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In the linear case, statistical independence is a sufficient criterion for
performing blind source separation. In the nonlinear case, however, it
leaves an ambiguity in the solutions that has to be resolved by additional
criteria. Here we argue that temporal slowness complements statistical
independence well and that a combination of the two leads to unique so-
lutions of the nonlinear blind source separation problem. The algorithm
we present is a combination of second-order independent component
analysis and slow feature analysis and is referred to as independent slow
feature analysis. Its performance is demonstrated on nonlinearly mixed
music data. We conclude that slowness is indeed a useful complement
to statistical independence but that time-delayed second-order moments
are only a weak measure of statistical independence.

1 Introduction

In signal processing, one often has to deal with multivariate data such as
a vectorial signal x(t) = [x1(t), . . . , xM(t)]T. To facilitate the interpretation
of such a signal, a useful representation of the data in terms of a linear
or nonlinear transformation has to be found; prominent linear examples
are Fourier transformation, principal component analysis, and Fisher dis-
criminant analysis. In this letter, we concentrate on blind source separation
(BSS), which recovers signal components (sources) that have originally gen-
erated an observed mixture. While the linear BSS problem can be solved
by resorting to independent component analysis (ICA), a method based on
the assumption of mutual independence between the mixed source signal
components, this is not possible in the nonlinear case. Some algorithms
have been proposed to address this problem, and we mention them below.
The objective of this letter is to show that the nonlinear BSS problem can

Neural Computation 19, 994–1021 (2007) C© 2007 Massachusetts Institute of Technology



Independent Slow Feature Analysis and Nonlinear BSS 995

be solved by combining ICA and slow feature analysis (SFA), a method to
find a representation where signal components are varying slowly.

After a short introduction to linear BSS and ICA in section 2.1, we present
the nonlinear BSS problem and some of the available algorithms in section
2.2. SFA is explained in section 3. We introduce independent slow feature
analysis (ISFA) in section 4, a combination of second-order ICA and SFA that
can perform nonlinear BSS. In section 5 the algorithm is tested on random
and surrogate correlation matrices and then applied to nonlinearly mixed
audio data. An analysis of the results reveals that nonlinear BSS can be
solved by combining the objectives statistical independence and slowness,
but that time-delayed second-order moments are not a sufficient measure
of statistical independence in our case. We conclude with a discussion in
section 6.

2 Blind Source Separation and Independent Component Analysis

2.1 Linear BSS and ICA. Let x(t) = [x1(t), . . . , xN(t)]T be a linear mix-
ture of a source signal s(t) = [s1(t), . . . , sN(t)]T and be defined by

x(t) = As(t), (2.1)

with an invertible N × N mixing matrix A. The goal of blind source separa-
tion (BSS) is to recover the unknown source signal s(t) from the observable
x(t) without any prior information. The only assumption is that the source
signal components are statistically independent. Given only the observed
signal x(t), we want to find a matrix R such that the components of

u(t) = Qy(t) = QWx(t) = Rx(t) (2.2)

are mutually statistically independent. Here we have divided R into two
parts. First, a whitening transformation y(t) = Wx(t) with whitening matrix
W is applied, resulting in uncorrelated signal components yi (t) with unit
variance and zero mean, where we have assumed x(t) and also s(t) to
have zero mean. Second, a transformation u(t) = Qy(t) with orthogonal Q
(Comon 1994) results in statistically independent components ui (t).

The method of finding a representation of the observed data such that the
components are mutually statistically independent is called independent
component analysis (ICA). It has been proven that ICA solves the linear
BSS problem, apart from the fact that the source signal components can be
recovered only up to scaling and permutation (Comon 1994).

A variety of algorithms perform linear ICA and therefore linear BSS.
They can be divided into two classes (Cardoso 2001): (1) independence is
achieved by optimizing a criterion that requires higher-order statistics, and
(2) the optimization criterion requires autocorrelations or nonstationarity
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of the source signal components. For the second class of BSS algorithms,
second-order statistics is sufficient (see, e.g., Tong, Liu, Soon, & Huang,
1991).

Here we focus on class (2) and use a method introduced by Molgedey
& Schuster (1994) based on only second-order statistics. It is based on the
minimization of an objective function that can be written as

�τ
ICA(Q) :=

N∑
i, j=1
i �= j

(
C (u)

i j (τ )
)2

=
N∑

i, j=1
i �= j


 N∑

k,l=1

Qik Q jlC
(y)
kl (τ )




2

(2.3)

operating on the already whitened signal y(t). C (u)
i j (τ ) is an entry of a sym-

metrized time-delayed correlation matrix,

C(u) (τ ) := 1
2

〈
u(t)u(t + τ )T + u(t + τ )u(t)T〉

, (2.4)

C (u)
i j (τ ) := 1

2

〈
ui (t)u j (t + τ ) + ui (t + τ )u j (t)

〉
, (2.5)

and C(y) (τ ) is defined correspondingly. Minimization of �τ
ICA can be under-

stood intuitively as finding an orthogonal matrix Q that diagonalizes the
correlation matrix with time delay τ . Since, because of the whitening, the
instantaneous correlation matrix, which is simply the covariance matrix,
is already diagonal, this results in signal components that are decorrelated
instantaneously and at a given time delay τ . This can be sufficient to achieve
statistical independence (Tong et al., 1991). Extending this method to several
time delays is straightforward and provides greater robustness (see, e.g.,
Belouchrani, Abed Meraim, Cardoso, & Moulines, 1997; Ziehe & Müller,
1998; and section 5.1).

2.2 Nonlinear BSS and ICA. An obvious extension to the linear mixing
model 2.1 has the form

x(t) = F (s(t)), (2.6)

with a nonlinear function F : R
N → R

M that maps N-dimensional source
vectors s(t) onto M-dimensional signal vectors x(t). The components xi (t)
of the observable are a nonlinear mixture of the sources and, as in the
linear case, source signal components si (t) are assumed to be mutually
statistically independent. Extracting the source signal is possible only if F
is an invertible function on the range of s(t), which we will assume from
now on.
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The equivalence of BSS and ICA in the linear case does not hold in general
for a nonlinear function F (Hyvärinen & Pajunen, 1999; Jutten & Karhunen,
2003). For example, given statistically independent components u1(t) and
u2(t), any nonlinear functions h1 (u1) and h2 (u2) also lead to components
that are statistically independent. Also, a nonlinear mixture of u1(t) and u2(t)
can still have statistically independent components (Jutten & Karhunen,
2003). Thus, in the nonlinear BSS problem, independence is not sufficient
to recover the original source signal, and additional assumptions about the
mapping F or the source signal are needed to sufficiently constrain the
optimization problem. We list some of the known methods:

� Constraints on the mapping F :

—F is a smooth mapping (Hyvärinen & Pajunen, 1999; Almeida, 2004)
—F is a postnonlinear (PNL) mapping (Taleb & Jutten, 1997, 1999;

Yang, Amari & Cichocki, 1998; Taleb, 2002; Ziehe, Kawanabe,
Harmeling, & Müller, 2003).

� Prior information about the source signal components:

—Source signal components are bounded (Babaie-Zadeh, Jutten, &
Nayebi, 2002)

—Source signal components have time-delayed autocorrelations (re-
ferred to as temporal correlations) (Hosseini & Jutten, 2003)

—Source signal components are those that exhibit a characteristic time
structure (power spectra are pairwise different) (Harmeling, Ziehe,
Kawanabe, & Müller, 2003)

2.3 A New Approach. In our approach, we do not make any specific
assumption about the mapping F , although the function space available for
unmixing will be finite-dimensional in the algorithm, which imposes some
limitations on F . Since we employ an ICA method based on time-delayed
cross-correlations, we make the implicit assumption that the sources have
significantly different temporal structure (power spectra are pairwise dif-
ferent) (cf. Harmeling et al., 2003). We also assume that the sampling rate is
high enough that the input signal can be treated as if it were continuous and
the time derivative is well approximated by the difference of two successive
time points.

We have seen that in the nonlinear case, statistical independence alone
is not a sufficient criterion for BSS. There are infinitely many nonlinearly
distorted versions of one source that are all statistically independent of
another source. We propose slowness as a means to resolve this ambi-
guity and select a good representative from the different versions of a
source because nonlinearly distorted versions of a source usually vary
more quickly than the source itself. Consider a sinusoidal signal compo-
nent xi (t) = sin(t) and a second component that is the square of the first
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xj (t) = xi (t)2 = 0.5 (1 − cos(2t)). The second component is more quickly
varying due to the frequency doubling induced by the squaring. We be-
lieve this argument can be made more formal, and it can be proven that
given the set of a one-dimensional signal and all its nonlinearly and contin-
uously transformed versions, the slowest signal of the set is either the signal
itself or an invertibly transformed version of it (Sprekeler, Zito, & Wiskott,
2007). Considering this, we propose, in order to perform nonlinear BSS,
to complement the independence objective of pure ICA with a slowness
objective. In the next section, we give a short introduction to slow feature
analysis, an algorithm built on the basis of this slowness objective.

3 Slow Feature Analysis

Slow feature analysis (SFA) is a method that extracts slowly varying signals
from a given observed signal (Wiskott & Sejnowski, 2002). This section
gives a short description of the method as well as a link between SFA and
second-order ICA (Blaschke, Berkes, & Wiskott, 2006), which provides the
means to find a simple objective function for our nonlinear BSS method.

Consider a vectorial input signal x(t) = [x1(t), . . . , xM(t)]T. The objective
of SFA is to find a nonlinear input-output function g(x) = [g1(x), . . . , gL (x)]T

such that the components of u(t) = g(x(t)) are varying as slowly as possible.
As a measure of slowness, we use the variance of the first derivative, so that
a slow signal has on average a small slope. The optimization problem then
is as follows. Minimize the objective function

�(ui ) := 〈u̇2
i (t)〉 (3.1)

successively for each ui (t) under the constraints

〈ui (t)〉= 0, (zero mean) (3.2)

〈(ui (t))
2〉 = 1, (unit variance) (3.3)

〈ui (t)u j (t)〉= 0 ∀ j < i, (decorrelation and order) (3.4)

where 〈·〉 denotes averaging over time. Constraints 3.2 and 3.3 ensure that
the solution will not be the trivial solution ui (t) = const. Constraint 3.4
provides uncorrelated output signal components and thus guarantees that
different components carry different information.

To make the optimization problem easier to solve, we consider the com-
ponents gi of the input-output function to be a linear combination of a finite
set of nonlinear functions. We can then split the optimization procedure
into two parts: (1) nonlinear expansion of the input signal x(t) into a high-
dimensional feature space and (2) solving the optimization problem in this
feature space linearly.
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3.1 Nonlinear Expansion. A common method to make nonlinear prob-
lems solvable in a linear fashion is nonlinear expansion. The observed
signal components xi (t) are mapped into a high-dimensional feature space
according to

z(t) = h(x(t)). (3.5)

The dimension L of z(t) is typically much larger than that of the original
signal. For instance, if we want to expand into the space of second-degree
polynomials, we can apply the mapping

h(x) = [x1, . . . , xM, x1x1, x1x2, . . . , xMxM]T − hT
0 . (3.6)

The dimensionality of this feature space is L = M + M (M + 1)/2. The con-
stant vector hT

0 is needed to make the expanded signal mean free.

3.2 Solution of the Linear Optimization Problem. Given the nonlinear
expansion, the nonlinear input-output function g(x) can be written as

g(x) = Rh(x) = Rz , (3.7)

where R is an L × L matrix, which is subject to optimization. To simplify
the optimization procedure we (1) choose the nonlinearities h (· ) such that
z(t) is mean free and (2) first find a transformation y(t) = Wz(t) to obtain
mutually decorrelated components yi (t) with zero mean. Matrix W is a
whitening matrix as in normal ICA;

u(t) = Qy(t) = QWz(t) = Rz(t) = g(x(t)) , (3.8)

where y(t) is the nonlinearly expanded and whitened signal. It can be shown
(Wiskott & Sejnowski, 2002) that the constraints 3.2 to 3.4 are fulfilled triv-
ially if the transformation Q, subject to learning, is an orthogonal matrix. To
solve the optimization problem, we rewrite the slowness objective, equation
3.1, as

�(ui ) = 〈(u̇i (t))
2〉 = qT

i 〈ẏ (t) ẏ (t)T〉qi =: qT
i Eqi , (3.9)

where qi = [Qi1, Qi2, . . . , Qi L ]T is the ith row of Q and E is the matrix
〈ẏ(t)ẏ(t)T〉. For this optimization problem, there exists a unique solution.
For i = 1, the optimal weight vector is the normalized eigenvector that
corresponds to the smallest eigenvalue of E. The eigenvectors of the next
higher eigenvalues produce the next slow components u2(t), u3(t), . . . and
so forth. Typically only the first several of all L possible output components
are of interest and selected.
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Finding the eigenvectors is equivalent to finding the transformation Q
such that QTEQ is diagonal. As described in detail in Blaschke et al. (2006),
this leads to an objective function for SFA subject to maximization,

�τ
SFA(Q) :=

L∑
i=1

(
C (u)

i i (τ )
)2

=
L∑

i=1


 L∑

k,l=1

Qik QilC
(y)
kl (τ )




2

, (3.10)

where τ is a time delay that arises from an approximation of the time
derivative. We set τ = 1 because we make the approximation ẏ(t) ≈ y(t +
1) − y(t).

To understand equation 3.10 intuitively, we note that slowly varying
signal components are easier to predict and should therefore have strong
correlations in time. Thus, maximizing the time-delayed autocorrelation
produces a slowly varying signal component. Since the trace of C(y) (τ ) is
preserved under a rotation Q, maximizing the sum over the squared auto-
correlations tends to produce a set of most slowly varying signal compo-
nents at the expense of the other components, which become most quickly
varying and are usually discarded.

Note the formal similarity between equations 2.3 and 3.10.

4 Independent Slow Feature Analysis

The nonlinear BSS method proposed in this section combines the principle
of independence known from linear second-order BSS methods with the
principle of slowness as described above. Because of the combination of
ICA and SFA, we refer to this method as independent slow feature analysis
(ISFA). Second-order ICA tends to make the output components indepen-
dent, and SFA tends to make them slow. Since we are dealing with a nonlin-
ear mixture, we first compute a nonlinearly expanded signal z(t) = h(x(t))
with h : R

M → R
L being some nonlinear function chosen such that z(t) has

zero mean. In a second step, z(t) is whitened to obtain y(t) = Wz(t). Finally,
we apply linear ICA combined with linear SFA on y(t) in order to find
the output signal u(t), the R first components of which are the estimated
source signals, where R is usually much smaller than L , the dimension of
the expanded signal. Because of the whitening, we know that ISFA, like
ICA and SFA, is solved by finding an orthogonal L × L matrix Q. We write
the output signal u(t) as

u(t) = Qy(t) = QWz(t) = QWh(x(t)). (4.1)

While the u1(t), . . . , uR(t) are statistically independent and slowly varying,
the components uR+1(t), . . . , uL (t) are more quickly varying and may be
statistically dependent on each other as well as on the estimated sources.
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The last L − R components of the output signal u(t) are irrelevant for
the final result but important during the optimization procedure (see
below).

To summarize, we have an M-dimensional input x(t), an L-dimensional
nonlinearly expanded and whitened y(t), and an L-dimensional output
signal u(t). ISFA finds an orthogonal matrix Q such that the R first com-
ponents of the output signal u(t) are mutually independent and slowly
varying. These are the estimated sources.

4.1 Objective Function. To recover R source signal components
ui (t), i = 1, . . . , R from an L-dimensional expanded and whitened signal
y(t), the objective for ISFA with one single time delay τ reads

�τ
ISFA(u1, . . . , uR) := bICA�τ

ICA(u1, . . . , uR) − bSFA�τ
SFA(u1, . . . , uR)

= bICA

R∑
i, j=1,

i �= j

(
C (u)

i j (τ )
)2

− bSFA

R∑
i=1

(
C (u)

i i (τ )
)2

, (4.2)

where we simply combine the ICA objective, equation 2.3, and SFA
objective, equation 3.10, for the first R components weighted by the fac-
tors bICA and bSFA, respectively. Note that the ICA and the SFA objective
are usually applied to all components and that in the linear case (and for
one time delay τ = 1), they are equivalent (Blaschke et al., 2006). Here,
they are applied to an R-dimensional subspace in the L-dimensional ex-
panded space, which makes them different from each other. �τ

ISFA is to be
minimized, which is the reason why the SFA part has a negative sign.

In the linear case, it is standard practice to use multiple time delays to
stabilize the ICA solution (see, e.g., the kTDSEP algorithm by Harmeling
et al., 2003). We will see in sections 5.1 and 5.2 that in our case, multiple time
delays are essential to get meaningful solutions. The general expression for
the objective of ISFA then reads,

�ISFA(u1, . . . , uR) := bICA

∑
τ∈TICA

κτ
ICA�τ

ICA − bSFA

∑
τ∈TSFA

κτ
SFA�τ

SFA

= bICA

∑
τ∈TICA

κτ
ICA

R∑
i, j=1,

i �= j

(
C (u)

i j (τ )
)2

− bSFA

∑
τ∈TSFA

κτ
SFA

R∑
i=1

(
C (u)

i i (τ )
)2

, (4.3)

where TICA and TSFA are the sets of time delays for the ICA and SFA ob-
jectives, respectively, whereas κτ

ICA and κτ
SFA are weighting factors for the
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corresponding correlation matrices. For simplicity, we will continue the
description with only one time delay based on equation 4.2 and only
later provide the full formulation with multiple time delays based on
equation 4.3.

4.2 Optimization Procedure. From equation 4.1, we know that C(u) (τ )
in equation 4.2 depends on the orthogonal matrix Q. There are several ways
to find the orthogonal matrix that minimizes the objective function. Here
we apply successive Givens rotations to obtain Q. A Givens rotation is a
rotation around the origin within the plane of two selected components µ

and ν and has the matrix form

Qµν

i j :=




cos(φ) for (i, j) ∈ {(µ,µ) , (ν, ν)}
− sin(φ) for (i, j) ∈ {(µ, ν)}

sin(φ) for (i, j) ∈ {(ν, µ)}
δi j otherwise

(4.4)

with Kronecker symbol δi j and rotation angle φ. Any orthogonal L × L
matrix such as Q can be written as a product of L(L − 1)/2 (or more) Givens
rotation matrices Qµν (for the rotation part) and a diagonal matrix with
diagonal elements ±1 (for the reflection part). Since reflections do not matter
in our case, we consider only the Givens rotations as is often done in second-
order ICA algorithms (e.g., Cardoso & Souloumiac, 1996)—(but note that
here ICA is applied to a subspace). Objective 4.2 as a function of a Givens
rotation Qµν reads

�
τ,µν

ISFA (Qµν) = bICA

R∑
i, j=1
i �= j


 L∑

k,l=1

Qµν

ik Qµν

jl C (u′)
kl (τ )




2

− bSFA

R∑
i=1


 L∑

k,l=1

Qµν

ik Qµν

il C (u′)
kl (τ )




2

, (4.5)

where u′ is some intermediate signal during the optimization procedure.
For each Givens rotation, there exists an angle φmin with minimal �τ,µν

ISFA. Suc-
cessive application of Givens rotations Qµν with the corresponding rotation
angle φmin leads to the final rotation matrix Q, yielding

C(u) (τ ) = QTC(y) (τ )Q . (4.6)

In the ideal case, the upper left R × R submatrix of C(u) (τ ) is diagonal with
a large trace

∑R
i=1 C (u)

i i (τ ).
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Applying a Givens rotation Qµν in the µν-plane changes all auto- and
cross-correlations C (u′)

i j (τ ) with at least one of the indices equal to µ or ν.
There exist two invariances under such a transformation:

(
C (u′)

µi (τ )
)2

+
(

C (u′)
νi (τ )

)2
= const ∀i �∈ {µ, ν}, (4.7)

(
C (u′)

µµ (τ )
)2

+
(

C (u′)
µν (τ )

)2
+

(
C (u′)

νµ (τ )
)2

+
(

C (u′)
νν (τ )

)2
= const. (4.8)

Assume we want to minimize �τ
ISFA for a given R, where R denotes the num-

ber of signal components we want to extract. Applying a Givens rotation
Qµν , we have to distinguish three cases:

� Case 1. Both axes, µ and ν, lie inside the subspace spanned
by the first R axes (µ, ν ≤ R) (see Figure 1a). The sum over all
squared cross-correlations of all signal components that lie out-
side the R-dimensional subspace is constant, as well as that of all
signal components inside the subspace. The former holds because
of the first invariance, equation 4.7, and the latter because of the
first—equation 4.7—and second—equation 4.8–invariance. There is
no interaction between inside and outside; in fact, the objective
function is exactly the objective for an ICA algorithm based on
second-order statistics, such as TDSEP or SOBI (Ziehe & Müller, 1998;
Belouchrani et al., 1997). Blaschke et al. (2006) have shown that this is
equivalent to SFA in the case of a single time delay of τ = 1.

� Case 2. Only one axis, without loss of generality, µ, lies inside
the subspace; the other, ν, lies outside (µ ≤ R < ν) (see Figure 1b).
Since one axis of the rotation plane lies outside the subspace, u′

µ in
the objective function can be optimized at the expense of the u′

ν outside
the subspace. A rotation of π/2, for example, would simply exchange
components u′

µ and u′
ν . For instance, according to equation 4.7, (C (u′)

µi )2

can be optimized at the expense of (C (u′)
νi )2 with i ∈ {1, . . . , R}; accord-

ing to equation 4.8, (C (u′)
µµ )2 can be optimized at the expense of (C (u′)

µν )2,
(C (u′)

νµ )2, and (C (u′)
νν )2. This gives the possibility of finding the slowest

and most independent components in the whole space spanned by all
L axes, in contrast to case 1, where the minimum is searched within
the subspace spanned by the first R axes considered in the objective
function.

� Case 3. Both axes lie outside the subspace (R < µ, ν) (see Figure 1c).
A Givens rotation with the two rotation axes outside the relevant
subspace does not affect the objective function and can therefore be
disregarded.
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µ ν R L

µ

ν

R

L

u´

u´

u´

u´

u´ u´ u´ u´

(a) Case 1

µ

R

ν

L

µ R ν L

u´

u´

u´

u´

u´ u´ u´ u´

(b) Case 2

ν

L

R

µ ν

µ

L

u´

u´

u´

u´

u´ u´Ru´ u´

(c) Case 3

Figure 1: Each square represents a squared cross- or autocorrelation (C (u′)
i j )2

where index i ( j) denotes the row (column) of the square. Dark squares indicate
all entries that are changed by a rotation in the µ-ν-plane. L is the dimensionality
of the expanded signal u′ and R the number of signal components u′

i (t) subject
to optimization. The entries incorporated in the objective function are located
in the upper-left corner, as indicated by the dashed line.

To optimize the objective function of ISFA, equation 4.2, we need to
calculate the explicit form of the objective function �

τ,µν

ISFA in equation 4.5. By
inserting the Givens rotation matrix 4.4 into the objective function 4.5, and
considering the case with multiple time delays, we can write the objective
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as a function of the rotation angle φ,

�
µν

ISFA (φ) = bICA


ec +

2∑
β=0

eβ cos4−β (φ) sinβ (φ)




− bSFA

(
dc +

4∑
α=0

dα cos4−α(φ) sinα(φ)

)
(4.9)

with constants e and d that depend only on the C (u′)
kl before rotation. Further

simplification (cf. Blaschke & Wiskott, 2004) leads to

Case 1: �
µν

ISFA (φ) = A0 + A4 cos(4φ + φ4) (4.10)

Case 2: �
µν

ISFA (φ) = A0 + A2 cos(2φ + φ2) + A4 cos(4φ + φ4), (4.11)

with a single minimum (if without loss of generality, φ ∈ [− π
2 , π

2

]
), which

can be calculated easily. The derivation of equations 4.10 and 4.11 involves
various trigonometric identities and, because of its length, is documented
in the appendix.

The iterative optimization procedure with successive Givens rotations
can now be described as follows:

1. Initialize Q′ = I and compute C(u′) (τ ) = C(y) (τ )∀τ ∈ TICA ∪ TSFA with
equation 2.4 and � ′

ISFA with equation 4.3.

2. Choose a random permutation of the set of axis pairs:
P = σ ({(µ, ν), with µ ≤ R and µ < ν ≤ L}).

3. Go systematically through all axis pairs in P . For each axis pair:
(a) Determine the optimal rotation angle φ

µν
min for the selected axes

with equation 4.10 or 4.11.
(b) Compute the Givens rotation matrix Qµν

(
φ

µν
min

)
defined by equa-

tion 4.4.
(c) Update C(u′) (τ ) using C(u′) (τ ) → (Qµν)T C(u′) (τ )Qµν .
(d)Update Q′ according to Q′ → QµνQ′.
(e) Back up the previous objective-function value � ′′

ISFA = � ′
ISFA.

(f) Calculate the new objective-function value � ′
ISFA with equation 4.3

using the updated C(u′) (τ ) from step 3c,
(g) Store the relative decrease of the objective function value � ′′

ISFA−� ′
ISFA

|� ′′
ISFA| .

(4) Go to 2 until the relative decrease of the objective function is smaller
than ε � 1 for all axis pairs in P .

(5) Set Q = Q′ and u (t) = Qy(t).
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In step 2 it is important to note that the rotation planes of the Givens
rotations are selected from the whole L-dimensional space (although we
avoid the irrelevant case 3 by requiring µ ≤ R; see Figure 1), whereas the
objective function uses information of correlations only among the first R
signal components u′

i . Since Qµν is very sparse, the Givens rotation in step
3c does not require a full matrix multiplication but can be computed more
efficiently. Note that the algorithm works on the intermediate correlation
matrices C(u′) (τ ), not on the signals themselves; the input signal y(t) is
used only in the initialization (step 1) and at the end (step 5) when the
output signal u(t) is computed. To circumvent the problem of getting stuck
in local optima of the objective function, a random rotation of the outer
space (ν > µ > R) can be performed after convergence in step 4, and the
algorithm can be restarted at step 2.

5 Results

To evaluate the performance of ISFA, we tested the algorithm first on ran-
dom matrices to check how many matrices are needed to get meaningful
results, then on surrogate matrices to check that the algorithm reliably con-
verges to the global optimum under these ideal conditions, and then on a
difficult although low-dimensional mixture of audio data to show how it
performs on real data. In order to reduce the problem of local optima, we
use SFA as a preprocessing step. That choice follows from the empirical
observation that SFA is always able to extract the first source signal. To
stabilize the ISFA solutions even further, we typically run the optimization
routine once with the first axis fixed and then once more following the pro-
cedure described in section 4.2. Throughout this letter, the SFA time-delay
set and the weighting factors were as follows:

TSFA = {
1
}

(5.1)

κτ
SFA = 1 for τ = 1 (5.2)

κτ
ICA = 1 ∀ τ ∈ TICA. (5.3)

This particular choice makes it easy to interpret the ISFA objective func-
tion 4.3. The SFA part is the plain SFA objective function of equation 3.10;
the ICA part is the plain ICA objective function of equation 2.3 extended to
several time delays. If we would choose more than one time delay for the
SFA part, the interpretation in terms of slowness would become less clear
(see Blaschke et al., 2006). TICA depends on the experiment (see below).

5.1 Tests with Random Matrices. First, consider only the ICA part of the
objective function 4.3. Its purpose is to guarantee statistical independence
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Table 1: Critical Number of Time Delays, Tcrit, for Different Values of L and R.

R 2 3 4 5 6 7 8 9 10
More
Than 10

L = 9 Tcrit 18 8 5 4 3 2 2 2 - -
L = 20 Tcrit 36 19 13 9 7 6 5 4 3 2

of the estimated sources by simultaneously diagonalizing the R × R upper
left submatrix of T time-delayed L × L correlation matrices, where T is the
number of elements in TICA. However, for the ICA term to be useful, we
have to take sufficiently many matrices into account so that simultaneous
submatrix-diagonalization is not trivial. For instance, a single symmetric
matrix can always be fully diagonalized by the orthonormal set of its eigen-
vectors. Thus, for R = L and T = 1, one has to take at least two matrices
to avoid this spurious solution, which would be found even if there are no
underlying statistically independent sources.

To estimate the minimum number of matrices needed, we ran ISFA with
bSFA = 0 on randomly generated symmetric matrices Aτ , τ = 1, ..., T , for
different values of L , R, and T . The subdiagonalization was considered suc-

cessful if E :=
√

〈A2
i j 〉τ, j,i> j , that is, the square root of the averaged squared

nondiagonal terms, was below a threshold Ecrit := 10−3. For fixed L and
R < L , we typically observe that a high degree of subdiagonalization is
possible for T = 2. For T > 2 the subdiagonalization is still possible but at a
lower degree with increasing T , until a critical Tcrit is reached, for which the
degree of subdiagonalization displays a sharp transition where E crosses
the threshold Ecrit and remains stable after that.

The estimated critical number of time delays Tcrit for L ∈ {9, 20} and
different values of R are given in Table 1. In the simulations that follow,
we have M = R = 2 and use ISFA3 and ISFA5 (ISFAn refers to ISFA with
polynomials of degree n), resulting in L = 9 and L = 20, respectively. From
the table, we see that with T = 50, we are well above Tcrit in both cases.

5.2 Tests with Surrogate Matrices. To test the performance of ISFA
(now including the SFA part) in the absence of noise, finite-size effects,
or any other kind of perturbation, we carried out an experiment with
T > 1 surrogate matrices, prepared such that they have a unique exact
solution (except for permutations). The first matrix, with τ = 1, is fully di-
agonal, with the diagonal elements ordered by decreasing absolute value,
with the exception of the second and last element, which are swapped.
All other T − 1 matrices are random symmetric matrices with a diagonal
(R + RICA) × (R + RICA) upper submatrix. SFA alone sees only the first ma-
trix (cf. equations 5.1 and 5.2) and would favor a solution in which the
last component is swapped back into the R × R subspace in place of the
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small second component. ICA alone would favor any permutation of the
first (R + RICA) components equally well, because for any of these permu-
tations, the R × R upper submatrices are all diagonal. In this example, ICA
should prevent SFA from swapping the last component into the R × R sub-
space, and SFA should disambiguate the many equally valid ICA solutions
by selecting the largest diagonal elements, that is, the slowest components,
in the first matrix.

This set of matrices constitutes a fixed point for the ISFA algorithm. If
we run ISFA directly on these matrices, we get Q = I. If we now apply
a random rotation matrix Qrand to the set of matrices, we would expect
ISFA to find a matrix Q that inverts this rotation and returns the R original
first components, but in any arbitrary order. Thus, the R × R submatrix
of the product P := QQrand should be a permutation matrix for perfect
unmixing.

We performed 10,000 independent tests with R = 2, RICA = 2, L = 9, and
T = 50, somewhat imitating the case of two nonlinearly mixed independent
sources and an expansion space of all polynomials of degree three. The
estimated critical number of matrices Tcrit is 18. Using 50 matrices, we rule
out any spurious solution as discussed in section 5.1. As a measure of
performance, we used the reconstruction error measure first introduced by,
Amari, Cichocki, & Yang (1995) in the formulation given in Blaschke and
Wiskott (2004):

E = 1
R2


 R∑

i=1


 R∑

j=1

|Pi j |
maxk |Pik | − 1


 +

R∑
j=1

(
R∑

i=1

|Pi j |
maxk |Pk j | − 1

)
 .

(5.4)

An experiment is considered successful if the unmixing error is smaller
than 10−5. We found that ISFA always recovered the original components
and that this 100% success rate was largely independent of the scaling
factors bICA and bSFA, which we therefore set to bICA = bSFA = 1 for this
experiment.

5.3 Tests with Twisted Audio Data. In the third experiment, we tested
the algorithm on 171 pairs of 19 nonlinearly mixed music excerpts. The sam-
ple values of the 19 excerpts were in the range of [−1,+1); the mean had an
average value of (−10 ± 110) × 10−6 (mean ± std); the standard deviation
had an average value of 0.16 ± 0.07, with its minimum and maximum val-
ues 0.02 and 0.27, respectively. One additional music excerpt was discarded
because it had extreme peaks, which led to a strong nonlinear distortion
due to the SFA part and low correlations with the source even though it
was in principle extracted correctly. All audio signals were 221 = 2,097,152
samples long and had a CD-quality sampling frequency of 44,100 Hz. We
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used the nonlinear mixture introduced by Harmeling et al. (2003) defined
by

x1(t) = (s2(t) + 3s1(t) + 6) cos(1.5 π s1(t)), (5.5)

x2(t) = (s2(t) + 3s1(t) + 6) sin(1.5 π s1(t)) . (5.6)

This is quite an extreme nonlinearity, and the unmixing performance
depends strongly on the standard deviation of the sources. For the ICA
part of the objective in equation 4.3, we used 50 time delays evenly spaced
within 1 and 44,100, corresponding to a timescale up to 1 second. The
number of time delays is greater than the critical number Tcrit, which is 18
for an expansion with polynomials of degree three and 36 for polynomials
of degree five. In order to evaluate the performance of the algorithm fairly,
we used linear regression to check if the nonlinear mixture was indeed
invertible within the available space. Two orthogonal directions were fit
within the whitened expanded space to maximize the correlation with the
original sources. Within the space of polynomials of degree three, there were
a number of cases (51 examples, 30% of the total) where the two sources
were not found by linear regression, which means the nonlinear mixture
was not invertible within the available expanded space. This is the main
reason for failures in ISFA3. Within the space of polynomials of degree five,
the mixture was always invertible. The scaling factor bSFA was kept constant
and equal to 1, while bICA was manually tuned for each example in order
to maximize the correlation between estimated and original sources. For
polynomials of degree three, we tested different values of bICA equidistant
on a logarithmic scale between 0 and 10,000. The number of tested values
varied between 5 and 40 depending on how clear and robust the optimum
was. For polynomials of degree one and five, we largely adopted the values
found for polynomials of degree three; only if the algorithm failed with
these values did we retune bICA with 20 equidistant values. This tuning
resulted in values between 0 and 1000. A source signal is considered to be
recovered if the correlation with the estimated source is greater than 0.9.

Scatter plots of a successful example are shown in Figure 2, and a sum-
mary of the results is given in Table 2. ISFA is able to separate the nonlinearly
mixed sources in about 70% of the cases in which unmixing was possible at
all. This is remarkable given the extreme nonlinearity of the mixture and a
chance level of unmixing of less than 0.01%, as we have tested by numeri-
cal simulations. However, there remains a failure rate of about 30%, which
is puzzling given the perfect performance on the surrogate matrices (see
section 5.2). We investigate this in the next section.

5.4 Analysis of Failure Cases. Why did ISFA fail in about 30% of the
cases where a good solution was available by linear regression? The values
of the objective function �ISFA, equation 4.3, and its two parts, �ICA and �SFA,
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Figure 2: Scatter plot of two sources, their nonlinear mixture, and the estimated
sources. (a) Sources. (b) Mixture. (c) Sources estimated by ISFA5. (d) First source
versus estimated first source. (e) Second source versus estimated second source.
Correlation coefficients of estimated sources and original sources were 0.996 and
0.998.

give us some information about possible reasons. Consider the following
four different cases:

1. In 1 out of the 35 true failures for ISFA3 and never for ISFA5, it is
the case that �ISFA of the sources estimated by ISFA is greater than the
�ISFA of the sources estimated by linear regression. In this case, the
algorithm obviously got stuck in a local optimum.

2. In 15 and 26 out of the 35 and 49 true failures for ISFA3 and ISFA5,
respectively, �ISFA of the sources estimated by ISFA is smaller than the
�ISFA of the sources estimated by linear regression, but either �ICA or
�SFA is greater than the corresponding linear regression value. This
indicates that the tuning of the weighting factors bSFA and bICA might
not have been fine enough. However, it could also be that there is
an abrupt transition between solutions where �ICA is greater to solu-
tions where �SFA is greater than the corresponding linear-regression
value.

3. In 6 and 3 out of the 35 and 49 true failures for ISFA3 and ISFA5,
respectively, �ICA and �SFA of the sources estimated by ISFA are both
smaller than the ones of the linear-regression estimate and greater
than the ones of the original sources. Neither a local optimum nor
the weighting factors are a plausible cause for the failure in these
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Table 2: Reconstruction Performance of Linear Regression and ISFA.

Number of
Reconstructed
Sources REG1 REG3 REG5

2 5% (8) 70% (120) 100% (171)
1 54% (93) 30% (51) 0% (0)
0 41% (70) 0% (0) 0% (0)

Number of
Reconstructed
Sources ISFA1 ISFA3 ISFA5

2 5% (8) 50% (85) 71% (122)
1 50% (85) 34% (59) 18% (30)
0 45% (78) 16% (27) 11% (19)

% correct 100%
(

8
8

)
71%

(
85
120

)
71%

(
122
171

)
Notes: The upper part shows percentages of cases where both, one, or none of the two
sources were recovered by linear regression (supervised) in the original space (REG1) or
in the expanded space with polynomials of degree three (REG3) or five (REG5). The lower
part shows the same for ISFA (unsupervised except for the tuning of bICA). Each entry
indicates the percentage (and number) of pairs with respect to the total of 171 pairs. The
last line presents the percentage of both sources recovered correctly with respect to the
number of mixtures invertible within the available expanded space by linear regression.
In the case of two recovered sources, chance level is always smaller than 0.01%.

cases. It might be that the expansion was too low-dimensional and
that a higher-dimensional expansion would have yielded the correct
solution.

4. In 13 and 20 out of the 35 and 49 true failures for ISFA3 and ISFA5,
respectively, �ICA and �SFA of the sources estimated by ISFA are both
smaller than the ones of the original sources. In this case, the solution
found is even better than the original sources in terms of the objective
function, which indicates that there is something wrong with the
objective function.

It might be possible to eliminate the failures of the first three cases by
refining the algorithm, for example, by tuning the weighting factors better
or by going to higher polynomials, but case 4 is more fundamental and
requires reconsidering the objective function itself. In this latter case, the
signals extracted by ISFA appear to be both slower and more mutually inde-
pendent than the original sources. However, scatter plots of the estimated
sources reveal that they are not statistically independent at all, but often one
is largely a function of the other (see Figures 3 and 4). Thus, the ICA part
of the objective function is not strong enough to ensure statistical indepen-
dence of the estimated sources. The cross-correlation functions shown in
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Figure 3: Scatter plot of two sources, their nonlinear mixture, and the sources
estimated by ISFA in a failure case. (a) Sources. (b) Mixture. (c) Sources estimated
by ISFA3. (d) First source versus estimated first source (correlation coefficient
0.9771). (e) First source versus estimated second source (correlation coefficient
0.0377). (f) Second source versus estimated first source (correlation coefficient
0.0197). (g) Second source versus estimated second source (correlation coeffi-
cient 0.1301).

Figure 5 indicate that this problem is not due to the specific choice of the
time delays, because the time-delayed cross-correlations of the estimated
sources (mean ± std = 0 ± 0.0028) are overall smaller than the ones of the
original sources (0 ± 0.0066). Even using different or more time delays,
such a data set would have been processed incorrectly. We conclude that
any measure of independence based on time-delayed correlations would
be insufficient in our context.

Figure 5 suggested to us that sources with a large standard deviation
of their cross-correlation function might be particularly difficult to sepa-
rate with our ISFA algorithm. We tested this hypothesis but did not find a
significant correlation with the failure cases. For an expansion with polyno-
mials of degree three, even linear regression fails if the standard deviation
of the first signal, which goes along the spiral, is large. For polynomials
of degree five, linear regression always worked in our examples, but we
suspected that separation might still be more difficult for sources with large
standard deviation. But again, we did not find a significant correlation with
the failure cases.

We argue here that the failures must be attributed to the weakness of
the ICA term in the objective function. If the SFA term were too weak,
it could happen that all output signal components are truly statistically
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Figure 4: Scatter plots of the sources estimated by ISFA for some failure cases.
It is clear that in these cases, the signal components are not statistically inde-
pendent, even though the ICA term indicates so.

independent, but at least some of them are too quickly varying, so that
they are not correlated to the sources but to some nonlinearly distorted
version of the sources, something we did not observe. Also, the success
in detecting the failure cases based on higher-order cumulants (see next
section) indicates that the failures are due to the ICA term.

5.5 Unsupervised Detection of Failure Cases. A failure rate of about
30% (or even up to 50% for ISFA3 if one also counts the cases in which
even linear regression was not able to recover the sources) is obviously
not acceptable, unless one can detect the failure cases in an unsupervised
manner. We use the weighted sum over the third- and fourth-order cross-
cumulants,

�34(u) := 1
3!

∑
i jk �=i i i

(
C (u)

i jk

)2
+ 1

4!

∑
i jkl �=i i i i

(
C (u)

i jkl

)2
, (5.7)

as an independent measure of statistical independence to indicate with
high values those cases in which the second-order ICA term has failed
to yield independent output signal components. The factors 1

3! and
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Figure 5: Cross-correlation functions of a failure case. (a) Cross-correlation
function of the original sources. (b) Cross-correlation function of the estimated
sources. Same data set as in Figure 3.

1
4! arise from an expansion of the Kullback-Leibler divergence in u,
which provides a rigorous derivation of this criterion (Comon, 1994;
McCullagh, 1987). The receiver operating characteristic (ROC) curves in
Figure 6 show that �34(u) is a good measure of success. These tests also in-
cluded the cases where linear regression was not able to recover the sources.
The area under the ROC curves is 0.952 and 0.988 for ISFA3 and ISFA5,
respectively.

6 Conclusion

In the work presented here, we have addressed the problem of nonlinear
BSS. It is known that in contrast to the linear case, statistical independence
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Figure 6: ROC curves for the test of successful source separation based on
�34(u), the weighted sum of third- and fourth-order cross-cumulants. The area
under the curves is 0.952 and 0.988 for ISFA3 (dashed line) and ISFA5 (solid
line), respectively.

alone is not a sufficient criterion for separating sources from a nonlinear
mixture; additional criteria are needed to solve the problem of selecting
the true sources (or good representatives thereof) from the many possi-
ble output signal components that would be statistically independent of
other components. We claim here that for source signals with significant
autocorrelations for time delay one, temporal slowness is a good criterion
to solve this selection problem, because the slow components are those
most likely related to the true sources by an invertible transformation; non-
invertible transformations would typically lead to more quickly varying
components.

Based on this assumption, we have derived an objective function that
combines a term from second-order independent component analysis (ICA)
with a term derived from slow feature analysis (SFA). Optimization of the
new objective function is achieved by successive Givens rotations, a method
often used in the context of ICA. We refer to the resulting algorithm as
independent slow feature analysis (ISFA) to indicate the combination of
ICA and SFA.

The algorithm is somewhat unusual in that only a small submatrix of
large time-delayed correlation matrices is being diagonalized by the Givens
rotations (usually the full matrices are being diagonalized). This opens the
question of the uniqueness of the solution. Using randomly generated pseu-
docorrelation matrices, we have found that a minimum number of time
delays is needed to obtain unique and meaningful solutions. For instance,
if the upper left 2 × 2 ubmatrix of 9 × 9 matrices has to be diagonalized, at
least 18 such matrices are needed to obtain a meaningful solution, which
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would be unlikely to emerge by accident. With 17 matrices, on the other
hand, good diagonalization can be achieved reliably even for random sym-
metric matrices. With (sufficiently many) surrogate matrices, structured
such that they have a unique solution, we have subsequently verified that
the algorithm reliably converges to the correct solution.

With tests on quite an extreme nonlinear mixture of two audio signals,
we have shown that ISFA is indeed able to perform nonlinear BSS, often
with high precision. However, in about 30% of the cases in which the true
sources could have been extracted with the nonlinearity used (as verified by
regression), ISFA failed to extract them. In many of these cases, the extracted
signals were actually better than the original sources in both the SFA term
and the ICA term of the objective function. This was a surprising finding
for us, since it seems to contradict our basic assumption that a combination
of slowness and statistical independence should permit reliable nonlinear
BSS. Closer inspection, however, has revealed that the extracted output
signal components only appear to be statistically independent in terms
of the time-delayed second-order moments but that they are often highly
related, as can be seen by visual inspection (see Figure 4) and automatically
detected with a measure �34(u) based on higher-order cumulants. This is
not a consequence of the particular choice of time delays we have used but
would be expected for any general set of time delays, as can be seen from
the cross-correlation functions (in Figure 5).

We believe that two important conclusions can be drawn from these
results. Firstly, the success cases indicate that combining slowness and sta-
tistical independence is a promising approach to nonlinear BSS. Secondly,
any measure of statistical independence based on (time-delayed) second-
order moments is too weak to guarantee statistical independence in our
context; it might even be too weak in any context where the dimensionality
of the space in which the signal components are searched for is significantly
larger than the number of components.

For a possible theoretical account of the failure of second-order ICA in
our context, consider the following example. Given a symmetrically dis-
tributed source s1, the correlation between, for instance, s1 and s2

1 vanishes
(Harmeling et al., 2003, sec. 4.1). To the extent that this also holds for time-
shifted versions s1(t) and s2

1 (t + τ ) (cf. Harmeling et al., 2003, sec. 5.4), the
statistical dependence between s1 and s2

1 does not manifest itself in the
time-delayed correlations. Thus, second-order ICA cannot be expected to
prevent extraction of s1 and s2

1 as the estimated sources, which can easily
lead to a failure case say, if s2

1 is more slowly varying than s2.
A failure rate of 30% would render the algorithm useless if it were not

possible to detect the failure cases. We have shown that the measure �34(u),
which is based on higher-order cumulants, permits failure detection with
high reliability; the area under the ROC curve is greater than 0.95, resulting
in a true positive rate of 90% and 94% at a false-positive rate of 5% and 10%
for ISFA3 and ISFA5, respectively.
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It might be possible to use �34(u) not only to detect the failure cases
but also to automatically tune the weight bICA given bSFA = 1 and de-
termine the number of sources. For the former, one could start with a
small value of bICA, so that only the SFA term is effective and the ex-
tracted components might not be independent, and then increase bICA,
so that the ICA term becomes increasingly effective, until the value of
�34(u) drops below a certain threshold. Similarly, for determining the num-
ber of sources, one could start by running the algorithm with only two
output components to be extracted and successively increase the num-
ber of components. One would then stop if adding another component
would increase �34(u) significantly (which can obviously be detected only a
posteriori).

More interesting, however, would be to use higher-order cumulants
more directly to improve the algorithm. For instance, one could define
a new objective function that is a combination of the SFA term used
here and an ICA term like �34(u). Given the high reliability with which
�34(u) can detect failure cases, we expect better performance with such
a new objective function. However, higher-order cumulants are expen-
sive to compute, especially for high-dimensional and long signals, so
that there is probably a trade-off between reliability and computational
complexity. Exploring these possibilities will be subject of our future
research.

Appendix

The definitions of the constants dn and en for the expression of the objective
function, equation 4.9, follow directly from the multilinearity of C (u)

... (τ ).
They are given in Table 3. Using trigonometry, we can derive simpler ob-
jective functions of the form

Case 1: �
µν

ISFA(φ) = a20 + c24 cos(4φ) + s24 sin(4φ) (A.1)

Case 2: �
µν

ISFA(φ) = a20 + c22 cos(2φ) + s22 sin(2φ)

+ c24 cos(4φ) + s24 sin(4φ), (A.2)

with constants defined in Table 4. In the next step, these objective functions
are further simplified by combining the sine term and cosine term in a single
cosine term. This results in

Case 1: �
µν

ISFA(φ) = A0 + A4 cos(4φ + φ4) (A.3)

Case 2: �
µν

ISFA(φ) = A0 + A2 cos(2φ + φ2) + A4 cos(4φ + φ4), (A.4)

with constants defined in Table 5.
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Table 3: Constants in Equation 4.9.

Case 1 Case 2

d0
∑

τ∈TSFA

κτ
SFA

(
C (u′)

µµ

)2 +
(

C (u′)
νν

)2 ∑
τ∈TSFA

κτ
SFA

(
C (u′)

µµ

)2

d1 4
∑

τ∈TSFA

κτ
SFA

(
C (u′)

µµ C (u′)
µν − C (u′)

µν C (u′)
νν

)
4

∑
τ∈TSFA

κτ
SFAC (u′)

µν C (u′)
µµ

d2 2
∑

τ∈TSFA

κτ
SFA

(
2
(

C(u′)
µν

)2

+ C (u′)
µµ C (u′)

νν

)
2

∑
τ∈TSFA

κτ
SFA

(
2
(

C (u′)
µν

)2

+C (u′)
µµ C (u′)

νν

)
d3 0 4

∑
τ∈TSFA

κτ
SFAC (u′)

µν C (u′)
νν

d4 0
∑

τ∈TSFA

κτ
SFA

(
C (u′)

νν

)2

dc
∑

τ∈TSFA

κτ
SFA

R∑
α=1,

α �∈{µ,ν}

(
C (u′)

αα

)2 ∑
τ∈TSFA

κτ
SFA

R∑
α=1
α �=µ

(
C (u′)

αα

)2

e0 2
∑

τ∈TICA

κτ
ICA

(
C (u′)

µν

)2
2

∑
τ∈TICA

κτ
ICA

R∑
α=1
α �=µ

(
C (u′)

µα

)2

e1 4
∑

τ∈TICA

κτ
ICA

(
C (u′)

µν C (u′)
νν − C (u′)

µµ C (u′)
µν

) ∑
τ∈TICA

κτ
ICA

R∑
α=1
α �=µ

C (u′)
µα C (u′)

αν

e2
∑

τ∈TICA

κτ
ICA

(
C (u′)

µµ − C (u′)
νν

)2 − 2
(

C (u′)
µν

)2
2

∑
τ∈TICA

κτ
ICA

R∑
α=1
α �=µ

(
C (u′)

αν

)2

ec 2
∑

τ∈TICA

κτ
ICA


R−1∑

α=1

R∑
β>α

(
C (u′)

αβ

)2 −
(

C (u′)
µν

)2


 2

∑
τ∈TICA

κτ
ICA

R−1∑
α=1,
α �=µ

R∑
β=α+1,

β �=µ

(
C (u′)

αβ

)2

It is easy to see why it is possible to write both objective functions A.3 and
A.4 in such a simple form. First, the terms in equation 4.9 are products of at
most four sin(φ) and cos(φ) functions, which allows, at most, a frequency of
4. Second, in case 1, �

µν

ISFA(φ) has a periodicity of π/2 because rotations by
multiples of π/2 correspond to a permutation (possibly plus sign change) of
the two components. Since both components are inside the subspace, per-
mutations do not change the objective function, and the objective function
has a π/2 periodicity. Thus, we conclude that only frequencies of 0 and 4 can
be present in equation A.3. In case 2, since one component lies outside the
subspace, an exchange of components will change the objective function,
equation A.4. A rotation by multiples of π , however, which results only in a
possible sign change, will leave the objective function unchanged, resulting
in an objective function with π -periodicity and therefore frequencies of 0,
2, and 4.
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Table 4: Constants in Equations A.1 and A.2 in Terms of the Constants of
Table 3.

Case 1 Case 2

a20
bICA

4 (4ec + e2 + 3e0) bICA
2 (2ec + e0 + e2)

− bSFA
4 (4dc + d2 + 3d0) − bSFA

8 (8dc + 3d0 + d2 +
3d4)

c22 - bICA
2 (e0 − e2) − bSFA

2 (d0 − d4)
s22 - bICA

2 e1 − bSFA
4 (d1 + d3)

c24
bICA

4 (e0 − e2) − bSFA
4 (d0 − d2) − bSFA

8 (d0 − d2 + d4)
s24

bICA
4 e1 − bSFA

4 d1 − bSFA
8 (d1 − d3)

Table 5: Constants in Equations A.3 and A.4 in Terms of the Constants of
Table 4.

Case 1 Case 2

A0 a20 a20

A2 -
√

c2
22 + s2

22

A4

√
c2

24 + s2
24

√
c2

24 + s2
24

tan (φ2) - − s22
c22

tan (φ4) − s24
c24

− s24
c24
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