adjusted for the smaller network in this chapter). The flow
of information is indicated by the large arrows. Gray arrows symbolize the
input and output data. Red arrow symbolize the reconstruction error values
from each SFA node. A short description of the procedure is provided on the
left side.

90



8.2 Results

all the nodes in each layer (the provided iteration numbers therefore correspond to the
description in Section 8.1.2).
The original training images are restricted to the value range between 0 and 255 (the

standard 8 bit grayscale range). For the reconstructed input values on the other hand
there is no such restriction. To translate the reconstructed data back into an image
one can either cut off data values or rescale the data. The rescaled image versions are
indicated by the grayscale bar on their right side, while all other reconstruction images
in this chapter use the cutoff method.

8.2.1 Stimulus Reconstruction Results
Figure 8.2 shows several input reconstructions. Images from the training data are used
as optimization targets for the top-down reconstruction. The results vary depending on
the layer that the reconstruction is started from. For example, the reconstruction from
layer 2 is started by first calculating the layer 2 target output from the input image.
The optimization is then performed in layer 2 to get the reconstructed input values for
layer 2. These are then used as the target output for layer 1. The optimization in layer 1
finally produces the reconstructed input, which is translated back into an image.
Not surprisingly, the results in Figure 8.2A show that the reconstructions get worse

for the higher layers. The images that were reconstructed from the third layer output
are seriously distorted, especially for the tilted A. However, the reconstruction is still
localized at the right position and contains several key features of the letter (especially
the upper part of the A). The reconstruction error from one layer affects all the layers
below, so with each additional layer the quality of the result decreases. There is also the
issue of input field overlap: input fields with large errors are partly overwritten, which
tends to increase the mismatch between their reconstructed input and target output.
The last row in Figure 8.2A stands out because the target input contains two letters,

in contrast to the single letter training data. This results in a third layer reconstruction
in which the second letter is completely missing. The likely explanation is the absence
of any double letter centroids in layer 3. In this example the closest centroid apparently
belongs to the single letter D, and the gradient descent stays in that vicinity. The
reconstruction for the lower layers on the other hand performs normally, since their
smaller receptive fields mean that each node only sees parts of a single letter.
Figure 8.2B shows reconstruction images without the cutoff method. Their values

exceed the training image values, ranging from -50 to about 300. This seems reasonable
and subjectively the images do not look much different from the cutoff versions.
The influence of the number of iterations and the centroid impact are illustrated in

the next figure. Figure 8.3A shows that the quality of the layer 3 reconstruction does not
really increase after about 10 iterations. While the reconstructed input still continues to
change it seems that the result only gets nosier. The main benefit seems to be that the
lowered error allows the missing segment of the C to be filled in (which was previously
overwritten by an overlapping receptive field with lower error). This interpretation
is further supported by the error plots in Figure 8.3B. The first plot shows how the
Euclidean distance between y and the target yt is successfully reduced to nearly zero

91



8 Top-down Input Reconstruction with Gradient Descent

target stimuli
layer 1 layer 2 layer 3

input reconstruction (10 iterations, with centroids):

reconstruction without image cutoff:
layer 1 layer 2 layer 3

A

B

Figure 8.2: Top-down reconstruction results for different layers. Several input
images are reconstructed, based on the output from different layers of the
network (sorted in columns). In A the cutoff method was used to force the
data into the value range of the training stimuli (0 to 255). In B the grayscale
range is stretched to match the data range. The grayscale bar next to each
image provides the relation between gray value and data value.

92



8.2 Results

(black line). The gray line on the other hand is the error of the reconstructed layer
input x for each iteration. This is calculated before the input fields are combined, so
their overlap does not contribute at this point (the errors for all input fields are simply
added up). Surprisingly the input error remains almost constant (though they do change
slightly in each iteration).
For the second plot in Figure 8.3B we used a double pass reconstruction (as described

in Section 8.1.2): after the first reconstruction this input is used to prime all the layers in
the network for a second reconstruction run (in which these inputs are used as starting
points instead of the centroids). The second pass starts with practically the same error in
y as the first pass. From the viewpoint of the third layer the errors that were introduced
by the lower layers invalidate any gains from the gradient decent.
Figure 8.3C shows two reconstructions in which random starting points were used

instead of the optimal centroids, so the reconstruction fully depends on the gradient
descent. Only the lowest layer results show some resemblance to the target stimulus,
even though the output error is successfully reduced in all layers (as shown by the error
plots).
Overall the results indicate that the input reconstruction is mostly enabled by the

centroid information, while the gradient descent is generally unable to further enhance
the results. The fact that multi pass reconstruction does not have a positive effect also
indicates that the layers are not able to find a globally optimal network state (which is
assumed to happen in the brain).

Reconstruction after the Linear SFA Stage

As described in Section 7.3.1 it is possible to perform the vector quantization after the
linear SFA stage in each layer. Correspondingly the gradient descent is performed after
the linear SFA stage as well. The pseudoinverse of the linear stage is then applied to
the reconstruction result to complete the node inversion.
The results for this approach are provided in Figure 8.4. Reconstructions for different

layers and different numbers of iteration steps are shown in Figure 8.4A. For the higher
layers these results are clearly inferior to those in the previous section. As before they
do not improve for a larger number of iterations. For the reconstruction in the last row
a random starting point was used instead of the optimal centroid. In this case the result
is actually better than the one from the previous section (Figure 8.3C).
Figure 8.4B focuses on the reconstruction error that is introduced by the use of the

pseudoinverse. The first layer reconstructions for two receptive field patches are shown
together with error plots for the output y and input x. The high error in x is partly a
result of the low-pass filtering that is performed by the linear SFA stage. This is also
apparent in the reconstructed image patches (which look softer than the target stimuli).
The implications of these results are twofold. On one hand the reconstruction for the

higher layers performs poorly due to the information loss in the linear SFA stage. On
the other hand it seems that for the first layer the gradient descent does benefit from
the reduced number of dimensions (32 versus 64).

93



8 Top-down Input Reconstruction with Gradient Descent

100 iterations10 iterations1 iteration

layer 3 error during optimization:

reconstruction with different numbers of iterations (layer 3):

no centroids, random starting point:

layer 1 (50 iterations) layer 3 (20 iterations)

A

B
single pass (100 iterations) double pass (10 iterations)

C

0 10 20 30 40 50
iterat ion

0

5000

10000

15000

20000

25000

30000

35000

40000

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

100

200

300

400

500

600

700

y
 e

u
cl

id
ia

n
 e

rr
o

r
0 5 10 15 20

iterat ion

0

5

10

15

20

25

30

35

40

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

2

4

6

8

10

y
 e

u
cl

id
ia

n
 e

rr
o

r

0 5 10 15 20
iterat ion

0

10

20

30

40

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

2

4

6

8

10

12

y
 e

u
cl

id
ia

n
 e

rr
o

r

0 20 40 60 80 100
iterat ion

0

5

10

15

20

25

30

35

40

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

2

4

6

8

10

12

y
 e

u
cl

id
ia

n
 e

rr
o

r

Figure 8.3: Influence of the number of iterations and centroids. A shows the
reconstruction from layer 3 for different numbers of iterations. The first plot
in B shows the error of the layer input x (gray line) and output y (i.e., the
Euclidean distance to the target xt and yt) over the number of iterations. In
the second plot the same error is shown for a double pass reconstruction (see
Section 8.2.1), with the second pass starting at the vertical line (after the
first 10 iterations). C shows two reconstructions in which random starting
points where used instead of the optimal centroid. The corresponding layer
errors are shown in the plots below.

94



8.2 Results

0 20 40 60 80 100
iterat ion

0

100

200

300

400

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

2

4

6

8

10

y
 e

u
cl

id
ia

n
 e

rr
o

r

0 20 40 60 80 100
iterat ion

0

100

200

300

400

500

600

700

800

x
 e

u
cl

id
ia

n
 e

rr
o

r

error over iterat ions

0

5

10

15

20

25

30

y
 e

u
cl

id
ia

n
 e

rr
o

r

reconstruction after linear SFA stage:

layer 1 reconstruction for single receptive field:

layer 2 layer 3layer 1

10 iterations

50 iterations

100 iterations
no centroids

A

target stimulus

B

target stimulus

100 iterations

target stimulus

100 iterations

Figure 8.4: Reconstruction results after the linear SFA stage. For these examples
the vector quantization and gradient descent were performed after the linear
SFA stage (and using the pseudoinverse). In A the results for different layers
and iteration numbers are shown (in the last row with random starting points
instead of centroids). B shows the layer 1 reconstruction for two receptive
field image patches (the gray background is only shown to provide contrast
for the white parts of the patches). The error plots on the right contain both
the input and the output reconstruction error.

95



8 Top-down Input Reconstruction with Gradient Descent

reconstruction (50 iterations):

layer 3layer 2layer 1

target stimulusinitial stimulus

Figure 8.5: Reconstruction for distorted input stimuli. The distorted input is
shown in the top row, together with the undistorted target stimulus. In the
second row the reconstruction results for all three layers are shown. These
results were obtained after priming the network with the distorted stimulus,
so no centroids were used in the reconstruction.

8.2.2 Reconstruction from Distorted Stimuli
It was shown earlier that priming the network for additional passes does not enhance the
performance. The example in Figure 8.5 instead uses a distorted version of the target
stimulus to prime the network. However, the results show that the gradient descent fails
to improve the reconstruction image.
A similar experiment can be performed by priming the network with a slightly rotated

or shifted version of the target stimulus. In principle this should allow us to generate
transformations of the input image. Unfortunately this worked just as badly as the
priming with distorted stimuli.
We performed multiple experiments in this direction, and they all indicate that the

higher layers are stuck in local minima. Even for tiny distortions or transformations the
gradient descent is apparently unable to reduce the input error in a meaningful way. The
transformation probably would have to be smooth down to the single pixel level. Given
the performance of the gradient descent in our earlier experiments this is not surprising.
Even the movement of a letter stimulus by a single pixel implies a sizable distance in
input space, which is apparently too much for the gradient descent. The invariance of
the network with respect to transformations might add to this problem, because the
output derivative along these trajectories is small.

96



8.2 Results

8.2.3 Control Experiments
• The reconstruction parameters were varied as widely as possible. This should rule

out unlucky parameter choices as the root of the gradient descent problems. For
example, we tested the input reconstruction with up to 400 iterations across all
three layers, seeing no improvement.

• We also trained and tested an SFA network without the contrast transformations
in the letter training set. As mentioned earlier this simplification raised the clas-
sification performance of the network to 99.2% (from the original 92.3%). The y
errors for the input reconstructions decreased as well, but otherwise there was no
qualitative difference in the results. Due to the less diverse training stimuli the
centroid density for the training data is higher, which explains these results.

• We verified that the results from this chapter generalize to other stimulus sets. In
Figure 8.6 we present results for a network that was trained with a slightly smaller
version of the sphere stimuli from Section 3.3 (matching the smaller network size
in this chapter). The reconstruction results are similar in quality to the letter
network. We also tested how the sphere network would reconstruct letter stimuli
(which are very different from its training data). Figure 8.6 shows how the sphere
network fails to reconstruct letter stimuli. This is not surprising, since there are
no corresponding centroids.
Additionally we trained and tested a single layer network with the natural stimuli
from Section 7.2.2. The reconstruction performance is comparable to that of the
letter network. Without the centroid information the reconstruction performance
dropped significantly.

• In an attempt to improve the gradient descent we tested a “shotgun” method,
using multiple starting points for the iteration. Instead of only the centroid closest
to the target output we picked the nearest 20 centroids and performed the gradi-
ent descent for all of them. From the resulting 20 candidates we picked the one
with the lowest output error. However, this did not improve the gradient descent
performance in any significant way.

• We tested a different method of resolving the overlap of the input fields. Instead
of the winner-take-all approach we took the mean of the conflicting values. This
did not improve the reconstruction quality.

• In order to get a “chance-level” for the gradient descent we ran simulations in which
the gradients were replaced by random vectors (with a Gaussian distribution). The
line search was performed in the normal way, based on these random directions. As
expected, the output error was still reduced, but much slower than with the correct
gradients. The input error increased with the number of iterations, in contrast to
the decrease with the real gradients (the error also increased at a faster rate than
the decrease). In the input reconstructions for the random gradients it looks like
pink noise is added by the gradient descent.

97



8 Top-down Input Reconstruction with Gradient Descent

target stimulus

layer 3 reconstructions (10 iterations):

sphere network

letter network

image cutoff no image cutoff

Figure 8.6: Reconstruction of sphere stimuli. In this control experiment the re-
construction was performed for sphere object stimuli. The first row shows
the third layer reconstructions from an SFA network that was trained with
sphere stimuli. The second row was reconstructed by the standard network
trained with letters.

98



8.3 Discussion

8.3 Discussion
The findings in this chapter are twofold:

• All our results indicate that the gradient descent method performs poorly for our
hierarchical SFA model. It might be deceiving that the functions representing each
node are only second order polynomials. In order to evaluate the difficulty of the
problem one has to take the dimensionality into account as well. Even after the
linear SFA step the input typically has 32 dimensions, which means that there
can be up to 232 local minima in the error function for each node. One possible
solution might be to develop optimization techniques specifically for this type of
function, similar to what has been done in [Berkes and Wiskott, 2006].

• Only the centroids enable the top-down reconstruction of input stimuli, which
raises the question of scalability. In our current implementation the centroids can
be interpreted as “grandmother cells” [Gross, 2002], i.e., they correspond to a
single very specific stimulus. For a highly restricted stimulus set this might not be
a problem, but as the stimuli get more diverse this is likely to fail. The required
number of centroids and the computational complexity would explode, at least for
our naive approach.

One can conclude that fundamental changes to our model are needed to enable truly
general top-down processes. This is unfortunate, since the stimulus reconstruction
method could have opened up new ways to analyze our hierarchical networks. The
top-down methods could have also been used to implement attentional mechanisms for
multiple objects or cluttered scenes.
The method of vector quantization plus gradient descent can be considered as a brute

force approach. We also tested multiple other reconstruction methods, in the hope of
finding a more elegant approach. However, none of these methods were able to match
the reconstruction performance of the brute force solution. We end this discussion by
comparing our approach with various other models and techniques.

8.3.1 Global Network Optimization
The optimization layer by layer, one network node at a time, has the advantage that only
a very small part of the network is involved in each step of the calculation. It is a natural
fit for the local feed-forward structure of the network. Connectivity in the the brain is
thought to be of the so called small-world type (e.g., [Humphries et al., 2007]), with
the majority of connections being local. This seems to imply that local optimization is
biologically more plausible than global approaches (in addition to various more technical
reasons).
However, if the goal is only to analyze the SFA network then the biological argument is

not relevant. In that case one can perform the gradient descent for the whole network at
once. The resulting error function is a polynomial of a much higher degree (e.g., degree
16 for the three layer network). Apart from technical issues with memory consumption
this also means that the line-search gets harder.

99



8 Top-down Input Reconstruction with Gradient Descent

Christian Hinze tested this global approach for our hierarchical SFA models [Hinze
et al., 2009]. Instead of input reconstruction his goal was to find optimal stimuli for higher
level network outputs. He used an approximative line-search algorithm. Alternatively it
should be possible to calculate the exact error polynomial along the search line and to
apply numerical methods for finding the roots (which is no problem for polynomials of
this degree).
It turned out that the resulting optimal stimuli for higher network layers are hard to

interpret. There is one additional obstacle in this approach, due to the need of a vector
norm constraint for the optimal stimuli [Berkes and Wiskott, 2006]. This complicates the
evaluation of the gradient descent performance in this setting. Nevertheless the results
seem to support our conclusion that gradient descent is problematic for SFA networks.
It also suggests that the use of a global gradient descent for input reconstruction would
not return better results than our localized approach.
For a completely global approach the vector quantization could be done in the original

image space as well, so each centroid would correspond to a full image. However, this
would make the distance calculations in the algorithm very costly and the number of
centroids might have to be increased as well.

8.3.2 HMAX Model
The HMAX model [Riesenhuber and Poggio, 1999] is similar to the earlier Neocognitron
[Fukushima, 1980] (e.g., [Fukushima, 2005] for top-down processes). It is a hierarchical
feed-forward network, with each layer consisting of a so called S and C-part. The S-
part basically contains centroids (e.g., learned with the k-means algorithm) which act as
linear filters. Like in our model each layer consists of multiple input fields with identical
centroids (“weight-sharing”). In the C-part a nonlinear maximum operation (MAX) is
used to combine the output from identical centroids across multiple input fields, thus
achieving basic translation invariance. On the lowest layer the S-part corresponds to
simple-cells, while the C-part is associated with phase-invariant complex-cells.
In [Dura-Bernal et al., 2010] a feedback mechanism for the HMAX model has been

introduced. The basic idea is to turn the model into a Bayesian network in which belief
propagation can be implemented. So called belief units are inserted between the network
layers to maintain the current state, consisting of a probability distribution for the input
and output of the layers. The discrepancy between beliefs at different layers generates
an error signal, which is used to modify one belief unit at a time. This can be done
bottom-up (feed-forward) or top-down (feedback), or in any combination thereof. In
[Dura-Bernal et al., 2010] this has been applied to an image of the famous Kanizsa
square [Kanizsa, 1987], resulting in the emergence of illusionary contours (which is the
intended result as it matches the response of the visual system).
While these results are certainly interesting, it is not yet clear if they can be scaled up

to more complex stimuli. From the theoretical point of view the ability to work directly
in a probabilistic framework is a huge advantage. It is possible that such an approach
is absolutely required for implementing general top-down processes. In that case the
“shortcuts” that we used in our model must fall short.

100



8.3 Discussion

8.3.3 Deep Belief Networks
Deep Belief Networks (DBN) are hierarchical networks consisting of restricted Boltzmann
machines [Bengio, 2009]. They are probabilistic and generative, i.e., the units in each
layer are trained with the objective to reproduce the training stimuli (based on the layer
output). This implies that the network has to learn the hidden parameters that underlay
the stimulus generation, which is effectively what our SFA network does, too. The recent
popularity of DBNs is largely based on the learning algorithm that has been described
in [Hinton et al., 2006] (a more detailed description is provided in [Swersky et al., 2010]).
The fact that a DBN is a generative model means that input reconstruction is a natural

task for such a network. This has been successfully demonstrated in [Hinton et al., 2006]
for the well known MNIST data set of handwritten digits. This technique is basically
an iterative sampling procedure for the implicit probability distribution of the network.
It can also be used to characterize the units in higher network layers by visualizing their
preferred stimuli in the input image space. An alternative method based on gradient
descent has been described in [Erhan et al., 2010] and leads to qualitatively different
results. This method has been also used to visualize the network invariance, loosely
based on an idea from [Berkes and Wiskott, 2006]. While this did not produce any clear
results, it might be an approach that could be applied in other situations as well (e.g.,
for our hierarchical SFA networks).
Overall the DBN results for top-down processes are very interesting and are generally

more convincing than the reconstructions in this chapter. However, the computation in
a DBN layer is essentially defined by simple scalar weights wij , which is fairly restricted
compared to the quadratic expansion in SFA. The description in [Swersky et al., 2010]
also suggest that the training of a DBN is a very intricate process (e.g., the weights start
to diverge after some time, so training must be stopped at the right point). This raises
questions about the scalability to more complex stimuli.
Interestingly there is recent work on higher-order Boltzmann machines [Memisevic and

Hinton, 2010], which are used to learn spatial transformations. In this context higher-
order means that three variables (one of them being the “output”) are linked in the
calculation, instead of the usual two (single input and output). This has some similarity
to the quadratic expansion that we use, and which is critical for the transformation
invariance in our model. Not surprisingly the results in [Memisevic and Hinton, 2010]
are highly similar to those in [Berkes and Wiskott, 2005]. However, this higher-order
model is purely focused on transformations and has lost the top-down capabilities of the
standard DBN.

101





Part III

The Modular toolkit for
Data Processing

103





9 Introduction to the Modular toolkit for
Data Processing (MDP)

The Modular toolkit for Data Processing (MDP) is an open source library of widely used
data processing algorithms, and a framework to combine them according to a pipeline
analogy. It is written in the Python1 programming language and was first released to
the public in 2004. In this chapter the basic elements of MDP are introduced, which
were written by the project founders Pietro Berkes and Tiziano Zito (who continue
to maintain MDP). This introduction closely follows [Zito et al., 2008] and is mostly
included to provide the context for the following chapters.
I was invited to join the team of MDP maintainers in 2008 and the parts that I

contributed since then are described in the following chapters 10 and 11. These new parts
are the foundation on which most of the work presented in this thesis was implemented.
They have also been published in [Zito et al., 2008] and the upcoming [Wilbert et al.,
2011]. An extensive tutorial and further examples are available on the MDP homepage2.
At the time of this writing the current version of MDP is 3.0.

9.1 The Python Programming Language
The use of the Python programming language in computational neuroscience and other
scientific areas has been growing steadily for the past 10 years. This was made possible
by the maturation of open-source libraries like NumPy / SciPy [Jones et al., 2001] (for
fast matrix and array operations) and Matplotlib [Hunter, 2007] (for data plotting).
While these libraries provide the essential functionality needed by any scientist there
is also a large number of more specialized projects like MDP. Today this combination
allows Python to rival and often surpass commercial alternatives like MatlabR©.
The dynamic nature of Python enables scientific programmers to quickly develop effi-

cient and well structured software, with excellent support for prototyping and reusability.
Python is easy to learn while at the the same time offering powerful language features.
Among the supported features are, for example, closures, metaprogramming, and corou-
tines (all of which are used by MDP). Python supports both object oriented and, to a
lesser extend, functional programming. It is generally estimated that compared to an
implementation in C++ the Python solution requires only about one fifth of the number
of lines of code, with a correspondingly reduced development time. One reason for this
is that Python is dynamically typed, meaning that the type of a variable is only deter-
mined at runtime (as opposed to statically typed languages like C++ or Java, where

1http://python.org/
2http://mdp-toolkit.sourceforge.net

105

http://python.org/
http://mdp-toolkit.sourceforge.net


9 Introduction to the Modular toolkit for Data Processing (MDP)

the type must be known at compile time). This simplifies the development process and
provides enormous flexibility (e.g., as illustrated in Section 10.3).
On the other hand the runtime speed of Python code is typically much lower than that

of C, in some cases by a factor of more than 100. The first reason is that the dynamic
nature of Python requires more overhead at runtime. Secondly the standard Python
implementation runs Python code in a relatively simple interpreter, which cannot match
the speed of compiler generated machine code. Fortunately Python has excellent support
for other languages like C, C++, or Fortran (thanks to Cython [Seljebotn, 2009] it is
even possible to seamlessly mix C and Python code). Therefore it is standard practise to
isolate performance critical parts of the code and implement only those in a fast lower-
level language. In many cases the critical functionality is already available in libraries
like NumPy, which provide a convenient Python interface for highly optimized C and
Fortran code (e.g., based on the same linear algebra libraries that are used by MatlabR©).

9.2 MDP in the Scientific Python Ecosystem
While MDP has been written in the context of theoretical research in computational
neuroscience, it was designed to be useful in any context where trainable data process-
ing algorithms are used. Naturally it could also be described as a machine learning
library. MDP relies on NumPy for fast matrix and array calculations and optionally
uses SciPy for some further optimizations. Care has been taken to follow best practises
in software design, like test coverage (the test suite contains more than 600 automated
tests), following established design principles, and having readable and well documented
code.
With over 20,000 downloads since its first release in 2004, MDP has become a widely

used Python scientific software. It is distributed under an open source BSD license.
MDP is also available in the Debian Linux distribution3, the Python(x,y) distribution4,
and MacPorts5 for MacOS. Several scientific libraries utilize MDP, like PyMVPA [Hanke
et al., 2009] (multivariate pattern analysis), PyMCA [Solé et al., 2007] (X-ray fluores-
cence), OpenElectrophy [Garcia and Fourcaud-Trocmé, 2009] (analysis of cellular record-
ings), and the Oger toolbox6 (language processing and reservoir computing). MDP has
been used in various research projects, resulting in more than a dozen citations from
other groups.
MDP shares common goals with other Python machine learning libraries, like Orange

[Demšar et al., 2004], PyBrain [Schaul et al., 2010], and the recent scikits.learn library7.
All these libraries differ in their design approach and focus on different sets of algorithms.
To maximize code reuse and cooperation, our long-term philosophy is to automatically
wrap the algorithms defined in these libraries when they are available. For example,
MDP provides wrappers for LIBSVM [Chang and Lin, 2001] and Shogun [Sonnenburg

3http://packages.debian.org/sid/python-mdp
4http://www.pythonxy.com
5http://trac.macports.org/browser/trunk/dports/python/py26-mdp-toolkit
6http://www.reservoir-computing.org/organic/engine
7http://scikit-learn.sourceforge.net/

106

http://packages.debian.org/sid/python-mdp
http://www.pythonxy.com
http://trac.macports.org/browser/trunk/dports/python/py26-mdp-toolkit
http://www.reservoir-computing.org/organic/engine
http://scikit-learn.sourceforge.net/


9.3 Basic Elements of MDP

et al., 2010], and recently gained support for scikits.learn. This should enable users
to seamlessly combine the algorithms defined in MDP with the functionality in those
libraries. There are also ongoing efforts to increase the cooperation with other projects,
especially with scikits.learn.

9.3 Basic Elements of MDP
The core of MDP consists in a collection of supervised and unsupervised learning algo-
rithms and other data processing units that are encapsulated in nodes with a standard-
ized interface. Multiple nodes can be combined into data processing sequences, which
are called flows. Given a set of input data, MDP takes care of successively training or
executing all nodes in the flow. This allows the user to specify complex algorithms as a
series of simpler data processing steps in a natural way.
The base of available algorithms in MDP is steadily increasing and includes signal

processing methods (e.g., Principal Component Analysis (PCA), Independent Compo-
nent Analysis algorithms like FastICA [Hyvärinen, 1999], Slow Feature Analysis (SFA));
manifold learning algorithms (e.g., Locally Linear Embedding [Roweis and Saul, 2000],
Growing Neural Gas); various classification methods; and many others.
The functioning of most data processing algorithms can be divided in two distinct

phases: in the first phase, a set of training data is used to adjust a set of internal
parameters (the training phase); in the second phase, the algorithm makes use of the
learned parameters to process test data (the execution phase).
This basic structure is mirrored in MDP using an object oriented design, where al-

gorithms are represented by classes derived from a Node base class. Each node object
is characterized by an input dimension (i.e., the dimensionality of the data points), an
output dimension, and a data type (i.e., the numerical type of the data, usually single
and double precision floating-point numbers). By default, these attributes are inherited
from the input data.

9.3.1 Usage of Nodes
Node objects are finite state machines; if the algorithm requires one or more training
phases, the node stays in a training state until instructed by the user to proceed to the
execution state.
For example, the Principal Component Analysis (PCA) algorithm requires the com-

putation of the mean and covariance matrix of a set of training data from which the
principal eigenvectors of the data distribution are estimated. MDP offers an implemen-
tation of this algorithm in the class PCANode. The node can be trained on the data using
the interface common to all nodes: PCANode.train(x) analyzes a new batch of data x,
and updates the estimation of mean and covariance matrix. PCANode.stop_training()
finalizes the algorithm by computing and selecting the principal eigenvectors. Nodes can
also have multiple training phases, in which case PCANode.stop_training() starts the
next training phase instead of ending the training altogether.

107



9 Introduction to the Modular toolkit for Data Processing (MDP)

Once the training is finished, new data can be projected onto the principal components
by calling the PCANode.execute(x) method. If the transformation specified by the
underlying algorithm is invertible, the node can also be executed “backwards” using
the PCANode.inverse(y) method. In the case of PCA this corresponds to projecting a
vector in the principal components space back to the original data space. A full example
of node usage is given in the following code:

import mdp
import numpy as np
# create dummy data: 50 data points, 10-dimensional
data = np.random.random((50,10))
# create PCANode instance; reduce data dimensionality to 5
node = mdp.nodes.PCANode(output_dim=5)
# train algorithm
node.train(data)
node.stop_training()
# project data on the five principal components
proj_data = node.execute(data)

The Node base class was designed to allow arbitrarily large sets of data by accepting
input data in multiple chunks. It is thus possible to perform computations with data
that would not fit into memory, or to generate the data on-the-fly as needed:

# iterate over training data chunks, which must be arrays
for data_chunk in data_source:

node.train(data_chunk)
node.stop_training()

This works for all data sources that are iterables, i.e., data containers that support the
Python interface for iteration (like lists and tuples).

9.3.2 Implementation of Nodes
To make writing new nodes as convenient as possible for algorithm implementors, the
Node base class takes care of issues like error checking, automatic casting, and so on.
Typically, developers only have to override the methods _train, _stop_training, and
_execute to implement their algorithm8. A public version of these methods (without
the underscore) is provided by the Node base class. These template methods perform
all of the tasks related to the framework, and then delegate to the private methods
for the actual computations. An example for a simple node implementation is given in
Figure 9.1.

8In the Python convention, a leading underscore indicates that the method is private, only intended
for internal use by the class.

108



9.3 Basic Elements of MDP

class MeanFreeNode(mdp.PreserveDimNode):
"""Node to subtract the mean from the data."""

def __init__(self, input_dim=None, output_dim=None,
dtype=None):

"""Initialize the internal data structure."""
# call the __init__ method of the parent class
super(MeanFreeNode, self).__init__(input_dim=input_dim,

output_dim=output_dim,
dtype=dtype)

self.avg = None # mean of the data points
self.tlen = 0 # number of data points

def _train(self, x):
"""Calculate the mean of the training data."""
if self.avg is None:

self.avg = np.zeros(self.input_dim,
dtype=self.dtype)

self.avg += np.sum(x, axis=0)
self.tlen += x.shape[0]

def _stop_training(self):
self.avg /= self.tlen

def _execute(self, x):
"""Return the data after subtracting the recorded mean."""
return x - self.avg

def _inverse(self, y):
return y + self.avg

Figure 9.1: Implementation of a new node class. The MeanFreeNode calculates the
mean of the training data and then subtracts this mean from the data dur-
ing execution. By deriving from the PreserveDimNode base class this node
inherits dimensionality checks which ensure that the input_dim matches the
ouput_dim.

109



9 Introduction to the Modular toolkit for Data Processing (MDP)

9.3.3 Flows
A flow is a sequence of nodes that are trained and executed together to form a more com-
plex algorithm. Input data is sent to the first node and is processed by the subsequent
nodes along the sequence. The general flow implementation automates the training
(including supervised training and multiple training phases), execution, and inverse ex-
ecution (if defined) of the whole sequence. For example PCA can be used to reduce
the dimensionality of some data, after which quadratic SFA is applied (see [Berkes and
Wiskott, 2005]). This is done by first creating a Flow with the node instances:

# create a flow containing two nodes
pca_node = mdp.nodes.PCANode(output_dim=10)
sfa_node = mdp.nodes.SFA2Node()
flow = mdp.Flow([pca_node, sfa_node])

# train the flow with random data
data_source1 = (np.random.random((50,20)) for _ in range(3))
data_source2 = (np.random.random((50,20)) for _ in range(6))
flow.train([data_source1, data_source2])

# pipe some data through the fully trained flow
x = np.random.random((50,20))
y = flow.execute(x)

The training and execution are performed similarly to the node class, but this time the
iteration over the training chunks is performed automatically by the flow. Different data
sources were specified for the individual nodes, which is useful when different algorithms
require different kinds or different amounts of training data (to demonstrate this the
sfa_node above is given six data chunks, while the pca_node only gets three). Data
sources only have to be iterables. The first data source in the list is used for the first
node in the flow and so on. Most importantly the flow automatically processes the
training data for the second node through the first node. For example the data from
data_source2 are executed by pca_node, and the resulting output is then used for the
training of sfa_node. The flow is responsible for managing the training and execution
of nodes, automating these standard tasks.
Nodes with supervised training are a special case, since they require an additional

supervision signal during training. For those nodes the iterable can return tuples, in
which the first entry is the standard data and the following entries contain the addi-
tional arguments that the node requires. However, as shown in Chapter 11 the BiMDP
framework provides a more general solution for these cases.
In order to allow easy access to the internal nodes the flow class implements the

standard Python container interface and thus supports most of the features of Python
lists: one can append new nodes, extract or insert nodes, and concatenate flows. Since
the + operator is overloaded for nodes and flows one can also create a flow by adding
nodes, e.g., flow = pca_node + sfa_node.

110



10 Hierarchical SFA with MDP
The MDP features described in this chapter have been developed for the hierarchical
SFA model discussed in Part I and II of this thesis. These parallelized hierarchical
SFA models were first implemented in Python by Mathias Franzius [Franzius et al.,
2007]. The work presented in this chapter is a completely new implementation, but
especially in the area of parallelization it did benefit a lot from his experience. My new
implementation is intended to provide a modular design that can be fully integrated into
MDP. Furthermore it allows for the inclusion of top-down processes as described in Part
II of this thesis (the corresponding features in MDP are described in Chapter 11). All
the results of this thesis and the corresponding publications have been obtained with
the new MDP code, while the earlier results in [Franzius et al., 2008] are based on the
earlier code for hierarchical networks.

10.1 Hierarchical networks
The hinet subpackage has been added to MDP for arbitrary feed-forward architectures
and in particular hierarchical networks like the one presented in Section 3.2. Following
the principle of modularity, it defines three basic classes as building blocks (which are
all derived from Node): Layer, FlowNode, and Switchboard.

10.1.1 Layer
The first class, Layer, works like a horizontal version of a flow. It acts as a wrapper for
a list of nodes that are trained and executed in parallel. For example, two nodes with
100-dimensional input can be combined to form a layer with a 200-dimensional input:

node1 = mdp.nodes.PCANode(input_dim=100, output_dim=10)
node2 = mdp.nodes.SFANode(input_dim=100, output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

The first half of the 200-dimensional input data is automatically assigned to node1 and
the second half to node2. In the same way the output of the two nodes is combined and
has a dimension of 30. A layer can be trained and executed just like any other node.

10.1.2 FlowNode
In order to to build complex and modular structures hinet provides a wrapper class
for flows (i.e., vertical stacks of Nodes), called FlowNode. While the interface of Flow
looks similar to that of Node it is not compatible and therefore FlowNode is needed as an
adapter. For example, one can replace node1 in the previous example with a FlowNode:

111



10 Hierarchical SFA with MDP

node1_1 = mdp.nodes.PCANode(input_dim=100, output_dim=50)
node1_2 = mdp.nodes.SFANode(input_dim=50, output_dim=10)
node1 = mdp.hinet.FlowNode(node1_1 + node1_2)
node2 = mdp.nodes.SFANode(input_dim=100, output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

node1 has two training phases in this example, one for each internal node. layer there-
fore has two training phases as well and behaves like any other node with two training
phases. By combining and nesting FlowNode and Layer, it is thus possible to build
modular node structures.

10.1.3 Switchboard
When implementing networks one generally has to route different parts of the data
to different nodes in a layer (e.g., to model a receptive field structure like in the visual
system). This functionality is provided by the Switchboard node. A basic Switchboard
is initialized with a 1-D array with one entry for each output dimension, containing the
index of the input dimension that it receives its value from, e.g.:

switchboard = mdp.hinet.Switchboard(input_dim=6,
connections=[0,1,2,3,4,3,4,5])

x = np.array([[2,4,6,8,10,12]])
print switchboard.execute(x)
# should print: array([[ 2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed up by a layer containing nodes with corresponding
dimensionality, as illustrated in Figure 10.1. In practice the connections array is often
not specified by hand, which would be tedious. Instead MDP supplies a couple of classes
that are derived from Switchboard, but which take a higher level description of the
connection scheme and construct the connections from that.
The most typical connection scheme in the context of this thesis is the quadratic

receptive field structure shown earlier (e.g., in Figure 3.2). This receptive field struc-
ture implies that the data has a 2-D structure, which is not apparent in the 1-D data
format used by MDP. To define such a switchboard one therefore has to provide in-
formation about the underlying 2-D structure, the receptive field size, and the spacing
of the receptive fields. One must also consider that a single SFA node has a multi-
dimensional output. For example each “pixel” in a higher layer input corresponds to 32
SFA outputs (similar to a color image with three values per pixel). This is abstracted
in the ChannelSwitchboard node, in which n inputs can be grouped together to form
a channel. Based on that we define the Rectangular2dSwitchboard class, which takes
the receptive field parameters and calculates the connections from that. This allows the
convenient construction of a complete hierarchical network from the parameters specified
in Table 3.1.
In addition to the Rectangular2dSwitchboard class there are a couple of other switch-

board classes for 2D receptive fields available in MDP, which implement more compli-
cated receptive field structures.

112



10.1 Hierarchical networks

0 1 2 3 4 5

0 1 2 3 4 3 4 5

node node some layer

switchboard

Figure 10.1: Example of a simple feed-forward network. The values of input 3
and 4 are duplicated and fed to both nodes, like in the case of overlapping
receptive fields. In this figure the data is depicted flowing down from the
top (this convention is used throughout the chapter, since it is closer to the
technical implementation).

10.1.4 Additional Tools
With the three building blocks that were presented it is now possible to construct ar-
bitrary hierarchical networks, like the ones described in Section 3.2. In Figure 10.2 we
present the code for implementing a network layer as it was illustrated in Figure 3.2
(which is the third layer in the hierarchical SFA model). The hinet subpackage also
includes functionality to create a graphical visualization of any such network. This visu-
alization is provided in the form of HTML code, which can be viewed in a webbrowser.
This is as simple as:

mdp.hinet.show_flow(flow)

An example display for the network from Figure 10.2 is shown in Figure 10.3. It is also
possible to specify custom visualizations for specific node types via the extension mech-
anism that is introduced later (e.g., to define which internal parameters are displayed).
In practice even the task of picking consistent parameters for large networks can

be tedious. To help with this, MDP provides a simple graphical user interface for
experimenting with the network structure. This application can be found among the
MDP examples (under the name hinetplaner). Basically this is an interactive version
of the passive network display. The user frontend runs in the browser (using HTML
and JavaScript) and communicates with a simple Python webserver backend. Originally
this was also indented as a framework for interactive analysis of the data processing in
a network, but due to the results with gradient descent in Chapter 8 we did not reach
that stage.

113



10 Hierarchical SFA with MDP

switchboard = mdp.hinet.Rectangular2dSwitchboard(
in_channels_xy=14,
field_channels_xy=4,
field_spacing_xy=2,
in_channel_dim=32)

sfa_node = mdp.nodes.SFANode(input_dim=switchboard.out_channel_dim,
output_dim=32)

sfa2_node = mdp.nodes.SFA2Node(output_dim=32)
flownode = mdp.hinet.FlowNode(sfa_node + sfa2_node)
sfa_layer = mdp.hinet.CloneLayer(flownode,

n_nodes=switchboard.output_channels)
flow = switchboard + sfa_layer

Figure 10.2: Code example for a single layer in an SFA network. This corre-
sponds to the network shown in Figure 3.2, which is the third layer in the
hierarchical SFA network. Only the cutoff- and noise-nodes are omitted
here for simplicity. The receptive field size is 4 × 4 pixels, with each pixel
having dimension 32 (the SFA output dimension in the previous layer). The
step size of the receptive fields is 2 channels. The data from one receptive
field is considered to form an output channel. It is also possible to spec-
ify non-quadratic receptive fields (by specifying 2-tuples instead of scalar
parameter values).

114



10.2 Parallelization

Figure 10.3: Example of a network visualization. This is the network created by
the code in Figure 10.2. The image is taken from a browser screenshot.

10.2 Parallelization
Some of the algorithms implemented in MDP allow in principle a straightforward par-
allelization. For example, the PCA algorithm is based on computing the covariance
matrix of the data. It is possible to split the task of computing the covariance matrix
for a large data set in independent blocks by dividing the data into several subsets and
recording the 2nd moment matrix, the mean, and the number of samples individually
for each subset. From this data the covariance matrix of the whole data set can easily
be reconstructed. The same principle applies to SFA, as discussed in Section 2.3.
The calculations for each block are independent from each other and can therefore

be performed in parallel. Problems like this are called embarrassingly parallel. An
embarrassingly parallel problem is one for which not much effort is needed to segment
the problem into a large number of parallel tasks that can be executed independently
without communication among tasks [Foster, 1995].
Parallelization is an increasingly important topic, since progress in the speed of a single

CPU core has slowed down in recent years. Instead, Moore’s law is now perpetuated by
providing an increasing number of CPU cores [Sutter, 2005], which require parallelization
to be used effectively. The parallel package in MDP adds functionality to parallelize
the training and execution of MDP flows, thus providing a convenient speedup that can
ideally scale with the number of CPU cores (minus the additional overhead).
In the last few years, there has also been a huge trend to use Graphics Processing

115



10 Hierarchical SFA with MDP

Units (GPU) for general numerical applications, due to their highly data-parallel num-
ber crunching capabilities (recent applications in computational neuroscience are [Pinto
et al., 2009] and [Cireşan et al., 2011]). GPU support in Python is for example provided
by PyCUDA [Klöckner et al., 2009] and Theano [Bergstra et al., 2010]. The paralleliza-
tion approach discussed here is complementary to that approach and could in principle
be used to distribute work across multiple GPUs (in a single machine or cluster).

10.2.1 Overview and Example
The parallel package in MDP is divided into two weakly coupled parts:

• The first part consists of schedulers. A scheduler takes arbitrary “tasks” and
processes them in parallel (e.g., in multiple Python processes). A scheduler deals
with the more technical aspects of parallelization, but does not need to know about
nodes and flows, as it uses a different level of abstraction.

• The second part consists of parallel versions of the familiar MDP nodes and flows.
In principle all MDP nodes support parallel execution, since copies of a node can
be made and used in parallel. Parallelization of the training on the other hand
depends on the specific algorithm. If a node class supports parallel training (like
SFANode and PCANode) it is supposed to provide a fork and a join method. The
fork method is used to create multiple instances (“copies”) of the node for parallel
training. When the training of these instances is done they are combined using
the join method (e.g., for the SFANode this means that the covariance matrices
are combined and the generalized eigenvector problem is solved). The forking
and joining methods are provided via the extension mechanism of MDP, which is
presented in Section 10.3 (how one can parallelize custom nodes will be also shown
there).
For convenient parallel execution or training of a flow the ParallelFlow class
should be used instead of the normal Flow. This class takes complete care of
managing the nodes, providing tasks to the scheduler, and combining the results.

In the following example a simple flow consisting of PCA and quadratic SFA is paral-
lelized, so that multiple CPU cores are used:

node1 = mdp.nodes.PCANode(output_dim=10)
node2 = mdp.nodes.SFA2Node()
parallel_flow = mdp.parallel.ParallelFlow([node1, node2])
scheduler = mdp.parallel.ProcessScheduler()
parallel_flow.train(data_sources, scheduler=scheduler)
scheduler.shutdown()

Only two small changes are needed to parallelize the training of the flow: ParallelFlow
is used instead of the normal Flow and a scheduler must be provided. The
ProcessScheduler automatically creates as many Python processes as there are CPU

116



10.2 Parallelization

cores. The parallel flow creates a training task for each data chunk and hands it over to
the scheduler, which distributes them across the available worker processes. The results
are then returned to the flow and combined. The shutdown method is called at the
end to make sure that the resources used by the scheduler are released properly. It is
advisable to use a try/finally block to make sure that shutdown is called even if an error
occured:

scheduler = mdp.parallel.ProcessScheduler()
try:

parallel_flow.train(data_sources, scheduler=scheduler)
finally:

scheduler.shutdown()

The Scheduler class also supports the modern Python context manager interface. This
enables the use of the with statement:

with mdp.parallel.ProcessScheduler() as scheduler:
parallel_flow.train(data_sources, scheduler=scheduler)

10.2.2 Schedulers
The scheduler classes in MDP are derived from the Scheduler base class, which pro-
vides a simple unified interface for all kinds of different schedulers. This enables the
ParallelFlow class to work with any scheduler, as long as it implements this inter-
face. At the same time this makes it easy to write adapters for the numerous scheduler
solutions that are readily available outside of MDP.
The standard scheduler in MDP is the ProcessScheduler, which distributes the in-

coming tasks over multiple Python processes. The use of processes instead of threads
is often necessary due to a current limitation of the standard Python virtual machine
(VM): it is not thread-safe and therefore a lock is used to prevent threads from run-
ning concurrently (the global interpreter lock or GIL). However, libraries like NumPy
can release the GIL when running numerical code outside of the Python VM. Therefore
it is possible to get a speedup even when using Python threads. MDP provides the
ThreadScheduler class to take advantage of this, but the ProcessScheduler is still
faster most of the time.
The real-world performance gain is highly dependent on the specific situation. Fortu-

nately the structure of the hierarchical model of Section 3.2 is idealy suited for this, since
the quadratic expansion of the data takes place in the worker processes. This means
that the data transmission is relatively small compared to the data that arises in the
training. For these types of networks the parallelization therefore scales very well with
the number of CPU cores (in a real world test the speed-up factor was 4.2 on an Intel
Core i7 920 processor with 4 physical / 8 logical cores using 8 processes).
In addition to the process based scheduler MDP has experimental support for the Par-

allel Python library1. This makes it possible to parallelize across multiple machines. A
1http://www.parallelpython.com

117

http://www.parallelpython.com


10 Hierarchical SFA with MDP

similar scheduler was written by Mathias Franzius, using SSH to turn remote computers
into workers. With a few changes it was possible to make this scheduler compatible with
the MDP scheduler interface (but it has not been integrated into MDP so far, since it
is rather specialized). Originally this was very useful, since at that time the computers
were much slower and typically had only a single core. Nowadays CPUs are sufficiently
fast to train networks like those in [Franzius et al., 2011] in a couple of hours with the
ProcessScheduler.

10.3 Node Extensions
The node extension mechanism addresses a problem that is quite common in software
design, a problem well illustrated by the situation in the parallel package. In order
to add the parallel training feature, the new fork and join methods must be made
available. The straight forward solution would be to add these methods in the original
class definitions, since they are class-depended and require access to the internal data
(e.g., the covariance matrices). But parallelization is not the only node feature that
might be added over time. For example the HTML-based visualization in hinet (see
Section 10.1.4) is supposed create customized HTML code for different nodes. Again
this is something that can be naturally solved by adding a new method to the node
classes. Whenever a new feature is added this would require that the original code is
modified, across many different modules. As more features are added the classes would
grow larger, and the dependencies would pile up. This solution does not scale well
and violates standard software design principles (e.g., the open-closed and the single-
responsibility principles [Freeman et al., 2004]).
An alternative approach would be to add the new features through inheritance, de-

riving new node classes that implement the feature for the parent node class. This
requires that the right class is picked when the node is instantiated, depending on the
required feature. For example to use parallelization with the SFANode, instances of the
ParallelSFANode class would have to be used. This quickly leads to problems when
the use of multiple new features is required. Classes would have to be created for ev-
ery combination of features that might be used (e.g., a Parallel_HTML_SFANode class).
Therefore this approach scales poorly with the number of different features. All these
issues motivated the node extension mechanism in MDP.

10.3.1 Node Extension Mechanism
The node extension mechanism makes it possible to add methods (or class attributes
in general) to specific node classes during runtime, thereby adding new features. This
enables the activation of extensions exactly when they are needed, reducing the risk of
interference between different extensions. It is also possible to use multiple extensions at
the same time, as long as there are no name collisions. Users are enabled to implement
custom extensions, adding new functionality for MDP nodes without modifying any
MDP code.

118



10.3 Node Extensions

The node extension mechanism enables a mild form of Aspect-Oriented Programming
(AOP) [Kickzales et al., 1997], in order to deal with the so-called cross-cutting concerns.
In the AOP terminology the new features are aspects. The problem is that even though
these aspects are typically very focused they do affect many node classes, spread all over
the MDP code base. The term “cross-cutting” means that they alter a large amount of
otherwise separated code (orthogonal to the organization of that code). Following the
AOP terminology, the methods that are added contain advice. These ideas are not new
in the Python world, and solutions that are similar to the MDP extension mechanism
have been implemented before2.

10.3.2 Extension Usage
Extensions in MDP are activated via the activate_extension function. For example
activating the parallel extension is as simple as:

mdp.activate_extension("parallel")
# now the added attributes / methods are available
mdp.deactivate_extension("parallel")
# the additional attributes are no longer available

Activating an extension adds the available extension attributes to the supported nodes.
Actually the explicit activation of the parallel extension is typically not needed, since
this is handled by the ParallelFlow class. MDP also provides an extension context
manager for the Python with statement:

with mdp.extension("parallel"):
pass

This ensures that the activated extension is deactivated after the code block, even if
there is an error. Finally there is also a function decorator to activate an extension for
the time that the function is executed:

@mdp.with_extension("parallel")
def f():

pass

Both the context manager and function decorator only deactivate those extensions that
were not active when the context was entered, to prevent unintended side effects.
In addition to the mentioned parallel and HTML extensions there are a couple of other

extensions available. The most recent additions in MDP are the gradient extension
(to calculate the combined gradient for a flow) and the cache_execute memoization
extension (to cache the node results for greater efficiency). Furthermore some highly
specialized extensions have been written by other users and myself, but are not of general
interest.

2See for example http://www.cs.tut.fi/~ask/aspects or http://www.aspyct.org.

119

http://www.cs.tut.fi/~ask/aspects
http://www.aspyct.org


10 Hierarchical SFA with MDP

10.3.3 Extending Nodes
Adding extension methods for a node class can be done in two ways: via multiple
inheritance or via a function decorator. For the first approach one has to derive from
both the extension base class and from the node class. For example the parallel extension
of the SFA node is defined via the following class:

class ParallelSFANode(ParallelExtensionNode, mdp.nodes.SFANode):
def _fork(self):

# implement the forking for SFANode
pass

def _join(self):
# implement the joining for SFANode
pass

ParallelExtensionNode is the base class of the extension (every extension has one).
The required methods or class attributes are defined like in a normal class. In principle
one could even use the ParallelSFANode class like a normal class, but with the extension
mechanism the ParallelSFANode class never has to be instantiated. Instead the methods
defined here are automatically registered with the SFANode and the parallel extension
(this is implemented with some metaclass magic).
Alternatively one can use the extension_method function decorator to create exten-

sion methods. The extension method can be defined like a normal function, with the
function decorator added on top. This has the same effect as defining the method in
an extension class, but this approach is more convenient when only a single extension
method is defined. To create the _fork method for the PCANode one could write:

@mdp.extension_method("parallel", mdp.nodes.SFANode)
def _fork(self):

pass

The first decorator argument is the name of the extension, the second is the class to
which it belongs.

10.3.4 Creating Extensions
To create a new node extension one simply has to define a new extension base class. For
the parallel extension this starts like:

class ParallelExtensionNode(mdp.ExtensionNode, mdp.Node):
extension_name = "parallel"
def _fork(self):

raise NotImplementedError()

When defining a new extension one always has to define the extension_name attribute.
This name can then be used to activate or deactivate the extension. When inheriting
from ExtensionNode, a special metaclass is used for the class creation, which stores

120



10.3 Node Extensions

all the defined class attributes in a centralized extension dictionary, indexed by the
extension name and the node class name. The mdp.extension_method decorator works
in a similar way, storing a defined function in the same central extension dictionary.
Whenever an extension is activated, the extension dictionary is accessed to add the
stored extension attributes to the respective node classes at runtime.
Extensions can also override methods and attributes that are defined in a node

class. The original attributes can still be accessed by prefixing the name with
"_non_extension_". On the other hand one extension is not allowed to override at-
tributes that were defined by another active extension.

121





11 Bidirectional data flow with BiMDP

The MDP library as described so far executes algorithms in a strictly feed-forward
manner. Data passes through the nodes in the order specified at the flow construction
time. This has some limitations: for example, there is no built-in support for error back-
propagation [Bryson and Ho, 1969; Rumelhart et al., 1986], which is needed for neural
networks and other deep learning architectures [Bengio, 2009]. Input and output data
in MDP is also restricted to 2D arrays, which can be inconvenient for some applications.
BiMDP is a major extension of the MDP framework that addresses these limitations
and has been included in MDP with version 2.6.
The bimdp package extends the feed-forward flow processing of MDP with the ability

to transfer diverse data and execute nodes in arbitrary order. This makes it possible to
use the MDP framework for a larger class of algorithms, like gradient descent algorithms
or deep belief networks [Hinton et al., 2006] (see Section 8.3.3). The prefix “bi” stands
for bidirectional, i.e., enabling data to travel both up and down a flow. It provides
alternative, extended versions of the Node and Flow classes and of subpackages like
hinet.
The development of BiMDP was motivated by the models and simulations described

in Part II of this thesis. One primary design goal was to be as compatible with the
standard MDP library as possible, including subpackages like hinet and parallel.
This implied some restrictions, but also allowed us to retain the proven modular design
of MDP. It would have been risky to change the core of MDP itself, since its stability and
simplicity are important for a large number of users. With BiMDP we can provide users
with a clear path when they require features beyond the scope of classical nodes and
flows. Several example applications for BiMDP are provided on the MDP homepage,
including gradient descent, a deep belief network, and error backpropagation in a multi
layer perceptron.

11.1 Introduction
BiMDP is imported separately from MDP, with:

import bimdp

I now provide a brief summary of the most important features in BiMDP, some of which
are also illustrated in Figure 11.1:

• Nodes can specify other nodes as jump targets, where the execution will be con-
tinued (similar to a goto statement). This is enabled by the new BiFlow class.
Thereby it is possible to implement loops or backpropagation, in contrast to the

123



11 Bidirectional data flow with BiMDP

node

node

x

node

node

x msg

node

node

node
"node_3"

"node_3"
target:

Figure 11.1: Illustration of key BiMDP features. The first diagram shows the stan-
dard MDP flow pattern, where only the data array x is propagated between
nodes. In the second diagram the msg dictionary is transported alongside
x, containing arbitrary data. Finally the target value "node_3" is given
as well, causing a direct jump to the third node, based on its matching
node_id.

strictly linear execution of a normal MDP flow. The new BiNode base class adds
a node_id string attribute, which can be used as a label to target a node. The
complexities of the data flow are evenly split up between BiNode and BiFlow:
Nodes specify their data and target (using a standardized interface), which are
then interpreted by the flow (like a primitive domain specific language).

• In addition to the standard array data, nodes can transport arbitrary data in a mes-
sage dictionary (these are just standard Python dictionaries, i.e., dict instances).
The new BiNode base class provides functionality to make this as convenient as
possible, automatically extracting the data for each node.

• An interactive HTML-based inspection tool for flow training and execution is pro-
vided. This allows users to step through the flow node by node for graphical
debugging or analysis purposes. Custom visualizations can be integrated as well
(e.g. in the form of data plots for intermediate data).

• BiMDP supports and extends the hinet and the parallel packages from MDP.
BiMDP in general is compatible with MDP, so one can insert standard MDP nodes
in a BiFlow. It is also possible to use BiNode instances in a standard MDP flow,
as long as they don not rely on BiMDP features.

The structure of BiMDP closely follows that of MDP, so there are submodules
bimdp.nodes, bimdp.parallel, and bimdp.hinet. The module bimdp.nodes also con-
tains BiNode versions of nearly all MDP nodes (which are automatically generated).
For example there is a bimdp.nodes.PCABiNode class, which is derived from both
bimdp.BiNode and mdp.nodes.PCANode.

124



11.2 Targets, id’s and Messages

11.2 Targets, id’s and Messages
In a standard MDP node the return value of the execute method is restricted to a
single two dimensional array. A BiNode on the other hand can optionally return a tuple
containing an additional message dictionary and a target value. So in general the return
value is a tuple (x, msg, target), where x is the usual 2D data array. For convenience
a BiNode is also allowed to return only the array x or a 2-tuple (x, msg). This also
implies that the return value of a standard MDP Node is compatible, allowing MDP
nodes to be mixed with BiNode instances.
The message msg is a normal Python dictionary, containing any data that does not fit

into the x data array. Nodes can take data from the message and add data to it. The
message is propagated along with the x data. If a normal MDP node is contained in
a BiFlow then the message is simply passed “around it”. A BiNode on the other hand
can freely decide how to interact with the message, and this is described in detail in
Section 11.4.
The target value is either a string or a number. A number value gives the relative

position of the target node in the flow, so a target value of 1 corresponds to the following
node, while -1 is the previous node. The BiNode base class also allows the specification
of a node_id string argument in the initialization. This string can then be used by other
nodes as a target value.
The node_id string is also useful to access nodes in a BiFlow instance. The stan-

dard MDP Flow class already implements the Python container interface. For example
flow[2] returns the third node in the flow. BiFlow now also enables the use of the
node_id to index nodes, just like for a dictionary. For example:

pca_node = bimdp.nodes.PCABiNode(node_id="pca")
biflow = bimdp.BiFlow([pca_node])
biflow["pca"] # returns the pca_node

11.3 BiFlow
The BiFlow class mostly behaves in the same way as the normal Flow class. Most of the
new features were already mentioned, like support for targets, messages, and the retrieval
of nodes based on their node_id. Apart from that the only major difference is the way
in which one can provide additional arguments for nodes. For example the FDANode (for
Fisher Discriminant Analysis) in MDP requires class labels in addition to the data array
for supervised training, telling the node to which class each data point belongs. In the
standard Flow class this additional training data is provided by the same iterable as the
data (see Section 9.3.3). In a BiFlow this functionality is instead provided by the more
general message mechanism. A new msg_iterables argument has been added in the
train method to provide the message dictionary. This is demonstrated in the following
example:

125



11 Bidirectional data flow with BiMDP

samples = np.random.random((100,10))
labels = np.arange(100)
flow = bimdp.BiFlow([mdp.nodes.PCANode(),

bimdp.nodes.FDABiNode()])
flow.train([[samples], [samples]],

msg_iterables=[None, [{"cl": labels}]])

The message dictionary {"cl": labels} provides the class labels for the FDABiNode. In
a normal Flow such additional arguments can only be given to the node that is currently
in training. This limitation does not apply in a BiFlow, where the message can be
accessed by all nodes (more on this in Section 11.4.1). Message iterators can be used
during execution as well, via the msg_iterable argument in BiFlow.execute. At the
end of the execution the resulting message is returned by BiFlow.execute. Therefore
the return value has the form (y, msg):

biflow = (bimdp.nodes.PCABiNode(output_dim=10) +
bimdp.nodes.SFABiNode())

x = np.random.random((100,20))
biflow.train(x)
# include a message that is not used
y, msg = biflow.execute(x, msg_iterable={"test": 1})
# the returned msg has the value {"test": 1}

In this example only a single data chunk was used for simplicity. When iterables are
provided for the execution then the BiFlow not only concatenates the y result arrays,
but also tries to join the msg dictionaries into a single one. Arrays in the msg are
concatenated and for all other types the plus operator is used.
The train method of BiFlow also has an additional argument called stop_messages,

which can be used to provide messages for stop_training (see Section 11.4.1). The
execute method on the other hand has the optional argument target_iterable, which
can be used to specify the initial target at which the flow is entered.

11.4 BiNode
The BiNode class is an extension of the Node class and API that was described in
Section 9.3. We start by describing the possible return values for the different BiNode
methods:

• execute method:
Return value can be of the form x or (x, msg) or (x, msg, target). The exe-
cution of the flow continues, jumping to the target if that is specified.

• train method:
– None terminates the training.

126



11.4 BiNode

– x or (x, msg) or (x, msg, target) means that the execution is continued
and that this node will be reached again later to terminate the training.

• stop_training method:
– None means that no further action is required (just like a normal MDP

stop_training).
– x or (x, msg) or (x, msg, target) starts an execution phase, which ter-

minates when the end of the flow is reached or when the target value is the
EXIT_TARGET constant (which will be explained later).

Naturally these methods also accept incoming messages: compared to Node methods
they all have an additional msg argument. The target value on the other hand is only
intended to be used by the encapsulating BiFlow.
As mentioned in the train description, training does not have to stop when the

training node is reached. Instead it is possible to continue with the execution to return
to the node later on (which is for example used for backpropagation). Similarly there
are the stop_training result options that start an execution phase to propagate results
from the completed node training or to prepare nodes for their upcoming training phase.
All these options taken together might seem confusing, but it is perfectly fine to ignore

most of them for any given task. For example messages can be used productively without
ever specifying target values. Finally there are two more additions in the BiNode API:

• node_id property:
This is a read-only property, which returns the node id value (which by default is
None). The __init__ method of a BiNode accepts a node_id argument to set this
value.

• bi_reset method:
This method is called by the containing BiFlow before and after training or execu-
tion, in order to reset possible internal state variables (this is relevant for stateful
nodes as described in Section 11.4.2).

11.4.1 Extending BiNode and Message Handling
Developers are welcome to derive custom nodes from the BiNode base class. As for the
MDP Node class they should not overwrite the public execute or train methods, but
instead the private versions with an underscore in front. In addition to the dimensionality
checks performed on x by the Node class this also provides developers with convenient
message handling features.
The automatic message handling is a central feature of BiNode and relies on the

dynamic nature of Python. In the FDABiNode example of Section 11.3 it is implicitly
demonstrated how a value of a message is automatically passed to the _train method.
This works because the key for the message value ("cl" for the class labels) is also the
name of the _train keyword argument for the class label information. We now describe
the mechanism behind this.

127



11 Bidirectional data flow with BiMDP

The public execute and train methods in BiNode not only accept a data array x
but also a message dictionary msg. When given a message they perform introspection
to determine the arguments of the corresponding private method like _train. If there
is a matching key in the message for an argument like "cl" then the value from the msg
dictionary is provided for this argument. Therefore the fact that FDABiNode._train
has the signature (x, cl) is sufficient to automatically extract the "cl" value from the
message. The message itself remains unchanged because the "cl" key stays in msg.
Private methods like _execute or _train have the same return options as their public

BiNode methods, so, for example, one can return a tuple (x, msg). The msg in the return
value from _execute is then used by execute to update the original msg. With this
mechanism _execute can overwrite or add new values to the message.
There are also several additional features to make the message handling more powerful

and convenient. For example, a message key "method" can be used to direct execute to
call a method with the specified name instead of the standard _execute. This is used
by the gradient extension (which was briefly mentioned in Section 10.3) to divert node
execution to a special _gradient method. All these special message features are covered
in the MDP online documentation.

11.4.2 Coroutines for Stateful Nodes
Sometimes it is required to visit a node multiple times during a single flow execution (so
this should not be confused with multiple training phases), requiring a node that keeps
track of the current “position” in the algorithm. For example a deep belief network
typically requires multiple up and down passes. The standard solution for this is to
implement a state machine in the node, which is repetitive and obfuscates the actual
algorithm. Fortunately Python does support continuations via so called coroutines. A
coroutine is basically a function that can be entered and exited multiple times, continuing
execution at the previous position in the code. Coroutines are most popular in the
context of concurrency, but they are generally useful as a light-weight replacement for
state-machines.
Using a coroutine in a BiNode method to maintain a state would still require tedious

boilerplate code. Therefore BiMDP provides a function decorator to perform the re-
quired steps automatically, making coroutines highly convenient in this situation. This
has been used for the implementation of the top-down optimization in Chapter 8. The
coroutine decorator can also be found in both the gradient descent and the deep belief
network example on the MDP homepage.

11.5 Inspection
Using jumps and messages can result in complex data flows. BiMDP includes a graphical
inspection tool to help with debugging and analyzing such a flow. This tool is based on
the static HTML view from the mdp.hinet module, described in Section 10.3. Instead
of a static view of the flow it creates an animated slideshow of the flow training or
execution. The execution inspection can be performed with

128



11.6 Hierarchical Networks and Parallelization

bimdp.show_execution(flow, x, ...)

instead of the normal flow.execute(x, ...). This also opens the inspection automat-
ically in the webbrowser. The same functionality is available for training:

bimdp.show_training(flow, data_iterables, ...)

This performs the training of the flow and creates a single inspection page for all training
phases. Figure 11.2 shows an example of such an inspection.
The BiMDP inspection is also useful to visualize the data processing that is happening

inside a flow. This is especially handy for building or understanding new algorithms.
Therefore it was one objective to allow easy customization of the HTML views in the
inspection. One simple example is provided on the MDP homepage, where a plot of
the node result is added to the HTML data presentation. In addition one can bypass
the bimdp.show_training and bimdp.show_execution helper functions if even more
flexibility is required.
Technically the inspection only consists of static HTML files that are animated with

JavaScript. Therefore an inspection can be viewed at any time by opening the main
HTML file in a browser. One advantage of this is that inspections can be stored and
integrated into the simulation management workflow. This way they can document how
the scientific results were achieved and ensure reproducibility. The inspection tool was
also critical for debugging the complex top-down flow patterns from Chapter 8.

11.6 Hierarchical Networks and Parallelization
BiMDP is mostly compatible with the hierarchical networks in mdp.hinet (see Sec-
tion 10.1). For the full BiMDP functionality in such a network it is required to use
the BiMDP version bimdp.hinet. This module contains a BiFlowNode that offers the
same functionality as the FlowNode, but with the added capability of handling messages,
targets, and other BiMDP concepts. Similarly there is a new BiSwitchboard base class
and a BiMDP compatible layer class. All the required building blocks for hierarchical
networks are therefore present.
The mdp.parallel module has been adapted for BiMDP as well, in the form of the

bimdp.parallel module. It contains a ParallelBiFlow class which can be used like
the normal ParallelFlow. No changes to schedulers are required, so all the scheduler
classes in mdp.parallel can be used.

129



11 Bidirectional data flow with BiMDP

Figure 11.2: Example view for BiMDP training inspection. This figure shows the
browser window with the inspection. On top are controls for the user to
select a training phase. Below that are controls to step through the flow
training, node by node. The lower part of the view contains the visualisation
of the current flow state, consisting of a graphical view on the left and a
display of the current node input and output values on the right. The
current node in the flow is highlighted in green, while the node currently in
training is colored yellow. Clicking on a node makes the inspection jump
forward to the step in which that node is reached.

130



12 Conclusion

The slowness principle is an elegant model for unsupervised learning in the brain. Its
realization in the form of Slow Feature Analysis (SFA) provides an analytical framework
and an efficient numerical implementation for computer simulations. The simplicity of
SFA is comparable to the established method of Principal Component Analysis (PCA)
and could therefore become a standard method for data processing (when data has an
appropriate time structure). For biologically inspired models it is especially valuable
that, unlike PCA, SFA works very well in a hierarchical network structure. Since SFA
is still a relatively young method its capabilities are not as well explored as those of
older methods like, for example, Independent Component Analysis (ICA). For slowness
learning in general this is also true to some extend, even though the slowness principle has
been used before the discovery of SFA. This thesis had the goal of thoroughly evaluating
the performance of hierarchical SFA for the biologically relevant task of invariant object
recognition. Furthermore we have tried to explore how this model can be extended for
top-down processes, which would be an important next step.
In the first part of this thesis we have shown that hierarchical SFA indeed provides

a powerful model for invariant object recognition. We hope that this can help to close
the performance gap between biologically inspired models and purely artificial methods
from computer science. Chapter 3 was primarily aimed at measuring different aspects
of the performance of our model, using supervised post-processing. Chapter 5 on the
other hand demonstrated that this performance is also achievable in combination with
methods that are closer to the neural substrate of the brain, like in this case reinforcement
learning.
The extension of our model with top-down processes in Part II lead to mixed results.

Capturing the input distributions in Chapter 7 worked reasonably well, based on the
standard method of vector quantization with competitive learning. The top-down re-
construction of input stimuli in Chapter 8 did work to some extend, but only thanks
to the centroid information from the previous chapter. Applying gradient descent on
the other hand turned out to be an almost complete failure, which is a problem for the
scalability and further development of top-down processes in this model. This suggests
that more sophisticated methods might be needed, probably in combination with fun-
damental changes in the model (e.g., a probabilistic formulation of SFA or a different
kind of nonlinear expansion).
The importance of computational methods in neuroscience has been growing steadily.

This is partly a result of the ever increasing availability of cheap computational resources,
which enables work like that presented in this thesis. The increasing complexity of com-
putational methods also implies that good software engineering is becoming increasingly
relevant. This is also connected to the issue of reproducibility of scientific results. Inte-

131



12 Conclusion

grating the central parts of our model into the MDP open source library enables others to
easily verify and adapt the presented methods. Cooperation in the scientific computing
ecosystem and the reuse of software ideally makes it easier for researchers to concentrate
on the innovative aspects of their work.

132



Acknowledgements

First of all, I would like to thank Laurenz Wiskott for his continued and extensive
support. I very much enjoyed the constructive scientific discussions with him, and his
feedback was always very valuable for me. His scientific thoroughness has left a positive
mark on me.
I am indebted to Mathias Franzius and Robert Legenstein. Not only did I enjoy our

collaboration, I also learned from both of them. This is actually true for all the mem-
bers of the group, especially Henning Sprekeler, Susanne Lezius, Sven Dähne, Christian
Hinze, and Minh Ha Quang. I would also like to thank the group of Stephan Brandt,
especially Sein Schmidt, for interesting insights into the experimental and medical as-
pects of neuroscience. One highlight for me was the cooperation with the other MDP
developers. I am especially thankful to the founders of MDP, Tiziani Zito and Pietro
Berkes.
Finally, I would like to thank everyone at the ITB and the BCCN for creating such a

friendly and productive atmosphere. Of course, this would not be possible without the
support from the administrative staff, especially Margreth Franke, Elvira Lauterbach,
Karin Winklhöfer, and Andreas Hantschmann.

133





Bibliography

A. C. Antoulas and D. C. Sorensen. Approximation of large-scale dynamical systems:
An overview. Int J Appl Math Comp, 11(5):1093–1121, 2001.

M. S. Bartlett and T. J. Sejnowski. Learning viewpoint-invariant face representations
from visual experience in an attractor network. Network: Computation in neural
systems, 9(3):399–417, 1998.

S. Becker. Implicit learning in 3d object recognition: The importance of temporal
context. Neural Comput, 11(2):347–374, 1999.

S. Becker and G. E. Hinton. Self-organizing neural network that discovers surfaces in
random-dot stereograms. Nature, 355(6356):161–163, 1992.

Y. Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009. ISBN
1601982941.

J. Bergstra, F. Bastien, J. Turian, R. Pascanu, O. Delalleau, O. Breuleux, P. Lamblin,
G. Desjardins, D. Erhan, and Y. Bengio. Deep Learning on GPUs with Theano, 2010.

P. Berkes. Handwritten digit recognition with nonlinear fisher discriminant analysis.
Proceedings of ICANN 2005, 2(LNCS 3696):285–287, 2005.

P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell
properties. J Vision, 5(6):579–602, 2005.

P. Berkes and L. Wiskott. On the analysis and interpretation of inhomogeneous quadratic
forms as receptive fields. Neural computation, 18(8):1868–1895, 2006. ISSN 0899-7667.

G. S. Berns and T. J. Sejnowski. A computational model of how the basal ganglia
produces sequences. J Cognitive Neurosci, 10:108–121, 1998.

D. P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

A. E. Bryson and Yu-Chi Ho. Applied optimal control: optimization, estimation, and
control. Blaisdell Publishing Company, 1969.

J. Bullier. What is fed back? In J. L. van Hemmen and T. J. Sejnowski, editors, 23
Problems in Systems Neuroscience. Oxford University Press, New York, 2006. ISBN
978-0-19-514822-0.

135



Bibliography

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

D. B. Chklovskii and A. A. Koulakov. A wire length minimization approach to ocular
dominance patterns in mammalian visual cortex. Physica A, 284(1–4):318–334, 2000.

D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. High-
Performance Neural Networks for Visual Object Classification. Arxiv preprint
arXiv:1102.0183, 2011.

J. Demšar, B. Zupan, G. Leban, and T. Curk. Orange: From experimental machine
learning to interactive data mining. Knowledge Discovery in Databases: PKDD 2004,
pages 537–539, 2004.

J. J. DiCarlo and D. Cox. Untangling invariant object recognition. Trends in Cognitive
Science, 11:333–341, 2007.

S. Dura-Bernal, T. Wennekers, and S.L. Denham. The role of feedback in a hierarchical
model of object perception. BICS 2010 - Brain Inspired Cognitive Systems, 2010.

W. Einhäuser, J. Hipp, J. Eggert, E. Körner, and P. König. Learning viewpoint invariant
object representations using a temporal coherence principle. Biol Cybern, 93:79–90,
2005.

A. K. Engel, P. Fries, and W. Singer. Dynamic predictions: oscillations and synchrony
in top–down processing. Nature Reviews Neuroscience, 2(10):704–716, 2001.

D. Erhan, A. Courville, and Y. Bengio. Understanding Representations Learned in
Deep Architectures. Technical Report, 2010. URL http://www.dumitru.ca/files/
publications/invariances_techreport.pdf.

R. Fletcher. Practical Methods of Optimization, vol. 1 and 2, 1980.

P. Földiák. Learning invariance from transformation sequences. Neural Comput, 3(2):
194–200, 1991.

D. J. Foster, R. G. M. Morris, and P. Dayan. Models of hippocampally dependent
navigation, using the temporal difference learning rule. Hippocampus, 10:1–16, 2000.

I. Foster. Designing and building parallel programs. Addison-Wesley, 1995.

M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place, head-
direction and spatial-view cells. Public Library of Science (PLoS) Computational
Biology, 3(8):e166, 2007.

M. Franzius, N. Wilbert, and L. Wiskott. Invariant object recognition with slow feature
analysis. In Vera Kurková, Roman Neruda, and Jan Koutník, editors, Proc. 18th
Intl. Conf. on Artificial Neural Networks, ICANN’08, Prague, volume 5163 of Lecture
Notes in Computer Science, pages 961–970. Springer, September 2008. ISBN 978-3-
540-87535-2.

136

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.dumitru.ca/files/publications/invariances_techreport.pdf
http://www.dumitru.ca/files/publications/invariances_techreport.pdf


Bibliography

M. Franzius, N. Wilbert, and L. Wiskott. Invariant object recognition and pose estima-
tion with slow feature analysis. Neural Comput, 2011. accepted for publication.

E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head first design patterns. O’Reilly
& Associates, Inc., 2004.

Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learning the structure of manifolds
using random projections. Advances in Neural Information Processing Systems, 20,
2007.

B. Fritzke. A growing neural gas network learns topologies. In Advances in Neural
Information Processing Systems 7, pages 625–632. MIT Press, 1995.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biol Cybern, 36(4):193–202,
1980.

K. Fukushima. Restoring partly occluded patterns: a neural network model. Neural
Networks, 18(1):33–43, 2005.

S. Garcia and N. Fourcaud-Trocmé. OpenElectrophy: an electrophysiological data-and
analysis-sharing framework. Frontiers in Neuroinformatics, 3, 2009.

D. George and J. Hawkins. Towards a mathematical theory of cortical micro-circuits.
PLoS Comput Biol, 5(10):e1000532, 10 2009.

A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A
novel connectionist system for unconstrained handwriting recognition. IEEE transac-
tions on pattern analysis and machine intelligence, pages 855–868, 2008.

R. Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman, Y. Itzchak, and R. Malach. A
sequence of object-processing stages revealed by fMRI in human occipital lobe. Human
Brain Mapping, 6:316–328, 1998.

C. G. Gross. Genealogy of the “grandmother cell”. Neuroscientist, 8(5):512–518, 2002.

S. Grossberg. Adaptive pattern classification and universal recoding: I. Parallel devel-
opment and coding of neural feature detectors. Biological cybernetics, 23(3):121–134,
1976.

M. Hanke, Y. O. Halchenko, P. B. Sederberg, E. Olivetti, I. Fründ, J. W. Rieger, C. S.
Herrmann, J. V. Haxby, S. J. Hanson, and S. Pollmann. PyMVPA: a unifying approach
to the analysis of neuroscientific data. Frontiers in neuroinformatics, 3, 2009.

W. Hashimoto. Quadratic forms in natural images. Network-Comp Neural, 14(4):765–
788, 2003.

137



Bibliography

G. E. Hinton. Connectionist learning procedures. Artif Intell, 40(1-3):185–234, 1989.

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

C. Hinze, N. Wilbert, and L. Wiskott. Visualization of higher-level receptive fields in a
hierarchical model of the visual system. BMC Neuroscience, 10(Suppl 1):P158, 2009.
URL http://www.biomedcentral.com/1471-2202/10/S1/P158.

J. Hipp, W. Einhäuser, J. Conradt, and P. König. Learning of somatosensory representa-
tions for texture discrimination using a temporal coherence principle. Network-Comp
Neural, 16(2/3):223–238, 2005.

J. C. Houk, J. L. Adams, and A. G. Barto. A model of how the basal ganglia generate
and use neural signals that predict reinforcement. In Models of information processing
in the basal ganglia, pages 249–270. MIT Press, Cambridge, MA, 1995.

M. D. Humphries, K. Gurney, and T. J. Prescott. Is there a brainstem substrate for ac-
tion selection? Philosophical Transactions of the Royal Society B: Biological Sciences,
362(1485):1627, 2007.

C. P. Hung, G. Kreiman, T. Poggio, and J. J. DiCarlo. Fast readout of object identity
from macaque inferior temporal cortex. Science, 310(5749):863–866, 2005.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engi-
neering, pages 90–95, 2007.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component anal-
ysis. IEEE Transactions on Neural Networks, 10:626–634, 1999.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/.

G. Kanizsa. Quasi-perceptual margins in homogeneously stimulated fields. The Percep-
tion of Illusory Contours, Petry S. & Meyer, GE (eds) Springer Verlag, New York,
pages 40–49, 1987.

C. Kayser, W. Einhäuser, O. Dümmer, P. König, and K. Körding. Extracting slow
subspaces from natural videos leads to complex cells. Artificial Neural Networks -
ICANN 2001 Proceedings, pages 1075–1080, 2001.

H. Kennedy, P. Barone, and A. Falchier. Relative contributions of feedforward and
feedback inputs to individual areas. Eur J Neurosc, 12(Suppl 11):489, 2000.

D. Kersten, P. Mamassian, and A. Yuille. Object perception as Bayesian inference.
Psychology, 55(1):271, 2004.

G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. Proceedings of ECOOP, IEEE, Finland,
pages 220–242, 1997.

138

http://www.biomedcentral.com/1471-2202/10/S1/P158
http://www.scipy.org/


Bibliography

A. Klöckner, N. Pinto, Yunsup Lee, B. C. Catanzaro, P. Ivanov, and A. Fasih. Pycuda:
Gpu run-time code generation for high-performance computing. CoRR, abs/0911.3456,
2009.

T. Kohonen. Self-organization and associative memories. Springer Verlag, 1984.

T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. JOSA
A, 20(7):1434–1448, 2003.

R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement Learning on Slow Features
of High-Dimensional Input Streams. PLoS Comput Biol, 6(8):e1000894, 2010.

R. A. Legenstein and W. Maass. Wire length as a circuit complexity measure. J Comput
Syst Sci, 70:53–72, 2005.

S. Lehky, X. Peng, C. McAdams, and A. Sereno. Spatial modulation of primate infer-
otemporal responses by eye position. PLoS ONE, 3(10):e3492, 10 2008.

N. Li and J. J. DiCarlo. Unsupervised natural experience rapidly alters invariant object
representation in visual cortex. Science, 321:1502–1507, 2008.

N. Li and J. J. DiCarlo. Unsupervised natural visual experience rapidly reshapes size-
invariant object representation in inferior temporal cortex. Neuron, 67(6):1062–1075,
2010.

Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE
Transactions on communications, 28(1):84–95, 1980.

S. P. Lloyd. Last square quantization in PCMs. Technical Note (1957), Bell Laboratories.
IEEE Trans. Inform. Theory, 28:129–137, 1982.

A. Losonczy, J. K. Makara, and J. C. Magee. Compartmentalized dendritic plasticity
and input feature storage in neurons. Nature, 452(7186):436–441, 2008.

B. W. Mel. SEEMORE: Combining color, shape and texture histogramming in a
neurally-inspired approach to visual object recognition. Neural Comput, 9(4):777–
804, 1997.

R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with
factored higher-order boltzmann machines. Neural Comput, 22(6):1473–1492, 2010.

G. Mitchison. Removing time variation with the anti-Hebbian differential synapse. Neu-
ral Comput, 3:312–320, 1991.

Y. Miyashita. Neuronal correlate of visual associative long-term memory in the primate
temporal cortex. Nature, 335(6193):817–820, 1988.

P. R. Montague, P. Dayan, and Sejnowski T. J. A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. J Neurosci, 16:1936–1947, 1996.

139



Bibliography

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units.
Neural Comput, 1(2):281–294, 1989.

A. Moore and C. Atkeson. The parti-game algorithm for variable resolution reinforce-
ment learning in multidimensional state-spaces. Mach Learn, 21, 1995.

R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe. Place navigation impaired in
rats with hippocampal lesions. Nature, 297(5868):681–683, 1982.

R. Munos and A. Moore. Variable resolution discretization in optimal control. Mach
Learn, 49(2-3):291–323, 2002.

S. K. Nayar, S. A. Nene, and H. Murase. Real-time 100 object recognition system. In
Proc. of ARPA Image Understanding Workshop, Palm Springs, 1996.

L. G. Nowak and J. Bullier. The timing of information transfer in the visual system.
Cerebral cortex: Extrastriate cortex in primate, 12, 1997.

B. A. Olshausen and D. J. Field. Natural image statistics and efficient coding. Network-
Comp Neural, 7:333–339, 1996.

N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening
approach to discovering good forms of biologically inspired visual representation. PloS
computational biology, 5(11):e1000579, 2009.

P. Poirazi, T. Brannon, and B. W. Mel. Pyramidal neuron as two-layer neural network.
Neuron, 37(6):989–999, March 2003.

W. Potjans, A. Morrison, and M. Diesmann. A spiking neural network model of an
actor-critic learning agent. Neural Comp., 21:1–39, 2009.

R. Rao, G. A. Cecchi, C. C. Peck, and J. R. Kozloski. Unsupervised segmentation with
dynamical units. Neural Networks, IEEE Transactions on, 19(1):168–182, 2008.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nat
Neurosci, 2:1019–1025, 1999.

R. Rojas. Neural networks: a systematic introduction. Springer, 1996. ISBN 3540605053.

E. T. Rolls. Neurophysiological mechanisms underlying face processing within and be-
yond the temporal cortical visual areas. Philosophical Transactions of the Royal So-
ciety, 335:11–21, 1992.

E. T. Rolls and G. Deco. Computational Neuroscience of Vision. Oxford University
Press, New York, 2002.

E. T. Rolls and S. M. Stringer. Invariant visual object recognition: A model, with
lighting invariance. Journal of Physiology - Paris, 100:43–62, 2006.

140



Bibliography

E. T. Rolls, M. J. Tovee, D. G. Purcell, A. L. Stewart, and P. Azzopardi. The responses
of neurons in the temporal cortex of primates, and face identification and detection.
Experimental Brain Research, 101(3):473–484, 1994.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323, 2000.

D. E. Rumelhart and J. L. McClelland. Parallel distributed processing: explorations in
the microstructure of cognition. Volume 1. Foundations. MIT Press, Cambridge, Ma,
1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and
J. Schmidhuber. PyBrain. Journal of Machine Learning Research, 2010.

W. Schultz. Predictive reward signal of dopamine neurons. J. Neurophys., 80:1–27, 1998.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward.
Science, 275:1593–9, 1997.

D. S. Seljebotn. Fast numerical computations with Cython. In Proceedings of the 8th
Python in Science Conference, 2009.

H. D. Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40:1063–1073, 2003.

D. Sheynikhovich, R. Chavarriaga, T. Strösslin, and W. Gerstner. Spatial Representation
and Navigation in a Bio-inspired Robot. In Biomimetic Neural Learning for Intelligent
Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience, pages 245–264,
2005.

W. Singer and C. M. Gray. Visual feature integration and the temporal correlation
hypothesis. Annual review of neuroscience, 18(1):555–586, 1995.

W. Softky. Learning to make specific predictions using slow feature analysis. unpublished
presentation, 2005. unpublished presentation.

V. A. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini. A multiplatform code for
the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part
B: Atomic Spectroscopy, 62(1):63–68, 2007.

S. Sonnenburg, G. Ratsch, and F. De Bona. The SHOGUN Machine Learning Toolbox.
Journal of Machine Learning Research, 11:1799–1802, 2010.

H. Sprekeler and L. Wiskott. A theory of slow feature analysis for transformation-based
input signals with an application to complex cells. Neural Comput, pages 1–33, 2010.

141



Bibliography

H. Sprekeler, C. Michaelis, and L. Wiskott. Slowness: An objective for spike-timing-
plasticity? PLoS Comput Biol, 3(6):e112, 2007.

J. V. Stone and A. Bray. A learning rule for extracting spatio-temporal invariances.
Network-Comp Neural, 6:429–436, 1995.

G. Strang. Linear algebra and its applications. Saunders, Philadelphia, PA, 1988.

S. M. Stringer and E. T. Rolls. Invariant object recognition in the visual system with
novel views of 3D objects. Neural Comput, 14:2585–2596, 2002.

S. M. Stringer, G. Perry, E. T. Rolls, and J. H. Proske. Learning invariant object
recognition in the visul system with continuous transformations. Biological Cbernetics,
94:128–142, 2006.

H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal, 30(3):16–20, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

K. Swersky, B. Chen, B. Marlin, and N. de Freitas. A tutorial on stochastic approxi-
mation algorithms for training Restricted Boltzmann Machines and Deep Belief Nets.
In Information Theory and Applications Workshop (ITA), 2010, pages 1–10. IEEE,
2010.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

E. L. Thorndike. Animal Intelligence. Hafner, Darien, 1911.

Toucan Corporation. Toucan virtual museum. http://toucan.web.infoseek.co.jp/
3DCG/3ds/FishModelsE.html, 2005.

T. W. Troyer and A. J. Doupe. An associational model of birdsong sensorimotor learning
ii. temporal hierarchies and the learning of song sequence. J Neurophysiol, 84(3):1224–
1239, September 2000.

R. Turner and M. Sahani. A maximum-likelihood interpretation for slow feature analysis.
Neural Comput, 19(4):1022–1038, 2007.

L. G. Ungerleider and M. Mishkin. Two Cortical Visual Systems, chapter 18, pages
549–586. BMJ Publishing Group Ltd., 1982.

R. Urbanczik and W. Senn. Reinforcement learning in populations of spiking neurons.
Nat Neurosci, 12(3):250–252, 2009. URL urbanczik_senn_2009a.pdf.

E. Vasilaki, N. Frémaux, R. Urbanczik, W. Senn, and W. Gerstner. Spike-based rein-
forcement learning in continuous state and action space: When policy gradient meth-
ods fail. PLoS Comput Biol, 5(12):e1000586, 2009.

142

http://toucan.web.infoseek.co.jp/3DCG/3ds/FishModelsE.html
http://toucan.web.infoseek.co.jp/3DCG/3ds/FishModelsE.html
urbanczik_senn_2009a.pdf


Bibliography

R. Vogels. Effect of image scrambling on inferior temporal cortical responses. NeuroRe-
port, 10:1811–1816, 1999.

C. von der Malsburg. The correlation theory of brain function. Models of Neural Net-
works II: Temporal Aspects of Coding and Information Processing in Biological Sys-
tems, pages 95–119, 1994.

G. Wallis and E. T. Rolls. Invariant face and object recognition in the visual system.
Prog Neurobiol, 51(2):167–194, 1997.

H. Wersing and E. Körner. Learning optimized features for hierarchical models of object
recognition. Neural Comput, 15(7):1559–1588, 2003.

N. Wilbert and L. Wiskott. Hierarchical slow feature analysis and top-down processes,
2010.

N. Wilbert, T. Zito, R. B. Schuppner, Z. J. Szmek, L. Wiskott, and P. Berkes. Building
extensible frameworks for data processing: the case of MDP, Modular Toolkit for Data
Processing. under review for publication in the Journal of Computational Science,
2011.

L. Wiskott. Learning invariance manifolds. In L. Niklasson, M. Bodén, and T. Ziemke,
editors, Proceedings of the 8th International Conference on Artificial Neural Networks,
ICANN’98, Skövde, Perspectives in Neural Computing, pages 555–560, London, 1998.
Springer. ISBN 3-540-76263-9.

L. Wiskott. Slow feature analysis: A theoretical analysis of optimal free responses.
Neural Comput, 15(9):2147–2177, 2003.

L. Wiskott. How does our visual system achieve shift and size invariance? In J. L.
van Hemmen and T. J. Sejnowski, editors, 23 Problems in Systems Neuroscience,
chapter 16, pages 322–340. Oxford University Press, New York, 2006.

L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural Comput, 14(4):715–770, 2002.

R. Wyss, P. König, and P. F. M. J. Verschure. A Model of the Ventral Visual System
Based on Temporal Stability and Local Memory. PLoS Biol, 4(5), 2006.

X. Xie and H. S. Seung. Learning in neural networks by reinforcement of irregular
spiking. Phys Rev E, 69(041909), 2004.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for Data Processing
(MDP): a Python data processing framework. Front Neuroinf, 2, 2008.

143





List of Figures

3.1 Model architecture and stimuli. . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Input fields of nodes in layer 3. . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Objects used for stimulus generation. . . . . . . . . . . . . . . . . . . . . . 15
3.4 Five slowest SFA-outputs for the simulation with a reduced transforma-

tion set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Reconstruction of sphere object position and angle on test data. . . . . . 24
3.6 Reconstruction of in-depth rotation angle and size for fish objects on test

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 2D projections of the data clusters. . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Different leaf stimuli as presented to the SFA network. . . . . . . . . . . . 40
4.2 Network output for two fish with different contrast. . . . . . . . . . . . . . 42
4.3 Stimuli rendered from depth information. . . . . . . . . . . . . . . . . . . 43

5.1 The learning system and the simulation setup. . . . . . . . . . . . . . . . 48
5.2 Examples for the visual input to the learning system for the variable-

targets task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Performance of the learning system in the Morris water maze task with

Q-learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Rewards and escape latencies during training of the control task with

target and distractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Three representative trajectories after training of the control task with

target and distractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Performance of a PCA based hierarchical network. . . . . . . . . . . . . . 59

7.1 Letter and natural stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Insertion of vector quantization into the model. . . . . . . . . . . . . . . . 73
7.3 Histograms for SFA outputs. . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 GNG centroid data for a complex-cell type output. . . . . . . . . . . . . . 79
7.5 GNGs for an output with secondary response lobes. . . . . . . . . . . . . 81
7.6 Output values for the centroids in all bins for output 4. . . . . . . . . . . 82
7.7 Competitive learning centroids for complex-cell output. . . . . . . . . . . 83
7.8 Maximal output centroids for an output with secondary response lobes

(natural stimuli). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1 Top-down reconstruction schematic for two layers. . . . . . . . . . . . . . 90
8.2 Top-down reconstruction results for different layers. . . . . . . . . . . . . 92

145



List of Figures

8.3 Influence of the number of iterations and centroids. . . . . . . . . . . . . . 94
8.4 Reconstruction results after the linear SFA stage. . . . . . . . . . . . . . . 95
8.5 Reconstruction for distorted input stimuli. . . . . . . . . . . . . . . . . . . 96
8.6 Reconstruction of sphere stimuli. . . . . . . . . . . . . . . . . . . . . . . . 98

9.1 Implementation of a new node class. . . . . . . . . . . . . . . . . . . . . . 109

10.1 Example of a simple feed-forward network. . . . . . . . . . . . . . . . . . . 113
10.2 Code example for a single layer in an SFA network. . . . . . . . . . . . . . 114
10.3 Example of a network visualization. . . . . . . . . . . . . . . . . . . . . . 115

11.1 Illustration of key BiMDP features. . . . . . . . . . . . . . . . . . . . . . . 124
11.2 Example view for BiMDP training inspection. . . . . . . . . . . . . . . . . 130

146



List of Tables

3.1 Overview over the network architecture. . . . . . . . . . . . . . . . . . . . 13
3.2 Parameters for the random walk procedure. . . . . . . . . . . . . . . . . . 17
3.3 Results for sphere and fish objects. . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Classifier hit rates for reduced training data of fish objects. . . . . . . . . 28
3.5 Influence of the number of SFA outputs on the performance (for fish objects). 29

7.1 Parameters of the network architecture. . . . . . . . . . . . . . . . . . . . 70
7.2 Parameters for the letter random walk procedure. . . . . . . . . . . . . . . 70
7.3 Growing Neural Gas parameters. . . . . . . . . . . . . . . . . . . . . . . . 77

147





Selbständigkeitserklärung

Hiermit erkläre ich, die Dissertation selbstständig und nur unter Verwendung der angegebe-
nen Hilfen und Hilfsmittel angefertigt zu haben.

Ich habe mich anderwärts nicht um einen Doktorgrad beworben und besitze einen
entsprechenden Doktorgrad nicht.

Ich erkläre die Kenntnisnahme der dem Verfahren zugrunde liegenden Promotionsord-
nung der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität
zu Berlin vom 01. September 2005.

München, den 06.05.2011

Niko Wilbert

149





Veröffentlichungsliste

Artikel in Fachzeitschriften
• N. Wilbert, T. Zito, R. B. Schuppner, Z. J. Szmek, L. Wiskott, P. Berkes (2011).
Building extensible frameworks for data processing: the case of MDP, Modular
Toolkit for Data Processing.
Journal of Computational Science, doi: 10.1016/j.jocs.2011.10.005.

• M. Franzius, N. Wilbert, L. Wiskott (2011).
Invariant Object Recognition and Pose Estimation with Slow Feature Analysis.
Neural Computation, doi:10.1162/NECO_a_00171.

• R. Legenstein, N. Wilbert, L. Wiskott (2010).
Reinforcement Learning on Slow Features of High-Dimensional Input Streams.
PLoS Computional Biology, doi:10.1371/journal.pcbi.1000894

• T. Zito, N. Wilbert, L. Wiskott, P. Berkes (2008).
Modular Toolkit for Data Processing (MDP): A Python Data Processing Frame-
work.
Frontiers in Neuroinformatics, doi: 10.3389/neuro.11.008.2008.

Konferenzbeiträge
Proceedings

• M. Franzius, N. Wilbert, L. Wiskott (2008).
Invariant Object Recognition with Slow Feature Analysis
Proc. 18th Int’l Conf. on Artificial Neural Networks, ICANN’08, Prague, Septem-
ber 3-6, eds. Vera Kurková, Roman Neruda, and Jan Koutník, publ. Springer-
Verlag, pp. 961-970.

Posters / Abstracts

• N. Wilbert, L. Wiskott (2010).
Hierarchical Slow Feature Analysis and Top-Down Processes.
Bernstein Conference on Computational Neuroscience, TU Berlin, 2010.

• S. Dähne, N. Wilbert, L. Wiskott (2010).
Self-organization of V1 Complex Cells Based On Slow Feature Analysis And Retinal
Waves.
Bernstein Conference on Computational Neuroscience, TU Berlin, 2010.

151



Veröffentlichungsliste

• N. Wilbert, R. Legenstein, L. Wiskott (2009).
Slowness in hierarchical networks for visual processing.
Sloan-Swartz Centers for Theoretical Neurobiology Annual Meeting 2009, Harvard
University, July 25-28, 2009.

• N. Wilbert, M. Franzius, R. Legenstein, L. Wiskott (2009).
Reinforcement learning on complex visual stimuli.
Eighteenth Annual Computational Neuroscience Meeting: CNS*2009, Berlin, Ger-
many, 18-23 July 2009, publ. BMC Neuroscience 2009, 10(Suppl 1):P90.

• S. Dähne, N. Wilbert, L. Wiskott (2009).
Learning complex cell units from simulated prenatal retinal waves with slow feature
analysis.
Eighteenth Annual Computational Neuroscience Meeting: CNS*2009, Berlin, Ger-
many, 18-23 July 2009, publ. BMC Neuroscience 2009, 10(Suppl 1):P129.

• C. Hinze, N. Wilbert, L. Wiskott (2009).
Visualization of higher-level receptive fields in a hierarchical model of the visual
system.
Eighteenth Annual Computational Neuroscience Meeting: CNS*2009, Berlin, Ger-
many, 18-23 July 2009, publ. BMC Neuroscience 2009, 10(Suppl 1):P158.

• M. Franzius, N. Wilbert, L. Wiskott (2008).
Unsupervised learning of invariant 3D-object and pose representations with slow
feature analysis.
Proc. Federation of European Neuroscience Societies (FENS) Forum 2008, Geneva,
July 12-16.

• M. Franzius, N. Wilbert, L. Wiskott (2007).
Unsupervised learning of invariant 3D-object representations with slow feature anal-
ysis.
Proc. 3rd Bernstein Symposium for Computational Neuroscience, Göttingen, Septem-
ber 24-27, p. 105.

• N. Wilbert, M. Franzius, R. Cichy, S. Schmidt, S. Brandt, L. Wiskott (2007).
Towards a model of visual attention.
Proc. Midterm Evaluation of the German National Network for Computational
Neuroscience, Berlin, Germany, December 3–4, p. 30.

München, den 06.05.2011

Niko Wilbert

152


	Introduction
	Hierarchical Slow Feature Analysis 
	Slow Feature Analysis
	Slowness Principle
	SFA Algorithm 
	Linear SFA and Parallelization

	Invariant Object Recognition with Hierarchical SFA 
	Introduction
	Hierarchical Network Architecture
	Network Structure
	Network Training

	Stimuli
	Stimulus Classes
	Object Configurations
	Random Walk Procedure
	Theoretical Predictions

	Post-Processing 
	Feature Extraction with Linear Regression
	Classification

	Results 
	Reduced Transformation Set 
	Full Transformation Set
	Controls 

	Discussion
	Comparison with Neural Structures
	Feedback 
	Related Work


	Application to other Stimuli 
	Leaf Outlines 
	Methods
	Results

	Multiple Objects 
	Methods
	Results
	Conclusion

	Depth Images

	Combining Hierarchical SFA with Reinforcement Learning
	Introduction to Reinforcement Learning
	Methods
	Environment
	Neural Circuits for Reward-Based Learning
	Tasks 

	Results
	Morris Water Maze Task
	Variable-Targets Task

	Discussion
	Related Work 



	Top-Down Processes in  Hierarchical SFA Models 
	Top-Down in the Visual System and Hierarchical SFA 
	Obstacles for Top-Down Processing 
	Bayesian Interpretation 
	Input Reconstruction
	Related Work


	Capturing the Input Distribution 
	Introduction
	Methods 
	Network Structure
	Stimuli 

	Vector Quantization 
	Integration of VQ into the SFA network 
	Distribution of Layer Output Data 
	Vector Quantization Methods 

	Results 
	Network performance
	Binned Growing Neural Gas
	Competitive Learning Vector Quantization
	Control Experiments

	Discussion 
	Manifold Learning Algorithms
	Other Hierarchical Networks 


	Top-down Input Reconstruction with Gradient Descent 
	Methods
	Gradient Descent 
	Optimization for Multiple Layers 

	Results
	Stimulus Reconstruction Results 
	Reconstruction from Distorted Stimuli
	Control Experiments 

	Discussion 
	Global Network Optimization 
	HMAX Model 
	Deep Belief Networks 



	The Modular toolkit for  Data Processing 
	Introduction to the Modular toolkit for Data Processing (MDP) 
	The Python Programming Language
	MDP in the Scientific Python Ecosystem
	Basic Elements of MDP 
	Usage of Nodes
	Implementation of Nodes
	Flows 


	Hierarchical SFA with MDP 
	Hierarchical networks 
	Layer
	FlowNode
	Switchboard
	Additional Tools 

	Parallelization 
	Overview and Example
	Schedulers

	Node Extensions
	Node Extension Mechanism
	Extension Usage
	Extending Nodes
	Creating Extensions


	Bidirectional data flow with BiMDP 
	Introduction
	Targets, id's and Messages
	BiFlow 
	BiNode 
	Extending BiNode and Message Handling 
	Coroutines for Stateful Nodes 

	Inspection
	Hierarchical Networks and Parallelization


	Conclusion
	Acknowledgements
	Bibliography
	List of Figures
	List of Tables
	Selbständigkeitserklärung
	Veröffentlichungsliste

