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Abstract

Spontaneous cortical activity – the ongoing cortical activities in absence of sen-
sory input – are considered to play a vital role in many aspects of both normal brain
functions [1] and mental dysfunctions [2]. We present a centered Gaussian-binary
deep Boltzmann machine (GDBM) for modeling the activity in visual cortex and
relate the random sampling in DBMs to the spontaneous cortical activity. After
training on natural image patches, the proposed model is able to learn the filters
similar to the receptive fields of simple cells in V1. Furthermore, we show that
the samples collected from random sampling in the centered GDBMs encompass
similar activity patterns as found in the spontaneous cortical activity of the visual
cortex. Specifically, filters having the same orientation preference tend to be ac-
tive together during random sampling. Our work demonstrates the homeostasis
learned by the centered GDBM and its potential for modeling visual cortical ac-
tivity. Besides, the results support the hypothesis that the homeostatic mechanism
exists in the cortex [3, 4].

1 Introduction

Spontaneous cortical activity has been studied in various contexts ranging from somato-sensory to
visual and auditory perception [5]. These ongoing cortical activities in absence of sensory input
are considered to play a vital role in many aspects of both normal brain functions [1], and mental
dysfunctions [2]. Despite extensive studies of spontaneous activity, its role in brain still remains
unclear. In [1], the spontaneous activity of visual cortex is reported to have a set of states, several
of which resemble cortical representation of orientation, i.e. neurons in the visual cortex having
similar orientation preference tend to be active together. One hypothesis is that biological agents
learn to maintain homeostasis and avoid surprises in the sensory input by prediction [3]. From
this perspective, the reported spontaneous cortical activity can be explained as the expected sensory
inputs generated by the internal activity of the agents.

To understand the spontaneous activities of the visual cortex during hallucination, previous studies
have considered Deep Boltzmann Machines (DBMs) as a potential model framework of the visual
cortex and have related the inference in DBM to the mechanisms of cortical perception [6, 7]. The
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authors have trained a DBM on binary images of simple shapes and have shown that trained DBMs
can qualitatively reproduce several aspects of hallucination by maintaining its homeostasis. Follow-
ing the same line of thinking, we have chosen a variant of DBM, a Gaussian-Binary DBM (GDBM),
as a model for visual cortex. Adapting the centering trick [8] to GDBMs, we are able to make the
model learn the homeostasis from natural image patches. The results suggest that centered GDBMs
can be used to model the cortical activity in the primary visual cortex (V1) [1] and also support the
hypothesis that the brain maintains a homeostasis [4].

In Section 2, the proposed centered GDBM is introduced. Then we describe the training procedure
in Section 3.1, and show that the centered GDBM can not only learn Gabor-like filters, but also pick
up more complex features in the higher layer. Finally, by considering the conditional probability of
the hidden units during random sampling as the spontaneous activity, we show in Section 3.2 that
these random samples present similar activity patterns as the spontaneous visual cortical activity
reported in [1].

2 Algorithm

Like Deep Belief Networks (DBN) [9] and deep autoencoders [10], DBMs have been proposed for
learning multi-layer representations that are increasingly complex. In particular, DBM incorporates
both the top-down messages and the bottom-up passes during the inference for each layer, which
gives DBM an advantage in propagating the input uncertainties. DBMs have been applied to many
problems and show promising results[11, 12, 13].

To model the natural image patches that have continuous values, a variant of DBMs is required
since the original DBM is designed for binary data. There are two common ways to extend DBMs
to modeling continuous values. The most common way is to train a Gaussian-binary restricted
Boltzmann machine (GRBM) as a preprocessing model and use the output of the trained model as
the input data for training a DBM [14]. However, this practice loses the ability to train the model as
a whole, i.e. the preprocessing part needs to be trained beforehand. A more natural extension is a
Gaussian-binary deep Boltzmann machine (also known as Gaussian-Bernoulli DBM [15]), in which
the binary units in the bottom layer are replaced by the real-value ones as in GRBMs. Moreover,
GDBMs have been proved to be a universal approximator. The pitfall of GDBMs is the difficulty in
training it [15].

The centering trick has been proposed in [8] for DBMs and has been shown to improve learning.
Therefore, we adapted the centering trick to the GDBM and refer to the new model as centered
GDBM. Compared with the training recipe in [15], a centered GDBM can easily be trained even
without pre-training phase and is insensitive to the choice of hyper-parameters.

2.1 Centered GDBM

To avoid cluttering, we present a centered GDBM of two hidden layers as an example, although the
model can be extended to an arbitrary number of layers. A two-layer centered GDBM, consisted of
an input layer X and two hidden layers, has an energy defined as:

E (X,Y,Z; Θ, C) : =

M∑
i

(Xi − bXi − cXi)
2

2σ2
i

−
L,M∑
i,j

(Xi − cXi
)wij(Yj − cYj

)

σ2
i

−
M∑
j

bYj (Yj − cYj )−
N∑
k

bZk
(Zk − cZk

)

−
M,N∑
j,k

(Yj − cYj
)ujk(Zk − cZk

) (1)

=
(X− cX − bX)TΛ−1(X− cX − bX)

2
− (X− cX)TΛ−1W(Y − cY)

−(Y − cY)TbY − (Z− cZ)TbZ − (Y − cY)TU(Z− cZ), (2)
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where Y represents the first hidden layer, and Z denotes the second hidden layer. L, M , N are the
dimensionality of X, Y and Z respectively. Θ := {W,U,bX,bY,bZ} denotes the parameters
trained for maximizing the loglikelihood. C := {cX, cY, cZ} represents the centering parameters
used to improve the learning. Λ is a diagonal matrix with the elements σ2

i . The probability of any
given state (x,y, z) in the DBM is

P (x,y, z; Θ, C) : =
1

Z(Θ)
exp (−E(x,y, z; Θ, C)) . (3)

Here Z (Θ) is the partition function depended on the parameters of the model. Inference in centered
GDBM is simple, because the states of the units in each layer are independent of the other ones in
the same layer given the adjacent upper and lower layer.

P (Xi|y) = N
(
Xi; wi∗(y − cy) + bXi

, σ2
i

)
, (4)

P (Yj = 1|x, z) = f
(
(x− cx)Tw∗j + uj∗(z− cz) + bYj

)
, (5)

P (Zk = 1|y) = f
(
(y − cy)Tu∗k + bZk

)
, (6)

where f (·) is a sigmoid function and N (·;µ, σ2) denotes a normal distribution with mean µ and
variance σ2. wi∗ and w∗j denote the ith row and the jth column of matrix W. uj∗ and u∗k are
defined correspondingly.

For training a centered GDBM, the objective is to maximize the loglikelihood ˆ̀, of which the partial
derivative for each parameter θ ∈ Θ is

∂ ˆ̀

∂θ
=

〈
∂(−E(x,y, z)

∂θ

〉
data

−
〈
∂(−E(x,y, z)

∂θ

〉
model

, (7)

where 〈·〉data and 〈·〉model represent the expectation with respect to the data and the model distri-
bution, respectively. By using the mean-field approximation, we can estimate the data-dependent
expectation. And the model-dependent expectation is usually approximated by using persistent
Markov Chains. See [14] for details.

As for the centering parameters, we adjust them along the training procedure with a moving av-
erage. In general, we follow the learning algorithm in [8] with several modifications as shown in
Algorithm 1.

3 Experiments and results

3.1 Learning from natural image patches

We applied the centered GDBM to image patches of 32 × 32 pixels1, taken randomly from the
van Hateren natural image dataset [16]. The patches were firstly whitened by principal component
analysis and reduced to the dimensionality of 256 in order to avoid aliasing [17].

Afterwards, we trained a centered GDBM with 256 visible units and two hidden layers. There
were 900 units in the first hidden layer and 100 units in the second hidden layer2. Despite the
difficulties in training GDBMs, we found the centered GDBM can be trained much easier. Without
any layer-wise pretraining, the centered GDBM did not suffer from the issue that the higher layer
units are either always inactive or always active as reported in [15]. Since any centered GDBM can
be reparameterized as a normal GDBM [19], this may imply that the centering trick in GDBM plays
an important role in the optimization procedure.

1We generated 60,000 image patches by randomly taken patches of 32 × 32 pixels from 2,000 natural
images. A subset of size 50,000 was used for training. The rest was used for testing the reconstruction error
and loglikelihood.

2The size of the hidden layers were chosen to get a good model of the spontaneous cortical activity as
described in Section 3.2. The training procedure started with a learning rate of 0.03 and a momentum of 0.9,
which is annealed to 0.001 and 0.0, respectively. But the standard deviation σi have a different learning rate,
which is only one-tenth of the other’s learning rate [18]. Neither weight decay nor sparse penalty is used during
training. Mini-batch learning is used with a batch size of 100. The updating rate for centering parameters was
0.001. The training procedure was stopped when the reconstruction error stopped decreasing.
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Algorithm 1 Training algorithm for centered GDBMs

1: Initialize W,U
(
i.e. wij ∼ U

[
−
√

6
L+M ,

√
6

L+M

]
, ujk ∼ U

[
−
√

6
M+N ,

√
6

M+N

])
2: Initialize Λ

(
i.e. σ2

i ∼ N (0.5, 0.01)
)

3: Initialize bx,by,bz

(
i.e. bx ←< x >data, byj

, bzk ∼ N (−4.0, 0.01)
)

4: Initialize cx, cy, cz
(
i.e. cx ← f−1(bx), cy ← f−1(by), cz ← f−1(bz)

)
5: loop
6: ymodel ← cy
7: for all batches xdata do
8: zdata ← cz
9: loop

10: ydata ← P (Y|xdata, zdata)
11: zdata ← P (Z|ydata)
12: end loop until stop criteria is met
13: loop
14: zmodel ∼ P (Z|ymodel)
15: xmodel ∼ P (X|ymodel)
16: ymodel ∼ P (Y|xmodel, zmodel)
17: end loop until stop criteria is met
18: cx ← (1− ν) · cx + ν · 〈xdata〉
19: cy ← (1− ν) · cy + ν · 〈ydata〉
20: cz ← (1− ν) · cz + ν · 〈zdata〉
21: W←W +η

(
〈(xdata−cx)Λ−1(ydata−cy)T 〉− 〈(xmodel−cx)Λ−1(ymodel−cy)T 〉

)
22: U← U + η

(
〈(ydata − cy)(zdata − cz)T 〉 − 〈(ymodel − cy)(zmodel − cz)T 〉

)
23: bx ← bx + η

(
〈xdata〉 − 〈xmodel〉

)
+ νΛ−1W(ydata − cy)

24: by ← by + η
(
〈ydata〉 − 〈ymodel〉

)
+ νWTΛ−1(xdata − cx) + νU

(
zdata − cz

)
25: bz ← bz + η

(
〈zdata〉 − 〈zmodel〉

)
+ νUT

(
ydata − cy

)
26: ymodel ← P (Y|xmodel, zmodel)
27: end for
28: end loop
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After training, the centered GDBM had oriented, Gabor-like filters in the first hidden layer (Fig-
ure 1a). Most of the units in the second hidden layer had either strong positive or negative con-
nections to the filters in the first layer that have similar patterns. As shown in Figure 1b, the filters
having strong connections to the same second-layer units either have the similar orientation or the
same location. The results also suggest that the model learned to encode more complex features such
as contours, angles, and junctions of edges. These results resemble the properties of the neurons in
V1 and V2 of visual cortex and imply that centered GDBM has a potential to be a good model for
the visual cortex. Despite the resemblance of these results to those from sparse DBNs [20], sparse
DBNs show worse match to the biological findings as reported in [1]. A quantitative comparison
between centered GDBMs and sparse DBNs is still open for future studies.

(a)

Z81

Z86

Z41

Z66

Z28

Z50

Z46

Z64

Z65

Z40

(b)

Figure 1: (a) 100 randomly selected first-layer filters learned from the natural image. (b) The leading
six columns visualize the first-layer filters that have strongest connections to one selected second-
layer unit. The filters are arranged from left to right in descending order by the absolute value of
their weight to the selected unit. The last column depicts the weighted sum of the six strongest-
connected filters, which can be considered as an approximation of the receptive fields of the selected
second-layer units.

3.2 Comparing with biological experiments

After successful training of centered GDBM, we quantitatively analized the results of the trained
model3 with the methods used in [1]. For conducting the measurements, we made two basic as-
sumptions. Firstly, since only the first-layer filters of centered GDBM present strong orientation
preferences, we assumed these filters correspond to the visual cortical neurons recorded in the liter-
ature. Secondly, the probability of the units to be active, i.e. P (Yj = 1|x, z), was assumed to be the
counterpart of the neuron’s activity.

3.2.1 Generating orientation maps

To compare with the original experiments, we firstly generated full-field gratings as input data and
measured the response of the centered GDBM model. We collected the responses of the first-layer
hidden units to eight orientations from 0◦ to 157.5◦ with a difference of 22.5◦.

The amplitude of the gratings was chosen such that the average norm of the input stimuli is the
same as that of the natural image patches before whitening. For each orientation, the grating stim-
uli of various frequencies and phases was fed to the model. We used the mean-field variational
approximation to approximate the responses of the model to each stimulus. After collecting the re-
sponses, the average response over all the stimuli of each orientation were calculated and considered

3Considering the authors of the original paper [1] only presented the results from one hemisphere of a
selected cat, here we only present the results of one centered GDBM that fits best to the reported results.
However, all the centered GDBMs trained in our experience showed consistent results. In all the experiments,
the strong correlation between the spontaneous frames and orientation maps can be observed as well as the
emerging features presented in Figure 1.

5



to be the model’s response to the corresponding orientation. These activity patterns correspond to
the single-condition orientation maps in [1]. Figure 2 (top) visualizes the most active filters in the
single-condition orientation maps of four selected orientations.

0 ◦ 90 ◦ 180 ◦ 270 ◦

No. 2234 No. 7923 No. 19410 No. 12999

No. 9 No. 5 No. 14 No. 22

Figure 2: (top) The 25 most active filters in each of the four single-condition orientation maps. For
each map the filters are arranged in a descending order of activity level. (middle) The same but using
the filters in four spontaneous frames that are best correlated to the corresponding single-condition
maps. (bottom) The same but using the filters of four best-correlated nodes in the self-organizing
map.

3.2.2 Generating spontaneous frames

To simulate the spontaneously emerging cortical activity, we sampled the states of the trained model
starting from a random initialization. In total, there were 200 Markov chains running Gibbs sampling
for 2,000 iterations. For each Markov chain, the initial states of the hidden units in the first layer
were set to be active with a probability that is equal to the average P (Y|x, z) over the natural image
patches. By recording the samples every 10 steps of Gibbs sampling, we collected 20,000 samples
of P (Y|x, z), which are referred as to spontaneous frames. Such a sampling procedure is referred
to as a session. During the experiments we repeated the session for many times with every trained
model.

3.2.3 Correlation between spontaneous frames and orientation maps

To establish the similarity between the single-condition orientation maps and the spontaneous
frames, we calculated the spatial correlation coefficients between them. Figure 3(a) presents an
example of the distribution of these correlation coefficients for four selected orientations4. For com-
parison, we generated random activity patterns of the first hidden layer with the same probability
as the one used for initializing the Markov chains, and the same correlation coefficients were cal-
culated with these random generated patterns. Although both distributions are center-peaked, those
computed with spontaneous frames have much heavier tails, which indicates stronger correlation be-
tween the spontaneous frames and the single-condition orientation maps than expected by chances.
The same observation were made in Figure 2 in [1].

4The following results were collected in a single session, but the results are consistent across simulation
runs. In all sessions, the similar observation as shown in Figure 1–3 can be observed. The only difference is
the shape of the curves in Figure 3b might vary in different sessions. However, the dominance of the cardinal
orientation is always present.
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We further calculated the orientation preference of these spontaneous frames. By this point, only
the spontaneous frames that are significantly correlated were chosen. As in the biological exper-
iment [1], we chose a significance level of P < 0.01, resulting in a threshold of |0.182| and a
selection of about 20% spontaneous frames. We then calculated the orientation preference of these
frames by searching the orientation that is maximally correlated for each frame. Figure 3(b) plots the
relative occurrences of the different orientation preferences together with the maximal correlation
coefficients. The results match those from the cats’ visual cortex in [1] fairly well.
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Figure 3: (a) Red, example distribution of the correlation coefficients between the spontaneous
frames and the four selected single-condition orientation maps. Blue, the same, using random gen-
erated activity patterns with the same average probability. (b) The relationship between the relative
occurrence of the different orientation preferences (red) and the maximal correlation coefficient
(blue). The results from the centered GDBM are plotted by solid lines in comparison with the re-
sults in [1] plotted by dotted lines. The relative occurrence is calculated relative to the occurrence
of the horizontal orientation. The figure is adapted to Figure 3b in [1].

Next we compared the most active filters in the spontaneous frames with those in the single-condition
orientation map. Figure 2 (middle) visualizes these filters for four spontaneous frames that are best
correlated with the selected single-condition orientation maps. These filters demonstrate similar
features as those in the corresponding orientation maps shown in Figure 2 (top). This result fur-
ther supports the similarity between the spontaneous frames and the orientation maps in centered
GDBMs.

3.2.4 Learning SOM from the spontaneous frames

We followed the methods in [1] and applied Self-Organizing Map (SOM) algorithm [21] to the spon-
taneous frames in order to study the intrinsic structures of these spontaneous activities. We trained
a SOM on the 20,000 spontaneous frames collected from a single session. The SOM projects the
spontaneous frames onto 40 nodes that were arranged on a 1-D circle. See [1] for details of training.
After training the SOM, we examined the correlation between the weight vectors of the 40 nodes
and the single-condition orientation maps. Figure 2 (bottom) illustrates the most active filters in the
weight vectors of four nodes that are best correlated with the selected single-condition orientation
maps. The remarkable resemblance between these filters and those in the single-condition orienta-
tion maps suggests that the spontaneous frames encompass several states of the hidden variables in
the first layer, which resemble the model’s representation of orientation.

4 Discussion

To conclude, firstly we present a variant of DBMs, centered Gaussian-binary deep Boltzmann ma-
chines (GDBM) for modeling the activity in visual cortex. The proposed model applies the centering
trick in [8] to the GDBMs and avoids the difficulties in training GDBMs. Moreover, the proposed
centered GDBM does not require the layer-wise pretraining procedure5. An interesting question is

5Centering trick in normal DBMs is most successful in the DBMs of a few hundred hidden units[8]. How-
ever, in our experience, centered GDBM can always improve the learning of GDBMs.
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how much benefit the centered GDBMs can provide in classification and generative performances.
A further detailed comparison between centered and non-centered GDBM is currently being con-
ducted.

Secondly, we consider centered GDBMs as a model of the visual cortex activity6. Compared to
previous work [6], the proposed centered GDBM is able to model the natural image statistics from
natural images patches. The hidden units in the centered GDBMs show V1 and V2 like receptive
fields, which suggests a centered GDBM is a good model of the visual cortex.

Furthermore, we have found that the random samples of the first-layer hidden units encompass sim-
ilar activity patterns as found in the spontaneous cortical activity of the visual cortex. Specifically,
the hidden units having the same orientation preferences tend to be active together during random
sampling procedure. On one hand, this result can be considered as a proof of the model’s homeosta-
sis learned from data. On the other hand, it also supports the hypothesis of homeostatic mechanisms
in the cortex [4].
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[5] Rémy Lestienne. Spike timing, synchronization and information processing on the sensory side of the
central nervous system. Progress in Neurobiology, 65(6):545 – 591, 2001.

[6] David Reichert, Peggy Series, and Amos Storkey. Hallucinations in Charles Bonnet syndrome induced
by homeostasis: a deep Boltzmann machine model. In the proceedings of the Conference on Neural
Information Processing Systems (NIPS), pages 2020–2028, 2010.

[7] David Reichert, Peggy Series, and Amos Storkey. Charles Bonnet syndrome: Evidence for a generative
model in the cortex? PLoS Comput Biol, 9(7):e1003134, 07 2013.
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