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Abstract

The developing visual system of many mammalian species is partially structured and organized even before the onset of
vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in
these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as
sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary
visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely
Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied
to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with
quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical
complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase
invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the
input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial
properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby
shape the developing early visual system such that it is best prepared for coding input from the natural world.
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Introduction

For us humans, vision is the most dominant sense. It is thus not

surprising that the brain regions involved in visual processing, for

example primary visual cortex (V1), have been subject to extensive

investigation [1]. The conjunction of neuroscientific results and

the study of statistical properties of natural images (i.e. the input to

the visual system) have led to the idea that neurons found in V1

are well adapted to the statistical regularities present in natural

images [2–5]. In fact, some of their response properties can be

regarded near-optimal with respect to certain efficiency criteria

[6–9]. So it seems that the design of early visual processing areas,

i.e. the connectivity patterns between neurons in these areas, has

evolved to cope best with images provided by the natural

environment. These findings lead to an interesting question,

namely how these well-designed connectivity patterns emerge as

the visual system develops in the newly born (or even unborn)

infant that has not yet been exposed to the natural environment.

Possible answers to this question parallel the debate of nature

versus nurture. One position states that the connectivity patterns

are stored in the genetic code while an opposing position advocates

that the connectivity patterns are acquired once the organism is

confronted with its natural input. In favor of the first position

would be the fact that there are animals that can see right after

birth [10] and that there are species that have a partially

functioning visual cortex before eye-opening [11,12]. In contrast

to that, there are also studies that point out that the visual system

needs visual input to fully develop its characteristic properties

[13,14] and is thus not likely to be fully determined by the genetic

code. Most likely, the truth is to be found somewhere between

these two positions.

One such combining approach states that the visual system

indeed develops to optimize a certain objective function, but it

does so prior to the onset of vision by learning on internally

generated input. The learning objective and the input generating

mechanism would have to be stored genetically while the actual

wiring of the neuronal connections can be done dynamically,

driven by the objective and the input statistics. This approach

includes the possibility for further learning and adaption after the

onset of vision in order to maximize the organism’s adjustment to

its environment. Thus, this innate learning approach [10] offers a

possibility to combine the seemingly contradictory points of view

about the development of the early visual system. In order to

support the innate learning approach, two aspects have to be

identified: what is the internally generated input and what is the

learning objective.

A prime candidate for the internally generated input to the

developing visual system are the so-called retinal waves [15–18].

The immature and yet light-insensitive retina of many animal

species generates spontaneous bursting activity. This activity

occurs in coherent spatiotemporal patterns that spread in waves

across the retina and bring the spontaneous bursts of neighboring
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cells into synchrony. These wave-like activity patterns are not only

present in the retina but in many other parts of the developing

nervous system, such as the spinal cord, the hippocampus, the

cochlea, and the cerebellum (see [18] for a review). The underlying

mechanisms that give rise to the correlated bursting patterns are

still subject of study. However, the important role of retinal waves

in context of the development of the visual system is supported by

theoretical as well as experimental studies [19,20], suggesting that

spatially correlated input is required for the proper development of

ordered connections from the retina to the LGN and then to visual

cortex [21]. Chemically abolishing retinal waves results in severe

developmental impairment of cortical ocular dominance columns

[11,12] and orientation selectivity [13,14,22]. Thus, retinal waves

seem to be a necessary condition for the emergence of many

important properties of the early visual system [16,23].

As for the learning objective, there are two prominent

candidates that have been applied in the context of computational

modeling of the visual system, namely sparsity and slowness.

Sparse coding, when trained with natural images, has been shown

to lead to the emergence of functions that share relevant properties

with specific types of V1 cells that are called simple cells [6] and

complex cells [24,25]. These types of objectives lead to compu-

tational algorithms that are called Independent Component

Analysis (ICA). Recently, ICA has also been applied to retinal

wave-like images, which results in simple cell-like functions and

supports the innate learning mechanism hypothesis [10].

The second candidate objective is called temporal stability, or

slowness [26]. In a number of studies, the slowness objective has

been used to model the self-organized emergence of complex cells

[8,9,27]. Additionally, the slowness principle has been successfully

applied to model to emergence of hippocampal place cells [28–30]

and for finding low dimensional representations of high dimen-

sional sensory input that bear behavioral relevance [31,32]. Slow

Feature Analyis (SFA) [33] is an algorithm that efficiently

implements the slowness objective by finding input-output

functions that maximize an appropriate objective function on

given training data. Note that while the slowness objective is

indeed a biologically plausible coding objective, the SFA algorithm

itself is not designed to be biologically plausible. SFA has found

many applications in the field of computational neuroscience

[9,29,31,32] as well as time-series analysis and signal processing

[34–36]. Furthermore, SFA has been studied analytically to a large

extent and therefore predictions about the functions that SFA finds

are possible, based on the statistics of the training data [37–40]. In

[41] is was conjectured that SFA might be capable of finding

complex cell-like functions when trained with retinal waves.

Thus, in this manuscript, we investigate to what extent it is

possible to explain the emergence of complex cells based solely on

two computational principles: spontaneous retinal wave activity

and the slowness coding objective.

Methods

Slow feature analysis
The goal of SFA is to find instantaneous input-output functions

g(x) that extract slowly varying scalar output signals from a high-

dimensional input signal x. To ensure that the extracted output

signals are informative, they are required to be uncorrelated and

to have unit variance.

The optimization problem is mathematically formulated as

follows. Given a multidimensional input signal

x(t)~(x1(t), . . . ,xN (t)), t[ t0,t1½ �, find a set of real-valued functions

g1(x), . . . ,gK (x) from a function space F, such that for the output

signals yj(t) : ~gj(x(t)) the expression

D(yj) : ~S _yy2
j Tt is minimal ð1Þ

under the constraints

SyjTt~0 (zero mean), ð2Þ

Sy2
j Tt~1 (unit variance), ð3Þ

Vivj,SyiyjTt~0 (decorrelation and order), ð4Þ

with S:Tt and _yy indicating time-averaging and the time derivative

of y, respectively.

The expression to be minimized (1) is a measure of the temporal

slowness of the signal yj(t), with small D-values indicating a slowly

varying signal. The trivial solution is a set of functions that is

constant for all t. Constraints (2) and (3) avoid this trivial solution

and constraint (4) ensures that different functions code for different

aspects of the input signal. The latter also introduces an order, y1

being the slowest signal, y2 the second slowest and so on. We refer

the reader to [9,33] for details on how this optimization is solved

by means of SFA.

In the present application, we chose to perform SFA in the

expanded input space of all polynomials up to a degree of two,

which makes it possible to conveniently express the SFA solution

in terms of a quadratic form of the original input signal,

g(x)~
1

2
xTHxzfTxzc : ð5Þ

The coefficients that constitute H, f, and c are determined by SFA

and the constant c is subtracted to achieve zero mean.

In order to understand the response properties of g(x) to input

stimuli, it is instructive to consider the eigenvalue decomposition of

the matrix H. This decomposition is given by the sum over the

outer products of its eigenvectors vi, weighted by the correspond-

ing eigenvalues li:

Author Summary

It is believed that our sensory systems are adapted to
statistical properties of behaviorally relevant elements in
our natural environments. In the case of vision, one
adaptation principle that has been put forward is the so-
called slowness principle. However, the visual system is
partially structured even before eye opening, when no
natural input is available yet. Thus, spontaneous neural
activity in the developing visual system of mammals (so-
called retinal waves) has been suggested to contribute to
shaping connections in early visual areas before the onset
of vision. Here we aim to bring these two ideas together.
Specifically, we apply an algorithm that implements the
slowness principle to simulated retinal waves. The algo-
rithm is set to encode the retinal wave input and thus has
to extract relevant features from that input. After
encoding, we are able to investigate the emerged
representation and we find that the extracted features
bear strong similarity to features that are encoded by
neurons in the early visual system. These features are the
building blocks for an object representation that is
independent of the object’s position in the visual field.
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H~
X

i

liviv
T
i : ð6Þ

In this formulation, the computation of the quadratic term

becomes

1

2
xTHx~

1

2
xT

X
i

liviv
T
i

 !
x

~
1

2

X
i

li xTvi

� �
vTi x
� �

~
1

2

X
i

li xTvi

� �2
:

ð7Þ

Hence, the quadratic term can be regarded as a weighted sum of

squared filter outputs to an input image, where the weights are

given by the eigenvalues li and the corresponding filters are given

by the eigenvectors vi.

SFA returns as many functions g(x) as there are dimensions in

the expanded function space and the resulting SFA functions are

ordered according to their temporal slowness, as measured on the

training data. In the remainder of this article, we refer to each of

the input-output functions g(x) as SFA units and limit our analysis

to the 50 slowest varying functions.

Analysis of response properties. Since the trained SFA

units are quadratic forms of the pixel intensities, there is an explicit

formulation of the input-output relation. Given a fixed-norm

constraint on the input images, it is therefore possible to compute

the optimal excitatory and inhibitory stimuli [39,40]. In addition,

similar to physiological experiments, we compute the response of

the SFA units to sinusoidal gratings. The orientation and phase of

the gratings were confined to the range from 0 to 2p, whereas the

maximal possible spatial frequency was eight cycles per receptive

field, due to the 16 by 16 pixel size of the receptive field. For better

comparison of the response properties between individual SFA

units, the output of each unit was normalized in the following

manner: First of all, the response of the unit to a gray input image

was subtracted. Secondly, the output was sign corrected such that

the maximal positive output is larger in magnitude than the

maximal negative output. Finally, the output was normalized to

have unit variance over the explored range of input stimulus

parameters.

The full exploration of the parameter space allows us to extract

for each unit the set of best parameter values, i.e. the constellation

of spatial frequency, orientation and phase of the sinusoid that

maximally excites the SFA unit. We visualize the units’ responses

as functions of the sinusoid parameters. In order to visualize these

three dimensional response functions, we set one or two

parameters to the values preferred by the SFA unit and plot the

response as a function of the remaining parameters.

Additionally we employ two quantitative metrics that are used

in physiological experiments as well: the response modulation index

[42] (also referred to as F1/F0 ratio) and the orientation selectivity

index (OSI) [13].

The F1/F0 ratio is a spectral measure of the phase-dependence of

the response. It is the ratio of the first harmonic of the response to its

DC component, hence the name F1/F0 ratio. Cortical cells with an

F1/F0 ratio smaller than one are classified as complex cells, whereas

cells with a ratio larger than one are classified as simple cells.

The OSI is a spectral measure of the orientation-dependence of

the response and is given by

OSI~
F2

(F0zF2)
:100 : ð8Þ

Here F2 is the amplitude of the second harmonic of the orientation

tuning curve while F0 is the average of the orientation tuning

curve.

Simulated retinal waves
In order to train the SFA units, we have used input image

sequences that were derived from a biologically plausible model of

retinal waves proposed by Godfrey and Swindale [43]. The retinal

wave model was parameterized such that it produced waves that

are similar in size and velocity to those observed in mice during the

first two weeks after birth. The parameters were taken from [43].

The retinal wave model assumes that spontaneous activity of

retinal amacrine cells drives the wave activity. In our simulations,

the retinal amacrine cells were arranged in a regular grid

consisting of 128 by 128 cells. Each cell received input from

other cells that were within a six cell dendritic radius. All

simulations were started with random membrane potentials and

threshold levels for all cells. A cell was considered active as long as

its membrane potential was above threshold. The activity of each

cell was represented by a binary value and the simulated retina

was visualized as a correspondingly sized image, black pixels

represented non-active, white pixels represented active cells.

Such an arrangement leads to inhomogeneities at the borders of

the simulated patch of retina, because those cells that are situated

at the borders receive less input than those that are further away

from the border. Godfrey and Swindale addressed this issue by

means of position-dependent regulations of activation thresholds

in order to achieve a uniform distribution of wave initiation points

over the retina patch. They have also reported that using cyclic

boundary conditions, i.e. connecting cells at opposite borders of

the simulated retina, leads to the same result. In our implemen-

tation, we chose to use cyclic boundary conditions. In order to

reduce noise in the input data, spatially not coherent activity was

filtered out by setting those pixels to zero that did not have more

than 4 active pixels among their 8 directly adjacent pixels.

After an initial warm-up phase of 30 minutes simulated time,

the produced retinal activity patterns were recorded for another

15 min simulated time, which resulted in 3600 binary images (4

per second). Figure 1 A shows four sample frames of the full

simulated retina. In order to illustrate the dynamics of the waves,

the images in the example sequence are each 20 simulated time

steps apart, which corresponds to 5 seconds. So the four depicted

images show 15 seconds of simulated activity. Figure 1 B show

experimental results for comparison [44].

Simulating the patch of retina is costly in terms of computa-

tional time. However, due to the cyclic boundary conditions and

the otherwise homogeneous structure of the simulated retina

patch, we can make an ergodicity assumption here and combine

the information from several spatial locations. The image sequence

obtained was tiled into overlapping receptive fields of size 16 by 16

pixels. The overlap between receptive fields was 5 pixel, resulting

in 289 image sequences, each being 3600 images long and having

a dimension of 16 � 16~256. The 289 receptive field image

sequences were concatenated and separator frames (containing

only zeros) were inserted between the individual receptive field

image sequences. These frame separators avoid jumps of activity

in the training signal. The concatenated image sequences

contained 289 � 3600z288~1040688 images, yielding a total of

4336 minutes (approx. 72 hours) simulated time.

SFA on Retinal Waves Leads to V1 Complex Cells

PLOS Computational Biology | www.ploscompbiol.org 3 May 2014 | Volume 10 | Issue 5 | e1003564



Prior to the quadratic expansion of the input data, the

dimensionality of the concatenated image sequence was reduced

to 50 by applying principal component analysis (PCA). This

greatly reduces the computational costs of the SFA algorithm in

terms of memory requirements. We elaborate on the effects of

dimensionality reduction by means of PCA in the Discussion

section. Finally, the concatenated and dimensionality reduced

image sequence served as input to SFA.

Results

The trained SFA units are characterized by their optimal stimuli

and their tuning to sinusoidal gratings.

Optimal stimuli resemble Gabor patches
Once the structure of a cortical cell’s optimal stimulus has been

estimated in neurophysiological experiments, it allows inferences

about the preferred orientation, frequency, and (in case of simple

cells) the preferred phase of the cell. Simple cell optimal stimuli

can be mapped by computing the spike-triggered average of

random dot input stimuli and are well described by 2D Gabor

functions [45–47]. Complex cells, on the other hand, require more

elaborate schemes for finding optimal stimuli, due to their largely

non-linear input-output relation. Using methods such as spike-

triggered covariance or second order interaction maps has

revealed many insights about the spatial structure of complex cell

optimal stimuli [48–51]. Additionally, stimulus optimization can

be employed for finding effective stimuli that elicit response from

sensory cells [52,53]. For example, just like those of simple cells,

the optimal stimuli of complex cells also posses subregions with

opposite polarity (similar to ON and OFF regions), from which the

frequency tuning of the cell can be predicted. Figure 2 A shows the

maximally excitatory stimuli for the first 25 SFA units (i.e. the 25

slowest), whereas Figure 2 B shows the maximally inhibitory

stimuli for the same units. Most of the optimal stimuli (excitatory

as well as inhibitory) show spatially segregated and elongated ON

and OFF regions, which is in close correspondence with

experimental data. See Figure 2 C for a comparison with optimal

stimuli obtained from adult cats with normal visual experience,

reported in [50].

Responses to sinusoidal gratings reveal phase invariance
and orientation selectivity

Further response properties of the SFA units are visualized by

showing their responses to sinusoidal gratings. When V1 cells are

probed with sinusoidal gratings in neurophysiological experiments,

the used gratings are usually parameterized along three dimen-

sions: orientation, spatial frequency, and phase. Here we adopt the

same convention and parameterize the input gratings accordingly.

Figure 3 depicts the responses of the first 25 SFA units as a

function of orientation and phase of the input sinusoidal grating,

which we refer to as orientation/phase-dependent response. The spatial

frequency of the gratings was set to the value that maximizes the

response of the respective SFA unit. Most of the orientation/

phase-dependent responses exhibit horizontal stripe patterns,

indicating that the response varies stronger along the orientation

axis compared to the phase axis.

This rather qualitative observation was quantified using the

response modulation index (F1/F0 ratio) and the orientation

selectivity index (OSI). Figure 3 B and C show the corresponding

histograms of these two measures, computed for the 50 SFA units

of this particular simulation run. It is obvious that taking into

account the full inhibition in the simulated units in the OSI and

the F1/F0 ratio can lead to unrealistic values, given that

physiological units cannot have negative firing rates but can at

most have suppressed firing below spontaneous firing rate. We

therefore also show histograms of the half-wave rectified unit

Figure 1. Simulated and real retinal waves. A Four example frames of simulated amacrine cell activity with a time distance of 20 frames (i.e.
5 seconds simulated time). Receptive field size is illustrated by the gray square in the lop left corner of the first frame. B Calcium imaging plots of a
patch of mouse retina, adapted from Toychiev et al. (2013) [44], by means of smoothing and thresholding to produce a binary image of the activity.
doi:10.1371/journal.pcbi.1003564.g001
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activities. Depending on the level of spontaneous activity, the most

plausible histograms for the simulated units will lie somewhere

between the raw and the rectified histogram.

The majority of SFA units have a response modulation index

smaller than one. Hence, they would be classified as complex cells in

a physiological experiment. The distribution of orientation selec-

tivity values shows a wide spread over the possible range of values,

which is consistent with experimental findings [13]. However, the

comparatively high average value (68.7) indicates a rather specific

orientation tuning in the majority of SFA units. Some units even

reach OSI values above 90, which is much higher than the values

reported for adult cats or ferrets. OSI histograms for ferrets shortly

before eye-opening and shortly afterwards are shown in Figure 3 D

and E, respectively. How exactly SFA achieves the phase invariance

and the large orientation selectivity is an interesting issue and

considered in more detail later in this section.

Figure 4 shows the response of the SFA units as a function of

spatial frequency (radial direction) and orientation (azimut) of the

input gratings (averaged over phase). Ringach et al. [54] have

investigated the response of V1 cells in macaque monkeys in the

same manner. Similar to Ringach et al.’s findings, almost all SFA

units exhibit active inhibition to stimuli that are not oriented in a

preferred direction. This inhibition takes place for orientations

orthogonal to the unit’s preferred orientation but in some units

also for non-orthogonal directions.

The orthogonal and non-orthogonal suppression is also visible

in typical orientation tuning polar plots, depicted in Figure 5 A for

the same SFA units that are shown in Figure 4. These plots show

the orientation tuning function at the unit’s preferred frequency

and phase. Unlike traditional plots of this kind, here also the

negative response (inhibition) of the SFA units is shown. Excitatory

activity is plotted in solid red lines, while inhibition is plotted in

dashed blue lines. The majority of SFA units show a clear

orientation preference. There are units that prefer only a single

orientation as well as units that also respond strongly to a second

direction, which is in some cases orthogonal to the first one and in

other cases not. This phenomenon manifests itself in the polar

plots as so-called secondary response lobes within the excitatory

(inhibitory) response curve. Such secondary response lobes are also

observed in cells found in mammalian V1. Figure 5 B shows

experimental data obtained by [55]. Here only the excitatory

response is plotted, but the different types of responses (not tuned

for orientation, single orientation preference, secondary response

lobes) are well exemplified (compare with solid red lines in Figure 5

A). The inhibitory response of the SFA units seems to follow

similar patterns as the excitatory response. There is often

inhibition in a single direction only but also secondary inhibition

response lobes are seen.

Phase invariance through emergence of Gabor
quadrature filter pairs

Most of the SFA units show a large invariance in their response

with respect to phase (or position) of an input grating. Here we

address the question how the SFA units achieve the phase

invariance.

In the classical complex cell model [56] this phase invariance is

a direct result of pooling the squared outputs of two linear Gabor

filters that have the same preferred frequency and orientation but

are in 90u phase shift relative to each other. Such a pair of filters is

called a quadrature filter pair (QFP). Recall that the SFA units are

quadratic forms of the pixel intensities, in which the contribution

of the quadratic and the linear term can be separately investigated

(see equation 5). The constant term in the quadratic form in

equation 5 is of no interest in the analysis, because it cannot

convey any information about a changing stimulus. The linear

term of the quadratic form alone cannot achieve phase invariance

either. However, the quadratic term as well as the linear term in

conjunction with the quadratic term can in principle achieve phase

invariance. Thus it is those two terms that we analyze further.

In the first column of Figure 6, we show the output of the

quadratic term, the output of the linear, and their sum as a function

of phase of the input grating for a selection of SFA units. Spatial

frequency and orientation of the input gratings have been set to the

units’ preferred values. The SFA units chosen include the two that

exhibit the largest phase invariance (smallest F1/F0 ratio) and the

one that exhibits the smallest phase invariance (largest F1/F0 ratio),

shown in the two top rows and bottom row, respectively. For the

most phase invariant unit, it can be seen that the phase invariant

response is mostly carried by the contribution of the quadratic term.

The contribution of the linear term on the other hand is marginal in

this case. For the second unit (middle row in the same figure) the

response of the linear term is larger but seems to cancel the phase

dependent fluctuations of the quadratic term, which are stronger

compared to the unit above. However, for the unit with the lowest

Figure 2. Optimal stimuli. A Maximally excitatory stimuli, plotted for the first 25 SFA units. B Maximally inhibitory stimuli for the same selection of
units as in A. C For comparison, optimal stimuli of complex cells of mature cats with normal visual experience estimated by Felsen et al. (2005) [50].
doi:10.1371/journal.pcbi.1003564.g002
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phase invariance, both terms show an almost aligned phase

dependence and contribute almost equally to the overall output,

which leads to a very high F1/F0 ratio for g(x), i.e. small phase

invariance. Figure 6 shows the largest-magnitude eigenvalues and

the corresponding eigenvectors of H for the selected SFA units,

plotted as images, as well as corresponding amplitude spectra. The

last column in the figure shows the linear component.

For the most phase invariant unit (top row in the figure), the

largest-magnitude eigenvectors seem to come in pairs of two.

Additionally, the corresponding eigenvectors are Gabor filters with

Figure 3. Response of the SFA units with respect to phase and orientation of sinusoidal gratings. A Responses to sinusoidal gratings
depicted as a function of orientation (y-axis) and phase (x-axis) of the grating. The spatial frequency was set to the unit’s preferred value. B Histogram
of response modulation (F1/F0) values, indicating the susceptibility to the phase parameter of the input grating. Black bars correspond to using the
full response of the units to compute F1/F0 values, white bars correspond to using the half-wave rectified response. This histogram is illustrates that
most of the SFA units from this simulation run (45 out of 50) have an F1/F0 value smaller than one and would thus be classified as complex cells in a
physiological experiment. It cannot be expected to resemble the distribution of simple and complex cells in visual cortex. C Histogram of orientation
selectivity (OSI) values, indicating the susceptibility to the orientation parameter of the input grating. Black bars correspond to using the full response
of the units to compute OSI values, white bars correspond to using the half-wave rectified response. D and E show OSI histograms obtained from
ferrets (adapted with permission from Figure 2 of Chapman B et al. (1993) [13]). Eye opening occurs between postnatal week 5 and 6. See last
paragraphs of the Results section for a thorough investigation of the reasons for high OSI values.
doi:10.1371/journal.pcbi.1003564.g003
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the same orientation and spatial frequency, but with a 90u phase

shift. Thus, they form a quadrature filter pair. The squaring of

their respective outputs and the weighting with approximately the

same factor (i.e. their eigenvalues) leads to a phase invariant

response when stimulated with a grating of preferred orientation

and spatial frequency, as was the case here. The preferred

orientation of this SFA unit is that of the eigenvector correspond-

ing to the largest eigenvalue. Interestingly, if the orientation of the

test grating deviates somewhat, the response of that unit is still

large, because of the contribution of the third and fourth

eigenvectors. Their preferred orientation is similar (yet wider)

compared to the first and second eigenvector. This leads to a

broad orientation tuning of this particular SFA unit.

The second-most phase invariant SFA unit (middle row) also

shows eigenvectors of H that resemble Gabor filters that come

pairwise and in 90u phase shift. However, the spectrum of

eigenvalues does not show as many pairwise occurring eigenvalues

as was the case in the most phase invariant unit. Thus, the squared

output of the corresponding filters in the quadrature filter pairs are

not as equally weighted and thereby leads to oscillations in the

output of 1
2

xTHx. Here the orientation of the third and fourth

eigenvector is orthogonal to that of the first and second and thus

leads to secondary response lobes in the orientation-dependent

response curve of this SFA unit.

The eigenvectors of the third unit shown (bottom row) do not

resemble phase shifted pairs of Gabor filters. The lack of

Figure 4. Response of the SFA units as a function of spatial frequency of sinusoidal gratings. Response of the SFA units to sinusoidal
gratings depicted as a function of the gratings’ spatial frequency and orientation. Warm (cold) colors indicate excitatory (inhibitory) response. The
results are qualitatively similar to those obtained for V1 neurons in macaque monkeys (see for example Figure 2 in Ringach et al. (2002) [54]).
doi:10.1371/journal.pcbi.1003564.g004
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appropriate filters and corresponding pairwise eigenvalues leads to

strong oscillations in the phase dependent response curve, i.e. very

little phase invariance. Such a cell may, however, be very invariant

to other features (orientation, contrast, etc.), which were not varied

in this particular test.

To summarize, we have found that the phase invariance of the

SFA units is explained by two features, namely (1) the emergence

of pairs of Gabor filters with equal orientation and spatial

frequency but 90u phase shift, and (2) the emergence of

correspondingly pairwise eigenvalues, which together constitute

Gabor quadrature filter pairs. This property is observed in about

half of the SFA units obtained.

Large OSI values arise due to smooth orientation tuning
curves and inhibitory responses

The histogram of OSI values in Figure 3 shows that a large

number of SFA units seem to posses rather high orientation

selectivity values. OSI values of 90 and higher are, to the best of

our knowledge, not reached by actual cortical neurons. Values of

up to 80 (and equivalent values in other scales) are possible, yet

very rare [13,14]. Here we investigate the reasons for the large

OSIs of SFA units.

Recall that the OSI measures the ratio between the second

harmonic of the orientation tuning curve (F2) and the sum of F2

and the average response across all orientations (F0). Thus two

scenarios can lead to large a OSI: Firstly, the OSI becomes large if

there are two peaks in the orientation tuning that are separated by

180u and the response to other directions is comparably low.

Secondly, the OSI becomes large if the average response (F0) is

close to zero. In fact, the OSI is maximal if F0 equals zero,

independent of how orientation selective the analysed SFA unit

actually is.

In the SFA units obtained, both effects work together and thereby

yield large OSI values. The presence of rotation in the training data

is predicted to lead to harmonic oscillations in the orientation tuning

curve [37,41]. When visualizing such orientation tuning in polar

plots (see Figure 3), the harmonic oscillation is manifested via

inhibitory lobes with amplitudes comparable to the excitatory lobes.

The presence of secondary (and possibly more) excitatory and

inhibitory lobes in the polar plots represent harmonic oscillations of

higher frequency. These harmonic oscillations in the orientation

tuning lead to smooth response curves with minimal average

orientation tuning and thereby to large OSIs.

Are smooth orientation tuning curves of SFA units due to
detectable rotation in the training data or merely an
artifact of the receptive field size?

Interestingly, there is another mechanism that could lead to

smooth orientation tuning curves of SFA units, namely the

combination of (i) finite receptive field size and (ii) input dynamics

that are dominated by translation. In the case where the training

input contains only translation and no rotation at all, the theory

behind SFA predicts a rather erratic orientation tuning [41]. In the

extreme case of infinitely large receptive fields, the translation in

the input leads to the emergence of infinitely large quadrature

filter pairs. This in turn corresponds to infinitely sharp peaks in

Fourier space. The predicted orientation tuning curve would then

be a weighted sum of such sharp peaks and thus not be expected to

be smooth at all. However, due to the finite size of spatial receptive

fields, the localization in Fourier space becomes less sharp, leading

to a smoothing of the orientation tuning curve. Hence, even if

trained with stimuli that do not contain rotation, a smooth, i.e.

somewhat slowly varying, orientation tuning curve can still be

expected, with the smoothness not emerging due to the slowness

Figure 5. Response of the SFA units as a function of orientation of sinusoidal gratings. A SFA unit response as a function of orientation.
Solid red (dashed blue) lines indicate excitatory (inhibitory) response. B Orientation tuning functions of V1 cells of macaque monkey (figure adapted
from DeValois et al. (1982) [55]). Note that inhibitory effects were not investigated by DeValois et al. [55], and thus there are no inhibitory responses
plotted in B.
doi:10.1371/journal.pcbi.1003564.g005
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objective but as an artifact of the finite size of the receptive field.

Thus the question arises whether the smooth orientation tuning

curves of the SFA units obtained are due to detectable rotation in

the training data or merely an artifact of the receptive field size.

In order to answer this question we have conducted additional

control experiments. Specifically, we conducted simulations in

which SFA units were trained with pink noise image sequences

that contained either only translation, only rotation, or a

combination of translation and rotation applied to the images. A

similar simulation protocol was used in [9]. Properties of the

resulting SFA units are presented in Figure 7. In that figure we plot

the same properties of SFA units that were shown in earlier

sections for SFA units trained on simulated retinal waves.

Additionally, we analytically derived the OSI for a complex cell

model that consists of a number of Gabor patch quadrature filter

pairs (Gabor-QFP model), see text S1. In Figure 8 we show the

OSI histograms of SFA units obtained from control experiments in

which the input either contained translation only or translation as

well as rotation. Furthermore, the figure shows the OSI histogram

of the Gabor-QFP model and the OSI histogram of SFA units

trained on simulated retinal waves. The OSI histograms of

translation-only SFA units bears strong similarity to the Gabor-

QFP model OSI histogram, yet both histograms exhibit a

qualitatively different shape than that of retinal wave SFA units.

From this we conclude that the smoothly varying orientation

tuning curves we obtained from retinal waves are not an artifact of

finite receptive field size. Instead, the orientation tuning is a direct

result of the SFA units adapting to rotational components in the

input data.

Discussion

In this article, we present the results of applying slow feature

analysis to image sequences derived from a model of retinal waves.

The resulting SFA units share a number of properties with

complex cells, which are found in adult mammalian primary visual

cortex. The defining feature of cortical complex cells is that they

respond well to sinusoidal gratings and show little variation in their

response when the phase of the grating changes. This most

important feature can be reproduced with the SFA model, i.e. the

response of the SFA units is largely invariant with respect to the

phase of a sinusoidal input grating. Secondly, the optimal stimuli

of a large portion of the SFA units show structure similar to that

found in experimentally observed receptive fields. Many optimal

stimuli resemble Gabor patches. Thirdly, similar to cortical simple

and complex cells, the SFA units respond stronger to some

orientations of the input grating than to others, i.e. they exhibit an

orientation tuning. However, some specifics of their orientation

tuning are not in accordance with physiological observations (see

Result section and below for further discussion of this issue).

Finally, the SFA units learned exhibit some degree of frequency

tuning, which is also found to be the case in cortical simple and

complex cells.

Relation to other studies
Previously, models based on temporal slowness have been

applied to natural image sequences and have reproduced

properties that are reminiscent of cortical complex cells [8,9,27].

Similar results have been obtained with models based on bilinear

Figure 6. Emergence of phase invariance. The two top rows correspond to the most phase invariant SFA units, the bottom row to a unit whose
response is phase dependent. Phase dependence of the linear and the quadratic term as well as their sum is depicted in the first column. The second
column shows the two ends of the eigenvalue spectrum of H. Eigenvalues are sorted from highest to lowest, then their absolute values are plotted.
Columns three and five show the eigenvectors that belong to the four largest, respectively smallest, eigenvalues, plotted as images. Columns four
and six show the corresponding Fourier amplitude spectra. The last column shows the linear component of the quadratic form plotted as an image.
doi:10.1371/journal.pcbi.1003564.g006
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sparse coding [25] or topographic ICA [24]. Yet none of these

studies can answer the question whether retinal waves are

sufficient stimuli to cause the development of complex cells.

However, given that our results on retinal waves are comparable

to those achieved on natural image sequences with a similar SFA

model, we predict that complex cell properties should also arise

when training the afore mentioned models with retinal wave

image sequences.

Albert et al. have applied sparse coding [6] to static retinal wave

images, which resulted in the emergence of basis functions having

receptive fields similar to those found for cortical simple cells. The

authors propose that the early visual system is structured under the

same learning objective before and during visual experience. For

retinal waves to be adequate training stimuli under a fixed

objective, the waves must share relevant statistical properties with

input acquired after the onset of vision, i.e. natural image

sequences. Their results show that retinal waves share relevant

spatial statistics with natural images and thus led to the emergence

of simple cell receptive fields. However, for the slowness objective

it is temporal statistics in the training data that is of great

importance. The temporal statistics of an image sequence are

governed by the spatial statistics and the type of image

transformation that lead from one image to the next. Thus there

is an intimate relationship between temporal and spatial statistics

of image sequences. The results presented in our article indicate

that retinal waves share relevant temporal statistical properties

with natural visual input that suffice to induce the emergence of

complex cell-like coding under the slowness objective.

Biological plausibility of the retinal wave model
The retinal wave image sequences used for training the SFA

units were derived from a model of retinal waves proposed by

Godfrey and Swindale [43]. Their model explains the emergence

of spatially coherent patterns and their propagation on the basis of

spontaneous depolarization and activity dependent refractoriness

of amacrine cells. Other models of retinal waves exist, see for

example [57–60]. Despite the (sometimes subtle) differences in the

wave generation mechanisms, all of the models mentioned

reproduce relevant retinal wave characteristics such as the

distribution of size, speed, and inter-wave-interval, as well as the

spatial coherence and the spatially limited and changing wave

domains. The Godfrey and Swindale model was chosen for

Figure 7. Translation versus rotation as dominant training input feature. Every plot group visualizes a different aspect of the trained SFA
units and within each plot group, nine units are shown (every third, starting from the first, up to SFA unit number 25). Columns from left to right:
optimal excitatory stimuli, orientation/phase response, response in Fourier space, orientation tuning plots. Rows: A SFA units trained with pink noise
images that were subject to translation only. B Units trained with a mixture of rotation and translation. C Units trained with input that contained
rotation only.
doi:10.1371/journal.pcbi.1003564.g007
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practical reasons including the fact that their model was the most

recent when the work in this project began, their model is easily

implemented, it runs fairly quickly, and the authors included

parameter settings for retinal waves of several animal species.

However, there is no principal reason for favoring the Godfrey

and Swindale model over the others. The results obtained should

not be much different when using a different retinal wave model,

provided that the model generates waves with similar statistics.

Effects of PCA preprocessing of input data
Recall that we have applied PCA dimensionality reduction to

the simulated retinal wave image sequences before using them as

input to SFA. Dimensionality reduction was a necessary step for

reasons of computational efficiency. SFA acts on second moment

matrices that have to be estimated on the quadratically expanded

input data. For 256 input dimensions, the number of entries of

these matrices is in the order of 109, while for 50 input dimensions

the number of entries to estimate is in the order of 106.

Applying PCA for dimensionality reduction is essentially

equivalent to spatially low-pass filtering the input, due to the

characteristic fall-off of power in the Fourier spectrum of natural

images, as well as the spectrum of simulated retinal waves (see

above for a discussion of the spatial statistics). Yet the dimension-

ality reduction allows to use larger receptive fields compared to

using unprocessed input. Larger receptive fields in turn allow for

an easier analysis, especially with respect to the interpretation of

optimal stimuli. Berkes and Wiskott have thoroughly discussed the

effects of PCA dimensionality reduction prior to SFA in [9],

section 5.3 and Appendix A.1 as well as A.4. The main result of

their analysis is that there is no qualitative difference between

using large low-pass filtered patches and using smaller unprocessed

patches.

However, using PCA processed (or low-pass filtered) image

patches limits the extent of frequency-specific response of any

subsequent coding mechanism. Similar to Berkes and Wiskott [9]

we used 50 PCA components, which imposes a spatial frequency

cut-off of about 4 cycles per receptive field, which is comparable to

the cut-offs used in [6,61]. See also [62] for the low-pass filter

properties of the retina. Thus, after PCA processing or spatially

low-pass filtering it is expected that there is no response to

sinusoidal gratings with frequencies above the corresponding

frequency cut-off. However, the frequency-specific response

observed below this cut-off is independent of the PCA prepro-

cessing and can thus only be attributed to the SFA itself. We find

that many SFA units show frequency specific responses in the

range of 0 to 4 cycles per receptive field (see Figure 4 A) despite the

fact that they act on the exact same PCA-processed input.

Biological plausibility of SFA
The SFA algorithm as such is not intended to be biologically

plausible in any detail. It is an abstract implementation of the

slowness principle. Thus SFA may produce effects that an actual

neural system would not, or it may fail to reproduce certain aspects

of actual neural system responses. However, SFA is a self-

organizing learning algorithm which implements the slowness

principle and thus it is expected to reproduce properties of neural

systems that are directly related to the coding objective. In the

present application, that particular property is phase invariance.

The phase invariance of cortical complex cells can be well

reproduced, which renders SFA a suitable model for the

emergence of such. Furthermore, the SFA units obtained show

direction- and frequency preference as well as secondary response

lobes. In addition to the properties reproduced here, the modeling

study of Berkes and Wiskott [9] has shown that SFA can also

account for additional complex-cell features such as end- and side-

inhibition.

Note that the standard complex cell model that consists of a

single quadrature filter pair only is unable to produce response

properties such as secondary response lobes or end- and side-

inhibition. More than one pair is necessary to achieve these

properties, which indicates that while the standard single

quadrature pair model is sufficient to account for phase invariance

and orientation selectivity, it is too simple a model to account for

the properties previously mentioned. The SFA model, on the other

hand, is complex enough to enable the emergence of multiple

quadrature filter pairs.

The observed emergence of multiple quadrature filter pairs is in

line with the analytical derivation of complex cell properties from

the slowness principle presented in [38,41]. Sprekeler and Wiskott

predict the formation of quadrature filter pairs to ensure slowly

varying output signals on training input that is derived from

applying translation to a static input image. At least locally, the

mere translation of a wave image seems a reasonable first-order

approximation of the simulated retinal waves. On the receptive

field level only a part of the traveling wave front is visible in most

cases, because the simulated waves are usually larger than the

receptive field. This is of course not true in those cases where a

wave emerges or decays within a receptive field, changes its size

and shape, or, for example, the wave itself is smaller than the

receptive field. Such cases also occur frequently and thereby

provide an explanation for the fact that not all of the first 50 SFA

units can be characterized as being a weighted superposition of

quadrature filter pairs. Test simulations in which SFA units were

Figure 8. Orientation selectivity index (OSI) histograms of SFA
units trained with different types of stimuli. A Training with pink
noise images that were translated only. B Training with pink noise
images that were rotated and translated. C OSI distribution of the
Gabor-QFP model. D Training with retinal wave image sequences.
Histograms in A, B, and D were obtained by pooling OSI values from
the first 50 SFA units of 10 simulation runs with identical parameters for
the training input generation.
doi:10.1371/journal.pcbi.1003564.g008
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trained with purely translation-based input stimuli show that all of

the first 50 units indeed have this quadrature filter pair property.

The orientation selectivity exhibited by the SFA units obtained

in the present study is well above experimental findings when

measured with the orientation selectivity index OSI [13]. The

reasons for such high OSI values have been investigated and

presented in the Results section. The fact that orientation

selectivity is overestimated, however, does not imply that the

slowness hypothesis has to be dismissed. An additional objective

may be necessary to capture all properties of complex cells.

Perhaps a different preprocessing of the SFA units’ responses

needs to be done (e.g. rectification) before computing the OSI.

Neural network implementations of the slowness principle have

been applied in other studies [8,27] and a neural implementation

of SFA has been proposed in [63]. When trained with retinal wave

image sequences, those implementations should also reproduce the

phase invariance property. It would be interesting to explore how

well these implementations fare in accounting for other complex

cell properties, compared to the SFA algorithm used in this study.

Experimental predictions
To the best of our knowledge, there are no studies that describe

the properties of complex cells shortly after or shorty before birth.

The experimental findings cited in this work are primarily derived

from simple cells. However, the results of our work predict that

complex cells could already be present at the time of birth or

shortly after, possibly in some preliminary form. It seems likely

that this is the case at least in some animal species, such as horse or

giraffe, because their offspring is born at a very advanced

developmental stage. The freshly born foals or calves are able to

stand and follow their mother within the first hour after birth. It

seems likely that these animals, even at this young age, can

recognize and differentiate objects (e.g. other members of their

species) independently of their position in the visual field, possibly

using also other sensory cues such as olfactory or auditory signals.

Complex cells are a prime candidate for the basis of position

invariant object recognition [32,64] and therefore it is likely that

the animal species mentioned are born with an, at least partially

developed, complex cell system already in place. Thus it would be

very interesting to identify complex cells in animals shortly after

eye opening and compare their properties to complex cells of

mature animals of the same species.

Given that our first prediction can be experimentally verified,

i.e. if it becomes possible to record from complex cells in animal

species before or shortly after the onset vision, then a second, more

principled, prediction concerning the emergence of simple and

complex cells can be derived. The performed control experiments

demonstrate the dependence of the SFA units on the transforma-

tions that are present in the training stimuli. If one could disrupt

the temporal structure of retinal waves while leaving the spatial

properties intact, then, according to the theory behind SFA, the

development of complex cells should be impaired. The develop-

ment of simple cells, on the other hand, should not be hindered,

because the theory of sparse coding is based on spatial statistics

only, making no reference to the temporal properties of the

training data. Currently the necessary technology may not be

available to actually perform such an experiment. However, it is

already possible to pharmacologically block natural retinal waves

[65] and further advances in the development of large-scale high-

density multielectrode arrays [66] and retinal implants [67] may

make it possible to artificially induce spatially coherent bursting

patterns at the level of the retina. If such a setup becomes

available, replaying recorded natural retinal wave images in a

randomized order (by shuffling the frames) should impair

development of complex cells stronger than the development of

simple cells.

Limitations
The results presented in this study can only give a rather

simplified account of the processes that come together in

structuring the neural circuitry of sensory systems. Specifically,

our study addresses only a particular part of the development of

the early visual system, namely complex cells. Already the clear-

cut distinction between simple and complex cells is most likely too

sharp, as it seems more likely to be a continuum between purely

simple and purely complex cells [68]. Furthermore, in many

species endogenously generated wave-like activity patterns are not

only present in the retina but throughout the entire developing

neural system, before and after birth [18]. It is likely that there are

factors influencing the natural development that were not

considered in this study.

With the present study we aim at showing how far one can get

from two simple computational principles (endogenous activity

and the slowness coding objective). Our results indicate that a

number of interesting properties can emerge from these simple

ingredients already, yet they cannot account for the true

complexity of our intricate neural system.

Conclusion
In conclusion we find that our simulation results support the

hypothesis that the slowness objective, here manifested by SFA, is

compatible with an innate learning mechanism that learns on

endogenous activity in the same manner as on actual visual input.

A large portion of the SFA units obtained from training with

retinal wave image sequences share relevant properties with

cortical complex-cells. Thereby we provide a theoretical account

for the emergence of complex-cells prior to eye opening that allows

for further refinement by exposure to natural visual input.

Supporting Information

Text S1 In this Supporting Information we provide the

analytical derivation of a formula for the orientation selectivity

index (OSI) of a linear combination of Gabor wavelet quadrature

filter pairs (Gabor-QFPs). The derived formula is the basis for

sampling OSI values from the Gabor-QFP model and generating

the OSI distribution shown in Figure 8 C.

(PDF)
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36. Dähne S, Höhne J, Schreuder M, Tangermann M (2011) Slow feature analysis -

a tool for extraction of discriminating event-related potentials in brain-computer
interfaces. In: Artificial Neural Networks and Machine Learning - ICANN 2011,

Springer Berlin/Heidelberg, volume 6791 of Lecture Notes in Computer Science. pp.

36–43.
37. Wiskott L (2003) Slow feature analysis: A theoretical analysis of optimal free

responses. Neural Computation 15: 2147–2177.

38. Sprekeler H, Wiskott L (2006) Analytical derivation of complex cell properties

from the slowness principle. In: Proceedings CNS 2006.

39. Berkes P, Wiskott L (2006) On the analysis and interpretation of inhomogeneous

quadratic forms as receptive fields. Neural Computation 18: 1868–1895.

40. Berkes P, Wiskott L (2007) Analysis and interpretation of quadratic models of

receptive fields. Nature Protocols 2: 400–407.

41. Sprekeler H, Wiskott L (2011) A theory of slow feature analysis for

transformation-based input signals with an application to complex cells. Neural

Computation 23: 303–335.

42. Skottun BC, De Valois RL, Grosof DH, Movshon AJ, Albrecht DG, et al. (1991)

Classifying simple and complex cells on the basis of response modulation. Vision

Research 31: 1078–1086.

43. Godfrey KB, Swindale NV (2007) Retinal wave behavior through activity-

dependent refractory periods. PLoS Computational Biology 3: e245+.

44. Toychiev AH, Yee CW, Sagdullaev BT (2013) Correlated spontaneous activity

persists in adult retina and is suppressed by inhibitory inputs. PLoS One 8:

e77658.

45. Daugman JG (1985) Uncertainty relation for resolution in space, spatial

frequency, and orientation optimized by two-dimensional visual cortical filters.

Journal of the Optical Society of America 2: 1160–1169.

46. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter

model of simple receptive fields in cat striate cortex. Journal of Neurophysiology

58: 1233–1258.

47. Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple

receptive fields in cat striate cortex. Journal of Neurophysiology 58: 1187–1211.

48. Livingstone MS, Conway BR (2003) Substructure of direction-selective receptive

fields in macaque V1. Journal of Neurophysiology 89: 2743–2759.

49. Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive

fields measured with natural images. Neuron 45: 781–791.

50. Felsen G, Touryan J, Han F, Dan Y (2005) Cortical sensitivity to visual features

in natural scenes. PLoS Biology 3: e342.

51. Sasaki KS, Ohzawa I (2007) Internal spatial organization of receptive fields of

complex cells in the early visual cortex. Journal of Neurophysiology 98: 1194–

1212.
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