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Abstract Slow Feature Analysis (SFA) is an unsuper-

vised learning algorithm based on the slowness prin-

ciple and has originally been developed to learn in-

variances in a model of the primate visual system. Al-

though developed for computational neuroscience, SFA

has turned out to be a versatile algorithm also for tech-

nical applications since it can be used for feature extrac-

tion, dimensionality reduction, and invariance learning.

With minor adaptations SFA can also be applied to su-

pervised learning problems such as classification and

regression. In this work, we review several illustrative

examples of possible applications including the estima-

tion of driving forces, nonlinear blind source separation,

traffic sign recognition, and face processing.

Keywords Slow Feature Analysis · Hierarchical net-

works · Nonlinear feature extraction · Dimensionality
reduction · High-dimensional data · Driving forces ·
Blind source separation · Object recognition · Face

processing

1 Introduction

At a first glance the sensory information perceived by

an animal (e.g., the excitation of individual receptors

in the retina) may appear as a large number of signals

that vary quickly and in a seemingly unordered fash-

ion. When looking at a zebra, for instance, the receptor

responses quickly switch between black and white as

soon as the eyes move. However, collectively the input

represents the zebra faithfully. Thus, the information
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of interest, namely the presence of the zebra, is some-

how hidden in the sensory signal and can potentially

be extracted by some complicated input-output func-

tion. Furthermore, the information of interest is much

more stable than the receptor activities. The slowness

principle generalizes this idea and assumes that many

aspects of the environment essential for the survival

of an animal (e.g., the position and identity of its prey

and fellows) change at a time scale much slower than the

sensory signals encoding these aspects. The assumption

then is that input-output functions that extract slowly

varying features, automatically extract aspects that are

of particular relevance to the animal.

This principle has probably first been formulated by

Hinton [13] and online learning rules were developed

shortly after [9, 22]. Slow Feature Analysis (SFA) [31]

is the first closed-form algorithm and one of its advan-

tages is that it is guaranteed to find the optimal solu-

tion within the considered function space. The concise

formulation of the SFA optimization problem also per-

mits an extended mathematical treatment so that its

properties are well understood analytically [10, 25, 30].

SFA was initially developed for learning invariances in a

model of the primate visual system [11, 31] and was sub-

sequently also used for learning complex-cell receptive

fields [3] and place cells in the hippocampus [10]. How-

ever, SFA has turned out to be useful also for technical

applications, which is the main focus of this article.

2 Slow Feature Analysis (SFA)

2.1 SFA Optimization Problem

The optimization problem solved by SFA can be stated

as follows [3, 31]. Given an I-dimensional input sig-
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nal x(t) = (x1(t), . . . , xI(t))T , find a vectorial function

g(x) = (g1(x), . . . , gJ(x))T within a function space F
such that for each component yj(t) of the output signal

y(t)
def
= g(x(t)),

∆(yj)
def
= 〈ẏj(t)2〉 is minimal (objective function) (1)

under the constraints

〈yj(t)〉 = 0 (zero mean), (2)

〈yj(t)2〉 = 1 (unit variance), (3)

〈yj(t)yj′(t)〉 = 0,∀j′ < j (decorrelation and order). (4)

The delta value ∆(yj) is defined as the temporal aver-

age 〈·〉 of the squared derivative of yj and is therefore

a measure of slowness (or rather fastness). The con-

straints (2–4) assure that the output signals are normal-

ized, not constant, and uncorrelated, so that different

components code for different information of the input

signal. Notice that the problem is solved iteratively for

each yj from y1 to yJ , so that the first component is the

slowest possible and the later ones are faster because

they have the additional constraint of being uncorre-

lated to the earlier ones.

One obvious way of achieving slowly varying output

would be low-pass filtering or temporal averaging. How-

ever, such an approach would have two disadvantages:

(i) processing would be delayed by the averaging time,

(ii) high-frequency information would be systematically

eliminated. Notice that g(x) is an instantaneous func-

tion that does not permit temporal averaging. Conse-

quently, SFA extracts features instantaneously but fa-

vors those that vary slowly and are stable over time.

This also implies that the temporal structure of the

input signal matters only during the training phase.

Afterwards single input samples can be processed inde-

pendently of each other.
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Fig. 1 Extraction of features from a 10-dimensional signal.
Four components of the input signal (left) and the four slow-
est features extracted (right) are shown. This example was
designed such that the output signals are the theoretically
predicted optimal responses, namely cosines of increasing fre-
quency.

2.2 Linear SFA

SFA is typically a nonlinear algorithm. However, in this

section we present the linear version [31], in which F is

the space of linear functions. Therefore, g(x) ∈ F can

be written as g(x) = WTx with an I × J matrix W.

The mean of the training data x(t) has previously been

removed for convenience without loss of generality. Usu-

ally discrete time is used, thus the input is a sequence

of samples and the derivative signal is approximated as

ẋ(t) ≈ x(t+ 1)−x(t). First, a sphered signal z
def
= STx

is computed with a sphering matrix S that diagonal-

izes the covariance matrix C
def
= 〈xxT 〉, i.e. STCS = I.

Then, the J directions of least variance in the deriva-

tive signal ż are found by principal component analysis

on the derivative covariance matrix Ċz
def
= 〈żżT 〉 and

represented by an orthogonal matrix R. Finally, the al-

gorithm returns W = SR, y = WTx, and ∆(y). It has

been shown that the solution fulfills the optimality cri-

teria in the linear function space [31]. Interestingly, in

this linear version SFA is closely related to independent

component analysis based on time-delayed covariance

matrices [4].

2.3 Nonlinear SFA

In order to solve real-world problems, nonlinear fea-

ture extraction is often desirable. This can be achieved

by expanding the input data nonlinearly through a so-

called expansion function followed by linear SFA. This

results in slow features that are nonlinear with respect

to the original data. The expansion can either be ex-

plicit [3, 31] or implicit using kernels [5, 28].

The choice of an appropriate expansion function

is crucial [8]. If it is too simple (low-dimensional), it

does not solve the problem; if it is too complex (high-

dimensional), it might overfit on the training data and

not generalize well to test data. In the applications be-

low we use linear and quadratic SFA, as well as some

other expansions.

2.4 High-Dimensional Data and Hierarchical SFA

Interesting types of data like images or 3D voxel data

are usually high-dimensional. The complexity of the

SFA algorithm is O(NI2 + I3) where N is the num-

ber of samples and I is the input dimension (possibly

after nonlinear expansion), thus for high-dimensional

data standard SFA is not feasible. In such cases a di-

vide and conquer strategy to extract slow features is

usually a good solution. For instance, one can divide

the data into lower-dimensional blocks and extract lo-

cal slow features separately with different instances of

SFA, the so-called SFA nodes. Then, global slow fea-

tures are extracted from the local slow features with
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another SFA node in a next layer. This works because

the first SFA nodes can be used to perform a dimen-

sionality reduction, so that the input dimension to the

SFA node in the second layer is much less than I. This

strategy can be repeated iteratively for each block until

the dimensionality is small enough, resulting in a multi-

layer hierarchical network. While this does not guaran-

tee optimal global slow features anymore, in practice it

has shown to be effective, probably because low-level

features are spatially localized in most real data.

Interestingly, hierarchical processing is also a means

to reduce or even avoid the overfitting problem men-

tioned above since each node in the hierarchical net-

work gets to process relatively low-dimensional data,

leading to good generalization. An additional advan-

tage is that nonlinearity accumulates across layers, so

that even when using simple expansions the network as

a whole can realize a complex nonlinearity.

Fig. 2 An example of a hierarchical network with 4 layers.
Each node in the hierarchy extracts 30 features and sends
them to the next layer. The final layer consists of a single
node and also outputs 30 features.

2.5 Extensions of SFA for Supervised Learning

SFA, as described so far, learns features that are im-

plicit in the input signal. It extracts the slowly varying

aspects and becomes insensitive or even invariant to

quickly changing aspects. However, in many learning

problems the input data does not take the form of a

temporal sequence and the features to be learned are

provided explicitly as labels along with the input sam-

ples, resulting in a supervised learning problem. How

can SFA be applied in these cases? As an example, con-

sider a number of face images for which the age of the

person is known and the task is to automatically ex-

tract this feature from the images. A large part of the

problem can be solved by SFA if one simply orders the

images by increasing age and presents this to SFA. With

this approach, age becomes the most slowly varying fea-

ture and SFA will naturally extract it – although not

age directly but rather a feature that is monotonically

related to it. A final step mapping the first SFA outputs

to the real age label is therefore still required.

If the labels indicate classes, such as identity, one

could order the images by class and proceed as above.

However, it is more efficient to give up the linear tem-

poral sequence and use graph structures instead. For

classes one would connect all samples of the same iden-

tity with each other and make no connection between

samples of different identity. In that case the graph sep-

arates into fully connected subgraphs, and we refer to it

as a clustered graph. The SFA objective function would

have to be modified to take into account all connections

and try to minimize the output differences between con-

nected samples. The ideal SFA output would therefore

be constant for any given identity and different for dif-

ferent identities. Again a final supervised step would

be required to map the arbitrary SFA output values

to identity labels. Interestingly, in this special case lin-

ear SFA is equivalent to Fisher discriminant analysis

[1, 2, 17].

This approach can be generalized to arbitrary sim-

ilarity structures if the training samples, i.e. the nodes

of the training graph, are weighted by vt to indicate

importance or frequency of a sample and the connec-

tions between samples, i.e. the edges of the graph, are

weighted by wtt′ indicating the similarity between the

samples or rather their labels. In that case we have

weighted versions of the objective and the constraints:

∆(yj) :=

∑
t,t′ wtt′(yj(t)− yj(t′))2∑

t,t′ wtt′
(objective function)

(5)

∑
t

vtyj(t) = 0 (zero mean), (6)∑
t vt(yj(t))

2∑
t vt

= 1 (unit variance), (7)∑
t

vtyj(t)yj′(t) = 0, for j′ < j (decorrelation). (8)

By defining the graph, the explicit feature informa-

tion of the labels is made implicit in the graph struc-

ture. This permits the use of unsupervised learning,

which has the great advantage that training can be

done in a hierarchical network where no useful labels

are available at intermediate layers, and the credit as-

signment problem is avoided.
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3 Feature Extraction with SFA

3.1 Estimating Driving Forces

One problem in the analysis of nonlinear dynamical

systems is that some parameters of the system might

change over time, so that the system is actually not sta-

tionary [24]. Such parameters are called driving forces.

If they vary slowly compared to the dynamics of the

system, SFA can be used to estimate them [29]. As an

example, consider an iterative tent map f(w, γ), see

Fig. 3. A time series is created by starting with an ar-

bitrary value w0 ∈ [0, 1] and then applying the tent

map repeatedly, i.e. w1 = f(w0, γ0), w2 = f(w1, γ1), ...,

wi+1 = f(wi, γi), ..., with time index i and γi a given

but slowly varying driving force cyclically shifting the

tent map within [0, 1].

γ

wi+1

γ

wi

wi+1

f(w,  )

1

1
w

Fig. 3 Iterated tent map in null po-
sition (solid line) and shifted by γ
(dotted line).

Since this signal is one-dimensional, one cannot ap-

ply SFA directly but has to apply time-embedding (see

also [19]), i.e. one treats ten successive time points as

one input vector, x(i) := (wi−4, wi−3, wi−2, ..., wi+5)T .

Time still increases in steps of one, so that two succes-

sive input vectors have nine values in common.

Applying SFA with polynomials of order 3 to this
input signal yields a slow component that correlates

well with the underlying driving force. If means are re-

moved, variances are normalized to one, and the sign

is chosen correctly (these three values cannot be re-

covered in any case), the first SFA output is somewhat

noisy but otherwise follows the driving force accurately,

see Fig. 4. Notice that this has been achieved without

any knowledge of the dynamical system or the driving

force itself.

3.2 Blind Source Separation

The term blind source separation refers to the prob-

lem of extracting unknown sources from an unknown

mixture. A didactic example often given is the case of

several persons in a room talking simultaneously, and

being recorded by the same number of microphones.

Each microphone then has a different mixture of all

speakers. Thus in principle, it is possible to extract

Fig. 4 Time series of the tent map (top), true driving force
(bottom, solid line) and estimated driving force (bottom,
dots). The correlation between the latter two is r = 0.96.
Reproduced from [29].

each single speaker’s voice from the collective record-

ing, if one knew the details of the mixing (and ignoring

echoes and time delays). If the mixture is linear, statis-

tical independence is a sufficient optimization criterion

to find the correct unmixing, assuming that the sound

waves of the speakers are independent of each other.

The corresponding algorithm is referred to as indepen-

dent component analysis (ICA) [15].

ICA, at least in the more common instantaneous

form, is not sufficient if the mixture is nonlinear [16].

However, unmixing can still be achieved if one takes

into account the temporal structure of the signals (as-

suming they have some and are not iid). As shown

in [26], SFA offers one way of doing this (see [12] for

a related approach). This is possible for two reasons:

Firstly, if one distorts a signal nonlinearly, the result-

ing signal usually varies more quickly. For instance, if

you square a sine wave, you get frequency doubling.

Secondly, if you mix two signals, the mixture varies

more quickly than the slower of the two original sig-

nals. These two properties together guarantee that af-

ter sufficient nonlinear expansion, and if the original

sources are somewhere in the expanded space, SFA will

find the slowest of them (or a closely related version of

it). Once that source is found, one can project it out of

the expanded signal and find the next source, etc. See

Fig. 5 for an example. Again this is achieved without

any knowledge about the signals (apart from a smooth-

ness assumption) or the mixture. We call this procedure

extended SFA (xSFA).

3.3 General Purpose Feature Extraction

The two applications above were specific examples of

unsupervised feature extraction, where the features of

interest were well defined. However, SFA can be applied



Slow Feature Analysis: Perspectives for Technical Applications of a Versatile Learning Algorithm 5

mixing xSFA

Fig. 5 An example of nonlinear blind source separation with
xSFA. Left: A scatter plot of two sound sources. Middle: Non-
linear mixture. Right: Scatter plot of estimated sources. The
correlation between the estimated and the true sources is
above 0.9 in about 93% of the cases if tested on different
sound sources.

also to less well defined situations. In [6] linear SFA was

applied to EEG data recorded with 63 electrodes dur-

ing an auditory discrimination task. Fisher discriminant

analysis was then applied to the extracted features to

do the classification between two auditory stimuli. The

system was therefore able to extract the human au-

ditory percept from the EEG recording, which is an

example of a brain computer interface. A similarly un-

specific feature extraction with SFA was used in [14] for

the classification of humanoid robot postures.

4 Dimensionality Reduction with SFA

Feature extraction with SFA from high-dimensional in-

put was used in [21], where the input was a sequence

of 155×155 pixel images showing one out of two ani-

mated fish and two objects. Each fish had a different

object as a target, and the other object was a distractor.

The swimming of the fish was controlled by a reinforce-
ment learning system, which had to learn to recognize

the type of fish present and lead it to its target while

avoiding the distractor. Reinforcement learning is gen-

erally notoriously slow on high-dimensional input. It is

therefore mandatory to reduce the dimensionality by

some means. In this example SFA was able to reduce

the dimensionality from 24,025 down to 32 while still

preserving all information necessary to solve the task.

5 Classification with SFA

In the applications above SFA was used as a purely

unsupervised learning algorithm. We now consider the

extension for supervised learning, first for classification

and later for regression.

The first example of classification with SFA was on

handwritten digits from the MNIST database [2]. Ran-

dom pairs of training samples from the same class were

connected to form mini-sequences of length two, and

SFA with polynomials of degree 3 was trained on the

collection of these mini-sequences. A Gaussian classifier

was applied to the nine slowest features extracted to do

the final classification. Error rate was 1.5%, which is

close to the 0.95% achieved by LeNet-5, a hierarchical

special-purpose architecture for digit recognition. The

same approach was also applied to human gesture recog-

nition [18] and a similar approach to monocular road

segmentation [20].

So far SFA was applied in its original formulation

(1–4) to one or a set of input sequences. We now present

an application of the more general formulation with

graph structures (5–8) to the German traffic sign recog-

nition benchmark (GTSRB) [27], in which the goal was

to classify photographs of traffic signs taken from a car

traveling on German roads, which is of major interest

for the development of driver assistance systems. The

database consisted of 26,640 training and 12,569 test

images of 43 different types of traffic signs. The position

of the signs in the images was known and precomputed

HOG-features (histograms of oriented gradients) were

provided as well. For this classification problem, we cre-

ated a clustered training graph and used the generalized

SFA algorithm, see Section 2.5. Training SFA was done

on the HOG features: First, linear SFA was used to re-

duce the dimensionality, followed by nonlinear SFA to

extract the slowest features. Ideally these are step func-

tions with constant values for all signs of the same class

and different values for different classes, leading to one

cluster per class in output space. A Gaussian classifier

was then trained on these clusters to do the classifica-

tion. This system ranked 8th place out of 24 groups in

the GTSRB online competition with a performance of

96.4%, whereas human performance was 98.8% and the

best algorithm achieved 99.0% recognition rate.

An elaborated system for human action recognition

was proposed in [32]. In this case, SFA was applied

to cuboids, i.e. subsequences within localized regions,

extracted from video sequences of subjects performing

various actions, such as walking, jogging, hand clap-

ping, etc. Three supervised learning strategies were pro-

posed, which all exploit the fact that SFA learns fea-

tures that vary slowly for the action used for train-

ing. Changing the type of action during testing typi-

cally produces outputs that change much faster than

sequences of the same action used for training. It was

shown that SFA achieves comparable or even better

performance than previous methods.
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6 Regression with SFA

6.1 Age and Gender Estimation

Human-Computer Interaction benefits greatly from el-

ementary information about the interacting subjects,

such as their age, gender, and mimic expression. How-

ever, in particular automatic age estimation is a chal-

lenging problem, since aging results in only subtle

changes compared to variations due to different iden-

tity.

Here we present a four-layer hierarchical SFA net-

work [7] (see Fig. 2) that estimates age and gender from

frontal static face images of size 135×135-pixels show-

ing artificial subjects, created with special software for

3D face modeling and rendering. For age, the training

and test images varied from 16 to 65 years, while gen-

der, racial background, and identity were chosen ran-

domly. For gender, a similar database was created and

the same algorithm was applied. This was possible be-

cause gender was given as a continuous variable from

−3 (very feminine) to +3 (very masculine) rather than a

binary one (male vs. female). In both cases the images

were ordered to produce a sequence of images across

which the relevant parameter – age or gender – changes

most slowly. For computational efficiency, images of

similar age or gender were grouped. This resulted in

a special graph structure in which images of a group

were fully connected with each other and with images

of neighboring groups (cf. Section 2.5). After training

the SFA network, the first three outputs were used for
training a Gaussian classifier to estimate the age or gen-

der group. This yields a posteriori group probabilities

from which an expectation value can be computed as

the final estimate.

In both cases, good performance was achieved (on

test data), with an RMSE of 3.8 years for age and 0.33

units for gender, compared to a chance level of 13.8

years and 1.73 units, respectively. As expected, age es-

timation was more difficult than gender. Interestingly,

best performance was achieved with a linear SFA net-

work, outperforming various (more complex) nonlinear

networks. One reason might be that the number of

training images was insufficient (only 4140/10800 im-

ages for age/gender) to train a nonlinear network, but

it might also be that the rendering software uses a too

simple model for age and gender. The recent release of

large publicly available databases with age/gender la-

bels make tests on real photographs possible in the near

future.

Fig. 6 a) Sample images for age estimation, b) average im-
age c) image variation that specifically activates the slowest
feature extracted for age (right, its negative) d) image varia-
tion that specifically activates the slowest feature for gender
(right, its negative). Notice how the image variation for gen-
der resembles a masculine face, whereas its negative resembles
a feminine one.

6.2 Face Detection

Systems for face detection from images are becoming

very popular due to advances in computing power and

specialized algorithms capable of running even on port-

able devices. Face detection is also a prerequisite for

tasks such as tracking or age and gender estimation,

as described above. Although face detection is popular,

robustness is still a challenge in uncontrolled scenar-

ios, in particular in the presence of facial hair, image

artifacts, strong or unusual lighting conditions, and/or

partial occlusion.

We have shown above how a hierarchical SFA net-

work can be used to estimate a continuous parameter

such as age or gender from a facial image. This ap-

proach can also be applied to other parameters such

as x-position, y-position, or scale. Using three separate

networks trained like this, potential faces can be nor-

malized as follows: Estimate x-position with the first

network and center the face horizontally; estimate y-

position with the second network and center the face

vertically; estimate scale and resize the image. A fourth

network can be trained to estimate the quality of the

normalization, again as a continuous parameter, and to

indicate whether a face is present at all. To improve

quality, this process is repeated three times in succes-

sion, leading to increasingly accurate and reliable lo-

calization. Finally, eye positions are determined in the

expected regions within the normalized face with an eye

specific SFA network. To detect several faces, an image

is first tiled with overlap into many candidate regions

of different sizes, and the algorithm above is then ap-
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plied to each region separately. Thus, most candidate

regions do not contain a face at all, which is the reason

why the fourth network is necessary to decide on the

presence of a face.

In this example application, 40,000 frontal face pho-

tographs from different sources were used for training.

The networks applied are improved versions of the ones

for age and gender estimation, and were redesigned with

a 9-layer structure characterized by a very small fan-in

in all layers, which is particularly useful to reduce over-

fitting. Furthermore, different nonlinear expansions are

introduced, offering better performance and still low

expanded dimensionality and good generalization.

Performance of the resulting system on various im-

age databases was competitive [23] and yielded a de-

tection rate on grayscale photographs from 71.5% to

99.5% depending on the difficulty of the test images.

Horizontal 
centering

Vertical
centering

Rescaling

a) b)

Fig. 7 a) Test image. A single image region containing a face
is shown b) Processing of the region: initial region, horizontal
centering, vertical centering, and rescaling.

7 Conclusion

Slow feature analysis is an unsupervised learning algo-

rithm based on the slowness principle. It extracts fea-

tures from a temporal input signal that vary as slowly

as possible over time without resorting to averaging or

low-pass filtering. It thereby learns stable and robust

representations invariant to frequently occurring but

usually irrelevant variations. Although SFA has orig-

inally been developed within the field of computational

neuroscience to model the primate visual system, the

algorithm is computationally efficient and suitable for

technical applications in machine learning and com-

puter vision. It is easy to implement and straightfor-

ward to use, since it is basically parameter free. In

standard SFA the only choice is that of the function

space used, i.e. the type of nonlinearity. In hierarchical

SFA one also has to define a network structure and de-

cide on the number of SFA outputs passed to the next

layer. Of great help in using SFA is the fact that it

is well understood analytically. Optimal free responses,

which are not constrained by input or function space,

are known [30] and can be exploited to design the train-

ing procedure and the analysis of the output signals,

see [10] for a complex example.

The applications reviewed in this paper demonstrate

the versatility of SFA and its potential use in a variety

of different problem cases. We believe that its robust-

ness and flexibility make SFA a useful general purpose

preprocessing tool for feature extraction and dimension-

ality reduction.

In this review we put some emphasis on supervised

learning problems on high-dimensional data. Such prob-

lems require hierarchical processing, which is typically

difficult to train in a supervised fashion. We propose to

convert such problems to unsupervised learning prob-

lems by defining graphs that reflect the similarity re-

lationships between the labels of the training samples.

SFA can then be applied in an unsupervised fashion

and a hierarchical network with a well defined objec-

tive function on all levels can be trained. This avoids

the credit assignment problem that supervised learning

algorithms often have in hierarchical networks. Only a

simple final supervised step is required to compute the

label values from the final SFA output.

Hierarchical processing is advantageous for high-di-

mensional input data for several reasons. For instance,

by breaking down the computation into smaller parts,

the computational effort becomes manageable. Fur-

thermore, each node in the network gets a much lower-

dimensional input, so that less training data is required

and generalization is improved.

Current research in our group focusses on better

understanding the translation of a supervised learn-

ing problem into a learning problem suited for SFA,

on finding suitable function spaces providing sufficient

nonlinearity while keeping dimensionality low, and on

improving generalization by using very deep networks

with small fan-in.
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