
Proc. of the 5th Intl. Conf. on
Independent Component Analysis and Blind Signal Separation

Granada, Spain, 22-24 September 2004

Independent Slow Feature Analysis and
Nonlinear Blind Source Separation

Tobias Blaschke and Laurenz Wiskott

Institute for Theoretical Biology, Humboldt University Berlin
Invalidenstraße 43, D-10115 Berlin, Germany

{t.blaschke,l.wiskott}@biologie.hu-berlin.de
http://itb.biologie.hu-berlin.de/{˜blaschke,˜wiskott}

Abstract. We present independent slow feature analysis as a new method for
nonlinear blind source separation. It circumvents the indeterminacy of nonlinear
independent component analysis by combining the objectives of statistical inde-
pendence and temporal slowness. The principle of temporal slowness is adopted
from slow feature analysis, an unsupervised method to extract slowly varying fea-
tures from a given observed vectorial signal. The performance of the algorithm is
demonstrated on nonlinearly mixed speech data.

1 Introduction

Unlike in the linear case the nonlinear Blind Source Separation (BSS) problem can
not be solved solely based on the principle of statistical independence [Hyvärinen and
Pajunen, 1999; Jutten and Karhunen, 2003]. Performing nonlinear BSS with Indepen-
dent Component Analysis (ICA) requires additional information about the underlying
sources or to regularize the nonlinearities. Since source signal components are usually
more slowly varying than any nonlinear mixture of them we consider to require the
estimated sources to be as slowly varying as possible. This can be achieved by incor-
porating ideas from Slow Feature Analysis (SFA) [Wiskott and Sejnowski, 2002] into
ICA.

After a short introduction to linear BSS, nonlinear BSS and SFA we will show a
way how to combine SFA and ICA to obtain an algorithm that solves the nonlinear BSS
problem.

2 Linear Blind Source Separation

Letx(t)= [x1 (t) , . . . ,xN (t)]T be a linear mixture of a source signals(t)= [s1 (t) , . . . ,sN (t)]T

and defined by

x(t) = As(t) , (1)

with an invertibleN×N mixing matrixA. Finding a mapping

u(t) = QWx (t) , (2)

This work has been supported by the Volkswagen Foundation through a grant to LW for a junior
research group.

http://itb.biologie.hu-berlin.de/


such that the components ofu are mutually statistically independent is called Inde-
pendent Component Analysis (ICA). The mapping is often divided into a whitening
mappingW, resulting in uncorrelated signal componentsyi with unit variance, and a
successive orthogonal transformationQ, because one can show [Comon, 1994] that
after whitening an orthogonal transformation is sufficient to obtain independence. It
is well known that ICA solves the linear BSS problem [Comon, 1994]. There exists
a variety of algorithms performing ICA and therefore BSS (see e.g. [Cardoso and
Souloumiac, 1993; Lee et al., 1999; Hyvärinen, 1999]). Here we focus on a method
using only second-order statistics introduced byMolgedey and Schuster[1994]. The
method consists of optimizing an objective function, subject to minimization, which
can be written as

ΨICA (Q) =
N

∑
α,β=1
α6=β

(
C(u)

αβ (τ)
)2

=
N

∑
α,β=1
α6=β

(
N

∑
γ,δ=1

QαγQβδC
(y)
γδ (τ)

)2

, (3)

operating on the already whitened signaly. C(y)
γδ (τ) is an entry of a symmetrized time

delayed covariance matrix defined by

C(y) (τ) =
〈

y(t)y(t + τ)T +y(t + τ)y(t)T
〉

, (4)

andC(u) (τ) is defined correspondingly.Qαβ denotes an entry ofQ. Minimization of
ΨICA can be understood intuitively as finding an orthogonal matrixQ that diagonalizes
the covariance matrix with time delayτ. Since, because of the whitening, the instan-
taneous covariance matrix is already diagonal this results in signal components that
are decorrelated instantaneously and at a given time delayτ. This can be sufficient to
achieve statistical independence [Tong et al., 1991].

2.1 Nonlinear BSS and ICA

An obvious extension to the linear mixing model (1) has the form

x(t) = F (s(t)) , (5)

with a functionF (·) RN → RM, that mapsN-dimensional source vectorss onto M-
dimensional signal vectorsx. The componentsxi of the observable are a nonlinear mix-
ture of the sources and like in the linear case source signal componentssi are assumed
to be mutually statistically independent. Unmixing is in general only possible ifF (·) is
an invertible function, which we will assume from now on.

The equivalence of BSS and ICA in the linear case does in general not hold for a
nonlinear functionF (·) [Hyvärinen and Pajunen, 1999; Jutten and Karhunen, 2003]. To
solve the nonlinear BSS problem additional constraints on the mixture or the estimated
signals are needed to bridge the gap between ICA and BSS. Here we propose a new
way to achieve this by adding a slowness objective to the independence objective of
pure ICA. Assume for example a sinusoidal signal componentxi = sin(2πt) and a sec-
ond component that is the square of the firstx j = x2

i = 0.5(1−cos(4πt)) is given. The
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second component is more quickly varying due to the frequency doubling induced by
the squaring. Typically nonlinear mixtures of signal components are more quickly vary-
ing than the original components. To extract the right source components one should
therefore prefer the slowly varying ones. The concept of slowness is used in our ap-
proach to nonlinear BSS by combining an ICA part that provides the independence of
the estimated source signal components with a part that prefers slowly varying signals
over more quickly varying ones. In the next section we will give a short introduction to
Slow Feature Analysis building the basis of the second part of our method.

3 Slow Feature Analysis

Assume a vectorial input signalx(t) = [x1(t), . . . ,xM(t)]T is given. The objective of SFA
is to find an in general nonlinear input-output functionu(t) = g(x(t)) with g(x(t)) =
[g1 (x(t)) , . . . , gR(x(t))]T such that theui (t) are varying as slowly as possible. This
can be achieved by successively minimizing the objective function

∆(ui) :=
〈
u̇2

i

〉
, (6)

for eachui under the constraints

〈ui〉 = 0 (zero mean), (7)〈
u2

i

〉
= 1 (unit variance), (8)〈

uiu j
〉

= 0 ∀ j < i (decorrelation and order). (9)

Constraints (7) and (8) ensure that the solution will not be the trivial solutionui = const.
Constraint (9) provides uncorrelated output signal components and thus guarantees that
different components carry different information. Intuitively we are searching for signal
componentsui that have on average a small slope.

Interestingly Slow Feature Analysis (SFA) can be reformulated with an objective
function similar to second-order ICA, subject to maximization [Blaschke et al., 2004],

ΨSFA(Q) =
M

∑
α=1

(
C(u)

αα (τ)
)2

=
M

∑
α=1

(
M

∑
β,γ=1

QαβQαγC
(y)
βγ (τ)

)2

. (10)

To understand (10) intuitively we notice that slowly varying signal components are
easier to predict, and should therefore have strong auto correlations in time. Thus, max-
imizing the time delayed variances produces slowly varying signal components.

4 Independent Slow Feature Analysis

If we combine ICA and SFA we obtain a method, we refer to as Independent Slow Fea-
ture Analysis (ISFA), that recovers independent components out of a nonlinear mixture
using a combination of SFA and second-order ICA. As already explained, second-order
ICA tends to make the output components independent and SFA tends to make them
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slow. Since we are dealing with a nonlinear mixture we first compute a nonlinearly ex-
panded signalz = h(x) with h(·) RM → RL being typically monomials up to a given
degree, e.g. an expansion with monomials up to second degree can be written as

h(x(t)) = [x1, . . . , xN, x1x1, x1x2, . . . , xMxM]T −hT
0 , (11)

when given anM-dimensional signalx. The constant vectorhT
0 is used to make the

expanded signal mean free. In a second stepz is whitened to obtainy = Wz. Thirdly
we apply linear ICA combined with linear SFA ony in order to find the estimated source
signalu. Because of the whitening we know that ISFA, like ICA and SFA, is solved by
finding an orthogonalL×L matrixQ. We write the estimated source signalu as

v =
(

u
ũ

)
= Qy = QWz = QWh (x) , (12)

where we introduced̃u sinceR, the dimension of the estimated source signalu, is usu-
ally much smaller thanL, the dimension of the expanded signal. While theui are sta-
tistically independent and slowly varying the components ˜ui are more quickly varying
and may be statistically dependent on each other as well as on the selected components.

To summarize, we have anM dimensional inputx anL dimensional nonlinearly ex-
panded and whitenedy and anRdimensional estimated source signalu. ISFA searches
anRdimensional subspace such that theui are independent and slowly varying. This is
achieved at the expense of all ˜ui .

4.1 Objective function

To recoverRsource signal componentsui i = 1, . . . ,Rout of anL-dimensional expanded
and whitened signaly the objective reads

ΨISFA (u1, . . . ,uR;τ) = bICA

R

∑
α,β=1,
α6=β

(
C(u)

αβ (τ)
)2
−bSFA

R

∑
α=1

(
C(u)

αα (τ)
)2

, (13)

where we simply combine the ICA objective (3) and SFA objective (10) weighted by
the factorsbICA andbSFA, respectively. Note that the ICA objective is usually applied
to the linear case to unmix the linear whitened mixturey whereas here it is used on the
nonlinearly expanded whitened signaly = Wz. ISFA tries to minimizeΨISFA which is
the reason why the SFA part has a negative sign.

4.2 Optimization Procedure

From (12) we know thatC(u) (τ) in (13) depends on the orthogonal matrixQ. There are
several ways to find the orthogonal matrix that minimizes the objective function. Here
we apply successive Givens rotations to obtainQ. A Givens rotationQµν is a rotation
around the origin within the plane of two selected componentsµ and ν and has the
matrix form

Qµν
αβ :=


cos(φ) for (α,β) ∈ {(µ,µ) ,(ν,ν)}

−sin(φ) for (α,β) ∈ {(µ,ν)}
sin(φ) for (α,β) ∈ {(ν,µ)}

δαβ otherwise

(14)
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with Kronecker symbolδαβ and rotation angleφ. Any orthogonalL×L matrix such as

Q can be written as a product ofL(L−1)
2 (or more) Givens rotation matricesQµν (for the

rotation part) and a diagonal matrix with elements±1 (for the reflection part). Since
reflections do not matter in our case we only consider the Givens rotations as is often
used in second-order ICA algorithms (see e.g. [Cardoso and Souloumiac, 1996]).

We can therefore write the objective as a function of a Givens rotationQµν as

ΨISFA (Qµν)= bICA

R

∑
α,β=1,
α6=β

(
L

∑
γ,δ=1

Qµν
αγQ

µν
βδC

(y)
γδ (τ)

)2

−bSFA

R

∑
α=1

(
L

∑
β,γ=1

Qµν
αβQµν

αγC
(y)
βγ (τ)

)2

,

(15)
Assume we want to minimizeΨISFA for a givenR, whereRdenotes the number of signal
components we want to unmix. Applying a Givens rotationQµν we have to distinguish
three cases

– Case 1Both axesuµ anduν lie inside the subspace spanned by the firstR axes
(µ,ν ≤ R): The sum over all squared cross correlations of all signal components
that lie outside the subspace is constant as well as those of all signal components
inside the subspace. There is no interaction between inside and outside, in fact the
objective function is exactly the objective for an ICA algorithm based on second-
order statistics e.g. TDSEP or SOBI [Ziehe and Müller, 1998; Belouchrani et al.,
1997]. In [Blaschke et al., 2004] it has been shown that this is equivalent to SFA in
the case of a single time delay.

– Case 2Only one axis, w.l.o.g.uµ, lies inside the subspace, the other,uν, outside
(µ≤ R< ν): Since one axis of the rotation plane lies outside the subspace,uµ in
the objective function can be optimized at the expense of ˜uν outside the subspace.
A rotation ofπ/2, for instance would simply exchange componentsuµ anduν. This
gives the possibility to find the slowest and most independent components in the
whole space spanned by allui and ˜u j (i = 1, . . . ,R, j = R+ 1, . . . ,L) in contrast
to Case 1 where the minimum is searched within the subspace spanned by theR
components in the objective function.

– Case 3Both axes lie outside the subspace(R< µ,ν): A Givens rotation with the
two rotation axes outside the relevant subspace does not affect the objective func-
tion, and can therefore be disregarded.

It can be shown that like in [Blaschke and Wiskott, 2004] the objective function (15) as
a function ofφ can always be written in the form

Ψµν
ISFA (φ) = A0 +A2cos(2φ+φ2)+A4cos(4φ+φ4) , (16)

where the second term on the right hand side vanishes for Case 1. There exists a single
minimum (if w.l.o.g.φ ∈

[
−π

2 , π
2

]
) that can easily be calculated (see e.g.[Blaschke and

Wiskott, 2004]). The derivation of (16) involves various trigonometric identities and,
because of its length, is documented elsewhere1.

1 http://itb.biologie.hu-berlin.de/~blaschke
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It is important to notice that the rotation planes of the Givens rotations are selected
from the wholeL-dimensional space whereas the objective function only uses informa-
tion of correlations among the firstRsignal componentsui .

Successive application of Givens rotationsQµν leads to the final rotation matrixQ
which is in the ideal case such thatQTC(y) (τ)Q = C(v) (τ) has a diagonalR×R sub-
matrix C(u) (τ), but it is not clear if the final minimum is also the global one. However,
in various simulations no local minima have been found.

4.3 Incremental Extracting of Independent Components

It is possible to find the number of independent source signal componentsRby succes-
sively increasing the number of components to be extracted. In each step the objective
function (13) is optimized for a fixedR. First a single signal component is extracted
(R= 1) and than an additional one (R= 2) etc. The algorithm is stopped when no ad-
ditional signal component can be extracted. As a stopping criterion every suitable mea-
sure of independence can be applied; we used the sum over squared cross-cumulants
of fourth order. In our artificial examples, this value is typically small for independent
components, and increases by two orders of magnitudes if the number of components
to be extracted is greater than the number of original source signal components.

5 Simulation

Here we show a simple example, with two nonlinearly mixed signal components as
shown in Figure1. For comparison we chose a mixture from [Harmeling et al., 2003]
defined by

x1 (t) = (s2 (t)+3s1 (t)+6)cos(1.5π s1 (t)) ,

x2 (t) = (s2 (t)+3s1 (t)+6)sin(1.5π s1 (t)) . (17)

We used the ISFA algorithm with different nonlinearities (see Tab.1). Already a nonlin-
ear expansion with monomials up to degree three was sufficient to give good unmixing
results. In all cases ISFA did find exactly two independent signal components. Using all
monomials up to degree five led to results that showed virtually no difference between
estimated and true source signal (see Fig.1). A linear BSS method failed completely to
find a good unmixing matrix.

6 Conclusion

We have shown that connecting the ideas of slow feature analysis and independent
component analysis into ISFA is a possible way to solve the nonlinear blind source
separation problem. SFA enforces the independent components of ICA to be slowly
varying which seems to be a good way to discriminate between the original and non-
linearly distorted source signal components. A simple simulation showed that ISFA is
able to extract the original source signal out of a nonlinear mixture. Furthermore ISFA
can predict the number of source signal components via an incremental optimization
scheme.
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Table 1.Correlation coefficients of extracted (u1 andu2) and original (s1 ands2) source
signal components

linear degree 2 degree 3 degree 4 degree 5 kTDSEP
u1 u2 u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

s1 -0.890 0.215 0.936 0.013 0.001 0.988 0.002 -0.996 0.998 -0.000 0.990 -
s2 -0.011 -0.065 -0.027 0.149 -0.977 0.006 0.983 -0.000 -0.000 0.994 - 0.947

Correlation coefficients of extracted (u1 and u2) and original (s1 and s2) source signal com-
ponents for linear ICA (first column) and ISFA with different nonlinearities (monomials up to
degree 2,3,4, and 5). Note, that the source signal can only be estimated up to permutation and
scaling, resulting in different signs and permutations ofu1 andu2. The correlation coefficients
for kTDSEP were taken from [Harmeling et al., 2003] with same mixture but different source
signal.

(a)

(b)

(c)

Fig. 1.Waveforms and Scatter-plots of(a) the original source signal componentssi , (b)
the nonlinear mixture, and(c) recovered components with nonlinear ISFA (ui). As a
nonlinearity we used all monomials up to degree 5.
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