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1 Introduction

Understanding our visual system is one of the major challenges in neuroscience and
computer vision. It is amazing how fast the human’s brain processes a visual input
and analyses the scene. But the process as a whole, due to its complexity, is rarely
understood in detail and therefore remains a challenging research area.
When analysing the visual system, a necessary task is to understand the first pro-
cessing steps named early vision. Early vision is processed in the retina, the LGN
and the primary visual cortex V1 and is, due to its mostly feed forward architecture
relatively well understood. Since the visual system has evolved and been optimized
over millions of years through evolution, it is assumed to process vision in a rather
good way. Consequently, when modelling natural image statistics we assume that a
good model models the visual input by extracting the same statistical properties as
our visual system does.
The simple cells in the primary visual cortex have a localized receptive field focused
on a local subregion of the visual input. These cells extract location, orientation and
frequency selective features from the corresponding part of the input signal. They are
often modelled directly using Gabor functions [23], but a more general and desired
approach is to use a statistical model that learns these features automatically.

1.1 Previous and Related Work

Restricted Boltzmann machines (RBM) have gained popularity over the last decade
as almost no other statistical model. This is mainly due to the fact that they can
be stacked layer-wise to build deep neural networks [4, 16, 29] being capable of cap-
turing higher order statistics. Beginning with training the first RBM on the input
data, each following RBM is then trained on the output of the previous layer.
The original RBM has binary visible and hidden units, abbreviated by (BB-RBM).
But a popular variant named Gaussian-Binary Restricted Boltzmann Machine (GB-
RBM) [44] is capable of modelling continuous data, like natural images. A major
disadvantage of RBMs is that they are known to be difficult to train [13], which
seems to become even more critical when using GB-RBMs [43].

Several modifications have been proposed to overcome the problems during train-
ing, which usually prevent the model to learn meaningful features. In [28], the
authors added a sparseness penalty on the gradient that forced the model to prefer
sparse representations and seems to help learning meaningful features. Recently, the
authors in [7] suggested that the training failure is due to the training algorithm and
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proposed several improvements to overcome the problem. The authors in [24] suc-
cessfully trained a deep hierarchical network and concluded that a failure is mainly
because of the existence of high-frequency noise in natural images, which prevents
the model from learning the important structures. Other approaches modified the
model such that it is capable of modelling higher order statistics directly [9, 36, 37].
All modifications showed that GB-RBMs are in principle capable of learning features
comparable to the receptive fields in the early primary visual cortex V1, but in prac-
tice this is difficult to achieve.
To derive a better understanding of the limitations of the model, the authors in [26]
evaluated its capabilities from the perspective of image reconstruction. In [40] the
likelihood of the model is compared to classical machine learning methods. Although
the model has been analysed to show the failures empirically, there are few works
accounting for the failure analytically.

1.2 Aims and Contributions

The thesis has two major aims.

1. To give a consistent and comprehensive introduction to RBMs, and the related
concepts. It therefore became a reference book, at least for myself and I hope
it will be useful for other people too.

2. To analyse GB-RBMs for modelling natural image statistics. Therefore, the
reader gets introduced briefly into natural images and why it is important to be
able to model them. The model is then analysed concerning the way it models
data and consequently, how its probability density function is structured. For
this purpose, the property is used that GB-RBMs can be reformulated as a
constrained Mixture of Gaussians (MoG). This has been analysed in [43] and
has already been mentioned in previous studies [3, 40]. It presents a much
clearer view on the models probability density function (PDF) than the Product
of Experts formulation and shows that GB-RBMs are highly limited in the
way they can represent data. Moreover, it allows to conclude how GB-RBMs
should be trained more efficient and reliable on natural images. Considering
the formulas similarity, GB-RBMs are compared to Independent Component
Analysis (ICA), which can also be given as a Product of Expert formulation
and is known to be a good model for natural images.
Several experiments should show how GB-RBMs model natural images and
that the learned features are similar to the features learned by ICA. Therefore,
the results of GB-RBMs are compared to the results of the related models,
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i.e. ICA and MoGs. It is shown that the preprocessing of the data plays an
important role and that the analysis allows to choose a training setup that
leads to fast and stable training of GB-RBMs.

All of the research described in this thesis has been done in collaboration with my
advisor Nan Wang, so that it is also a major part of his Ph.D. research. Consequently,
this thesis is also a reference text of our collaborative research.

1.3 Structure of this Thesis

The first Chapter explains the motivation and structure for this thesis and gives an
overview of the related work.

The second Chapter introduces the reader into natural image statistics and how
our visual system is modelling it.

The third Chapter gives an introduction to Boltzmann machines (BM) in general
and a detailed derivation of RBMs with binary visible and hidden units as well as
Gaussian visible and binary hidden units. The training methods based on the max-
imum likelihood estimation and related concepts are explained in detail.

Chapter four shows the reformulation of GB-RBMs as an MoG and why the model
is limited in its representational power compared to an unconstrained MoG. The
limitations lead to the conclusion that whitening the input data is an important
preprocessing step. Further, the model is compared to ICA.

Chapter five shows that only whitened data leads to the desired location, orien-
tation and frequency selective features. The results are compared to ICA and MoGs
and the model is trained for different numbers of hidden units. The results for train-
ing the variance are shown and the performance of the different training algorithms
are compared. Finally, the involved hyperparameters are analysed.

1.4 Mathematical Notations

This work tries to follow the common mathematical notions. Special notations are
rare and will be explained at their first occurrence. Although I think that the no-
tations are self explaining, a brief introduction to the frequently used notations is
given here, in order to prepare the reader for this work.
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Vectors are per default column vectors!

Notation Explanation Example

Scalar Lower-case letter x
Vector Lower-case, bold letter x
Matrix Upper-case, bold letter X

PDF Upper-case P or Q P (·)
Unnormalized PDF P or Q with tilde P̃ (·)
Partition function Upper case Z Z

Expectation value Double lined E EP (·)
Average value Angle braces 〈·〉x
Euclidean Norm Double lines ‖ · ‖
Fraction bar Denotes always a component wise division x

y

Multiplication Symbol The cross is used for highlighting a multiplication ×
Matrix/Vector transpose Superscript T, do not confuse with the

temperature parameter T xT

Indexing Indices are lower-case subscript and/or

superscript letters xji
Matrix row selection Denotes a column vector containing the values of

the ith row of matrix X xi∗
Matrix column selection Denotes a column vector containing the values of

the jth column of matrix X x∗j

RBM’s visible values Size Nx1 containing the visible values xi x
RBM’s hidden values Size Mx1 containing the hidden values hj h
RBM’s Weight matrix Size NxM containing the weight values wij W
RBM’s visible bias Size Nx1 containing the visible bias values bi b
RBM’s hidden bias Size Mx1 containing the visible bias values cj c
GRBM’s visible’s variance Size Nx1 containing the variance values σi σ
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2 Natural Images

The biological visual system has evolved over millions of years by adapting to the
sensory input from the individuals’ environment. Accordingly, we assume our visual
system to be adapted to the environment our ancestors have been living in over
millions of years. This environment is obviously the natural environment and not
our mostly artificial environment, like cities, in which we are living today.
The term ”natural images” [21] denotes all photographs showing typical scenes of the
natural environment. Figure 1 shows two examples, which are the kind of sensory
inputs that we assume our visual system has been adapting to.

Figure 1: Two natural images.

Although the sensory input for our visual system is a continuous signal, our retina
as well as digital cameras quantize the signal, which somehow justifies the work with
digital images. Additionally, we assume the information used for analysing a scene
to be mainly independent of color information. This becomes clear if you compare
Figure 1 to Figure 2, which shows the same image but converted to grey scale.
Apart from color depending classification tasks we are able to analyse the scenes
without using color information. Furthermore, using grey scale images reduces the
data dimensionality by a factor of three, which gives a computational advantage.

Let us now consider the set of digital images that show all possible scenes you can
imagine. It contains all possible natural scenes as well as all scenes all humans have
seen in their lifetime and many more. Although this set is already incredibly big it
is only a very small subset of all images that are possible. The biggest subset are

5



Figure 2: The two natural images of Figure 1 converted to grey scale.

noise images and images that look like noise. How big the number of those images
is, compared to images that we denote as meaningful, becomes clear if we generate
random images by setting every pixel randomly and independently. Then all possible
images are equally likely to appear but what we get are only noise images similar to
the image shown in Figure 3.

Figure 3: A noise grey scale image generated by setting each pixel independently to
a random value.
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2.1 Optimal Codes

From an information theoretical point of view we can now argue that a pixelwise
representation of natural images is an inefficient code. This can be formalized using
the Minimum Message Length [42] (MML). It postulates that given an optimal code
Copt, which uses a representation under base b, that the length of the code for an
event E is equal to the negative logarithm of its probability given by:

|Copt (E) |b = − log b (P (E)) , (1)

where | · |b denotes the length of the code under base b. Accordingly, a good code
produces short codes for likely events, long codes for unlikely events and it becomes
optimal if P (E) is the true distribution for all E. Consequently, the search for the
shortest average code length is equivalent to the search for the true PDF.
The average code length is given by:

〈|Copt (E) |〉P (E) =

∫
P (E) |Copt (E) |b dE , (2)

= −
∫
P (E) logb (P (E)) dE , (3)

= Hb[E] , (4)

where Hb[E] denotes the entropy of event E under base b, which is a measure for
uncertainty or unpredictability. Consequently, reducing the average code length is
equivalent to reducing the entropy by choosing a better PDF. Since we are usually
not able to represent the true PDF, a good estimations should represent the most
important structure of the data, which is equivalent to choosing a code with less
redundancy.

We can show that the pixelwise representation of natural images is an inefficient
code, which is the basis for all compression algorithms. Using a code with fixed
length M for all events implies that we assume the events being distributed uni-
formly given by:

− log2 (P (E)) = M , ∀E , (5)

⇔ P (E) = 2−M ,∀E , (6)

⇔ P (E) =
1

2M
, ∀E , (7)

where we used base two because of the computer’s binary representation. If we now
assume the total number of all natural images to be 2M and the number of all other
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possible images to be 2N , then we use N +M bits to represent each image. But we
would only need M bits if we consider only the natural images, which implies N bits
redundant information if we use a code of length N +M .
The assumption that the natural images are uniformly distributed is obviously incor-
rect and therefore a fixed code length cannot be optimal. But as already mentioned,
we are able to generate a better code by finding a PDF that represents the data
better.
A good estimation of a PDF represents the important structure of the data and
therefore the goal becomes to identify the important structure present through all
images. It is obvious to see that neighbouring pixels tend to have a similar color or
grey value. These pixels are dependent and consequently contain redundant infor-
mation. Therefore, a representation where each component is independent of each
other promises to be a more efficient code.

2.2 Independent Components

Two random variable xi and xj are statistically independent if their joint probability
is equivalent to the product of their marginal probabilities given by:

P (xi, xj) = P (xi)P (xj) . (8)

Informally speaking, knowing the value xi does not give us any information about
xj and vice versa. Formally this is denoted by xi⊥⊥xj.
Assume we have two independent variables x′i ∈ [0, 1] and x′j ∈ [0, 1], their joint
probability will be uniform as shown in Figure 4 on the left.
Now consider the same distribution rotated by 30◦ around the origin as shown in
Figure 4 on the right. The new variables xi and xj are not independent any more
since a high value for xi implies a small value for xj and vice versa. Consequently,
the marginal distributions shown beside the axis are not uniform any more. They
look more like a Gaussian distribution, which comes from the central limit theorem.
It states that the sum or mixture of N independent and identically distributed (i.i.d.)
random variables will become more Gaussian as more variables we add. Therefore,
the directions which are most independent are the directions where the marginal
distributions are most non-Gaussian.

Given the rotated data we are able to restore the unrotated version if we know the
transformation that rotates the data to the directions of most non-Gaussianity. This
is known as Independent Component Analysis. But we want to be able to identify

8



Figure 4: (left) Illustration of two random variables drawn independently from a
uniform distribution between [−1,+1]. The histograms along the axis represent the
marginal PDFs. (right) The same distribution rotated by 30◦, where the histograms
show that the variables are distributed more Gaussian like, which implies dependence.

the IC’s under all affine transformations and we know that the IC’s in the inde-
pendent representation are orthogonal. So if we could guarantee that the IC’s are
still orthogonal in the transformed version of the data, then the problem reduces to
finding a rotation matrix as described before.
Luckily there is a transformation which does this, named whitening. Whitening re-
moves the mean of the data and transforms it such that it has unit variance in all, not
only the coordinate axis directions. This causes the IC’s to be orthogonal. There-
fore, whitening is an important preprocessing step for almost all ICA algorithms and
will be discussed in Chapter 4. Figure 5 shows the IC’s for small natural images
patches of size 14 times 14 pixels, which show localization, orientation and frequency
selective (LOFS) structures.

2.3 Early Vision

The discussion so far was motivated by finding a good representation for natural
images. We already mentioned that we assume the visual system to be adapted in
an evolutionary process to natural images. It is therefore most natural to have a
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Figure 5: Independent components of small natural image patches of size 14x14.

closer look to the image processing in our brain.
When neuroscientists analysed the primary visual cortex they found mainly so called
simple cells, which process the visual input received on the retina and preprocessed
in the lateral geniculate nucleus (LGN). These cells have a localized receptive field,
meaning that they are focused on a local subregion of the input signal. A lot of
cells are connected to the same subregion so that all these cells together will rep-
resent the corresponding part of the signal. Consequently, there exist a group of
cells for each subregion. The scientists discovered that the receptive fields within a
group connected to the same subregion, have a similar structure as the IC’s shown
in Figure 5. For comparison see Figure 6, which shows the receptive fields recorded
from a Macaque monkey, which are assumed to be similar to the human simple cell
receptive fields. Each group of cells has in principle the same receptive fields since
they need to be able to model the same input signal. This is motivated by the fact
that the input signal can be shifted around by moving the eyes or the head.
These LOFS receptive fields are often modelled using a two dimensional Gabor func-
tion [23], which is basically a harmonic function multiplied with a Gaussian function
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Figure 6: Receptive fields of simple cells in a Macaque monkey’s brain. Courtesy of
Dario Ringach, UCLA.

given by:

gλ,θ,φ,σ,γ(x, y) = exp

(
− x̃

2 + γ2ỹ2

2σ2

)
cos

(
2π
x̃

λ
+ φ

)
, (9)

with

x̃ = x cos θ + y sin θ , (10)

ỹ = −x sin θ + y cos θ , (11)

where λ is the wavelength of the sinusoidal, θ represents the orientation, φ is the
phase offset, σ is the standard deviation of the Gaussian, γ specifies the ellipticity
of Gabor function.
Figure 7 shows four exemplary receptive fields produced by the Gabor function with
different orientations, frequencies and scales, on the right and the illustration of the
receptive field structure on the left. Dark regions correspond to a negative activation
while light regions correspond to a positive activation. Gabor functions are a very
popular approach for face recognition [14, 45].

The neuroscientist also discovered that the simple cells are rarely active, which means
given an input signal only a few cells are firing at the same time. So that we assume
the IC of natural images to be distributed sparsely [33]. Consequently, also sparse
coding leads to filters similar to the receptive fields of simple cells as shown in [34].
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Figure 7: Illustration of four exemplary Gabor wavelets of different orientation,
frequency and scale.

Simple cells can also be modelled using a standard model neuron, given by:

y = σ

(
N∑
i

wixi

)
(12)

= σ
(
wTx

)
, (13)

where wi are weights, one for each input signal xi and σ(·) is an activation function,
which is usually chosen to be a non linear function like the sigmoid function 1

1+e−x .
The weights describe the receptive field of this cell, so that we can model a simple cell
by choosing the weights to be a receptive field as shown in Figure 6. However, it is
more interesting to see whether model neurons learn filters showing LOFS structures
in an unsupervised way. We therefore need some unsupervised neural network model
that consists of model neurons.
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3 Restricted Boltzmann Machines

This chapter introduces the reader to an unsupervised artificial neural network named
Boltzmann machines. The chapter begins with a general introduction and a detailed
derivation of their more popular variant restricted Boltzmann machines. This is
followed by a detailed discussion of the original restricted Boltzmann machines, which
works on binary data and a variant that allows to handle continuous data like images,
named Gaussian-binary restricted Boltzmann machines. Finally the training and the
related concepts are discussed in detail.

3.1 Boltzmann Machines

A BM [17] is an undirected probabilistic graphical model [5] with stochastic continu-
ous or discrete units. It is often interpreted as a stochastic recurrent neural network
where the state of each unit depends on the units it is connected to. The original BM
has a fully connected graph with binary units, which turns into a Hopfield net if we
choose deterministic rather than stochastic units. But in contrast to Hopfield nets,
a BM is a generative model that allows to generate new samples from the learned
distribution.
Usually the graph of a BM is assumed to be divided into a set of observable visible
units x and a set of unknown hidden units h called visible and hidden layer, respec-
tively. Additionally, the graph has a visible and hidden bias that are units having a
constant input of one.

Figure 8: The graphical structure of a Boltzmann machine given as a complete
undirected graph, with N visible units, M hidden units, visible and hidden bias.
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A graph of a BM with N visible units, M hidden units, visible and hidden bias
is shown in Figure 8. The values for the visible layer are considered to be known
data points, while the hidden units are latent variables forming a conditional hidden
representation of the data. This allows to transfer a given visible state to a hidden
representation and vice versa.

An important property of BMs is that they are stackable, which means that we
are able to train a BM on the hidden representation of another BM. This allows
to construct deep networks [3] for learning complex probability densities where the
layers can be trained one after each other, which makes them become very popular in
the field of deep learning. But BMs are also popular in the field of feature extraction
[24] and dimensionality reduction [16].

3.1.1 Product of Experts and Markov Random Fields

A BM as we will see, is a special case of a Markov Random Field (MRF) [5], which
itself is a special case of a Product of Experts (PoE) [18]. Thus understanding MRFs,
PoEs and how they are related is important for a profound understand of BMs.

A PoE with input variable x and latent variables h, defines a PDF over the given
input space, x,h ∈ X,H by taking the product of individual components φc(x, h).
These components, named experts, are themselves not necessarily normalized prob-
abilistic models, but their product needs to be normalized in order to form a valid
PDF. This is achieved by the normalization constant ZPoE , named partition function,
which integrates over all possible states x̃, h̃ ∈ X̃, H̃. The PoE is defined as:

P PoE (x,h) =
1

ZPoE

C∏
c

φc (x,h) , (14)

with partition function,

ZPoE =

∫ ∫ C∏
c

φc(x̃, h̃) dx̃ dh̃ , (15)

where the corresponding integral turns into a sum over all possible states in the case
of discrete visible or hidden units.
Since we multiply the individual probabilities of the experts, it is obvious that we
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only get a high overall probability if all experts assign high individual probabilities.
The PoE can therefore be interpreted as a council that judges a presented sample as
being important if the judgement is unanimous. This stays in contrast to a mixture
model [5] where the individual probabilities for a presented sample are summed up.
Consequently, in a mixture model an expert or mixture can possibly overrule the
others and the overall probability will only be low if all mixtures assign low proba-
bility.

We now consider the particular case where the experts are chosen from the fam-
ily of exponential functions defined by:

φMRF
c (x, h) = e−

1
T
ψc(x,h) , (16)

where the potential function ψc (x,h) defines the interaction between visible and
hidden units of expert φMRF

c . It can be regularized by the constant T ∈ [1,∞)
known as temperature. If we substitute (16) in (14) it turns out that a PoE model
with exponential experts is an MRF with input variables x and latent variables h,
which is expressed by the Hammersley and Clifford theorem [13]. An MRF is defined
by a Gibbs distribution also known as Boltzmann distribution by:

PMRF (x,h)
(14),(16)
=

1

ZMRF

C∏
c

e−
1
T
ψc(x,h) , (17)

=
1

ZMRF
e−

1
T

∑C
c ψc(x,h) , (18)

=
1

ZMRF
e−

1
T
E(x,h) , (19)

and the partition function becomes,

ZMRF
(15),(16)
=

∫ ∫
e−

1
T
E(x̃,h̃) dx̃ dh̃ . (20)

The function E (x,h) known as energy between x and h, is equivalent to the sum
over the potentials and defines, which and how units interact. It therefore defines
the complexity of the model, which is usually interpreted as a graph.

3.1.2 Boltzmann Machines

While an MRF is a particular case of a PoE, a BM is an MRF with a particular
energy function that leads to a complete undirected graph as shown in Figure 8.
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This implies a fully connected network where the pairwise communication between
two units is symmetrical. The activation of each node is given by the sum over all
values of its incoming connections. A general definition for BMs [44] can therefore
be given by:

EBM (x,h) = −
N,A∑
i,a

bai α
a
i (xi)−

M,D∑
j,d

cdj β
d
j (hj)−

N,M,A,D∑
i,j,a,d

αai (xi)w
ad
ij β

d
j (hj)−

−
N,N,A∑

i,k=i+1,a

αai (xi) v
a
ik α

a
k(xk)−

M,M,D∑
j,l=j+1,d

βdj (hj)u
d
jl β

d
l (hl) . (21)

Where αai (xi) and βdj (hj) are one dimensional transfer functions, mapping a given
input value to a desired feature value. They are the sufficient statistics of the model
and can be arbitrary non-parametrized functions of the input variable xi or hj, re-
spectively, but they need to be independent of the parametrization. The index a
and d denote that there can be multiple transfer functions per variable. The first
sum only depends on the visible units and the second term only depends on the
hidden units, so that bai and c

d
j could be interpreted as the corresponding visible and

hidden bias, respectively. The inter layer connection term wadij connects the visible
units with the hidden units. The intra layer connection term vaij connects the visible
units with each other and udij connects the hidden units with each other, respectively.

This formalism allows to define even complexer BMs where more than two units
interact with each other, named higher order BMs [36]. But a major disadvantage
of BMs in general is that it is usually intractable to calculate the partition function
since the integration over all possible states is only computable for small toy prob-
lems.
Therefore, training BMs is usually done by approximations using sampling methods
[5], which will be described in detail later. So far it is just important to note that for
those sampling methods we need to be able to calculate the conditional probability
of the visible units given the hidden units and vice versa. Using Bayes theorem we
can derive the conditional probability of the hidden units given the visible values
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given by:

PBM (h|x) =
PBM (x,h)∫
PBM (x, h̃) dh̃

, (22)

(19),(21)
=

1
ZBM eEBM (x,h)

1
ZBM

∫
eEBM (x,h̃) dh̃

, (23)

=
eEBM (x,h)∫
eEBM (x,h̃) dh̃

. (24)

Due to the symmetry of a BM we get the conditional probability of the visible units
given the hidden units in the same way. The partition function cancels out but
the equations still contain a high dimensional integration over all possible hidden
values. The exact calculation is usually intractable and even the approximation of
high dimensional integrals is difficult, so that training algorithms become very slow
and they tend to fail for models of moderate size.
An important subclass of BMs having a restricted communication structure allows an
efficient calculation of the conditional probabilities. So that fast inference is possible,
which made restricted BMs become very popular over the last decade.

3.1.3 Restricted Boltzmann Machines

A simplification where all lateral connections between visible units and all lateral
connections between hidden units are removed, is a so called Restricted Boltzmann
Machine (RBM). The RBMs structure is a bipartite graph where visible and hidden
units are pairwise conditionally independent, shown in Figure 9.
Considering the general energy of a BM (21) we get a general definition for an RBM,
if we remove the intra connection terms by setting vij and uij to zero, which leads
to:

ERBM (x,h) = −
N,A∑
i,a

bai α
a
i (xi)−

M,D∑
j,d

cdj β
d
j (hj)−

N,M,A,D∑
i,j,a,d

αai (xi)w
ad
ij β

d
j (hj) . (25)

The general definition for RBMs was given in [44] in a slightly different notation.

The major advantage of RBMs is that the units of the visible layer are conditional
independent and so are the units of the hidden layer. This leads to a general factor-
ization property of RBMs when marginalizing out the visible or hidden units. The
integral over all possible states of the visible layer factorizes into a product of one
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Figure 9: The graphical structure of a restricted Boltzmann machine, given as a
bipartite undirected graph, with N visible units, M hidden units, visible and hidden
bias.

dimensional integrals over all possible values for the corresponding unit. Therefore,
the conditional probability can be calculated efficiently, which makes sampling meth-
ods used for inference work very well for RBMs.
The marginal probability distribution for the visible units is given by:

PRBM (x) =

∫
PRBM (x, h̃) dh̃ , (26)

(19),(20)
=

1

ZRBM

∫
eE

RBM (x,h̃) dh̃ , (27)

(25)
=

1

ZRBM

∫
e
∑

ia b
a
i α

a
i (xi)+

∑
jd c

d
j β

d
j (h̃j)+

∑
ijad α

a
i (xi)w

ad
ij β

d
j (h̃j) dh̃ , (28)

=
1

ZRBM
e
∑

ia b
a
i α

a
i (xi)

∫ M∏
j

e
∑

d c
d
jβ

d
j (h̃j)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (h̃j) dh̃ ,(29)

=
1

ZRBM
e
∑

ia b
a
i α

a
i (xi)

(∫
e
∑

d c
d
1β

d
1 (h̃1)+

∑
iad α

a
i (xi)w

ad
i1 β

d
1 (h̃1) dh̃1

×
∫

e
∑

d c
d
2β

d
2 (h̃2)+

∑
iad α

a
i (xi)w

ad
i2 β

d
2 (h̃2) dh̃2 × . . .

. . .×
∫

e
∑

d c
d
Mβd

M (h̃M )+
∑

iad α
a
i (xi)w

ad
iM βd

M (h̃M ) dh̃M

)
, (30)

=
1

ZRBM
e
∑

ia b
a
i α

a
i (xi)

M∏
j

∫
e
∑

d c
d
jβ

d
j (h̃j)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (h̃j)dh̃j ,(31)
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where × only highlights the multiplication.
It is straightforward to derive the marginal probability distribution for the hidden
units by:

PRBM (h)
(19),(20)
=

1

ZRBM

∫
eE

RBM (x̃,h) dx̃ , (32)

(25)
=

1

ZRBM
e
∑

jd c
d
jβ

d
j (hj)

N∏
i

∫
e
∑

a b
a
i α

a
i (x̃i)+

∑
jad α

a
i (x̃i)w

ad
ij β

d
j (hj)dx̃i .(33)

Using the Bayes theorem [5] it is then possible to formulate the conditional proba-
bility of the hidden units given the visible units by:

PRBM (h|x) =
PRBM (x,h)

PRBM (x)
, (34)

(19),(31)
=

(25))

1
ZRBM e

∑
ia b

a
i α

a
i (xi)+

∑
d c

d
jβ

d
j (hj)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (hj)

1
ZRBM e

∑
ia b

a
i α

a
i (xi)

M∏
j

∫
e
∑

d c
d
jβ

d
j (h̃j)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (h̃j) dh̃j

,(35)

=

e
∑

ia b
a
i α

a
i (xi)

M∏
j

e
∑

d c
d
jβ

d
j (hj)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (hj)

e
∑

ia b
a
i α

a
i (xi)

M∏
j

∫
e
∑

d c
d
jβ

d
j (h̃j)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (h̃j) dh̃j

, (36)

=
M∏
j

e
∑

d c
d
jβ

d
j (hj)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (hj)∫

e
∑

d c
d
jβ

d
j (h̃j)+

∑
iad α

a
i (xi)w

ad
ij β

d
j (h̃j) dh̃j

, (37)

and straightforward the conditional probability of the visible units given the hidden
units by:

PRBM (x|h) =
PRBM (x,h)

PRBM (h)
, (38)

(19),(33),(25)
=

N∏
i

e
∑

a b
a
i α

a
i (xi)+

∑
jad α

a
i (xi)w

ad
ij β

d
j (hj)∫

e
∑

a b
a
i α

a
i (x̃i)+

∑
jad α

a
i (x̃i)w

ad
ij β

d
j (hj) dx̃i

. (39)

Therefore, the conditional probabilities in RBMs are tractable as long as the one
dimensional integrals in (37) and (39) are tractable. The factorization property is
consequently very important and will be used frequently in the following chapters.
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3.1.4 Maximum Likelihood Estimation

It remains the question how MRFs and therefore BMs and RBMs can be trained.
A well studied and widely used technique concerning optimization of parametrized
probabilistic models, is the method of Maximum-Likelihood Estimation (MLE) [5].
In MLE we consider a set of observed variables XD = (x1, . . . ,xD), which are as-
sumed to be i.i.d., which means that XD is a representative, equally distributed
set of independent chosen samples from the unknown underlying distribution F (x).
Furthermore, we have a parametrized model P (x |θ) that defines a probability dis-
tribution over variable x. As the name is suggesting, in MLE we want the probability
of the data under the model to be maximal. We therefore want to find the optimal
parametrization θopt, which maximizes the likelihood P (x |θ).
Since we claimed the data XD being i.i.d., the probability distribution simplifies to
the product of the probabilities for each data point. Moreover it is common to use
the logarithm of the likelihood, which has the advantage that products turn into a
sum of logarithms. This is valid because the logarithm is a monotonically increasing
function and therefore maximizing the likelihood is equivalent to maximizing the
Log-Likelihood (LL). The LL is defined as:

L (XD |θ) = lnP (x1, . . . ,xD |θ) , (40)

= ln
D∏
i

P (xi |θ) , (41)

=
D∑
i

lnP (xi |θ) . (42)

From a different perspective we want the model distribution P (x |θ) as close as
possible to the true distribution F (x). The Kullback-Leibler-Divergence is a non
symmetric measure for the difference of two probability density functions (PDF) P
and Q defined by:

KL (P ||Q) =

∫ −∞

∞
P (x) ln

P (x)

Q(x)
dx . (43)

So that the Kullback-Leibler-Divergence between the true data distribution and the
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parametrized model distribution becomes:

KL (F (x) ||P (x |θ)) =

∫ −∞

∞
F (x) ln

F (x)

P (x |θ)
dx , (44)

=

∫ −∞

∞
F (x) lnF (x) dx−

∫ −∞

∞
F (x) lnP (x |θ) dx. (45)

= EF (x) [ lnF (x) ]− EF (x) [ lnP (x |θ) ] , (46)

where EF (x) [ · ] denotes the expectation value over F (x). The first term is con-
stant since F (x) is constant and therefore the Kullback-Leibler Divergence is min-
imal when the second term is maximal. The second term is just the expected LL,
which turns into 1

D

∑D
d=1 lnP (xd |θ) for finite data and is equivalent to the average

LL: 1
D
L (XD |θ) = 1

D

∑D
d=1 L (xd |θ) . So that minimizing the Kullback-Leibler-

Divergence is equivalent to maximizing the LL.

3.1.5 Maximum Likelihood Estimation in Markov Random Fields

For MRFs the parametrization of the LL function (42) is defined in the models energy
(19). The LL of MRFs for a value x and a given parametrization of the energy θ is
then given by:

LMRF (x |θ) (42)
= lnPMRF (x |θ) , (47)

= ln

∫
PMRF (x,h |θ) dh , (48)

(19)
= ln

∫
1

ZMRF
e−

1
T
E(x,h) dh , (49)

= ln

∫
e−

1
T
E(x,h) dh− lnZBM , (50)

(20)
= ln

∫
e−

1
T
E(x,h) dh− ln

∫ ∫
e−

1
T
E(x̃,h̃) dx̃ dh̃ . (51)

Maximizing the LL-function is usually done using gradient based optimization meth-
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ods. The gradient of the LL (51) with respect to the parameters θ is given by:

∂ LMRF (x |θ)
∂θ

(51)
=

∂

∂θ

(
ln

∫
e−

1
T
E(x,h) dh

)
− ∂

∂θ

(
ln

∫ ∫
e−

1
T
E(x̃,h̃) dx̃ dh̃

)
,(52)

=
1∫

e−
1
T
E(x,h) dh

∫
∂

∂θ
e−

1
T
E(x,h) dh

− 1∫ ∫
e−

1
T
E(x̃,h̃) dx̃ dh̃

∫ ∫
∂

∂θ
e−

1
T
E(x̃,h̃) dx̃ dh̃ , (53)

= − 1∫
e−

1
T
E(x,h) dh

∫
e−

1
T
E(x,h)

1
T
∂E(x,h)

∂θ
dh

+
1∫ ∫

e−
1
T
E(x̃,h̃) dx̃ dh̃

∫ ∫
e−

1
T
E(x̃,h̃)

1
T
∂E(x̃, h̃)

∂θ
dx̃ dh̃ , (54)

(19,20)
= − 1

ZMRF

∫
PMRF (x,h) dh

∫
ZMRFPMRF (x,h)

1
T
∂E(x,h)

∂θ
dh

+
1

ZMRF

∫ ∫
ZMRFPMRF (x̃, h̃)

1
T
∂E(x̃, h̃)

∂θ
dx̃ dh̃ , (55)

= −
∫
PMRF (x,h)

PMRF (x)

1
T
∂E(x,h)

∂θ
dh

+

∫ ∫
PMRF (x̃, h̃)

1
T
∂E(x̃, h̃)

∂θ
dx̃ dh̃ , (56)

= −
∫
PMRF (h |x)

1
T
∂E(x,h)

∂θ
dh

+

∫
PMRF (x̃)

∫
PMRF (h̃ | x̃)

1
T
∂E(x̃, h̃)

∂θ
dh̃ dx̃ , (57)

= −EPMRF (h |x)

[ 1
T
∂E(x,h)

∂θ

]
+ EPMRF (h̃ , x̃)

[
1
T
∂E(x̃, h̃)

∂θ

]
.(58)

Where (58) highlights that the first term in (57) calculates the expectation of the
hidden probabilities given the data under the current model and the second term in
(57) calculates the expectation of the joint probability of visible and hidden units
under the current model.
Some special MRFs allow exact inference, like MRFs, for example, where the energy
defines a tree structure. In most cases nevertheless, the exact calculation of the
gradient is intractable since it still involves an integration over all possible states.
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If we are able to approximate these expectations efficiently and reliably, which is
especially the case for RBMs, inference becomes possible.

3.2 Binary-Binary Restricted Boltzmann Machines

A Binary-Binary Restricted Boltzmann Machine (BB-RBM) is the original variant
of RBMs, which was first proposed in [17]. It has binary units on the visible and the
hidden layer. Therefore, the input data x needs to have a binary representation and
the hidden representation h will also be binary, i.e. xi ∈ {0, 1}, hj ∈ {0, 1}.

3.2.1 Energy Function

In the original form of a BB-RBM each visible unit xi has a bias scalar bi and
each hidden unit hj a bias scalar cj, respectively. The visible and hidden units are
connected via a weight scalar wij and the transfer functions and the parametrization
of the general RBM (25) become simply the identity:

α1
i (xi) = xi , (59)

β1
j (hj) = hj , (60)

b1i = bi , (61)

c1j = bj , (62)

w11
ij = wij , (63)

where A and D in (25) was set to one. The corresponding energy function for a
BB-RBM is then given by:

EBB (x,h)
(25)
= −

N∑
i

b1iα
1
i (xi)−

M∑
j

c1j β
1
j (hj)−

N,M∑
ij

α1
i (xi)w

11
ij β

1
j (hj) ,(64)

(59),(60),(61)
=

(62),(63)
−

N∑
i

bi xi −
M∑
j

cj hj −
N,M∑
ij

xiwij hj , (65)

= −xTb− cTh− xTWh , (66)

where the second equation is given in clearer matrix vector notation.
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3.2.2 Joint Probability Density Function

Substituting the BB-RBM energy (66) into the general joint probability of MRFs
(19) we obtain the corresponding PDF for a BB-RBM as:

PBB (x,h)
(19),(66)
=

1

ZBB
exTb+cTh+xTWh , (67)

(19),(65)
=

1

ZBB
e
∑N

i bi xi+
∑M

j cj hj+
∑N,M

ij xi wij hj , (68)

=
1

ZBB

N,M∏
ij

e bi xi+cj hj+xi wij hj , (69)

=
1

ZBB

N,M∏
ij

φBB
ij (xi, hj) , (70)

and the partition function becomes,

ZBB
(20),(66)
=

X̃∑
x̃

H̃∑
h̃

e x̃Tb+cT h̃+x̃TWh̃ , (71)

=
X̃∑
x̃

H̃∑
h̃

N,M∏
ij

φBB
ij (x̃i, h̃j) , (72)

where the temperature is assumed being one if not stated otherwise for reasons of
readability. Equations (70) and (72) show that we are indeed having a PoE model
(14) where φBB

ij represents the corresponding experts (16).

3.2.3 Marginal Probability Density Functions

Since we usually do not know the corresponding hidden representation, one would
like to know the probability of a given input sample independently. Due to general
factorization property (31), we could easily marginalize over all hidden states H̃. So
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that the marginal probability distribution of x is given by:

PBB (x) =
H̃∑
h̃

PBB(x, h̃) , (73)

(67)
=

1

ZBB

H̃∑
h̃

exTb+cT h̃+xTWh̃ , (74)

=
1

ZBB
exTb

H̃∑
h̃

e
∑M

j (cj+xTw∗j)h̃j , (75)

=
1

ZBB
exTb

H̃∑
h̃

M∏
j

e(cj+xTw∗j)h̃j , (76)

=
1

ZBB
exTb

∑
h̃1

e(c1+xTw∗1) h̃1 ×
∑
h̃2

e(c2+xTw∗2) h̃2 ×

. . . ×
∑
h̃M

e(cM+xTw∗M) h̃M

 , (77)

=
1

ZBB
exTb

M∏
j

∑
h̃j

e(cj+xTw∗j)h̃j , (78)

=
1

ZBB
exTb

M∏
j

(
1 + e cj+xTw∗j

)
, (79)

=
1

ZBB

M∏
j

φ̃BB
j (x) , (80)

where φ̃BB
i are the individual statistical independent experts for the visible units and

w∗j is a column vector containing the values of the jth column of the weight matrix.
Due to the symmetry between visible and hidden layer of RBMs, it is straightforward
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to derive the marginal probability distribution of the hidden variables by:

PBB (h)
(67)
=

1

ZBB
e cTh

N∏
i

(
1 + e bi+wT

i∗h
)
, (81)

=
1

ZBB

N∏
i

φ̄BB
i (h) , (82)

where wT
i∗ is a column vector, containing the values of the ith row of the weight

matrix and φ̄BB
i are the individual statistical independent experts for the hidden

units.
Furthermore, the RBMs factorization property allows also to simplify the calculation
of the partition function in exactly the same way. We are able to marginalize out
the visible or hidden units and the partition function becomes:

ZBB
(71)
=

X̃∑
x̃

e x̃Tb

M∏
j

(
1 + e cj+x̃Tw∗j

)
, (83)

=
H̃∑
h̃

e cT h̃

N∏
i

(
1 + e bi+wT

i∗h̃
)
. (84)

This allows to calculate the partition function if the number of visible units or the
number of hidden units is small enough, i.e. up to 25 units on normal computers,
which allows a calculation without parallelization within minutes.
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3.2.4 Conditional Probability Density Functions

Using the Bayes theorem it is now possible to formulate the conditional probability
of the hidden units given the visibles:

PBB(h|x) =
PBB (x,h)

PBB (x)
, (85)

(67),(79)
=

1
ZBB

exTb+cTh+xTWh

1
ZBB

exTb
∏M

j

(
1 + e cj+xTw∗j

) , (86)

=
exTb e

∑M
j (cj+xTw∗j)hj

exTb
∏M

j

(
1 + e cj+xTw∗j

) , (87)

=
M∏
j

e(cj+xTw∗j)hj

1 + e cj+xTw∗j
, (88)

=
M∏
j

PBB(hj |x) . (89)

Further on, we get the probability of a particular hidden unit hj ∈ {0, 1} being active
given a visible state x by:

PBB (hj = 1 |x) (88)
=

e(cj+xTw∗j)hj

1 + e cj+xTw∗j
, (90)

(since hj=1)
=

ecj+xTw∗j

1 + e cj+xTw∗j
, (91)

=

1

e(−cj−xTw∗j)

1 + 1

e(−cj−xTw∗j)

, (92)

=
1

1 + e(−(cj+xTw∗j))
. (93)

And straightforward the probability of hj ∈ {0, 1} being inactive is given by:

PBB (hj = 0 |x) (88)
=

e(cj+xTw∗j)hj

1 + e cj+xTw∗j
, (94)

(since hj=0)
=

1

1 + e−(−cj−xTw∗j)
. (95)

Astonishingly the natural outcome is the Sigmoid function 1
1+e−x , which is frequently

used in artificial neural networks as non-linear activation function.
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Less surprisingly, due to the symmetry of RBMs we get the conditional probabil-
ity of the visible units given the hiddens in a straightforward manner by:

PBB(x|h) (69),(79)
=

N∏
i

e(bi+wT
i∗h)xi

1 + e bi+wT
i∗h

, (96)

=
N∏
i

PBB(xi |h) , (97)

with a particular visible unit being active and inactive, respectively by:

PBB(x = 1|h) (96)
=

1

1 + e bi+wT
i∗h

. (98)

PBB(x = 0|h) (96)
=

1

1 + e−bi−wT
i∗h

. (99)

3.2.5 Log Likelihood Gradients

If we want to train a BB-RBM by maximizing the LL (51), which is the usual way,
we need to be able to calculate the LL-Gradient (57). Since we have already derived
the necessary probabilities PBB(x|h) and PBB(x) it remains the derivative of the
particular BB-RBM energy function. The partial derivative with respect to the
parameters θ = {W, b, c } is given by:

∂EBB (x,h)

∂W
= −xhT . (100)

∂EBB (x,h)

∂b
= −x . (101)

∂EBB (x,h)

∂c
= −h . (102)

We get the partial derivative of the BB-RBM LL-Gradient (57) with respect to a
weight parameter wi,j by:

∂ LBB (x | θ )
∂wij

(57),(100)
=

H∑
h

PBB(h |x) xihj −
X̃∑
x̃

PBB(x̃)
H̃∑
h̃

PBB(h̃ | x̃) x̃ih̃j ,(103)

(113)
= PBB(hj = 1 |x)xi −

X̃∑
x̃

PBB(x̃)PBB(h̃j = 1 | x̃) x̃i , (104)

= PBB(hj = 1 |x)xi − EPBB (x̃)

[
PBB(h̃j = 1 | x̃) x̃i

]
, (105)
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where we used the general factorization property of the marginal probability distri-
bution as follows:

H∑
h

PBB(h |x)xihj =
H∑
h

(
M∏
l=1

PBB(hl |x)

)
xihj (106)

= xi

H∑
h

hj

M∏
l=1

PBB(hl |x) , (107)

= xi
∑
h1

. . .
∑
hj−1

∑
hj

∑
hj+1

. . .
∑
hM

hj

M∏
l=1

PBB(hl |x) , (108)

= xi ×
∑
h1

PBB(h1 |x)× . . .×
∑
hj−1

PBB(hj−1 |x)×∑
hj=l

PBB(hj |x)hj ×
∑
hj+1

PBB(hj+1 |x)× . . . (109)

. . .×
∑
hM

PBB(hM |x) , (110)

= xi × 1× . . .× 1×
∑
hj=l

PBB(hj |x)hj × 1× . . .× 1 ,(111)

= xi (PBB(hj = 0 |x) 0 + PBB(hj = 1 |x) 1) , (112)

= PBB(hj = 1 |x) xi . (113)

The partial derivative of BB-RBM LL with respect to bi then becomes,

∂ LBB (x | θ )
∂bi

(57),(101)
=

H∑
h

PBB(h |x)xi −
X̃∑
x̃

PBB(x̃)
H̃∑
h̃

PBB(h̃ | x̃) x̃i , (114)

= xi

H∑
h

PBB(h |x)−
X̃∑
x̃

PBB(x̃)x̃i

H̃∑
h̃

PBB(h̃ | x̃) , (115)

= xi −
X̃∑
x̃

PBB(x̃) x̃i , (116)

= xi − EPBB (x̃) [x̃i] , (117)
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and the partial derivative of BB-RBM LL with respect to cj,

∂ LBB (x | θ )
∂cj

(57),(102)
=

H∑
h

PBB(h |x)hj −
X̃∑
x̃

PBB(x̃)
H̃∑
h̃

PBB(h̃ | x̃) h̃j , (118)

(113)
= PBB(hj = 1 |x)−

X̃∑
x̃

PBB(x̃)PBB(h̃j = 1 | x̃) , (119)

= PBB(hj = 1 |x)− EPBB (x̃)

[
PBB(h̃j = 1 | x̃)

]
, (120)

where we used the factorization property for xi in an equivalent way as shown in
(113).

3.2.6 Other Types of Units

In the original definition of BMs [2], the visible and hidden units have binary values.
However, in most cases the input data is coming from a continuous rather than a
binary domain. Therefore, it would be of most interest to have the opportunity to
choose continuous units as well.
An easy way, making the original BM handle continuous data is simply to rescale the
data into the interval [0, 1] and considering it as the probability for the corresponding
unit taking the value one. However, the model is still assuming an underlying binary
representation, so that this variant usually works not very well.
If we assume the data coming truly from the interval [0,∞) the conditional prob-
abilities (97) become exponential densities. This causes the normalization constant
not to exist in each case so that truncated exponentials over the interval [0, 1] are
used instead, which leads to the so called Truncated Exponential RBMs [15]
A natural assumption when dealing with continuous variables is assuming them to
be Gaussian distributed and therefore, a distribution over R . This leads to the so
called Gaussian-Binary RBM, which has been used successfully to model continuous
domains and will be discussed in the next chapter.
So far we considered only the visible layer to have continuous values but one can also
think of RBMs with continuous visible and hidden layer like a Gaussian-Gaussian
RBM for example. But as we will see, training an RBM with continuous visible and
binary hidden layer tends to be difficult already. Furthermore this training issue be-
comes crucial when having only continuous units since they get much more effected
to sampling noise. This makes them uninteresting in practice although a completely
continuous network seems to be the more powerful configuration.
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3.3 Gaussian-Binary Restricted Boltzmann Machines

The original formulation of RBMs assumes the input data having a binary repre-
sentation, but in many cases the input data is coming from a continuous domain.
A popular variant of the BB-RBM is a so called Gaussian-Binary RBM (GB-RBM)
[16], which assumes the input values xi ∈ [−∞,+∞] being normally distributed with
mean bi and variance σ2

i . The hidden units are still binary distributed, hj ∈ {0, 1}
so that a GB-RBM transfers the continuous input data to a binary representation.

3.3.1 Energy Function

The energy of the GB-RBM can be derived from the general RBM (25) by setting
A = 3 and D = 1 with the corresponding transfer functions:

α1
i (xi) = −x2i , (121)

α2
i (xi) = xi , (122)

α3
i (xi) = 1 , (123)

β1
j (hj) = hj , (124)

(125)

and the corresponding parameters are chosen as follows:

b1i =
1

2σ2
i

, (126)

b2i =
bi
σ2
i

, (127)

b3i = − b2i
2σ2

i

, (128)

c1j = cj , (129)

w11
ij = 0 , (130)

w21
ij =

wij
σ2
i

, (131)

w31
ij = 0 . (132)
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The corresponding energy function for a GB-RBM is then given by:

EGB (x,h)
(25)
= −

N∑
i

b1iα
1
i (xi)−

N∑
i

b2iα
2
i (xi)−

N∑
i

b3iα
3
i (xi)

−
M∑
j

c1j β
1
j (hj)−

N,M∑
ij

α1
i (xi)w

11
ij β

1
j (hj)

−
N,M∑
ij

α2
i (xi)w

21
ij β

1
j (hj)−

N,M∑
ij

α3
i (xi)w

31
ij β

1
j (hj) , (133)

(121),...,(132)
=

N∑
i

x2i
2σ2

i

−
N∑
i

xi bi
σ2
i

+
N∑
i

b2i
2σ2

i

−
M∑
j

cj hj (134)

−
N,M∑
ij

xiwij hj
σ2
i

,

=
N∑
i

(xi − bi)2

2σ2
i

−
M∑
j

cj hj −
N,M∑
ij

xiwij hj
σ2
i

, (135)

=

∥∥∥∥x− b

2σ

∥∥∥∥2 − cTh−
( x

σ2

)T
Wh . (136)

where the second equation is given in clearer matrix vector notation and the fraction
bar denotes the component wise division.
Notice that there exists a slightly different formulation of the GB-RBM energy [24],
where the quadratic term (123) uses σi instead of σ2

i . But as stated in [6], this leads
to a counter intuitive scaling of the conditional mean by σ2

i , so that in this work a
GB-RBM is always considered to be defined as (136).
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3.3.2 Joint Probability Density Function

Equivalent as for the BB-RBM, we substitute the GB-RBM energy (136) into the
general joint probability (19) and obtain the corresponding joint PDF as:

PGB (x,h)
(19),(136)

=
1

ZGB
e−‖

x−b
2σ ‖

2
+cTh+( x

σ2 )
T
Wh , (137)

(19),(135)
=

1

ZGB
e
−

∑N
i

(xi−bi)
2

2σ2
i

+
∑M

j cj hj+
∑N,M

ij

xi wij hj

σ2
i , (138)

=
1

ZGB

N,M∏
ij

e
− (xi−bi)

2

2σ2
i

+cj hj+
xi wij hj

σ2
i , (139)

=
1

ZGB

N,M∏
ij

φGB
ij (xi, hj) (140)

with partition function,

ZGB
(20),(136)

=

∫ H̃∑
h̃

e−‖ x̃−b
2σ ‖

2
+cT h̃+( x̃

σ2 )
T
Wh̃ dx̃ , (141)

=

∫ H̃∑
h̃

N,M∏
ij

φGB
ij (x̃i, h̃j) dx̃ , (142)

where again, the temperature is assume to be one if not stated otherwise.
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3.3.3 Marginal Probability Density Functions

In the same way as shown in (73), we get the probability for x by marginalization
over the hidden values:

PGB (x) =
H̃∑
h̃

PGB(x, h̃) , (143)

(137)
=

1

ZGB

H̃∑
h̃

e−‖x−b
2σ ‖

2
+cT h̃+( x

σ2 )
T
Wh̃ , (144)

=
1

ZGB
e−‖x−b

2σ ‖
2
M∏
j

(
1 + e cj+(

x
σ2 )

T
w∗j h̃j

)
, (145)

=
1

ZGB

M∏
j

φ̃GB
j (x) . (146)
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For the marginal probability density of h we integrate over all possible visible values.
By using the general factorization property the marginal probability of h becomes:

PGB (h) =

∫
PGB(x̃,h) dx̃ , (147)

(137)
=

1

ZGB

∫
e−‖

x̃−b
2σ ‖

2
+cTh+( x̃

σ2 )
T
Wh dx̃ (148)

=
1

ZGB
ec

Th

∫ N∏
i

e
− (x̃i−bi)

2

2σ2
i

+
x̃iw

T
i∗h

σ2
i dx̃ (149)

=
1

ZGB
ec

Th

(∫
e
− (x̃1−b1)

2

2σ2
1

+
x̃1w

T
1∗h

σ2
1 dx̃1 ×

∫
e
− (x̃2−b2)

2

2σ2
2

+
x̃2w

T
2∗h

σ2
2 dx̃2 × (150)

. . .×
∫

e
− (x̃N−bN )2

2σ2
N

+
x̃NwT

N∗h
σ2
N dx̃N

)
(151)

=
1

ZGB
ec

Th

N∏
i

∫
e
− (x̃i−bi)

2−2x̃iw
T
i∗h

2σ2
i dx̃i (152)

=
1

ZGB
ec

Th

N∏
i

∫
e
− x̃2i−2x̃i(bi+wT

i∗h)+b2i
2σ2

i dx̃i (153)

=
1

ZGB
ec

Th

N∏
i

∫
e
− x̃2i−2x̃i(bi+wT

i∗h)+(bi+wT
i∗h)2−(bi+wT

i∗h)2+b2i
2σ2

i dx̃i (154)

=
1

ZGB
ec

Th

N∏
i

∫
e
− (x̃i−(bi+wT

i∗h))2−b2i−2biw
T
i∗h−(wT

i∗h)2+b2i
2σ2

i dx̃i (155)

=
1

ZGB
ec

Th

N∏
i

e
2biw

T
i∗h+(wT

i∗h)2

2σ2
i

∫
e
− (x̃i−bi−wT

i∗h)2

2σ2
i dx̃i (156)

=
1

ZGB
ec

Th

N∏
i

√
2πσ2

i e
2biw

T
i∗h+(wT

i∗h)2

2σ2
i (157)

=
1

ZGB
ec

Th

N∏
i

√
2πσ2

i e
|| bi+wT

i∗h
2σ2

i

||2−|| bi
2σ2

i

||2
(158)

=
1

ZGB

N∏
i

φ̄GB
i

(
h̃
)

(159)
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The calculation of the partition function is therefore simplified by the factorization
via h or x given by:

ZGB
(141)
=

∫
e−‖x−b

2σ ‖
2
M∏
j

(
1 + e cj+(

x
σ2 )

T
w∗j

)
dx , (160)

=
M̃∑
h̃

ec
Th

N∏
i

√
2πσ2

i e
|| bi+wT

i∗h
2σ2

i

||2−|| bi
2σ2

i

||2
, (161)

where (160) is still computational intractable also for very small RBMs due to the
need for numerical integration in high dimensional spaces. But (161) allows to cal-
culate the partition function via factorization over x for small hidden layers.

3.3.4 Conditional Probability Density Functions

Equivalent to the BB-RBM we get the conditional probability of the hidden units
given the visibles:

PGB(h|x) =
PGB (x,h)

PGB (x)
, (162)

(137),(145)
=

1
ZGB

e−‖x−b
2σ ‖

2
+cTh+( x

σ2 )
T
Wh.

1
ZGB

e−‖x−b
2σ ‖

2∏M
j

(
1 + e cj+(

x
σ2 )

T
w∗j

) , (163)

=
e
∑M

j

(
cj+( x

σ2 )
T
w∗j

)
hj∏M

j

(
1 + e cj+(

x
σ2 )

T
w∗j

) , (164)

=
M∏
j

e

(
cj+( x

σ2 )
T
w∗j

)
hj

1 + e cj+(
x
σ2 )

T
w∗j

, (165)

=
M∏
j

PGB (hj |x) . (166)
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Further on, the probability of a particular hidden unit hj being active given a visible
state x is:

PGB (hj = 1 |x) (88)
=

e

(
cj+( x

σ2 )
T
w∗j

)
hj

1 + e cj+(
x
σ2 )

T
w∗j

, (167)

=
1

1 + e−(cj+( x
σ2 )

T
w∗j)

, (168)

and therefore the probability of hj being inactive is given by:

PGB (hj = 0 |x) = 1− PGB (hj = 1 |x) , (169)

=
1

1 + e
−
(
−cj−( x

σ2 )
T
w∗j

) . (170)

When deriving the conditional probability for the visible units, the particular defini-
tion of the energy and the name Gaussian-Binary RBM finally becomes clear. Since
it turns out that the probability for the visible units given the hidden units, is the
product over N independent Gaussians distributed random variables given by:
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PGB (x|h) =
PGB (x,h)

PGB (h)
, (171)

(138),(157)
=

1
ZGB

e−‖
x−b
2σ ‖

2
+cTh+( x

σ2 )
T
Wh

1
ZGB

ecTh
N∏
i

√
2πσ2

i e
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T
i∗h+(wT

i∗h)2

2σ2
i

, (172)

=

N∏
i

e
− (xi−bi)

2

2σ2
i

+
xiw

T
i∗h

σ2
i

N∏
i

√
2πσ2

i e
2biw

T
i∗h+(wT

i∗h)2

2σ2
i

, (173)

=
N∏
i

1√
2πσ2

i

e
−x2i−2bixi+b2i−2xiw

T
i∗h

2σ2
i

e
2biw

T
i∗h+(wT

i∗h)2

2σ2
i

, (174)

=
N∏
i

1√
2πσ2

i

e

−(x2i−2bixi+b2i−2xiw
T
i∗h+2biw

T
i∗h+(wT

i∗h)2)
2σ2

i , (175)

=
N∏
i

1√
2πσ2

i

e
−
(xi−bi−wT

i∗h)
2

2σ2
i , (176)

=
N∏
i

N
(
xi|bi +wT

i∗h, σ
2
i

)
. (177)

So that the PDF for a single visible unit is a normal distribution with mean bi+wT
i∗h

and variance σ2
i .
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3.3.5 Log Likelihood Gradients

For the calculation of LL-Gradient (57), we need the derivatives of the GB-RBM
energy function with respect to the parameters θ = {W, b, c, σ } given by:

∂EGB (x,h)

∂W
= − x

σ2
hT . (178)

∂EGB (x,h)

∂b
= −x− b

σ2
. (179)

∂EGB (x,h)

∂c
= −h . (180)

∂EGB (x,h)

∂σ
= −

∥∥∥∥x− b

σ
√
σ

∥∥∥∥2 + (2x

σ3

)T
Wh . (181)

The derivative of the BB-RBM energy (100) and GB-RBM energy (178) with respect
to the weights only differ in the scaling by σ2. Therefore, the partial derivative of
the LL-Gradient (57) with respect to the weight parameters wi,j only differs by the
scaling of sigma σ2, given by:

∂ LGB (x | θ )
∂wij

(57)
=

(178)

H∑
h

PGB(h |x) xihj
σ2
i

−
∫
PGB(x̃)

H̃∑
h̃

PGB(h̃ | x̃) x̃ih̃j
σ2
i

dx̃ , (182)

=

∑H
h P

GB(h |x)xihj −
∫
PGB(x̃)

∑H̃
h̃ P

GB(h̃ | x̃) x̃ih̃j dx̃
σ2
i

, (183)

(104)
=

1

σ2
i

(
PGB(hj = 1|x)xi

−
∫
PGB(x̃)PGB(h̃j = 1| x̃) x̃i dx̃

)
, (184)

=
1

σ2
i

(
PGB(hj = 1|x)xi − EPGB (x̃)

[
PGB(h̃j = 1| x̃) x̃i

])
, (185)
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The partial derivative of GB-RBM LL with respect to bi becomes:

∂ LGB (x | θ )
∂bi

(57),(179)
=

H∑
h

PGB(h |x) xi − bi
σ2
i

−
∫
PGB(x̃)
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=
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σ2
i

H∑
h

PGB(h |x)
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=
1

σ2
i
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∫
PGB(x̃) (x̃i − bi) dx̃

)
, (188)

=
1

σ2
i

(
xi − bi − EPGB (x̃) [x̃i − bi]

)
, (189)

where we used that
∑H

h P
GB(h |x) = 1.

The derivative of the BB-RBM energy (100) and GB-RBM energy (178) with respect
to the hidden bias are equivalent, so that also the partial derivative of the LL-
Gradient (57) with respect to the hidden bias parameters cj are equivalent, given
by:

∂ LGB (x | θ )
∂cj

(57),(102)
= PGB(hj = 1 |x)− EPGB (x̃) PGB(h̃j = 1 | x̃) . (190)
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Finally, the partial derivative of GB-RBM LL with respect to σi is given by:

∂ LGB (x | θ )
∂σi

(57),(181)
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where we used the factorization property again, which is not as obvious in this case
as for the weight parameters. Therefore, the detailed derivation is given by:

H∑
h

PGB(h |x) (xi − bi)
2 − 2xiw
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i∗h

σ3
i
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3.4 Training Boltzmann Machines

The gradient for MRFs (58), defined as the difference of two expectation values is
not tractable in the case of BMs, so that we need to use approximation methods
instead.
In general it is possible to estimate an expectation sufficiently well by a finite sum
of samples drawn independently from the corresponding distribution [5]. We could
therefore approximate the gradient for MRFs (58) by:

∂ LMRF (x |θ)
∂θ

= −EPMRF (h |x)

[ 1
T
∂E(x,h)

∂θ

]
+EPMRF (x̃)

[
EPMRF (h̃ | x̃)

[
1
T
∂E(x̃, h̃)

∂θ

]]
, (203)

≈ −

〈
1
T
∂E(xd,hd)

∂θ

〉
PMRF (hd |xd)

+

〈 1
T
∂E(xm,hm)

∂θ

〉
PMRF (hm |xm)

,(204)

= −
〈 1

T
∂E(x,h)

∂θ

〉
data

+

〈 1
T
∂E(x,h)

∂θ

〉
model

, (205)

where in general 〈 · 〉P ( · ) denotes the average over the samples coming from the prob-
ability distribution P ( · ). The approximation (204) is only reliable if the samples
xd are drawn independently form the data distribution and the samples xm are
drawn independently from the current model distribution. We are then able to
choose the most likely hidden states using the corresponding conditional probability
PMRF (hd |xd ) and PMRF (hm |xm ), respectively.
Since we assumed the data being i.i.d. the first term in (205) can be calculated
directly using the data and the sampled hidden states. But we encounter a problem
when we want to estimate the second term, since we do not have any independently
drawn samples from the current model distribution. Consequently, we need a method
to generate samples from the model distribution.

3.4.1 Markov Chain Monte Carlo Methods

Markov Chain Monte Carol methods (MCMC) [31] are widely used techniques for
numerical sampling. They allow sampling from a large class of distributions includ-
ing Boltzmann distributions and therefore MRFs. Furthermore MCMC scale well
with the dimensionality of the data, which made them become very popular espe-
cially in the context of probabilistic machine learning models. An advisably general
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introduction to sampling methods that goes beyond the brief introduction of this
work is given in [5].

Suppose we have a distribution P (x) = 1
Z
P̃ (x), we call desired distribution. We

cannot sample easily from this distribution, but we are able to evaluate the un-
normalized probability P̃ (x) efficiently, as it is the case for BMs for example. The
fundamental idea of most sampling algorithms is, to choose a so called proposal
distribution Q(x) from which we are able generate samples of. Samples from the
proposal distribution are then accepted as samples from the desired distribution if
they fulfil an appropriate acceptance criterion. Consequently, Q(x) should be chosen
as similar as possible to P (x) but as simple as necessary to be able to sample from
it easily.
For MCMC, the proposal distribution is conditioned on the previous sample by
Q(x(N+1) |x(N)), so that the samples form a Markov chain. A Markov chain is a
sequence of random variables x(1),x(2), · · · ,x(N) that fulfil the Markov property. The
Markov property, which strictly speaking means the first-order Markov property, ex-
presses that the next variable in the sequence only depends on the current variable,
defined by:

P (x(N+1) |x(N) , · · · ,x(1)) = P (x(N+1) |x(N)) . (206)

This definition could also be extended to the N th-order Markov property where the
current variable only depends on the N th previous variables. For convenience the
first order Markov property is assumed if no order is mentioned explicitly.

The first MCMC algorithm was the basic Metropolis algorithm, which assumes the
proposal distribution to be symmetric, Q(x(N+1) |x(N)) = Q(x(N)|x(N+1)). It defines
an acceptance probability for a new sample x(N+1) from the proposal distribution by
the ratio of current sample’s and the new sample’s probability under the desired
distribution. The Metropolis acceptance ratio is therefore defined as:

AMR(x(N+1) , x(N)) = min

(
1 ,

P̃ (x(N+1))

P̃ (x(N))

)
, (207)

where the partition function has cancelled out. But usually, as it is the case in
BMs, the proposal distribution is not symmetric. The Metropolis-Hastings accep-
tance ratio, generalizes the Metropolis ratio to non symmetric proposal distributions
by taking into account how likely the samples are under the proposal distribution.
It therefore multiplies the Metropolis ratio by the ratio between the probability that
the current sample generates the next sample Q(x(N+1)|x(N)) and the probability
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that the next sample generates the current sample Q(x(N)|x(N+1)), under the pro-
posal distribution. The Metropolis-Hastings ratio is therefore defined as:

AMHR(x(N+1) , x(N)) = min

(
1 ,

P̃ (x(N+1))Q(x(N)|x(N+1))

P̃ (x(N))Q(x(N+1) |x(N))

)
. (208)

Obviously symmetric proposal functions cancel out so that the Metropolis Hastings
ratio reduces to the standard Metropolis ratio in that case.

Algorithm 1 Metropolis Hastings Algorithm

Require: N , k , x(init) , P̃ ( · ) , Q( · | · )
S← { }
x(0) ← x(init)

i← 0
while i < N do

u← 0
while u < k do

x(1) ∼ Q(x |x(0))
if AMHR(x1 , x(0)) ≥ random(0, 1) then

x(0) ← x(1)

end if
u← u+ 1

end while
S← S ∪ x(0)

i← i+ 1
end while
return S

The Metropolis Hastings Algorithm shown in Algorithm 1 uses the ratio (208) to
generate a set of samples from the desired distribution. It therefore takes the pro-
posal distribution Q( · | · ), the unnormalized desired distribution P̃ ( · ), the number
of samples we want to generate N , an acceptance step size k and the initial state of
the variables x(init). We assume the x(init) as random if not stated otherwise. Let’s
assume k = 1 for the moment, then in each iteration the algorithm samples a new
state x(1) from the previous state x(0) and calculates the ratio between them. If
the ratio is bigger than a uniform random value between zero and one, the sample
is accepted, added to the sample set S and assigned to x(0) for the next iteration.
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Obviously if the sample is not accepted we keep the same x(0) for next iteration.
Therefore, it is most likely that we add the same sample multiple times to our set
and that the samples are not independent of each other. That is the reason why we
choose a step size k, which regularizes that only every kth sample is added to the set of
samples. In the limit case k →∞, this guarantees that the Markov chain converges
to the stationary desired distribution, so that the samples are drawn independently.
Consequently, if k is big enough we get samples that are almost independent, which
is sufficient for most applications.
However, it is unknown how big k needs to be in order to generate a reliable set
of samples and this choice highly depends on the complexity of our model PDF. In
a BM where each variable depends on all others, k usually needs to be very big,
which makes the sampling become intractable due to the computational cost. But
for simpler models like RBMs for example, a small k is often sufficient for generating
a reliable set of samples. But the convergence speed of the Markov chain to the sta-
tionary distribution also depends on the choice of the proposal distribution, which
should be as close as possible to the desired distribution.

3.4.2 Gibbs Sampling

Gibbs sampling is a very popular MCMC algorithm, which is a special case of the
Metropolis-Hastings algorithm. It offers a smart way to choose the proposal distri-
bution depending on the desired distribution.
Given the desired distribution P (x) = P (x0, · · · , xD) for Gibbs sampling we need
to be able to formulate the proposal distribution as the conditional probability of a
variable xi given all other variables x\i = {x0, · · · , xD} \ {xi}. The proposal distri-
bution is then given by P (xi |x\i) and allows to reformulate the desired distribution
to P (x) = P (xi |x\i)P (x\i). By inserting the functions into the Metropolis-Hastings
ratio (208), it turns out that the ratio for Gibbs sampling becomes constantly one
and therefore all samples are accepted.
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AGS(x(N+1) , x(N)) = min

(
1 ,

1
Z
P̃ (x(N))Q(x(N)|x(N+1))

1
Z
P̃ (x(N))Q(x(N+1) |x(N))

)
, (209)

= min
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1 ,

P (x(N+1))P (x
(N)
i |x

(N+1)
\i )

P (x(N))P (x
(N+1)
i |x(N)
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)
, (210)

= min
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(N+1)
i |x(N+1)

\i )P (x
(N+1)
\i )P (x
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= min

(
1,
P (x

(N+1)
i |x(N)

\i )P (x
(N)
\i )P (x

(N)
i |x

(N)
\i )

P (x
(N)
i |x

(N)
\i )P (x

(N)
\i )P (x

(N+1)
i |x(N)

\i )

)
, (212)

= 1 , (213)

where we used in (211) that we only change x
(N)
i to x

(N+1)
i when sampling and there-

fore x
(N+1)
\i = x

(N)
\i .

It is worth mentioning that x(N) and x(N+1) are highly dependent after one step
of Gibbs sampling and that we therefore will only get independent samples in the
limit case, when updating all variables randomly and equally often. But due to the
computational cost one usually wants to sample only a few times, which increases
the probability that variables are updated differently often. Therefore, it is better to
consider only the samples after all variables have been updated, in a fixed or random
order equally often.
Taking this into account we can formulate the Gibbs sampling algorithm as a variant
of the Metropolis-Hastings algorithm as shown in Algorithm 2 .

For BMs, the proposal function for sampling a visible or hidden state is therefore
defined as:

QBM (xi |x(N)
\i , h) = PBM (xi |x(N)

\i , h) , (214)

QBM (hj |x , h(M)
\i ) = PBM (hj |x , h(M)

\i ) . (215)

In RBMs the visible units are conditionally independent as well as the hidden units,
so that the proposal distribution becomes:

QRBM (xi |x(N)
\i , h) = PRBM (xi |h) , (216)

QRBM (hj |x , h(M)
\i ) = PRBM (hj |x) . (217)

(218)
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Algorithm 2 Gibbs Sampling

Require: N , k , x(init) , Q( · | · )
S← { }
x(0) ← x(init)

i← 0
while i < N do

u← 0
while u < k do

for d = 1 to D do
x
(0)
d ∼ Q(xd |x(0)0 , · · · , x(0)d−1, x

(0)
d+1, · · · , x

(0)
D )

end for
u← u+ 1

end while
S← S ∪ x(0)

i← i+ 1
end while
return S

Therefore, Gibbs sampling in RBMs has the advantage that we are able to sample
the visible or hidden states in parallel. If we first sample all visible states and then
all hidden states the Gibbs sampling in RBMs can be parallelized efficiently. The
Gibbs sampling schema is shown in Figure 10.

Figure 10: Visualization of the Markov chain in Gibbs sampling for an RBM.

3.4.3 Contrastive Divergence

Approximating the MRF gradient (205) by a finite set of samples generated by k
steps of Gibbs sampling is named Contrastive Divergence (CD) [18]. Algorithm 3
shows the pseudo code for the offline learning version of CD-k, which could be easily
transformed into online and batch learning. The algorithm requires the training data
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XD, the model’s conditional distribution P ( · | · ), the parametrization θ, the number
of Gibbs sampling steps k and the learning rate η. In each iteration of the inner loop
we sample the hidden state h(0) given the data x

(0)
d and use k step Gibbs-sampling

to generate the model representative samples x(k),h(k). The samples are used to
compute the gradient approximation ∇̃θ. Finally the parameters θ are update in
each outer loop by the average gradient approximation scaled by the learning rate η.

Algorithm 3 Constrastive Divergence

Require: XD , P ( · | · ) , θ , k , η )
while Stopping criterion is not met do
∇̃θ ← 0
for all xd ∈ XD do

x
(0)
d ,h

(0)
d ,x

(k)
d ,h

(k)
d ← GibbsSampling (1 , k , xd , P ( · | · )) . Alg.(2)

∇̃θ ← ∇̃θ +
〈
∂E(x(0),h(0))

∂θ

〉
−
〈
∂E(x(k),h(k))

∂θ

〉
. Eq. (205)

end for
θ ← θ + η

D
∇̃θ

end while

As shown in (46) maximizing the LL is equivalent to minimize KL (F (x) ||P (x | θ)).
When using k step Gibbs sampling we only approximate the model distribution by
Pk(x | θ), which causes an error given by the difference of the true model distribution
and the approximation by: KL (Pk(x | θ) ||P (x | θ)). So that CD actually does not
minimize the Kullback-Leibler divergence between data and model exactly, instead
it minimizes the so called contrastive divergence given by:

KL (F (x) ||P (x | θ))−KL (Pk(x | θ) ||P (x | θ)) . (219)

Gibbs sampling is guaranteed to produce true samples from the model distribution
when k ←∞ so that Pk→∞(x | θ) = P (x | θ), which causes the second term in (219)
to be zero. Consequently, CD is equivalent to maximizing the LL when k →∞ or k
is big enough so that it can be guaranteed that the Markov chain converged to the
station distribution. Surprisingly even for k = 1 CD performs already quite well so
that the produced error does not affect the gradient very much.

In the original CD algorithm Gibbs sampling is initialized by the current data point,
which cause the approximation of the gradient to be highly depended on the data.
A variant of CD called Persistent Contrastive Divergence [41] (PCD), initializes the
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Gibbs sampling with the last sample x
(k)
d−1 instead of the current data point xd. This

makes the approximation of the model distribution more independent of the data
and therefore closer to the true LL. In CD, sampling noise influences only the cur-
rent approximation since we reset the Markov chain for the next approximation. In
PCD however the noise can possibly effect the following approximations. Therefore,
the learning rate for PCD usually needs to be effectively smaller to compensated this
effect.

Fast Persistent Contrastive Divergence (FPCD) tries to speed up PCD by com-
bining two sets of parameters θfast, which are updated using a big learning rate
and θregular, which are updated using a smaller learning rate. The samples for the
second term of the gradient are then generated using an overlay of the parameters
by x(k) ∼ P (x |h, θfast + θregular) and h(k) ∼ P (h |x, θfast + θregular). As mentioned
already both parameters are then updated using the same gradient but with different
learning rates. This has the effect that the Markov chain mixes faster so that the
convergence to the stationary distribution is fasten. However, the algorithm intro-
duces additional hyper-parameters, which leads the learning to fail if they are not
chosen correctly.

3.4.4 Parallel Tempering

The samples of a Markov chain are only guaranteed to be drawn independent from
the desired distribution in the limit case. When using Gibbs sampling with a small k,
we most likely generate dependent samples. This effect is illustrated in Figure (11),
where the samples tend to stay close to the previous samples. Consequently, if the
initial samples do not cover all modes of the model distribution, the generated sam-
ples will also most likely not cover these modes. This leads to an estimation of the
model distribution that is biased on the initial samples.
The question is therefore how we could generate samples that are distributed over all
modes. For MCMC sampling methods this means that we want the samples, after
one step of sampling to be as independent of the previous samples as possible but
still be a representative sample of our distribution. This describes what is known in
the literature as a ”fast mixing” Markov chain.

Parallel Tempering [11] (PT) is an algorithm that provides a fast mixing rate and
surprisingly, we already know all concepts this algorithm is working with. First of all
let us reconsider the PDF of MRFs (19) where we defined the temperature parameter
T ∈ [1,∞), which we discarded up to now. It scales the energy down, which leads
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Figure 11: Illustration of generating samples for a distribution (black line) using
Gibbs sampling. The final samples (red dots) and intermediate samples (grey dots)
tend to stay close to the initial samples (green crosses), indicated by the dashed
pathways. The generated sampling missed the two smaller modes so that they are
not a representative set of samples for this distribution.

to a regularization of the PDF’s manifold. This becomes clear if we think of that
the energy is applied to an exponential function to calculate the probability. If we
choose a big temperature the energy is scaled down, which leads to more equally
distributed probabilities, due to nature of the exponential function.
Therefore, we can use the temperature to generate samples, which are distributed
more homogeneously.

The idea of PT is to run several Markov chains on different temperatures. We
start Gibbs sampling from the highest temperature where all samples have the same
probability. While continuing the sampling procedure, the temperature is lowered,
which has the effect that regions of higher density are coming up. If the decreasing
of the temperatures is smooth enough, the samples will move to all regions of higher
density. This generates samples that are likely from all modes of the distribution
which is illustrated in Figure 12.

Instead of running the described procedure for each gradient update, PT runs a cou-
ple of Markov chains persistently and exchanges samples between the chains after k
sampling step. The exchange of samples from a particular chain, is performed with
the chain with the next higher temperature and the next lower temperature. Whether
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Figure 12: Illustration of generating samples for a distribution (black line) using
Parallel Tempering sampling. The model distribution for the first sampling step
k = 1 is scaled down so that it is nearly uniform. The samples (grey dots) spread
randomly over the whole input space. For the second sampling step k = 2 the model
distribution is scaled down less so that the three modes appear, which attract the
samples of the previous step. The final samples (red dots) are distributed over all
modes so that they represent a good set of samples for the final model distribution.

two samples are exchanged, will be determined using the Metropolis-Hastings ratio
(208) as already explained. Since PT is just an advanced way of sampling it can just
be used for CD instead of normal Gibbs sampling.

The pseudo code for one iteration of PT is given in Algorithm 4, which requires the
number of Gibbs sampling steps k, the conditional probability distribution P ( · | · ),
the unnormalized probability distribution P̃ ( · ), the temperatures ordered from big

to small values (T1 =∞ , · · · , TL = 1) and the initial samples
(
x
(init)
1 , · · · ,x(init)

T

)
.

To implement the persistent chain, the samples of the last iteration are used as initial
samples.
The first step of the algorithm, is to sample from models on different temperatures
using Gibbs sampling, where PTl( · | · ) denotes that we are sampling on temperature
Tl. Afterwards the samples are exchanged using the Metropolis-Hastings ratio and
the exchange order is determined using a deterministic even odd algorithm [10].
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Algorithm 4 Parallel Tempering Sampling

Require: k , P ( · | · ) , P̃ ( · ) , (T1 =∞ , · · · , TL = 1) ,
(
x
(init)
1 , · · · ,x(init)

L

)
(
x
(k)
1 , · · · ,x(k)

L

)
←
(
x
(init)
1 , · · · ,x(init)

L

)
for l = 1 to L do

x
(k)
l ← GibbsSampling (1 , k , xl , PTl( · | · )) . Alg.(2)

end for
l← 2
while l < L do

if

(
P̃Tl

(x
(k)
l+1) P̃Tl+1

(x
(k)
l )

P̃Tl
(x

(k)
l ) P̃Tl+1

(x
(k)
l+1)

)
≥ random(0, 1) then . Eq.(208)

x← x
(k)
l

x
(k)
l ← x

(k)
l+1

x
(k)
l+1 ← x

end if
l← l + 2

end while
l← 1
while l < L do

if

(
P̃Tl

(x
(k)
l+1) P̃Tl+1

(x
(k)
l )

P̃Tl
(x

(k)
l ) P̃Tl+1

(x
(k)
l+1)

)
≥ random(0, 1) then . Eq.(208)

x← x
(k)
l

x
(k)
l ← x

(k)
l+1

x
(k)
l+1 ← x

end if
l← l + 2

end while
return

(
x
(k)
1 , · · · ,x(k)

L

)
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3.4.5 Regularizing the Gradient

There are several modifications, which can be applied on RBMs and its training
procedures. A practical tutorial about those modification and the choice of the cor-
responding hyperparameters is give in [19].
The learning rate η controls the speed of learning and needs to be chosen model and
problem depended. If it is chosen to big, the gradient could be prevented from con-
verging or could even diverge. If the learning rate is to small the training is usually
very slow and can get stuck in a local optima with an unsatisfying LL. A common
choice of the learning rate, which have been reported by many authors is 0.1 for
BB-RBMs and 0.01 for GB-RBMs.
The authors in [8] proposed an adaptive learning that works on a local approxima-
tion of the LL. Surprisingly, their empirical analysis showed that the learning rate
converges to a value between 0.1 and 0.01 for BB-RBMs, after approximately 400
gradient updates, which corresponds to a full loop through the data.

Since the stochastic gradient approximation of CD is affected to noise, training is
usually performed in batch mode. Additionally, to reduce the effect, we could add a
momentum term δ that helps to stabilize the gradient. This is achieved by adding
a percentage of the gradient of the previous update to the current gradient before
updating the parameter. Accordingly, the gradient becomes a weighted sum of the
current and the previous gradients. Therefore, local influence of noise gets com-
pensated by the averaging process, which leads to sluggish change of the gradient
direction.
To prevent the weights of growing incomprehensible big, we could regularize the gra-
dient using an L2-norm of the weights. The derivative, which is simply the weight
norm, is then scaled by a weight decay parameter λ and subtracted from the current
gradient.
The update rule for the BM parameters θBM with gradient ∇θBM

(t) at time step t
with learning rate η, momentum term δ and weight decay term λ is then given by:

θBM ← θBM + η [∇θBM
(t) + δ∇θBM

(t− 1)− λ θBM ] . (220)

A sparse representation of the data is often a desirable property since it structures the
data more clearly, which supports discrimination tasks. In [35] the authors proposed
an alternative or additional sparseness penalty term, which forces the number of
active hidden units h(0) to stay smaller than a chosen threshold ε given by:

λs |ε−
〈
h(0)
〉
hj
|2 , (221)
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where λs regularizes this penalty.
The effect of noise and a big learning rate can easily lead to divergence of the gradient
especially in the case of GB-RBM. Therefore, it can be of interested to restrict the
norm of the gradient not to become incomprehensible big. Especially for GB-RBM we
are able to choose a plausible upper bound of the gradient norm. In the experiments
we will see that this prevents divergence and allows to increase the learning rate.
The gradient is sensible to the representation of the data, so that learning a data
set where each bit is flipped is harder than learning the original data set. It seems
that BB-RBMs assumes the important part of the data to be coded as ones so that if
training a BB-RBM fails, one should try to learn the flipped version of the data. The
authors in [8] recently proposed an enhanced version of the gradient, which seems to
be more robust to the representation of the data.

3.4.6 Performance Measures in Training

Since we are usually not able to calculate the LL during training, we have no direct
measurement for the convergence of the training process. A simple and most natural
idea is to visualize the BMs weights during training, which should obviously contain
some data related structure. Figure (13) shows the weights of a BB-RBM trained on
the MNIST [27] dataset, which consist of 60,000 binary images showing handwritten
digits of the size 28x28. The weights have some stroke like structures, which are the
learned features of the handwritten digits.
However, structured weights do not allow to interpret how well these perform com-
pared to other sets of weights. But we could perform k steps of Gibbs sampling
and visualize the samples, to see whether the BM reconstructs images similar to
the training data. Figure 14 shows the binary training data and the corresponding
reconstructions from the RBM trained on the MNIST datset. Between each row one
step of Gibbs sampling was performed. The digits vary during sampling but stay
relatively close to the original sample.
Instead or in addition to the visualization of samples, we can calculate the recon-
struction error defined as the average squared distance of the training data and its
samples generated by k steps of Gibbs-sampling. The kth order reconstruction error,
where we assume the first order error if not stated otherwise is then given by:

REk
(
x , x(k)

)
=

1

DN

D∑
d

N∑
i

(
xi − x(k)i

)2
. (222)

If the RBM is used in a classification task we could also choose the classification
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Figure 13: Weights of a BB-RBM with 100 hidden units trained on the MNIST
dataset showing stroke like features.

error as an indirect convergence measurement.
Furthermore in [12] the authors analysed empirically that CD learning can diverge
after converging to a local optimum. While the true LL diverged the reconstruction
error did not, so that it is not a reliable proxy to the LL.
We could also calculate the pseudo log likelihood (238) as an approximation to the
LL, but it differs usually quite a lot from the true LL. The behaviour of LL and PLL
could also be contrastive especially in later stages of training.
Therefore, the only reliable performance measure is the true LL, which is traceable
for RBMs if at least one layer is binary and small enough. Since then the partition
function can be calculate using (84) or (83) for BB-RBMs or (161) for GB-RBMs.
For bigger models there exists the opportunity to approximate the partition function
by MCMC methods.

3.4.7 Annealed Importance Sampling

Annealed Importance Sampling (AIS) [32] is a variant of Importance Sampling (IS)
[5], which is a general method to approximate expectation values for distributions
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Figure 14: (first row) Training data of the MNIST dataset [27] and (second to tenth
row) the corresponding reconstructions. From one row to the next, ten steps of Gibbs
sampling were performed. For the reconstruction, the probabilities are displayed
instead of the binary states.

from which we cannot sample directly. Similar to MCMC sampling IS introduces
a proposal distribution Q(x), which should be as close as possible to the desired
distribution P (x), but we need to be able to sample from it easily.
Let us consider the expectation value of x under the desired distribution P (x), which
is given in the following form:

EP (x) [x] =

∫
xP (x) dx , (223)

=

∫
x
P (x)

Q(x)
Q(x) dx , (224)

=
ZQ
ZP

∫
x
P̃ (x)

Q̃(x)
Q(x) dx , (225)

≈ ZQ
ZP

L∑
l=1

x
(l)
Q

P̃ (x
(l)
Q )

Q̃(x
(l)
Q )

, (226)
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where P̃ (x) and Q̃(x) are the unnormalized PDFs of P (x) and Q(x), respectively
and ZP and ZQ the corresponding normalization constants. Finally the expectation
is approximated over a finite set of i.i.d. samples of Q(x).

In an equivalent way we can evaluate the inverse ratio of
ZQ

ZP
by,

ZP
ZQ

=
1

ZQ

∫
P̃ (x̃) dx̃ , (227)

=
1

ZQ

∫
P̃ (x̃)

Q(x̃)
Q(x̃) dx̃ , (228)

=

∫
P̃ (x̃)

Q̃(x̃)
Q(x̃) dx̃ , (229)

≈
M∑
m=1

P̃ (x
(m)
Q )

Q̃(x
(m)
Q )

, (230)

Substituting (229) into (225) and approximating the expectations by a finite set of
i.i.d. samples we obtain,

EP (x) [x]
(229),(225)

=

∫
x P̃ (x)

Q̃(x)
Q(x) dx∫ P̃ (x̃)

Q̃(x̃)
Q(x̃) dx̃

, (231)

(230),(226)
≈

∑L
l=1 x

(l)
Q

P̃ (x
(l)
Q )

Q̃(x
(l)
Q )∑M

m=1

P̃ (x
(m)
Q )

Q̃(x
(m)
Q )

, (232)

=
L∑
l=1

x
(l)
Q

P̃ (x
(l)
Q )

Q̃(x
(l)
Q )∑M

m=1

P̃ (x
(m)
Q )

Q̃(x
(m)
Q )

, (233)

=
L∑
l=1

x
(l)
Q wl . (234)

Therefore, IS approximates the expectation using a weighted sum of the samples
from Q(x). The weights wl, known as importances weights, judge the importance of
a sample being a representative of P (x) by the ratio of the two probabilities. The

two set of samples
{
x
(1)
Q , · · · , x(L)

Q

}
and

{
x
(1)
Q , · · · , x(M)

Q

}
are usually chosen to be

the same, due to computational cost.
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It is clear that the success of IS highly depends on the choice of the proposal function.
If it is not sufficiently close to the desired distribution the estimation will be very
bad. AIS tries to compensate this effect by combining the idea of IS with the anneal-
ing of the temperature in energy based models. Given the temperatures T1, · · · , TK
the ratio of the partition functions can be decomposed by:

ZP
ZQ

=
Z1

Z0

Z2

Z1

· · · ZK
ZK−1

. (235)

If the temperatures between two intermediate distribution PTk(x) and PTk+1
(x) are

close enough the estimation of the partition function ratio will be sufficiently good.

Zk+1

Zk

(229)
≈ 1

L

L∑
l

P̃Tk+1
(x(l))

P̃Tk(x
(l))

. (236)

So that we can estimate the partition ratio between the PDFs with highest and
lowest temperature, with L = 1 by:

ZK
Z0

≈
K−1∏
k=1

Zk+1

Zk
(237)

Bringing it all together Algorithm 5 shows AIS for estimating the partition function of
RBMs. Note that the Algorithm already takes care of an important implementation
detail, it computes the logarithm probabilities to avoid underflow problems of the
product.

Algorithm 5 Annealed importance sampling for estimating the partition function

Require: P ( · | · ) , P̃ ( · ) , x(init) , ZT∞ , (T1 =∞ , · · · , TL = 1)
x = x(init)

u = 0
for l = 1 to L− 1 do

x← GibbsSampling (1 , 1 , x , PTl( · | · )) . Alg.(2)

u← u+ ln
(
P̃Tl(x)

)
− ln

(
P̃Tl+1

(x)
)

end for
return exp (ln (u)− ln (ZT∞))
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3.4.8 Other Approaches for Training Restricted Boltzmann Machines

Apart from approximating the LL gradient by MCMC methods, there are other
learning algorithms, which have been proposed for training BM. This chapter only
gives a brief introduction so that the reader gets an idea of the individual approaches.

The pseudo likelihood approximates the joint PDF of a model by the product of
one dimensional PDFs, one for each variable. So that we are able to formulate the
Pseudo Log Likelihood (PLL) for BMs by:

PLBM (x , h |θ) =
1

N

N∑
i

lnPBM
(
xi|x\i , h , θ

)
+

1

M

M∑
j

lnPBM
(
hj|x , h\j , θ

)
. (238)

The normalization constants of the individual PDFs are tractable one dimensional
integrals over all possible values of the corresponding variable. Therefore, we are able
to calculate the exact gradient to perform exact inference. However, PLL obviously
assumes the data distribution to be separable into one dimensional distributions.
Since this is usually not the case, PLL will perform relatively bad compared to CD.

Ratio Matching [30] is an algorithm only for binary models. Its idea is, that we
get a feeling for how we should change the model parameters if we compare the
probability of the data with the probability of the data where one bit is flipped. The
ratio is then computed for all possible flipped versions of the data. The BM Ratio
Matching score for a single data point is defined as:

RMBM (x |θ) =
D∑
d

 1

1 + P̃BM (x)

P̃BM (x¬d)

2

, (239)

where x¬d denotes that bit d is flipped and the partition function cancelled out.

The idea of Score Matching [20] is close to the idea of Ratio Matching. In Score
matching we define a particular score function Ψ(·) and minimize the squared dis-
tance between the score of the data distribution and the score of the model distri-
bution. This again cancels out the partition function and the Score Matching of a
single data point for BMs, is given in the simplified tractable form as proposed in
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[20] by:

SMBM (x |θ) =
D∑
d

1

2
(Ψd(P̃BM (x)))2 +

∂Ψd(P̃BM (x))

∂xd
. (240)

All methods have been analysed and compared to each other and CD in [30] and [38].
PLL performs worst compared to the other methods. Ratio matching performs worst
than score matching and CD, but shows nice denoising properties. Score matching
does not show a better performance than CD but it has, as well as Ratio Matching
a much higher computational cost. The algorithms have not been compared with
advance MCMC sampling method like PT or even CD-k with a bigger k yet.
This thesis considers only CD, PCD and PT for training RBMs.
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4 Analysis of Gaussian-Binary Restricted Boltz-

mann Machines

In general, a profound understanding of a model, its capabilities and limitations,
requires a clear understanding of how it models data. For probabilistic models like
BMs, accordingly, we need to understand how the marginal probability distribution
of the input data is structured.
Figure 15 shows the marginal probability density PBB(x) of a BB-RBM with two
visible units x1, x2 and two hidden units h1, h2. The two visible units can take
the four possible states x ∈ {0, 1}2, which correspond to the four positions on the
plain. The probability for each state, illustrated as cylinders depend on the product
of the visible experts ex1, ex2. The experts themselves, referring to (39) are sigmoid
functions, which depend on the hidden units and the corresponding weights. The
steepness of the experts’ sigmoid, controlled by the weights, defines how likely it is
to switch from an active to an inactive state and vice versa.

Figure 15: Exemplary illustration for the visible marginal PDF of an RBM with two
binary visible units and two arbitrary hidden units. The probabilities denoted as
cylinders for the four possible visible states depend on the two experts.

Figure 15 also implies that RBMs can be universal approximators [25]. Let N be
the number of visible units and K ≤ {0, 1}N be the total number of states of the
PDF we want to learn. We are able to model the distribution exactly if we have one
hidden unit per visible state plus a bias unit, hence M = 2N + 1 hidden units.
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4.1 Conceptual Understanding of Gaussian-Binary RBMs

Similar to the illustration for a BB-RBM we are able to illustrate the marginal PDF
for a GB-RBM. Referring to (145), the experts marginal PDF has a rather unintuitive
form where one expert is an unnormalized Gaussian with mean b and the other M
experts are the sum of the value one and an exponential function.
But we are able to derive a more intuitive formulation of the marginal PDF using
the Bayes’theorem and the polynomial expansion as proposed in [43].

P (x) =
∑
h

P (x|h)P (h) (241)

(158,177)
=

∑
h
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(
x;b+Wh,σ2

) ∏N
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N
(
x;b+w∗j +w∗k,σ

2
)

+ . . . , (243)

where Hu denotes the set of all possible binary vectors with exactly u ones andM−u
zeros respectively. Accordingly, the binary vector hjk ∈ H2 for example denotes the
vector which has only entry j and k set to one and P (hjk : hjk ∈ H2) its correspond-
ing marginal probability. N (x |µ ,σ) denotes a multivariate normal distribution
with mean vector µ and diagonal covariance matrix, which has the variances σ2

i as
diagonal elements.
The polynomial expansion in (243) leads to a weighted sum of 2M Gaussian distri-
butions, which share the variances σ2. Following the naming of mixture models [5],
each Gaussian distribution is called a component of the model distribution and is
scaled by mixing coefficient that is the marginal probability of the corresponding
hidden state. Although all components have their own means, they depend on each
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other in a well defined structure. The first component is shifted from the origin
by the visible bias b and we name it the anchor component. It corresponds to the
case where all hidden units take the value zero. Further, there are N components
shifted from the anchor component by a single weight vector, w∗j. We name them
first order components. The N first order components correspond to the N cases
where only one hidden unit takes the value one. Following this formulation the ith

order components represents all possible combinations of hidden states where exactly
i units take the value one. The components are therefore shifted by the sum over
the weight vectors of the active units.
This formulation allows us to give a clear illustration of the marginal PDF for GB-
RBM. Figure 16 (a) and (b) show the experts of a GB-RBM with two visible and
two hidden units as a sum of two Gaussians each. Figure 16 (c) shows the marginal
PDF of a the model as the product of the experts, which leads to a total number
of 22 = 4 components. Regarding the previous discussion, the anchor component is
only shifted by the visible bias b. The first order components are shifted by b+w∗1
and b +w∗2, respectively. The second order component, which is the highest order
component for a GB-RBM with two hidden units, is shifted by b+w∗1 +w∗2.

Figure 16: Illustration of a GB-RBM (with two visible and two hidden units) as a
PoE and a MoG model. The arrows indicate the visible bias vector and the weight
vectors, the circles denote Gaussian distributions. (a) and (b) visualize the two
experts of the model. (c) visualizes the components in the GB-RBM denoted by the
filled green circles. The four components are the results of the product of the two
experts, which leads to the components placed right between two dotted circles.

A major disadvantage of GB-RBM is obviously that only the anchor and the first
order components are independent, i.e. they can be placed freely in data space. The
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positions of the ith order components are just the combination of the i first order
components. This forces the 2N components to lie on the vertices of a parallelepiped,
which is a projected N -dimensional hypercube.
Furthermore, the scaling depends on the components position, except for the anchor
component, which is fixed relative to the other components. Only the first order
components can be scaled freely by choosing the corresponding hidden bias c. The
scaling of the higher order components are determined by their position and on the
hidden biases of the first order components.
These restrictions limit the kind of distributions GB-RBMs can model. If the data
as usual, is not distributed so that data clusters are located on the vertices of a
projected hypercube, components will be placed in regions where no or less data is
present. Figure 17 shows a two dimensional example where the data is distributed
like a parallelepiped on the left and not distributed like a parallelepiped on the right.

Figure 17: 2D example where the data is distributed (left) like a parallelepiped and
(right) not like a parallelepiped where one component is position in an area without
data.

If components are placed in non data regions, they need to be scaled down so that
their probability gets very small. Due to the definition of the mixing coefficients we
are only able to scale them down by reducing both hidden biases c1 and c2, which
will also affect the scaling of the first order components. Accordingly, the model usu-
ally uses mainly the anchor and lower order components to model the distribution
if the data and component variances have a comparable size. Since the lower order

65



Figure 18: 2D example where (left) the visible bias is positioned centrally and (right)
positioned peripheral, which causes the higher order components to be positioned far
outside. The anchor component is given in red, the first order components in green
and second order component in blue.

components correspond to just a few hidden units being active, this leads naturally
to a sparse representation of the data.

In the previous discussion we implied the variance of the Gaussians having a mean-
ingful size. It is worth mentioning that if the variance is to big, the best GB-RBMs
can do, is to place all Gaussians in the mean of the data, which is equivalent to hav-
ing one single Gaussian. If the variance is too small we need a lot of free components
to model the PDF. Therefore, the variance plays an important role.

The position of the anchor component, relative to the first order components plays
also an important role since it defines the projection direction of the hypercube. If
the bias is located in the center of the other components the hypercube is projected
from a top view. If the visible bias is located peripheral, then the projection will
be stretched in the direction towards the mean. This has the effect that the higher
order components will be placed far away from the other components. Figure 18

66



shows a two dimensional example where the visible bias has a central position on the
left and the same model where the visible bias is switched with one of the first order
component on the right. For uni model distributions this forces the visible bias to
move to the data’s mean. Summarizing, a GB-RBM is extremely limited in the class
of distributions it can represent, compared to a mixture model.

4.2 Connection to Mixtures of Gaussians

A mixture model [5] defines a PDF over input space x using M components. In
contrast to PoE where the components, named experts are combined by multiplica-
tion, a mixture model combines the components additively by a weighted sum. Each
component itself needs to be a normalized PDF, so that the model becomes a valid
PDF if we guarantee that the sum of the weights is one. A mixture model is defined
as:

PMM (x) =
M∑
j

ηj φj (x) , (244)

with the necessary normalization conditions,

N∑
j=1

ηj = 1 , (245)

∫
φj (x̃) dx̃ = 1 , ∀φj . (246)

The most popular choice for the mixture functions are normal distributions with
mean µj and covariance matrix Σj. The mixture model is then called a Mixture of
Gaussians (MoG) given by:

PMG (x) =
M∑
j

ηj N
(
x|µj , Σj

)
, (247)

with the necessary normalization condition,

N∑
j=1

ηj = 1 . (248)

From (243) we see that a GB-RBM is a restricted MoGs with 2M components that
share the same diagonal covariance matrix. The restrictions are given by the de-
pending means and the scaling factors, which force the components to be located on
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the corners of a parallelepiped as shown in Figure 16.
Mixture models are usually trained using the expectation maximization algorithm
[5]. The algorithm is divided into two steps the ”Expectation”, where responsibilities
of components for the data are evaluated and ”Maximization”, where the responsi-
bilities are used to adapt the parameters, accordingly.
Due to the curse of dimensionality, it is impossible to use EM for training an RBM
with 2M components except for trivial cases. Even in the trivial cases we would need
to adapt the algorithm to ensure the complex constraints, which makes it unattrac-
tive compared to CD where the constraints are ensured automatically.

The major advantage of an MoG compared to the GB-RBM is that we are able
to adapted the covariance matrices freely, while in GB-RBM they all have the same
diagonal covariance matrix. Consequently, GB-RBM are quite limited in modelling
covariances.

4.3 Principal Component Analysis for Whitening Data

Whitened data has zero mean and unit variance in all directions. Accordingly, the
whitening procedure removes the first and second order statistics from the data,
which helps algorithms like ICA to learn higher order statistics of the data.
Since the components of GB-RBMs share the same diagonal covariance matrix, a
single component is not able to learn the covariances in the data. The only oppor-
tunity would be an approximation using several mostly first order components to
compensate this effect, which is inefficient. Therefore, whitened data seems to be
more suitable for GB-RBM if we want to concentrate on learning the higher order
statistics.

Whitening is usually performed using Principal Component Analysis (PCA). PCA
aims to find an orthogonal transformation, which transfers the data variables into a
set of linearly uncorrelated variables named Principal Components (PC). Since two
variables are uncorrelated if their covariance is zero, the transformed data needs to
have a diagonal covariance matrix. Consequently, the problem of PCA reduces to
the diagonalization of the covariance matrix, which is always possible for symmetric
matrices like covariance matrices Σ given by:

V−1ΣV = λI , (249)

⇔ ΣV = λIV , (250)
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which is the characteristic polynomial of Σ with eigenvectors V, eigenvalues λ and I
denotes the identity matrix. Consequently, we can multiply the mean free data with
V, so that it gets a diagonal covariance matrix.

Figure 19: (left) Scatter plot of an example distribution before the PCA transforma-
tion is applied. The PCs are shown in green and for comparison the ICs are shown
in red. (right) The same data after the PCA transformation has been applied, which
rotates the PCs on the coordinate axis.

A much more intuitive motivation comes from the fact that one of the eigenvectors
point in the directions of maximum variance. Another eigenvector points in the
direction of the maximum remaining variance, under the restriction to be orthogonal
to the first one. The third eigenvector points in the direction of the maximum
remaining variance, under the restriction to be orthogonal to the first and second
one, and so on. This allows to select only the first M components for dimensionality
reduction, which preserve as much variance of the data as possible.
Figure 19 shows an example data distribution with zero mean before PCA on the
left and after PCA on the right. The green arrows show the PCs, which are parallel
to the coordinate axis after PCA transformation. Additionally, the ICs, which point
in the most independent directions, as described in Chapter 2, are shown in red to
highlight the difference between both methods. ICA is able to recognize the two
statistically independent sources while PCA is limited to the variance of the data.
It is easy to see that we achieve unit variance if our already diagonal covariance
matrix becomes the identity matrix. This is done by dividing the data by its standard
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deviation, which is given by the square root of the eigenvalues.

Figure 20: (left) Scatter plot of an example distribution after the PCA transformation
and whitening. The PCs are shown in green and for comparison the ICs are shown
in red. (right) The same data after applying the inverse PCA transformation, which
leads to ZCA whitened data. Note that the shown PCs belong to the original space,
since in whitened space all directions have unit variance and therefore no direction
of highest variance exist.

Therefore, the whitening procedure becomes:

y =

(
1√
λ
I

)
VT x . (251)

Figure 20 shows the whitened version of the data shown in Figure 19 on the left
and the result when rotating the whitened data back to the original space on the
right, which is known as Zero Phase Component Analysis (ZCA). It shows that the
IC become orthogonal in the whitened space, so that the problem of ICA reduces to
finding a rotation matrix.

4.4 Connection to Independent Component Analysis

In Chapter 2 we introduced the concept of statistical independence and independent
components (IC). In Independent Components Analysis (ICA) we assume the data
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x being a linear combination of M independent sources s. The joint probability of s
can then be expressed as:

P (s) =
M∏
j

pj (sj), (252)

and their linear combinations is given by,

x = As. (253)

In the complete case, where the number of input dimensions equals the number of
output dimensions, M = N we can derive the probability distribution of the inputs
x as:

P (x) =
N∏
j

pj (sj) , (254)

= | detW|
M∏
j

pj
(
wT

∗jx
)
, (255)

where W = A−1, and the pj denote the unknown densities of the independent com-
ponents. The aim is to find W to recover the statistically independent sources s
from the input data.

Obviously ICA and GB-RBM belong to the PoE [18] model, which have been ad-
dressed by [39] and they will become equivalent if we choose pj (sj) to be the sum of
two Gaussians as given in (243).
But the success of ICA highly depends on the choice of the prior distribution. Since
in ICA we are looking for the directions of most Non-Gaussianity, the prior distri-
butions for the experts will be chosen as super-Gaussian or sub-Gaussian. While in
GB-RBMs we have a weighted sum of two Gaussians with the same variance, which
are Gaussians or sub-Gaussians.
Furthermore, the posterior distribution in ICA over the sources, are assumed to be
marginally independent denoted by si⊥⊥ sj ∀ i 6= j. This is not the case in GB-RBMs,
which only assumes the visible variables to be conditionally independent of the hid-
den variables and vice versa, denoted by xi⊥⊥xk |h , ∀ i 6= k and hj ⊥⊥hk |x , ∀ j 6= k,
respectively.
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ICA can be trained by maximizing the LL defined for a single data point by:

LICA (x |θ) = LICA (x |W) , (256)

= ln | detW|+
M∑
j

ln pj
(
wT

∗jx
)
, (257)

There exist various ICA algorithm based on different principles. Mainly all of them
work on the whitened data so that the problem, as mentioned, simplifies to the search
of a rotation matrixW , that makes the variables xmost statistical independent. This
work uses the popular Fast-ICA algorithm, presented in [1].
An advisable literature for ICA and its applications is given by [22].
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5 Experiments

We have seen that GB-RBMs are quite limited in their representational power, so
that it is rather unsure if they are a good model for natural images. In addition to
the limitations, different authors [6, 24, 43] reported that GB-RBMs are difficult to
train.
This chapter describes the experiments that were made in order to analyse how GB-
RBMs model natural images and why the successful training highly depends on the
choice of the hyperparameters. Initially, the dataset is described and it is shown
that the preprocessing of the data is very important. According to the relation of
GB-RBM to ICA and MoG, described in the previous chapter, the results of GB-
RBMs are compared to the results of both models. Moreover, it will be shown that
the variance plays an important role and how the number of hidden units affect the
model. Finally, the training methods and the choice of the hyperparameters are
compared.

5.1 The Natural Image Dataset

The Van Hateren’s Natural Image Database1 is a common choice when working with
natural images. The experiments were done using this dataset although the results
were similar when using photographs of arbitrary scenes. An example image is shown
in Figure 21.

Figure 21: An image from the Van Hateren’s Natural Image database.

1http://www.kyb.tuebingen.mpg.de/?id=227
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As described in Chapter 2, we want to model simple cells, which are focused on the
same subregion of the input signal. The input for those cells can in principle be
any small patch from any natural image. We therefore sampled randomly 70,000
image patches of size 14 times 14 pixel from the images of the database and divided
it into 50,000 samples for training and 20,000 samples for testing. Each image was
normalized separately to have zero mean in order to compensate different lighting
conditions. Due to the random sampling, the variances of the pixel intensities per
dimension were approximately the same, with an average variance of 383.86 and a
standard deviation of 43.76. To avoid numerical problems the dataset was rescaled
by dividing each pixel intensities by a factor of 10.
Figure 22 shows 80 image patches on the left, their zero mean version in the middle
and the ZCA whitened version on the right.

Figure 22: (left) Some images patches of size 14x14 pixels sampled from the Van
Hateren’s Natural Image Database, (middle) the corresponding zero mean version
and (right) the corresponding whitened version.

Since it is not possible to visualize a 196 dimensional PDF, we are mainly limited
to inspecting the weights of the GB-RBM to get an idea of how the model’s PDF
is structured. In Chapter 2 we mentioned that ICs of natural image patches are
sparsely distributed. Accordingly, a linear mixture of two sparse distributions, like
Laplacians should function as a two dimensional representative distribution. This
is of course a very rough approximation, but it should help to understand how a
GB-RBM models natural image patches.
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Figure 23: Showing data from two independent Laplacian distributions.

Figure 24: Showing data from a random mixture of two independent Laplacian
distributions.
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We sampled 70,000 two dimensional data points, 50,000 for training and 20,000 for
testing, from two independent Laplacian distributions, shown in Figure 23. The two
Laplacian density distributions are shown as histograms beside the axis. Figure 24
shows the same data after mixing it with a random matrix. Now one of the marginal
distributions looks much more Gaussian than Laplacian. Figure 25 shows the same
data after whitening and both marginal distributions look much like Gaussians now.

Figure 25: Showing whitened data from a random mixture of two independent Lapla-
cian distributions.

This two dimensional dataset was used in addition to the natural image dataset to
illustrate how GB-RBMs model a mixture of sparse distributions.
The LL for the data given the model can also be used as a measurement for the
model’s performance. But it is important to note that it only measures how well the
model fits the data PDF, in terms of the Kullback-Leibler Divergence and this does
not deduce that the model learned any structured filters.
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5.2 Independent Component Analysis on Natural Images

As a well studied and plausible model for natural images, ICA represents a reference
model [21] for natural image statistics. This means, if a model is trained on natural
images, but does not learn localized, orientated and frequency selective (LOFS) filters
like ICA, we assume that the model learned a worse representation.
Figure 26 shows the ICs learned from the natural image patches, which are the
reshaped columns of the ICA mixing matrix and will also be denoted as filters. The
LL for the training data was -259.0859 and for the test data -259.4393.

Figure 26: The 196 ICs of the natural image dataset learned by FastICA. Each patch
is a reshaped column of the ICA mixing matrix. The LL for the training data was
-259.0859 and for the test data set -259.4393

The ICA result for the 2D data is shown in Figure 27 on the right and the randomly
initialized configuration before training, on the left. The red lines indicate the two
ICs and the blue dots represent the training data points. The LL for the randomly
initialized model was -2.8015 for the training and -2.8028 for the test data. After
training the LL was slightly better, -2.7428 for the training and -2.7423 for the test
data.
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Figure 27: Scatter plot of the 2D dataset, (left) before training and (right) after
training, where the red lines are the columns of the ICA mixing matrix. The LL
before training was -2.8015 for the training data and -2.8028 for the test data set
and after training -2.7428 and -2.7423, respectively.

These results were used as a baseline for interpreting the results of GB-RBM in the
following experiments.

5.3 Training Gaussian-Binary RBMs on differently Prepro-
cessed Natural Images

From the theoretical analysis we know that GB-RBM are quite limited in the way
they can represent data.
The experiments described in the following, compared GB-RBMs trained on the nat-
ural images with differently preprocessed data. For all experiments, GB-RBMs with
196 visible and 196 hidden units were trained using the same setup2.
In the first experiment, we trained a GB-RBM on the natural image dataset without
any preprocessing. The learned filters, which are the columns of the RBM weight
matrix are shown in Figure 28. They were ordered by their probability of being
active under the training data, in descending columnwise order, from the top left to

2Training setup: LL average of 5 trials, 50,000 image patches, 300 epochs, CD-1, batch size 100,
learning rate 0.01 Momentum 0.9, Weight decay 0.0, variance fixed to the variance of training data,
but comparable results were achieved when training the variance.
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Figure 28: Filters of a GB-RBM trained on the natural image dataset without any
preprocessing. The filters were sorted descending from the left to the right, from the
top to the bottom, by their average activation probability.

the bottom right. The filters of the first two rows show low frequency filters, they
are almost uniform or show a smooth change from light to dark. The following rows
have still uniform filters, but a lot more show LOFS structures. Like in ICA we got
dot-like and bar-like LOFS filters, but with a lower frequency. Figure 31 (a) shows
that the activation was decreasing exponentially from the first to the last filter, so
that the filters of the first three rows represented more than 90% of the total activa-
tion.

Figure 29: Filters of a GB-RBM trained on the natural image dataset, where the
mean has been removed for each image patch separately. The filters were sorted
descending from the left to the right, from the top to the bottom by their average
activation probability.

We assume that the use of zero mean images helps to focus on the structures if
the lighting conditions vary a lot. This becomes clearer if we think of images that
show similar structures under different illumination conditions, which mainly shifts
the mean. Assuming that we have filters to model the structure, we would need
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additional filters to model the different means. So if the image mean is removed, we
would not expect uniform filters anymore.
Figure 29 shows the filters learned form the natural image dataset with zero mean
images, again ordered descendingly by their activation. Comparing these filters to
the filters for the non zero mean images, the first filters are still very smooth, but
show patterns of dark and light spots. Most obviously the total amount of LOFS
filters and their frequency increased. Figure 31 (b) shows that the activation for
these filters were still exponentially decreasing, but the activation of the first filter
was distributed a bit more equally.

Figure 30: Filters of a GB-RBM trained on the natural image dataset, where the
mean has been removed for each image patch separately and the dataset has been
normalized such that each pixel dimension has zero mean and unit variance. The
filters were sorted descending from the left to the right, from the top to the bottom
by their average activation probability.

Before we consider the whitened data, we have a look to the results when the data
was normalized so that each pixel dimension had zero mean and unit variance. Fig-
ure 30 shows the filters learned form the normalized natural image dataset with zero
mean images, ordered descendingly by their activation. Comparing the filters with
the filters of the unnormalized version, shown in Figure 29, they look almost the
same given in a different order. Figure 31 (c) shows the activation distribution of
the filters, which is comparable to the unnormalized version, shown in Figure 31 (b).
Since the variances along the pixel dimensions of the original data where already
quite similar, normalizing the data had basically not effect on the resulting filters.

Finally, we have a look to filters of a GB-RBM trained on the whitened natural
image dataset shown in Figure 32. The filters had the same LOFS structure as the
filters of ICA, shown in Figure 26. Therefore, ICA and GB-RBM learned a similar
structure, but GB-RBMs use scaled Gaussian distributions and ICA uses Laplacian
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Figure 31: Showing the four filter activation distributions with the filter index on the
x-axis and the percentage activation over the whole training data on the y-axis. (a)
Unmodified dataset, (b) zero mean image dataset, (c) normalized zero mean image
dataset, (d) whitened zero mean image dataset.

distributions to model the PDF. Figure 31 (d) shows that the activation of the filters
were more homogeneous than exponentially distributed.

To see how GB-RBMs model data, we can reconstruct an image patch by one step
of Gibbs sampling and compare how similar it looks to the originally presented im-
age. Figure 33 consists of four images, each showing 28 natural images in the first
row and the corresponding one step Gibbs sampling reconstruction in the second
row. The first image (a) belongs to the unmodified dataset and the learned filters
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Figure 32: Filters of a GB-RBM trained on the natural image dataset where the
mean has been removed for each image patch separately and the dataset has been
whitened to have zero mean and unit variance in all directions. The filters were
sorted descenting from the left to the right, from the top to the bottom by their
average activation probability.

shown in Figure 28. The GB-RBM reconstructed mainly the contrast of the image
and only little of the structure, which corresponds to the uniform and low frequency
filters. Image (b) belongs to the GB-RBM trained on the zero mean images and
the reconstructions showed more structures of the original images, but as a blurred
version. The blurring removed most of the detail structure of the images. Image
(c) corresponds to the GB-RBM trained on the normalized zero mean images. Since
the filters of the unnormalized and normalized version were very similar, the recon-
structions were also very similar. Image (d) belongs to the GB-RBM trained on
the whitened zero mean images. It shows the de-whitened images and de-whitened
reconstructions, which were not blurred and showed more detailed structures. It
seemed that this GB-RBM reconstructed only the most important edges and failed
to reconstruct large, mostly homogeneous regions.

Comparing the LL of the models is not straightforward since modifying the data
space leads also to a change of the probability distribution. But we can transform
the probabilities for the transformed datasets back, by multiplying the likelihood
with the determinant of the transformation matrix. For the LL we therefore added
the logarithm of the determinant, which was -135.7842 for the normalization matrix
and 152.7298 for the whitening matrix. Notice, that the normalization has been
applied also before the whitening process. Table 1 shows the average LL and the
transformed average LL for the differently preprocessed data. The LL of the whitened
version was the best compared to the other GB-RBMs, but worse than ICA.
The following experiments were done using the whitened data, since we were inter-
ested in learning high frequency filters, which are comparable to the ICA results.
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(a)

(b)

(c)

(d)

Figure 33: Each image shows 28 randomly selected images in the first row and the
reconstruction after one step of Gibbs sampling of the corresponding GB-RBM in the
second row. (a) Unmodified dataset, (b) zero mean image dataset, (c) normalized
zero mean image dataset, (d) whitened zero mean image dataset, showing the de-
whitened images and reconstructions.

Dataset Model LL Train LL Test Transformed Transformed
LL Train LL Test

unmodified GB-RBM -453,9998 -454,0010 -453,9998 -454,0010
zero mean images GB-RBM -358,8723 -358,9146 -358,8723 -358,9146

normalized GB-RBM -226.5642 -225.1643 -362.3484 -360.9485
whitened GB-RBM -270,5140 -270,0225 -253,5684 -253,0769
whitened ICA -259,0859 -259,4393 -242,1403 -242,4937

Table 1: Showing the average LL and the LL transformed back to the zero mean
image space for different datasets and models.

5.4 Learning the Variance of Gaussian-Binary RBMs

In the previous experiments the variance parameters of the model were fixed to
the data variances. The following experiments were done to illustrate the effect of
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training the variance parameters. Figure 34 shows the filters learned by a GB-RBM3

with 196 visible and 196 hidden units. The average model’s variance per dimension
was 0.76129, with a standard deviation of 0.1687. The LL improved slightly from
-270.5140 to -266.8235 in training and overfitted from -270.0225 to -272.1207 for the
test data. The filters were more dot-like compared to the filters without training the
variance, shown in Figure 32.

Figure 34: Filters of a GB-RBM with 196 hidden units and trained variances. The
average variance per dimension was 0.7487, with a standard deviation of 0.2212. The
average LL estimated by AIS was -266.8235 for the training data and -272.1207 for
the test data.

To illustrate how different values for the variances affect the PDF, we trained3 GB-
RBMs with two hidden units and differently set variances on the 2D dataset. Since
the higher order components are usually damped, their contributing density is not
visible in a normal PDF plot, so that it is appropriate to show the logarithm of the
PDF instead. Figure 35 and 36 show the log-PDF of the GB-RBMs for different
variances. The green arrow represents the visible bias, the red arrows represent the
weights and the blue dots are the data points. For very small variances like 0.1, all
four components were equally scaled and arranged in a square on the data as shown
in Figure 35 (a).

3Training setup: LL average of 5 trials,, 50,000 image patches, 300 epochs, CD-1, batch size 100,
learning rate 0.01 (0.001 for the variance parameter) Momentum 0.9, Weight decay 0.0.

84



(a) Variances 0.1, 0.1, LL -5.2330, -5.2055 (b) Variances 0.5, 0.5, LL -2.9154, -2.9142

(c) Variances 0.86, 0.85, (Trained) LL -2.8065
, -2.8039

(d) Variances 1,0, 1.0, LL -2.8142, -2.8145

Figure 35: Contour plots for different variances of the GB-RBM’s log-probability
distributions. The GB-RBMs had two visible and two hidden units trained on the
2D dataset (blue dots). The green arrow represents the visible bias and the red
arrows represent the weights.
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(a) Variances 1.5, 1.5, LL -2.9070 , -2.9077 (b) Variances 2.0, 2.0, LL -3.0306 , -3.0297

Figure 36: Contour plots for different variances of the GB-RBM’s log-probability
distributions. The GB-RBMs had two visible and two hidden units trained on the
2D dataset (blue dots). The green arrow represents the visible bias and the red
arrows represent the weights.

When the variance was increased, the configuration of the components changed. The
anchor component was then placed in the mean of the data and the first order com-
ponents were placed in the directions of the ICs. The first order components were
extremely scaled down compared to the anchor component (The figures show the
log-PDF). Consequently, the second order component was scaled down even more
and placed in a region of less density between the two first order components.
While the variance was further increased, the norms of the weights increased and the
components were further scaled down. This effect continued until the variance was
much bigger than the data variance. Then the anchor component covered already
most of the data and the best solution was to place all components in the mean, as
shown in Figure 36 (b). Figure 35 (c) shows the resulting log-PDF when the variance
was trained. The variance was approximately 0.85 for both dimensions with the best
LL of -2.8065 for the training data and -2.8039 for the test data. Figure 37 shows
the LL for different variances, which has a flat maximum at a value slightly smaller
than one.
When sampling from the model using Eq. (177), it is worth mentioning that smaller
variances reduces the effect of the sampling noise. Figure 38 shows the average
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Figure 37: Average LL for GB-RBMs with two visible and two hidden units, trained
on 2D data with different, fixed variance values. LL Training data (green), LL Test
data (blue).
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Figure 38: Average RE for GB-RBMs with two visible and two hidden units, trained
on 2D data with different, fixed variance values. LL Training data (green), LL Test
data (blue).
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reconstruction error (RE), which increases linearly with the variance parameter as
expected .

To verify whether the results for the 2D data are transferable to the natural im-
ages, we trained4 GB-RBMs with 16 hidden units and differently set variances on
the natural image data. The small number of hidden units allowed us to calculate the
LL exactly. Figure 39 shows the filters learned for different variances. Comparable
to the 2D data we did not learn filters for small and big variances.

(a) Variance 0.1,
LL -939.4722, -939.6617

(b) Variance 0.5,
LL -305.0205, -305.7427

(c) Avg. Trained Variance
0.98 (Std.Dev. 0.027),
LL -276.9281, -277.3233

(d) Variance 1,0,
LL -277.0113, -277.3918

(e) Variance 1.5,
LL -284.9037, -284.9027

(f) Variance 2.0,
LL -296.8294 -296.8279

Figure 39: Filters of GB-RBMs with 16 hidden units with different variances, trained
on the natural image dataset. Note that all six images were normalized separately
to highlight the filter’s structure. The norm of the filters in (e) and (f) was small
compared to (a)-(d), see Table 2.
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Avg. Avg. Std. Dev. Visible Bias Avg. Std. Dev. Anchor
Variance Weight Weight Norm 1st order 1st order Scaling

Norm Norm scaling scaling
0.1 (a) 2.3800 0.0418 1.3539 4998.51 13851.62 3.61e-19
0.5 (b) 2.9282 0.1008 0.5901 0.05032 0.01828 0.50592
0.98 (c) 3.9979 0.1496 0.1417 0.01461 0.00160 0.79905
1.0 (d) 4.0041 0.1979 0.4527 0.01413 0.00249 0.80280
1.5 (e) 0.7474 0.1085 0.4046 0.00402 0.00048 0.93787
2.0 (f) 0.5409 0.0333 0.3829 0.00581 0.00097 0.91149

Table 2: Showing the average weight norms, visible bias norm, the anchor and first
order scaling factors for GB-RBMs with 16 hidden units and different variances.

Considering additionally Table 2, it can be observed that the results are comparable
to the 2D experiments. Except for very small variances, the visible bias was placed
roughly in the mean and scaled down slightly more, as bigger the variance got. Com-
parably, the weights grew while the variance increased and converged to zero when a
critical threshold was reached, although the convergence began already for a variance
of 1.5. The first order components were scaled down more, as bigger the variance
got. For variances of 0.1 the visible bias was scaled down extremely, but the first
order components were scaled up. Consequently, the second order components were
scaled up even more. It seems that it changed the role with the visible bias.

Figure 40 shows the relation of the LL and the variance. The graph is compara-
ble to the 2D data graph shown in Figure 37, although the maximum is closer to
one. Figure 39 (c) shows the learned filters when training the variance, with an
average variance of 0.98. The optimal variance decreased with an increasing number
of hidden units, as will be shown in the next experiment. Also similar to the 2D
results, the reconstruction error decreased while the variance decreased, as shown in
Figure 41.
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Figure 40: Average LL for GB-RBMs with 196 visible and 16 hidden units, trained
on natural image data with different, fixed variance values. LL Training data (green),
LL Test data (blue).
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Figure 41: Average RE for GB-RBMs with 196 visible and 16 hidden units, trained
on natural image data with different, fixed variance values. LL Training data (green),
LL Test data (blue).
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5.5 Gaussian-Binary RBMs with a different Number of Hid-
den Units

So far, we only considered GB-RBM with two hidden units for the 2D data and 16 and
196 hidden units for the natural image data. The results of the following experiments
show how the number of hidden units affect the structure of the model’s PDF and the
LL. We therefore trained4 GB-RBMs on the whitened, two dimensional dataset with
various numbers of hidden units. The corresponding log-PDFs are shown in Figure 42
and 43. The model without hidden units had only the anchor component, so that
the PDF was given by a single unscaled Gaussian with zero mean and variance one,
shown in Figure 42 (a). For one hidden unit (b), the visible bias was still positioned
in the data’s mean and the first order component was placed in the direction of one of
the ICs. The variance was slightly decreased so that the first order component could
cover a small amount of the density. The model was compensating the asymmetrical
shape of the PDF by setting slightly different variances for the dimensions.

(a) 0 Hidden unit, LL -2.8379, -2.8361,
variances 1.01, 1.00

(b) 1 Hidden unit, LL -2.8249, -2.8234,
variances 0.98 0.90

Figure 42: Contour plots of the GB-RBM’s log-PDFs for zero and one hidden unit.
The green arrow represents the visible bias, the red arrows represent the weights and
the blue dots are the 2D data points.
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(a) 2 Hidden unit, LL -2.8146, -2.8154,
variances 0.89, 0.88

(b) 3 Hidden unit, LL -2.7832, -2.7796,
variance 0.65, 0.84

(c) Variances 1.5, 1.5, LL -2.7404, -2.7365,
variances 0.58, 0.56

(d) Variances 2.0, 2.0, LL -2.7330, -2.7316,
variances 0.50, 0.52

Figure 43: Contour plots of the GB-RBM’s log-PDFs for different numbers of hidden
units. The green arrow represents the visible bias, the red arrows represent the
weights and the blue dots are the 2D data points.
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Figure 43 shows the log-PDF for two, three, four and eight hidden units. In each case
the visible bias was positioned in the data’s mean and the first order components
were placed in the directions of the ICs. If the number of first order components
was bigger than the number of directions that needed to be modelled, the additional
components were placed in the data’s mean or along an already covered IC, as shown
in Figure 43 (d). With an increasing number of components the variance was scaled
down, so that the first order components could cover more of the density. Note that
the two variances had different values to compensate the PDFs asymmetrical shape,
in the case of one and three hidden units. The LL improved with an increasing
number of hidden units.

For the natural image dataset, we trained 4 several GB-RBMs with different numbers
of hidden units. Table 3 shows the LL for the trained models with zero to 784 hidden
units. Equivalent to the 2D case the LL as well as the RE improved, although the
model overfitted to the training data, while the number of hidden units increased.
For zero hidden units the whole density was covered by the anchor Gaussian, but
the more hidden units we added the more of the density was modelled by the first
order components, indicated by the decreasing variance. As expected, the average
variance per input dimension decreased. All GB-RBMs learned LOFS filters, even
in the highly overcomplete case, as shown for 784 hidden units in Figure 44.

Number LL Train LL Test RE Train RE Test Average Std. Dev.
Hidden Units Variance of Variance

0 -277.62 -277.62 195.02 195.01 0.9888 0.0047
16 -276.91 -277.32 191.05 192.05 0.9727 0.0333
49 -275.37 -276.65 182.18 184.89 0.9369 0.0795
98 -272.94 -275.49 168.53 173.30 0.8805 0.1255
196 -266.82 -272.12 137.71 143.91 0.7487 0.2212
392 -255.53 -266.29 84.13 93.64 0.5191 0.1341
784 -232.75 -253.29 48.98 58.83 0.3501 0.0318

Table 3: LL, RE and variance for GB-RBMs with different numbers of hidden units
trained on the natural image dataset.

Moreover, the more hidden units we use, the more likely it gets that higher order
components are placed accidentally in regions of higher density. If the GB-RBM
with 196 hidden units would only use the first order components, the samples shown
in Figure 33 would only be made out of one filter, which is obviously not the case.
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Figure 44: Filters of a GB-RBM with 784 hidden units trained on natural im-
ages. The average variance per dimension was 0.35006, with a standard deviation of
0.03178. The average LL estimated by AIS was -232.75348 for the training data and
-253.2924 for the test data.

This can also be shown by calculating the average number of active hidden units for
the training data, shown in Table 4.
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Number of Average number of Standard deviation of
hidden units active hidden units active hidden units

16 0.2067 0.5068
49 0.7692 1.2075
98 1.7938 2.3916
196 5.4631 5.8260
392 11.8821 11.2857
784 25.0901 23.1206

Table 4: Showing mean and standard deviation of the number of active hidden units
for the trained GB-RBMs, for the natural image training data.

5.6 Comparing GB-RBM with Mixture of Gaussians

GB-RBMs are constrained MoGs where all components share a diagonal covariance
matrix and as we have seen the model uses mainly the anchor and lower order
components to model natural images. Consequently, an unconstrained MoG, having
N +1 components should in principle be able to learn the same filters as a GB-RBM
with N hidden units. But it is not clear if the constraints of GB-RBMs are the major
reason why the model learns these filters.
The following experiments were done to check whether MoG are capable of learning
LOFS filters. We therefore trained MoGs with one, three, five and eight components
on the whitened 2D dataset. All components had an identity matrix as covariance
matrix and we only trained the mean and the scaling factors, which were initialized
randomly. Figure 45 shows the log-PDFs for the trained MoGs, which obviously
show the same structure as the log-PDFs for GB-RBMs, shown in Figure 35 and 36.
The red arrows point from the origin to the mean of the components. For all four
MoGs, similar to the anchor component in GB-RBMs, one component was placed in
the data’s mean that had a much bigger scaling factor than the other components.
If the variance of the GB-RBMs were also fixed to one, even the LL was almost the
same.

For the natural image dataset, we trained an MoG with 196 components and fixed
identity covariance matrices. Equivalent to the 2D experiments, we trained only the
means and the scaling factors. The learned filters are shown in Figure 46, which
shows similar filters as the once learned by GB-RBMs and ICA. But also a lot of
uniform filters that correspond to weights that converged to zero.
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(a) 1 Component, LL -2.8379, -2.8360 (b) 3 Component, LL -2.8145, -2.8129

(c) 5 Component, LL -2.7927, -2.7931 (d) 8 Component, LL -2.7927, -2.7931

Figure 45: Contour plots of the MoGs log-PDFs for different numbers of components.
The covariance matrix has been fixed to the identity matrix. The red arrows point
to the components means. In each case one component is placed in the data’s mean.
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Figure 46: Means of an MoG with 196 components and a fixed identity covariance
matrices. The LL was -274.8760 and -271.11095 for the test data.

We assumed, that this happened due to the fact that the EM algorithm is not able
to escape local minima with all components. Therefore, we trained an MoG with the
same setup, but allowed only one of the components to be positioned in the data’s
mean. The filters are shown in Figure 46 showing more structured filters and only
one uniform filter that corresponds to the anchor component. But we also got a lot
of noisy filters, which did not disappear while continuing training. We assumed that
this happened due to the training algorithm, since the MoG fixed to the weights
learned by GB-RBM but free scaling factors had a slightly better LL of -273.67 in
training. The LL of the MoGs is worse compared to the LL of GB-RBM, which is
caused by the missing higher order components.

Figure 47: Means of an MoG with 196 components and a fixed identity covariance
matrices. Only the first weight was allowed to have a value close to zero. The LL
was -274.2224 and -270.5980 for the test data.

We also trained MoGs with one, three, five and eight components on the whitened
2D dataset, with full, trained covariance matrices. The plots of the 2D log-PDFs
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(a) 1 Component, LL -2.8379, -2.8360 (b) 3 Component, LL -2.7133, -2.7140

(c) 5 Component, LL -2.7012, -2.7015 (d) 8 Component, LL -2.6974, -2.69791

Figure 48: Contour plots of the MoGs’ log-PDFs for different numbers of components
with full covariance matrices. The red arrows point to the components means which
are placed in the data’s mean in each case.
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are shown in Figure 48. For one component, the result was equivalent to the MoG
with diagonal covariance matrix. For all experiments the components were placed
in the data’s mean and the shape of the PDF was modelled only by the covariance
matrices and the scaling factors. The LL was better than for the experiments with
spherical covariance matrices and the model fitted the PDF shape, already with three
components quite well.

(a) Eigenvectors (b) Means

Figure 49: (a) Each row shows eight eigenvectors of the covariance matrix of a
multivariate Gaussian distribution. (b) The corresponding mean of the components.
The Components had free covariance matrices and the MoG was trained on the
natural image data.

In the 2D experiments, at least some eigenvectors of the covariance matrices pointed
into the directions of the ICs. For the natural images, we therefore trained an
MoG with full covariance matrices and nine components. Figure 49 shows eight
eigenvectors for each component and their mean. The components that had almost
uniform looking mean filters were placed in the data’s mean. The eigenvectors for
these components show localized, orientated structures with different frequencies.
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Although these filters are different from the results of ICA, GB-RBM and MoG with
spherical covariance matrix, they look like a combination of those filters for different
frequencies. The LL for the model was -229.3514 for the training data and -241.8714
for the test data.

5.7 Training GB-RBM Successfully

From the analysis we know, how a GB-RBM models data and especially, how it mod-
els the natural image data. This knowledge can be used to choose a better training
setup, which allows faster and more successful training. The following experiments
were done to analyse and explain the effect of different values for the hyperparame-
ters.

We trained4 GB-RBMs with 16 hidden units on the natural images, using differ-
ent learning rates. The small number of hidden units allowed us to calculate the LL
exactly. Figure 51 shows the LL evolution for learning rates of 0.1, 0.01 and 0.001
over 1,000 epochs, which correspond to 500,000 gradient updates. Accordingly, the
learning rate needs to be sufficiently big for successful training, in an acceptable
number of gradient updates. Figure 50 shows the corresponding filters after 1,000
epochs. We did not learn any meaningful filters for a learning rate of 0.001.

(a) Learning rate 0.1 (b) Learning rate 0.01 (c) Learning rate 0.001

Figure 50: Learned filters of a GB-RBM with 16 hidden units trained on the natural
images for different learning rates. Note that the images have been normalized, (c)
had values close to zero.

4Training setup: LL average of 10 trials, 50,000 image patches, 1,000 epochs, CD-1, batch size
100 Momentum 0.0, Weight decay 0.0
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Figure 51: LL evolution of GB-RBMs with 16 hidden units, trained on the natural
images using different learning rates.

Figure 52 shows the evolution of the average weight norm of the GB-RBMs. At
the beginning, the weights for all three learning rates converged quickly to a value
close to zero. This happened because, in the early states of training, the randomly
initialized components will move towards regions of high density and in the case of
natural images most of the data is located close to the mean. For a learning rate of
0.001 the weights continued converging to zero, which led to the noisy filters, while
the weights for the bigger learning rates began to grow after some gradient updates,
which led to the LOFS filters. The average weight norm and the LL have a com-
parable evolution, so that the weight norms are a strong indicator for the learning
process of GB-RBMs on natural images.

As mentioned, for all learning rates the components converged towards the data’s
mean, in an early stage of training. But scaled Gaussians, placed at the same loca-
tion, having the same covariance matrix are equivalent to a single Gaussian, with the
same mean and covariance matrix, scaled by the sum of the single scaling factors.
Consequently, placing the components all in the data’s mean is unnecessary since
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Figure 52: Evolution of the average weight norm of GB-RBMs with 16 hidden units,
trained on the natural images using different learning rates.

the anchor component can model this region already. Accordingly, fixing the visible
bias to zero without training, led to the same solutions for the natural image data.
The other components could be used to model the density in the directions of the
independent sources, which is much sparser than the density around the data’s mean.
And in general, the density of the natural image dataset decrease exponentially while
the distance to the data’s mean increase.

Consequently, the model needed to learn that the components have to be scaled
down in order to model these regions. Figure 53 shows the evolution of the average
first order scaling factors for the three different learning rates. The graph shows a
similar evolution as the average weights and the LL evolution. The GB-RBMs with
a learning rate of 0.1 and 0.01 learned that the components need to be scaled down.
The GB-RBM with learning rate 0.001 did not learn small scaling factors. What
makes learning difficult, is that moving a component will also change the scaling, see
Eq. (243). We assume that the learning rate of 0.001 is simply to small to learn the
right weight - hidden bias combination in an acceptable number of gradient updates.
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Figure 53: Evolution of the average first order scaling factors of GB-RBMs with 16
hidden units, trained on the natural images using different learning rates.

Consequently, if we use a small learning rate it is advisable to initialize the GB-RBM
so that the scaling factors are relatively small, i.e around 0.01. Considering Eq. (243),

this can be achieved by choosing the initial hidden by cj = −‖b+w∗j
2σ
‖2 + ‖ b

2σ
‖2 + τj,

where τj = 0.01 determines the relative scaling to the anchor component.

The simple solution where all components are placed in the data’s mean is a strong
local optimum. Adding noise in the early stage of training helps to escape this local
optimum. Another opportunity is to use the hidden states rather than the proba-
bilities for the gradient calculation. This adds noise and has the advantage that the
influence will automatically be reduced when the probabilities are getting closer to
zero and one while continuing training.

A momentum term adds a percentage of the past gradient to the current gradi-
ent, which leads to a smoother gradient trajectory and makes the gradient more
robust to noise. But it makes the gradient less flexible, which can slow down or
even prevent convergence. Especially if the step size of the gradient is very big, the
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gradient can easily oscillate around the optimum.
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Figure 54: LL evolution of GB-RBMs with 16 hidden units, trained on the natural
images using different learning rates and a momentum of 0.9.

Figure 54 shows the LL evolution of GB-RBMs with 16 hidden units trained4 for
different learning rates, using a momentum of 0.9. The LL evolution for a learning
rate of 0.01 with momentum is comparable with the LL evolution of 0.1 without a
momentum. Equivalent, a learning rate of 0.001 with momentum and 0.01 without
momentum are comparable. The LL of the learning rate 0.1 is worse and oscillating
around a value of -278.0. But Figure 56 shows that all versions learn LOFS filters,
so that for a learning rate of 0.1, the momentum prevented the convergence, but
the weights point in the right directions. If the learning rate was reduced or the
momentum removed after 100 epochs, the LL for the learning rate of 0.1 converged
very quickly to a value around -277.0. The average weight norm was growing in all
three cases, as shown in Figure 55. Accordingly, a momentum term can be used to
keep the gradient in an exploratory state that prevents it from converging to zero,
especially in the beginning of training and for small learning rates.
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Figure 55: Evolution of the average weight norm of GB-RBMs with 16 hidden units,
trained on the natural images using different learning rates and a momentum of 0.9.

(a) Learning rate 0.1 (b) Learning rate 0.01 (c) Learning rate 0.001

Figure 56: Learned filters of a GB-RBM with 16 hidden units trained on the natural
images for different learning rates and a momentum of 0.9.

If the learning rate is too big, the gradient can easily diverge, which causes nu-
merical overflows. This happened already for the GB-RBMs with 16 hidden units
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for a learning rate of 0.1 in some trials and became worse for bigger models. But,
since we know that the components are placed on the data, there is no need for a
gradient with a norm twice as big as the maximal data norm. Then the gradient is
still able to place a component within one gradient update everywhere on the data.
We therefore restricted the gradient’s norm for the experiments done in this thesis,
which allowed us to train also big models with a learning rate of 0.1.

Using a weight decay when training GB-RBMs is not necessary. We know that
the components will be placed on the data and therefore the weight’s norm will nat-
urally stay smaller than the maximal data’s norm. Furthermore, a weight decay term
prevents the weights from growing, but according to the previous discussion this is
exactly what is needed. So that a weight decay will worsen the training process.
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Figure 57: LL evolution of GB-RBMs with 16 hidden units, trained with different
training methods on the natural images data.

For the last experiment we trained5 GB-RBMs using different training methods. Fig-
ure 58 shows the LL evolution for CD with one step of Gibbs sampling (CD-1), CD

5Training setup: Average of 5 trials, 50,000 image patches, 200 epochs, batch size 100, Learning
rate 0.01, Momentum 0.9, Weight decay 0.0
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with ten steps of Gibbs sampling (CD-10), PCD with one step of Gibbs sampling
(PCD-1), PCD with ten steps of Gibbs sampling (PCD-10) and PT with one step of
Gibbs sampling using 20 temperatures (PT-20). PCD-1, PCD-10 and CD-10 show
slightly worst performance than for CD-1 and PT-20, but they will reach the same
value as CD-1 and PT-20 if we reduce the learning rate in the later stage of training.
We never, not only for this experiment, observed any benefit of using a bigger k or
PT for training GB-RBMs on whitened natural images. This comes from the uni-
modality of the data distribution which causes PCD and PT to perform basically
like CD since we never miss a mode as described in Chapter 4.

Since the use of a bigger k or PT lead to a much higher computational cost, it
is advisable to use CD-1. The following list summarizes how a GB-RBM can be
trained efficiently on whitened natural images. A GB-RBM with 784 hidden units
has been trained using the following setup, in just 100 epochs. The filters are shown
in Figure 44 which show LOFS structures.

(a) CD-1 (b) PCD-1 (c) CD-10

(d) PCD-10 (e) PT-20

Figure 58: Filters of GB-RBMs with 16 hidden units, trained with different training
methods on the natural images data.
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In our experience the following tips will help training GB-RBMs successfully.

• Using CD-1 is sufficient

• Initialize the weights to small random values, wij = N (0, 0.01)

• Initialize the hidden values so that the first order scaling factors are small,
cj = −‖b+w∗j

2σ
‖2 + ‖ b

2σ
‖2 + τj, i.e. τj = 0.01

• Fix the visible bias to zero, b = 0

• Choose a learning rate between 0.1 or 0.01, which should be reduced in final
training stage

• Use a momentum between 0.5 and 0.95

• Use no weight decay

• Restricted the gradient norm, ‖5w∗j‖ ≤ maxd‖xd‖

• Use hidden states for the gradient calculation at least for the first epochs

• Track the weight norms as a measurement for the training progress
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6 Conclusions

This thesis discussed Gaussian-Binary RBMs for learning natural image statistics.
We motivated this work with a brief introduction to natural images and how they are
processed by the simple cells in the primary visual cortex. A detailed introduction
to BMs and the related concepts was given, which can be used as a reference work
on this topic.

We analysed the model and showed that GB-RBM with N hidden units can be refor-
mulated as a constrained MoG with 2N components that share a diagonal covariance
matrix. This formulation allows a much better understanding of how GB-RBMs
actually model data than the common PoE formulation does. It turned out that
the constraints of the MoG representation forces the components to lie on a paral-
lelepiped, which is a projected hypercube and limits the representational power of
the model. We showed that GB-RBMs use mainly the lower order components to
model the data, unless the data is structured according to a parallelepiped. This
leads naturally to a sparse hidden representation, since the order of the components
represents the number of simultaneously active hidden units. We argued that ICA
and GB-RBMs are related, since both models belong to the PoE, although they use
different prior distributions.

We have shown that GB-RBMs are capable of learning natural image statistics and
that the learned filters show a location, orientation and frequency selective structure,
comparable to the receptive fields of simple cells, found in the primary visual cortex.
These filter were very similar to the filters learned by ICA, which we assumed to be
a good model for natural images. In contrast to normal ICA methods, like FastICA,
GB-RBMs are not limited to a complete representation and we showed that it is
possible to learn highly overcomplete representations.

Due to the restriction of the components to share a diagonal covariance matrix,
we assumed that whitened data, which is more symmetrical, should be more suitable
for GB-RBMs. We showed that only whitened data leads to high frequency LOFS
filters similar to the ICA result. The GB-RBMs modelled the natural image data by
placing the anchor component in the data’s mean and the higher order components
in the directions of the independent sources. With an increasing number of hidden
units the LL improved since more sources were covered and the filters showed still
LOFS structures.
When training the variances of the model the LL improved and the filter became
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more dot-like. The optimal variance for the whitened data depended on the number
of hidden units and was always smaller than one. But training the variance also
increased the effect of over fitting.
We showed that an MoG, where all components share a diagonal covariance matrix
is able to learn the same filters than GB-RBMs do. And in the 2D case, the learned
PDF had exactly the same structure.
We further showed that the knowledge about the natural image PDF and how GB-
RBMs model data can be used to choose a better training setup. To train a GB-RBM
on natural image data, the learning rate needs to be big, which can easily lead to
divergence of the gradient especially for big models. Since we know that the com-
ponents are placed on the data, we proposed to restrict the gradient to twice the
maximal data norm. This prevented divergence and allowed us to train big models
successfully. We argued that a weight decay is counterproductive since the weights
should reach a certain norm. A momentum term keeps the gradient in an exploratory
mode, which helps to avoid local optima. Empirical results showed that CD-1 is suf-
ficient and that using more Gibbs sampling steps or Parallel tempering will not
improve the training process.

All three models are capable of learning LOFS filters but only ICA and GB-RBMs
allow fast and reliable training on natural images. An advantage of GB-RBMs and
MoGs compared to ICA is that they are not restricted to the complete case so that
they are able to learn highly over-complete representations. In contrast to ICA, both
models are generative models and allow stacking for building deep networks. ICA
has a better LL than GB-RBMs and MoGs but the LL does not provide any further
information apart from how likely the data is generated by the model.

In order to compare the models further, future work could focus on the discrim-
inative properties of the filters of ICA and GB-RBMs. One could also focus on
how the proposed training improvements affect the solutions learned by deep believe
networks and deep Boltzmann machines. A promising research direction is also to
find a preprocessing of the data, which supports the structure of a GB-RBM bet-
ter. But in general it is not clear how good the binary hidden representation is that
GB-RBMs learn and if the conditional independence is not a too strong assumption
for modelling natural image statistics. It would be interesting to train other mod-
els, which provide a binary representation on the natural images and compare the
results. Moreover, the learned representation could then be used to train a binary
RBM or DBN to see whether it improves the performance of the whole network.
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Appendix

More than half of the time spent on this thesis was used for developing an RBM
toolkit in Python named pyrbm. Although there exist already various libraries for
RBMs, in my opinion these libraries are focused mainly on usage rather than on
modifiability and comprehensibility of the code and the mathematics of RBMs.
That is why I decided to write my own RBM-module, which has a simple modular
and well documented structure. The implementation is very close to the mathemat-
ical notation used in this thesis which supports the comprehensibility and allows to
modify the code easily to your own needs.

Beside I came across GPU coding and implemented the whole code also for the
GPU using CUDAMAT6. The structure for the CPU code and the GPU code are
equivalent. This means that the functions perform the same calculations, so that it
is easy to learn GPU coding with CUDAMAT beside.
Table 5 shows the time in seconds needed for one gradient update of a GB-RBM.
The CPU was a intel i5-750 with 4 cores and 8 GB RAM and the GPU was a Geforce
GTX-570 with 3GB RAM. We were running the code on the GPU, the CPU with
and without MKL7. Figure 59 shows the structure of the toolkit. The latest version
will be available as an open source project8 soon and is planned to be integrated into
MDP9.

Number of Number of CPU time CPU+MKL GPU time Speed up CPU
Visibles Hiddens in s time in s in s MKL to GPU

50 50 0.002322 0.001790 0.003375 -0.469624
100 100 0.006465 0.004346 0.003594 0.209154
400 400 0.072758 0.029232 0.004627 5.317720
800 800 0.265682 0.086769 0.005640 14.384469
1600 1600 1.139502 0.274237 0.010303 25.617161
6400 6400 19.40761 4.574618 0.116391 38.303899

Table 5: Time needed for one gradient update on CPU (intel i5-750 with 8 GB RAM)
with and without MKL and on GPU (Geforce GTX-570 with 3GB RAM).

6http://code.google.com/p/cudamat/
7http://software.intel.com/en-us/articles/intel-mkl/
8http://sourceforge.net/projects/pyrbm/
9http://mdp-toolkit.sourceforge.net/
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Figure 59: Structure of the RBM toolkit pyrbm
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