
Learning predictive partitions

for continuous feature spaces

Björn Weghenkel and Laurenz Wiskott

Ruhr-Universität Bochum - Institut für Neuroinformatik
44780 Bochum - Germany

Abstract. Any non-trivial agent (biological or algorithmical) that in-
teracts with its environment needs some representation about its current
state. Such a state should enable it to make informed decisions that lead
to some desired outcome in the future. In practice, many learning algo-
rithms assume states to come from a discrete set while real-world learning
problems often are continuous in nature. We propose an unsupervised
learning algorithm that finds discrete partitions of a continuous feature
space that are predictive with respect to the future. More precisely, the
learned partitions induce a Markov chain on the data with high mutual
information between the current state and the next state. Such predictive
partitions can serve as an alternative to classical discretization algorithms
in cases where the predictable time-structure of the data is of importance.

1 Introduction

Every agent that wants to interact with its environment needs to make some
(implicit) assumptions about the environment’s future and about the conse-
quences of its actions. Without such assumptions it may as well act randomly
and without any strategy. This especially holds for biological agents whose
computational resources are constrained but who have sensory inputs that are
potentially high-dimensional, redundant, and only partially relevant. As Bialek
et al. [1] argued, “nonpredictive information is useless to the organism”, because
it would be outdated already at the time the organism processed the informa-
tion and is able to react to it. The task of extracting predictable aspects of a
signal thus becomes an important problem of neural computation and has been
modeled within different frameworks. Building on the concept of information
bottlenecks [2], Creutzig et al. [3] has formulated a past-future information bot-
tleneck as a model for how an organism may encode the incoming information
that is behaviorally most relevant. For interactive learning scenarios, Still [4] has
investigated how the least complex state representation and the least complex
policy look like for an agent that has the goal of maximizing its predictive power
in the environment. Conceptually also related are causal states where two states
are mapped to one if they share the same future (see [5] for a short overview
of information bottlenecks, causal states, and statistical relevance bases). In the
following, by predictiveness we refer to the mutual information between current
state and next state, given a fixed number of states (see Section 2.1).

We show that the idea of predictiveness can serve as a principled way of
discretizing a continuous state-space in the absence of additional information like

reward. Our algorithm learns a set of partitions that are effective in predicting
the dynamics of the training data. Compared to the frameworks above, our
algorithm does not start with a discrete input space but learns partitions for a
continuous one. It differs from classical approaches to discretization by explicitly
taking into account the time structure of the data. On the other hand it does
not need further information like in Continuous U tree [6] where partitions are
formed for a specific task given as a Markov Decision Process (MDP).

2 Algorithm

In the following we describe the new learning algorithm that discretizes a con-
tinuous feature space given a time-series for training. In Section 2.1 we formalize
the predictive power of a Markov chain, which will be our main objective. In
Section 2.2 we describe how the partitions are organized in a tree structure, and
Section 2.3 describes the splitting rule that is used to refine partitions.

2.1 Predictiveness of states

For a given set of states N = {s1, s2, . . . , sN} we consider a time-homogeneous
Markov chain X0, X1, . . . over N . The transition probabilities between states
are described by a stochastic transition matrix Pij = Prob(Xt+1 = sj |Xt = si)
with parameters being the maximum likelihood estimate given the training data.
We assume the Markov chain to be irreducible and having a unique stationary
distribution π, i.e., πT = πTP.

Our goal is to find a non-trivial partitioning ǫ : R
D → N that maps a

continuous D-dimensional vector space onto a discrete set of states such that the
states of the induced Markov chain are as predictive as possible. As a measure of
predictability we calculate the mutual information between successive time steps
as I(P) := I(Xt+1;Xt) = h(Xt+1) − h(Xt+1|Xt) = h(π) −

∑
i πih(Xt+1|Xt =

si) = h(π)−H(P), where h(π) := −
∑

i πi log πi is the entropy of π andH(P) :=
−
∑

i,j πiPij logPij is the entropy rate (see also [7]). As usual, 0 log 0 := 0.

2.2 Partitioning

We organize the partitioning of the feature space as a binary tree S with nodes
either being leaves or comprising a splitting rule Γ(x) : RD → {child1, child2}.
The leaves of the tree correspond to the learned states N = {s1, s2, . . . , sN}.

States are split successively into new states to increase the mutual informa-
tion of the model. To that end, for each state si a split is calculated, resulting
in a candidate for a new partitioning S(i) with N + 1 states and new transition
probabilities P(i). We select the partitioning S∗ = argmaxS(i)(I(P(i)) − I(P))
with the highest gain in mutual information. This step is repeated until the gain
falls below a certain threshold or until a desired number of partitions is reached.
To avoid overfitting, an existing partition is only split if it contains enough data
samples.

2.3 Splitting of states

There is an infinite number of possibilities how to split an existing state into two
new states. The question is: How can we split the state such that it contributes
to the predictability of the whole Markov chain, i.e., I(P). To motivate the final
algorithm, we start with a related but simpler problem: We assume that instead
of the training data we already know the Markov chain with transition matrix
P̂ that produced the data. How can this Markov chain be aggregated into just
two states, such that these are as predictive as possible? Deng et al. [7] have
presented a relaxation to this generally hard bi-partition problem that reduces
to a simple eigenvalue problem. Let Π be a matrix with stationary distribution
π̌ of P̌ on the diagonal and Q := 1

2 (P̌+Π−1P̌TΠ). Now consider the eigenvalue

problem Qu = λu and let u(2) be the solution corresponding to the second
largest eigenvalue. Finally, each state of the original Markov chain is assigned
to a partition according to the sign structure of the vector u(2) [7].

The bi-partition algorithm can not be applied directly for splitting a state si
because we do not know the underlying Markov chain that generated the data
X (i) := {x : ǫ(x) = si} within that state. We can, however, approximate one
from the data observed. We start by building a graph with each data point being
one node. Edges are added for every pair of succeeding data points {(xt,xt+1) :
xt,xt+1 ∈ X (i)}. To generalize the observed dynamics spatially, each node xt

also inherits the transitions of its k nearest neighbors Kt: {(xt,xi+1) : xi ∈ Kt}.
A connection matrix W is constructed by setting Wi,j = Wj,i = 1 for every

pair (xi,xj) of connected nodes. Also, a small constant transition probability
of 1e−6 is added to every possible combination (i, j) to ensure a fully connected
graph and a unique stationary distribution.

The resulting matrix W is normalized row-wise to form a stochastic transi-
tion matrix P̂. From that, Q and u(2) are calculated as described above and
every data point xi is labeled and assigned to one of two classes according to
the sign of the ith component of u(2). To be able to generalize to data points
not in the training set, we train a classifier Γ on the labeled training data. The
decision boundary of the classifier serves as a splitting rule for state si.

Algorithm 1

Input: data {xt}, θmin gain, θmax n states

initialize partitioning S with single state s1
repeat

for all si do

S(i) ← SPLIT(S, si)
gaini ← I(S(i))− I(S)

end for

S ← S(i) with i = argmaxi gaini

until max(gaini) < θmin gain or size(S) ≥ θmax n states

Algorithm 2 SPLIT

Input: partitioning S, target state sn, data {xt}
create graph (V, E) for all transitions inside state sn:
V ← {xt,xt+1 : ǫ(xt) = ǫ(xt+1) = sn}
E ← {(xt,xt+1), (xt+1,xt) : ǫ(xt) = ǫ(xt+1) = sn}
if |E| < min size: abort
add transitions of neighbors :
for all xi ∈ V do

K ← k1 nearest neighbors of xi in V

for all xj ∈ K do

E ← E ∪ {(xi,xj+1), (xj+1,xi)}
end for

end for

W← connection matrix for graph (V,E)
ensure completely connected graph: ∀i, j : Wi,j ←Wi,j + 1e−6

P̂←W normalized row-wise
π ← stationary distribution of P̂
Π← diag(π)
Q← 1

2 (P̂+Π−1P̂TΠ)
eigendecomposition UΛUT ← Q

train classifier Γ for xi ∈ V with labels from 2nd largest eigenvector: sign(u(2))
partitioning S(n) ← S with Γ being the splitting rule for state sn
Output: S(n)

3 Experiments

We conducted two experiments that simulated the movement of an agent through
a small, two-dimensional feature space. In every setting we generated 5000 data
points and learned a discrete partitioning of the feature space with the algorithm
above. For the construction of the graph the size of the neighborhood was set
to k1 = 5. As the classifier Γ we used k-nearest neighbor with k2 = 50 for every
node.

Problem A was generated by performing a random walk along a one-dimen-
sional manifold, namely a spiral. Each new data point was generated by adding
Gaussian noise (σ = 0.5) to the angular value of the last data point. Figure 1.a
shows an example of the first 16 of the learned partitions. Figure 2.a shows how
the mutual information between present and future increases with the number of
partitions. For comparison, the performance of a naive discretization is plotted
as well.

Problem B consisted of another random walk in two dimensions. The random
walk itself was generated by adding Gaussian noise (σ = 0.1) to the x-position
at every time step. The y-position on the other hand was determined only by
uniformly distributed noise and was therefore unpredictable. As can be seen
from the example in Figure 1.b, the first eight of the learned partitions focus

0.2 0.4 0.6 0.8 1.0
x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

a

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

b

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

c

Fig. 1: Examples of learned partitions for two different data sets. (a) and (b)
show the first 16 and 8 of the learned partitions on Problem A and Problem B,
respectively. (c) shows the naive discretization. Note that some of the bound-
aries are noisy in (a).

on the predictable aspects of the data by only dividing the feature space along
the x-axis, not the noisy y-axis. Only later, when more (useless) partitions are
added, is the y-axis divided by different partitions (not shown).

Both experiments show that – compared to naive discretization – a signif-
icantly smaller number of partitions is necessary to reach the same amount of
predictive power.

0 10 20 30 40 50 60 70
number of states

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ut
ua

l i
nf
or
m
at
io
n

Problem A

naive
predicitve

0 10 20 30 40 50 60 70
number of states

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Problem B

naive
predicitve

Fig. 2: Mutual information of naive and predictive partitions for problem A
(“spiral”) and problem B (“noise”). Plotted are the mean and the standard
deviation over ten randomly generated datasets each.

4 Conclusion

We have shown how predictability can serve as a principle for learning partitions
in the absence of other information like class labels or reward. Our algorithm
considers the time structure of the training data to create predictive partitions

for a continuous feature space. Experimentally we have shown how the learned
partitions ignore aspects of the feature space that are irrelevant for prediction
as well as the ability to adapt to a manifold if required by the data.

The scalability of the algorithm mainly depends on the costly eigendecom-
position of a connection matrix of data points. Therefore it does not scale well
with the number of training points. There are different approaches to solve this
issue. First, the graph could be build on only a subset of the training data.
Second, the splitting rule of a state could be calculated by (linear) approaches
that scale better with the number of training samples. Without giving details
here, we particularly hint at Slow Feature Analysis [8] and its connection to the
low-dimensional representation of graphs when edges are given by neighborhood
in time (similar to the above) [9]. A topic of future research will be the general-
ization to different actions, i.e., Controlled Markov chains and Markov Decision
Processes.

References

[1] William Bialek, Ilya Nemenman, and Naftali Tishby. Predictability, complexity, and learn-
ing. Neural Computation, 13:2409–2463, Nov 2001.

[2] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck
method. arXiv.org e-Print archive, April 2000. URL http://arxiv.org/abs/physics/

0004057.

[3] Felix Creutzig, Amir Globerson, and Naftali Tishby. Past-future information bottleneck
in dynamical systems. Physical Review E, 79:041925, 2009.

[4] Susanne Still. Information-theoretic approach to interactive learning. EPL (Europhysics
Letters), 85(2):28005, 2009.

[5] Cosma Rohilla Shalizi and James P. Crutchfield. Information bottlenecks, causal states,
and statistical relevance bases: How to represent relevant information in memoryless trans-
duction. Advances in Complex Systems, 5(01):91–95, 2002.

[6] William T. B. Uther and Manuela M. Veloso. Tree based discretization for continuous
state space reinforcement learning. In AAAI/IAAI, pages 769–774. American Association
for Artificial Intelligence, 1998. ISBN 0-262-51098-7.

[7] Kun Deng, Prashant G. Mehta, and Sean P. Meyn. Optimal Kullback-Leibler aggregation
via spectral theory of Markov chains. Automatic Control, IEEE Transactions on, 56(12):
2793–2808, 2011.

[8] Laurenz Wiskott and Terrence Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural Computation, 14(4):715–770, April 2002.

[9] Henning Sprekeler. On the relation of slow feature analysis and Laplacian eigenmaps.
Neural Computation, 23(12):3287–3302, 2011.

